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Two-dimensional charged-exciton complexes
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A simple method is used to calculate the binding energies of negatively and positively charged excitons
(trions) in an ideal two-dimensional electron-hole system. The binding energy of the charged exciton is
obtained as a function of the mass ratie- m,/m;,, using a mass-weighted coordinate system, thus avoiding
tedious variational calculations. Our calculated values of the binding energies of charged excitons agree well
with existing experimental and theoretical results. The calculations are extended to determine the binding
energy of the two-dimensional charged-biexciton compl&80163-18207)01112-(

I. INTRODUCTION Sec. IV, we present some numerical results and compare our
results with experimental results available in the literature.
Recently there has been considerable experimental
interest= in the charged-exciton states of two-dimensional Il. BINDING ENERGY OF TWO-DIMENSIONAL
(2D) electron systems. Both negative and positive charged CHARGED EXCITON

excitons have been observed and their binding energies have . ' . .
The two possible configurations for the charged exciton

been measured to be in the range of 1 to 2 meV for IlI-V reX- andX* . for which. r tively. an electron is bound
semiconductor materials. This is mainly the result of thedreé”  an , 10 ch, respectively, an electron IS bouna
. S : ; to an exciton and a hole is bound to an exciton. The Hamil-
relatively larger binding energies of charged-exciton com- ~ - ) )
. . : oo . tonian for aX™ charged exciton can be written as

plexes due to their reduced dimensionality in semiconductor

quantum wells. . 52 52
Theoretical calculatiofis of charged excitons of reduced Hy-=— == (V34 V%) — =— V2+Vy-, 1)
. . . . : 2m 2my
dimensionality have shown good agreement with experimen- e
tal results. However these calculations are variational angyhereVy- is the interaction potential given by

involve intensive computations. The accuracy of the results

also depend on the parameters chosen to represent the trial e? 1 1 1

wave functions. In this paper, we adopt a mass-weighted VX:_?(|rel_rh| + Irea—Thl  [Fei—Teal)’ @
coordinate system to study the properties oAAB-type

Coulombic three-body system, where two of the three parWherer;, i=el, e2, andh, denote the position coordinates

ticles are similar in mass and carry charges of the same sigff the three charge carriers aeds the dielectric constant of

The third particle is assumed to carry a charge of oppositdh® duantum well material. , ,
sign. The use of mass-weighted coordinates was first pro- W& Now consider the transformation from space-fixed co-
posed by Lin and Lifiin an attempt to present a unified ordinates to relative coordinates for the three-body system of

approach for treating nonrelativistic three-body systems in R/ee ((::Zirr?j(ier?ateexscgﬁg. t-rl;gilfcI<S)nO'IL(J)n§t§¥nroen(1:Ir:;ggs;r;g:‘;tlﬁerilzi-
three-dimensional space. Chen and®lshowed that the total damental commutation reIatifjngs We assume that the par-
binding energy of ashAB system of charged particles nearly ticles are constrained to move in a plane and define the
scales with the reduced mass Afand B. However, mass- .

weighted coordinates have only been applied in the conte>&emer of mass positioR as

of a hyperspherical coordinate space systeso far.

Our main result is an analytical expression of the binding ,
energy of the charged exciton as a function of the mass ratio M
o=m./m, . Our aim is not to compete with variational cal-
culatlons such as those of Stebe_ and Aiffabet to avoid charged exciton and we define the relative separd@dre-
tedious computations and to provide a rough estimate of thngeen the hole and one of the electrons as
binding energy of the charged-biexciton complex—the sim-
plest in the series of charged bound multiple-exciton com- Rer.—r1 ()
plexes. holel

This paper is organized as follows. In Sec. Il, we provide
the theoretical basis used to tranform the Hamiltonian Oga
three charged particles interacting via Coulombic forces an
to obtain an analytical expression for the binding energy of Pr=Py+ Poy+ Pey (5)
the charged exciton. In Sec. lll, we extend the method de-
veloped in Sec. Il, to the case of the charged biexciton. Irand

