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Two-dimensional charged-exciton complexes

A. Thilagam
Faculty of Science, Northern Territory University, Northern Territory 0909, Australia

~Received 1 October 1996!

A simple method is used to calculate the binding energies of negatively and positively charged excitons
~trions! in an ideal two-dimensional electron-hole system. The binding energy of the charged exciton is
obtained as a function of the mass ratios5me /mh , using a mass-weighted coordinate system, thus avoiding
tedious variational calculations. Our calculated values of the binding energies of charged excitons agree well
with existing experimental and theoretical results. The calculations are extended to determine the binding
energy of the two-dimensional charged-biexciton complex.@S0163-1829~97!01112-0#
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I. INTRODUCTION

Recently there has been considerable experime
interest1–5 in the charged-exciton states of two-dimension
~2D! electron systems. Both negative and positive char
excitons have been observed and their binding energies
been measured to be in the range of 1 to 2 meV for III
semiconductor materials. This is mainly the result of t
relatively larger binding energies of charged-exciton co
plexes due to their reduced dimensionality in semicondu
quantum wells.

Theoretical calculations6,7 of charged excitons of reduce
dimensionality have shown good agreement with experim
tal results. However these calculations are variational
involve intensive computations. The accuracy of the res
also depend on the parameters chosen to represent the
wave functions. In this paper, we adopt a mass-weigh
coordinate system to study the properties of aAAB-type
Coulombic three-body system, where two of the three p
ticles are similar in mass and carry charges of the same s
The third particle is assumed to carry a charge of oppo
sign. The use of mass-weighted coordinates was first
posed by Lin and Liu8 in an attempt to present a unifie
approach for treating nonrelativistic three-body systems
three-dimensional space. Chen and Lin9 showed that the tota
binding energy of anAAB system of charged particles near
scales with the reduced mass ofA andB. However, mass-
weighted coordinates have only been applied in the con
of a hyperspherical coordinate space system10 so far.

Our main result is an analytical expression of the bind
energy of the charged exciton as a function of the mass r
s5me /mh . Our aim is not to compete with variational ca
culations such as those of Stebe and Ainane6, but to avoid
tedious computations and to provide a rough estimate of
binding energy of the charged-biexciton complex—the s
plest in the series of charged bound multiple-exciton co
plexes.

This paper is organized as follows. In Sec. II, we provi
the theoretical basis used to tranform the Hamiltonian
three charged particles interacting via Coulombic forces
to obtain an analytical expression for the binding energy
the charged exciton. In Sec. III, we extend the method
veloped in Sec. II, to the case of the charged biexciton
550163-1829/97/55~12!/7804~5!/$10.00
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Sec. IV, we present some numerical results and compare
results with experimental results available in the literatur

II. BINDING ENERGY OF TWO-DIMENSIONAL
CHARGED EXCITON

The two possible configurations for the charged exci
areX2 andX1, for which, respectively, an electron is boun
to an exciton and a hole is bound to an exciton. The Ham
tonian for aX2 charged exciton can be written as

ĤX252
\2

2me*
~¹e1

2 1¹e2
2 !2

\2

2mh*
¹h
21VX2, ~1!

whereVX2 is the interaction potential given by

VX252
e2

e S 1

ure12rhu
1

1

ure22rhu
2

1

ure12re2u
D , ~2!

wherer i , i5e1, e2, andh, denote the position coordinate
of the three charge carriers ande is the dielectric constant o
the quantum well material.

We now consider the transformation from space-fixed
ordinates to relative coordinates for the three-body system
the charged exciton. This is done by requiring that the re
tive coordinates and their conjugate momenta satisfy the
damental commutation relations. We assume that the
ticles are constrained to move in a plane and define
center of mass positionR̄ as

R̄5
mh* rh1me* re11me* re2

M
, ~3!

where M52me*1mh* is the total effective mass of th
charged exciton and we define the relative separationR be-
tween the hole and one of the electrons as

R5rh2re1 . ~4!

The momenta conjugate toR̄ and R can be easily ob-
tained as

PR̄5Ph1Pe11Pe2 ~5!

and
7804 © 1997 The American Physical Society
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55 7805TWO-DIMENSIONAL CHARGED-EXCITON COMPLEXES
PR5
me*

me*1mh*
Ph2

mh*

me*1mh*
Pe1 , ~6!

wherePi , i5e1, e2, andh, are the momenta of the thre
charge carriers.

The third relative coordinater is expressed in terms o
rh , re1, andre2 and unknown coefficentsa1 anda2 as

r5a1rh1a2re11re2 . ~7!

Likewise, the momenta ofr can be obtained in terms of th
unknown coeffiecients,b1, b2, b3 as

Pr5b1Ph1b2Pe11b3Pe2 . ~8!

The five unknown coefficients are then determined using
commutation relations:

@r ,Pr#5Ih, @R,Pr#50, ~9!

@R̄,Pr#50, @r ,PR#50, @r ,PR̄#50. ~10!

With the known values ofa1, a2, b1, b2, b3 , and~3!–~8!,
the Hamiltonian in~1! can be transformed as

ĤX25Hcm2
\¹R

2

2MR
2

\¹ r
2

2Mr
1VX2, ~11!

whereMR is the reduced mass ofme1* andmh* andMr is the
reduced mass of charge carrier,e2 relative to the center o
mass of charge carrierse1 andh:

Mr5
~me1* 1mh* !me2*

M
. ~12!

Hcm in ~11! is the Hamiltonian of the kinetic energy of th
center of mass motion. This term will be discarded sinc
does not contribute to the binding energy of the system.
to be noted that the third relative coordinater in ~7! is ob-
tained as the relative position of the center of mass posi
of charge carriers,e1 andh, with respect to the position o
charge carriere2 as shown in Fig. 1.

Using a linear model of the charged exciton (e-h-e),
which provides the optimal binding in an exact tw
dimensional space, we define a relation between the Ja
coordinates,R and r as

r5A11
MR

Mr
R. ~13!

It is to be noted that~13! is used within the context of a
two-dimensional mass-weighted coordinate system. It es
lishes a crucial relationship between the two possible mo
of relative motion in a two-dimensional three-body syste
As such, the final results of the exciton binding energy
strongly dependent on the form of~13!.

Using ~13! and the relation@r,Pr#5@r ,aPR#5Ih, where
a is a scaling factor, the Hamiltonian in~11! can be simpli-
fied as

ĤX252
\¹R

2

2MRF 11
MR

Mr

1

11
MR

Mr

G1VX2. ~14!
e

it
is

n

bi

b-
es
.
e

The above Hamiltonian can then be rewritten as

ĤX252
\2

2MX2
¹R
22

e2

eX2

1

R
, ~15!

where

MX25S 11
2s11

s214s12D
21

MR and eX25
2

3
e, ~16!

wheres5me* /mh* .
The energy eigenvalue of an isolated exciton,Eex, can be

expressed as11,12

Eex5Eg2Ebex, Ebex5
gMRRH

e2me
, ~17!

whereEbex denotes the binding energy of the exciton. Lik
wise the energy eigenvalue,EX2, of the two-dimensional
charged-exciton Hamiltonian in~15! can be obtained as

EX252Eg2
gMX2RH

eX2
2 me

, ~18!

whereg is a measure of dimensionality,Eg is the energy
band gap,RH is the Rydberg constant, andme the electronic
rest mass.

The binding energy,EbX2, of a negatively charged exci
ton can be written6 as

EbX25Eg1Eex2EX2. ~19!

Substituting~18! and ~17! in ~19!, we get

EbX25SMX2

MR

e2

eX2
2 21DEbex. ~20!