=~ MR+ ME e+ MiTen

()

where M=2m} +m}, is the total effective mass of the

The momenta conjugate 8 andR can be easily ob-
ined as
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Me mh m
Pr= - , 6 e2
Romi+mf " miemy ©
whereP;, i=el, e2, andh, are the momenta of the three

charge carriers.
The third relative coordinate is expressed in terms of
', rer, andrg, and unknown coefficents; anda, as

r=ajfptase+ren. (7)

Likewise, the momenta af can be obtained in terms of the
unknown coeffiecientdy,, b,, b; as

P =b1Py+byPey +b3Pes. (8)
The five unknown coefficients are then determined using the N ‘\ /’
commutation relations: S o \ /
rh ~ \ /
[r!Pr]:|h1 [Rvpr]zov (9) \\‘ /
Y

[R,P,]=0, [r,Pg]=0, [r,Pr]=0. (10)

. FIG. 1. Relative coordinates of a three particle systemrigi-
With the known values od;, &;, by, by, bz, and(3)=(8),  nates from the center of mass mf, andm, .
the Hamiltonian in(1) can be transformed as

V2 AV2 The above Hamiltonian can then be rewritten as
" R r
—_= - 4 _
= Hen™ oM " 2m, VX 1y R P |
T T oMy R o R 19
X~ X~

whereMp, is the reduced mass afy; andmi andM, is the
reduced mass of charge carrie relative to the center of \yhere
mass of charge carrieesl andh:

20+1 |71

2
(12) Mx—:(l‘l'm MR and Ex—:§6, (16)

(Mg + M) Mg,
M
_ _ o o whereo=mj/mj .
Hem in (11) is the Hamiltonian of the kinetic energy of the  p¢ energy eigenvalue of an isolated excitBg,, can be
center of mass motion. This term will be discarded since itaypressed 4512
does not contribute to the binding energy of the system. It is

to be noted that the third relative coordinatén (7) is ob- YMgrRy

tained as the relative position of the center of mass position Eex=Eg—Ebex, Ebe= Zm. 17

of charge carriersgl andh, with respect to the position of ¢

charge carriee2 as shown in Fig. 1. whereEb,, denotes the binding energy of the exciton. Like-

Using a linear model of the charged excitoe-f{-e),  wise the energy eigenvalu&y-, of the two-dimensional
which provides the optimal binding in an exact two- charged-exciton Hamiltonian ifl5) can be obtained as
dimensional space, we define a relation between the Jacobi
coordinatesR andr as YMx-Ry

Ex-=2E,———, 18
- X g 6i7me ( )
R
=y 1+ M. R. (13 where y is a measure of dimensionalit§, is the energy

r

) ) o band gapRy is the Rydberg constant, amal, the electronic
It is to be noted that13) is used within the context of a rest mass.

two-dimensional mass-weighted coordinate system. It estab- The binding energyEby-, of a negatively charged exci-
lishes a crucial relationship between the two possible modegn can be writtehas
of relative motion in a two-dimensional three-body system.
As such, the final results of the exciton binding energy are Ebyx-=Eg+E—Ex-. (29
strongly dependent on the form ¢I3). . .

Using (13) and the relatiorir,P,]=[r,aPg]=1h, where Substituting(18) and(17) in (19), we get

a is a scaling factor, the Hamiltonian {i1) can be simpli- Mo €2
fled as EbXZ(M—XT—l>Ebex. (20)
R €y-—
. hVE Mg _ _ _ o
= — +Vy-. (149 Using (16) in (20), we get the ratio of the binding energy of