Using ~16! in ~20!, we get the ratio of the binding energy o
a negatively charged exciton to that of a three-dimensio
neutral donor as

FIG. 1. Relative coordinates of a three particle system.r origi-
nates from the center of mass ofme1 andmh .
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FIG. 2. Ratio of binding energies,EbX2 /DN

and EbX1 /DN , as functions of mass ratio,s.
The dashed lines refer to results of variation
calculations of Stebe and Ainane~Ref. 6!.
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EbX2

DN
5F S 32D

2S 11
2s11

s214s12D
21

21G 1

11s
, ~21!

whereDN5me*RH /e
2me is the binding energy of the neutra

donor.
In the hydrogenic limit, s50, Eq. ~21! gives

EbX2 /DN50.5, which agrees very well with the numeric
result of about 0.48.6 In the positronium limit, s51,
EbX2 /B50.2875, which compares well with the value
0.25 obtained from the variational calculations of Stebe a
Ainane6. The binding energy of a positively charged excit
~h-e-h! (EbX2) can be obtained from Eq.~21! using

EbX1~s!5

EbX2S 1s D
s

. ~22!

In Fig. 2, we have compared our results ofEbX2 /B and
EbX1 /B as functions ofs with that of Stebe and Ainane.6

III. TWO-DIMENSIONAL
CHARGED-BIEXCITON COMPLEX

Among three-electron atomic systems theH3
1 ion, which

is barely bound, is perhaps the most perculiar ion. Theor
cal calculations13 have shown that the equilibriumH3

1 con-
figuration is an equilateral triangle with interatomic distanc
comparable to that in theH2 molecule. The semiconducto
analogs of theH3

1 ion are the charged multiple-excito
states,X3

2 andX3
1 , for which, respectively, an electron i

bound to a single biexciton14–16 and a hole is bound to a
single biexciton. It is difficult to describe a structure for th
charged biexciton, as it is equally possible for the unpai
electron to be bound to two excitons which interact weak
and thus less likely to be existing in a biexcitonic state.
possible configuration of theX3

1 state is shown in Fig. 3
which can be considered as an average structure arising
of the individual resonance structure of an extra hole in
acting with a biexciton. Binding can be viewed as resulti
from the quantum mechanical sharing of two electro
d

ti-

s

d
,

ut
r-

s

among the three holes. A similar structure can be conce
alized for theX3

2 complex. The exotic complex structure a
shown in Fig. 3 is convenient in extending the theory est
lished in Sec. II to the case of the charged-biexciton co
plex.

We use the definition of the binding energy,EbX
3
2, of a

negatively charged biexciton as

EbX25Eg1E2ex2EX
3
2, ~23!

whereE2exandEX
3
2 are, respectively, the energy eigenvalu

of the biexciton and charged-biexciton Hamiltonian.
It has been shown17,18 recently that the biexciton has a

anisotropic character in two-dimensional systems and
duces to the hydrogenic form of a single exciton, with
modified reduced mass and dielectric constant, in exact
systems. Using this result, we rewrite~23! as

FIG. 3. Schematic representation of the charged-biexciton c
plex,X3

1 .
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FIG. 4. Ratio of binding energies
EbX

3
2 /EbX2 and EbX

3
1 /EbX1 as functions of

mass ratio,s.
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EbX
3
25S MX

3
2

MR8

e2ex
2

eX
3
2

2 21D Eb2ex, ~24!

whereEb2ex is the binding energy of the biexciton,MR8 and
MX

3
2 are the reduced masses of the biexciton and cha

biexciton, respectively.e2exdenotes the dielectric constant
the biexciton whileeX

3
2 denotes that of the charged biexc

ton.
Using the experimental19,20 value of'0.2 for the ratio of

the binding energy of a biexciton to that of an exciton, whi
is shown to be independent of the width of the quant
well,18 and~21! and~24!, we get the upper bound of the rat
of the binding energy of the charged exciton to charged b
citon as

EbX
3
2

EbX2
5

0.2

F S 32D
2S 11

2s11

s214s12D
21

21G . ~25!

When s50, Eq. ~25! gives EbX
3
2 /EbX250.4, and when

s51, EbX
3
2 /EbX250.35. The binding energy of a pos

tively charged biexciton (h-h-e-e-h-h) (X3
1) is obtained

from Eq. ~25! by replacings with 1/s. Figure 4 shows re-
sults ofEbX

3
2 /EbX2 andEbX

3
1 /EbX1 as functions ofs.

IV. RESULTS AND DISCUSSION

We have used a method of determining the binding
ergy of two-dimensional charged-exciton complexes with
performing any tedious numerical calculations. Though t
approach is based on a two-dimensional space, the re
obtained here may also be applied to quantum wells of sm
well widths. Charged exciton and biexciton complexes ha
large diameters,21 and hence have limited degrees of freedo
in thin quantum wells.

It may be desirable to compare our calculated values w
recent experimental results. Binding energy values of 1.2
2 meV have been reported1,3,4,22for the charged exciton. The
ed

x-

-
t
s
lts
ll
e

h
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binding energy of the positively charged exciton has be
measured1 as 1.3 meV. Taking the binding energy of th
neutral donor,DN , as 5.5 meV, for GaAs,EbX2 /DN and
EbX1 /DN are expected to be in the range of 0.22–0.36
the GaAs/AlxGa12xAs system. These experimental valu
are consistent with our calculated results of 0.32 and 0.37
theX2 andX1 charged excitons, respectively, ats50.68. It
is important to note that the ratio in~25! is independent of
g which is related12 to the quantum well width. This is due t
the assumption of an ideal two-dimensional limit for th
electron and hole wave functions in an infinite well potenti
As is well known in the theory of finite quantum wells, a
exact two-dimensional structure of exciton is never attain
Due to the effect of the spreading of the electron and h
wave function into the barrier regions, the diameter of ex
tons decrease as the quantum well thickness decrease
pass through a minimum point23 before increasing again
Thus we expect a similar qualitative result in the ratio of o
calculated binding energies as a function of the well wid
when applied to finite wells.

It is to be noted that precise quantitative calculations
the ratio of binding energies as a function of the well wid
is difficult. Apart from the numerical difficulties linked to a
accurate calculation of the exciton binding energy at fix
well widths, there is a lack of knowledge of a suitable re
tion of the form given in~13! as a function of the well width.
However, it is likely that solving the existing problem withi
the framework of a fractional dimensional space11 may cir-
cumvent some of the difficulties mentioned here.

We are unable to obtain experimental values of
charged biexciton at this moment in time to compare w
Fig. 4 which shows that the binding energies ofEbX

3
2 and

EbX
3
1 range from 1.25 meV to 0.6 meV for 0<s<1. Thus

the charged-biexciton complex is stable for any value of
mass ratios, in the range from 0 to 1. It is interesting to no
that the ratio,EbX

3
2 /EbX2 is a monotonic decreasing func

tion of s, whereasEbX
3
1 /EbX1 is a monotonic increasing

function ofs.
It is to be noted that in the limits50, the hole mass is
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7808 55A. THILAGAM
relatively heavy and the ground state of the charged-exc
complex becomes comparatively high. When the elect
and hole masses are equal,s;1, the zero-point motion of
holes in the exciton complexes can decrease the binding
tween the charges. This may explain the decrease of
binding energies withs in Figs. 2 and 4. However, the rol
of the mass of the hole can only partly explain the chang
binding withs between the various charges forming the e
citon complexes. The spin structure24,25 of the exciton com-
plex may be a crucial factor in explaining the optimization
binding in charged-exciton complexes. In this work, we ha
ignored the role of spins in exciton, in order to obtain an
lytical expressions for binding energies. Another assump
worth mentioning is the neglect of correlation terms26 arising
out of electron-electron and electron-hole interactions. T
inclusion of such terms is expected to yield higher values
A

D

n

.

C

m

n
n

e-
he

in
-

f
e
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n

e
r

the binding energies of the charged-exciton complex
Though this has not been significant in the case of
charged exciton, we expect our numerical values calcula
using ~25! to vary by some factors~10–30 %! from those
calculated with the inclusion of electron-electron a
electron-hole interactions.

In conclusion, we have presented in this paper, the bi
ing energies of two-dimensional charged-exciton complex
It is expected that our results may be important in the qu
titative understanding of future experimental work involvin
charged-exciton complexes.
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