_=— +
Hx 2Mg 1 M, M . : . .
1+ a negatively charged exciton to that of a three-dimensional
M, neutral donor as
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Present Calculation
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among the three holes. A similar structure can be conceptu-
1t o’ (21) alized for theX; complex. The exotic complex structure as
shown in Fig. 3 is convenient in extending the theory estab-
whereDy=m? Ry, /e?m, is the binding energy of the neutral lished in Sec. Il to the case of the charged-biexciton com-
donor. plex.
In the hydrogenic limit, c=0, Eq. (21) gives We use the definition of the binding energglbxg, of a
Eby-/Dy=0.5, which agrees very well with the numerical negatively charged biexciton as
result of about 0.48.In the positronium limit, o=1,
Eby-/B=0.2875, which compares well with the value of Eby-=Eg+Ejex— EXS—, (23
0.25 obtained from the variational calculations of Stebe and
Ainané. The binding energy of a positively charged exciton whereE andEx; are, respectively, the energy eigenvalues

Eby- [(3)? 20+1
Dy |\2) |\t T dot2

(h-e-h) (Ebx-) can be obtained from Eq21) using of the biexciton and charged-biexciton Hamiltonian.
It has been showr!® recently that the biexciton has an
be_(l) anisotropic character in two-dimensional systems and re-
o duces to the hydrogenic form of a single exciton, with a
Eby+(0) = P ' (22) modified reduced mass and dielectric constant, in exact 2D

systems. Using this result, we rewrit23) as
In Fig. 2, we have compared our results Bby-/B and

Eby- /B as functions ofr with that of Stebe and Ainarfe.

Ill. TWO-DIMENSIONAL ,—"'."~~
CHARGED-BIEXCITON COMPLEX ‘< ~

Among three-electron atomic systems tg¢ ion, which ’ \
is barely bound, is perhaps the most perculiar ion. Theoreti- ‘ \
cal calculation§’ have shown that the equilibriutd] con- / "\
figuration is an equilateral triangle with interatomic distances ! '
comparable to that in thel, molecule. The semiconductor ' ® '
analogs of theH; ion are the charged multiple-exciton 1 i
states,X; and X3 , for which, respectively, an electron is \ /
bound to a single biexcitdh™® and a hole is bound to a \ g
single biexciton. It is difficult to describe a structure for the 'Y #h
charged biexciton, as it is equally possible for the unpaired h ,
electron to be bound to two excitons which interact weakly, N .
and thus less likely to be existing in a biexcitonic state. A S~eeo . e
possible configuration of th&; state is shown in Fig. 3, . . . .
which can be considered as an average structure arising out ~ Charged Biexciton configuration (X;)
of the individual resonance structure of an extra hole inter-
acting with a biexciton. Binding can be viewed as resulting FIG. 3. Schematic representation of the charged-biexciton com-
from the quantum mechanical sharing of two electronsplex, X3 .
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FIG. 4. Ratio of binding energies,
be;/bef and EbX?f/Ebw as functions of

mass ratiogo.
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Mx; ex
Eby, = Mo — — 1| Ebyey,

whereEb,., is the binding energy of the biexcitoh g, and

1.0

binding energy of the positively charged exciton has been
measuret as 1.3 meV. Taking the binding energy of the
neutral donor Dy, as 5.5 meV, for GaAskby- /Dy and
Eby+ /Dy are expected to be in the range of 0.22-0.36 for
the GaAs/AlGa;_,As system. These experimental values

Mx; are the reduced masses of the biexciton and chargegte consistent with our calculated results of 0.32 and 0.37 for
biexciton, respectivelye,., denotes the dielectric constant of the X~ andX™ charged excitons, respectively,@at 0.68. It

the biexciton Whi|€€x5 denotes that of the charged biexci-

ton.
Using the experiment&t?°value of~0.2 for the ratio of

is important to note that the ratio i{25) is independent of
y which is related to the quantum well width. This is due to
the assumption of an ideal two-dimensional limit for the

the binding energy of a biexciton to that of an exciton, whichelectron and hole wave functions in an infinite well potential.
is shown to be independent of the width of the quantumAs is well known in the theory of finite quantum wells, an

well,*¥ and(21) and(24), we get the upper bound of the ratio exact two-dimensional structure of exciton is never attained.
of the binding energy of the charged exciton to charged biexbue to the effect of the spreading of the electron and hole

citon as

Eby 0.2

Eby- 3)2 L 20+1 |1 L
2 - o’+40+2 B

When =0, Eq. (25) gives bes—/EbX—=0.4, and when

o=1, be;/EbX—=0.35. The binding energy of a posi-

tively charged biexciton I{-h-e-e-h-h) (X3) is obtained
from Eg. (25) by replacingo with 1/o. Figure 4 shows re-
sults ofbes—/bef and EbX3+ /Eby+ as functions ofo.

(29

IV. RESULTS AND DISCUSSION

wave function into the barrier regions, the diameter of exci-
tons decrease as the quantum well thickness decreases and
pass through a minimum poffitbefore increasing again.
Thus we expect a similar qualitative result in the ratio of our
calculated binding energies as a function of the well width,
when applied to finite wells.

It is to be noted that precise quantitative calculations of
the ratio of binding energies as a function of the well width
is difficult. Apart from the numerical difficulties linked to an
accurate calculation of the exciton binding energy at fixed
well widths, there is a lack of knowledge of a suitable rela-
tion of the form given in(13) as a function of the well width.
However, it is likely that solving the existing problem within
the framework of a fractional dimensional spHcmay cir-

cumvent some of the difficulties mentioned here.

We have used a method of determining the binding en- We are unable to obtain experimental values of the
ergy of two-dimensional charged-exciton complexes withouharged biexciton at this moment in time to compare with
performing any tedious numerical calculations. Though thig™ig- 4 which shows that the binding energieskiy_ and
approach is based on a two-dimensional space, the resulBax; range from 1.25 meV to 0.6 meV forBo=<1. Thus
obtained here may also be applied to quantum wells of smaje charged-biexciton complex is stable for any value of the
well widths. Charged exciton and biexciton complexes have, ;s ratiar, in the range from 0 to 1. It is interesting to note
large diameteré! and hence have limited degrees of freedomy ot the rati,o Eby /Eby- is a monotonic decreasing func-
in thin quantum wells. _ s X ] o i

It may be desirable to compare our calculated values withion Of o, whereasEby: /Eby+ is a monotonic increasing
recent experimental results. Binding energy values of 1.2 tdunction of o.

2 meV have been reportkti*?*for the charged exciton. The It is to be noted that in the limi-=0, the hole mass is
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relatively heavy and the ground state of the charged-excitothe binding energies of the charged-exciton complexes.
complex becomes comparatively high. When the electromhough this has not been significant in the case of the
and hole masses are equak-1, the zero-point motion of charged exciton, we expect our humerical values calculated
holes in the exciton complexes can decrease the binding b&sing (25) to vary by some factor$10—-30 % from those
tween the charges. This may explain the decrease of thealculated with the inclusion of electron-electron and
binding energies withr in Figs. 2 and 4. However, the role electron-hole interactions.

of the mass of the hole can only partly explain the change in In conclusion, we have presented in this paper, the bind-
binding with o between the various charges forming the ex-ing energies of two-dimensional charged-exciton complexes.
citon complexes. The spin structé&té® of the exciton com- It is expected that our results may be important in the quan-
plex may be a crucial factor in explaining the optimization of titative understanding of future experimental work involving
binding in charged-exciton complexes. In this work, we havecharged-exciton complexes.

ignored the role of spins in exciton, in order to obtain ana-
lytical expressions for binding energies. Another assumption
worth mentioning is the neglect of correlation teffiwrising

out of electron-electron and electron-hole interactions. The The author acknowledges support from the NTU and
inclusion of such terms is expected to yield higher values fothanks Professor Jai Singh for helpful discussions.
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