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Signatures of chaos in the statistical distribution of conductance peaks in quantum dots
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Analytical expressions for the width and conductance peak distributions of irregularly shaped quantum dots
in the Coulomb blockade regime are presented in the limits of conserved and broken time-reversal symmetry.
The results are obtained using random matrix theory and are valid in general for any number of nonequivalent
and correlated channels, assuming that the underlying classical dynamics of the electrons in the dot is chaotic
or that the dot is weakly disordered. The results are expressed in terms of the channel correlation matrix, which
for chaotic systems is given in closed form for both pointlike contacts and extended leads. We study the
dependence of the distributions on the number of channels and their correlations. The theoretical distributions
are in good agreement with those computed in a dynamical model of a chaotic billiard.
[S0163-182697)04912-§

[. INTRODUCTION low temperatured’<kT<A the width of the conductance
peaks is~KkT, but the heights exhibit order-of-magnitude
One of the most interesting aspects of electron transpowariations®~>
in submicrometer-scale devices is the interplay between When the electron-impurity mean-free path is larger than
guantum coherence and aperiodic but reproducible conduthe size of the dot, the classical dynamics of the electron
tance fluctuations. Over the past decade the phenomenon iofside the dot is determined by the scattering from the dot's
universal conductance fluctuations in disordered systemBoundary. Owing to small irregularities in the dot’s shape,
(where impurity scattering dominajebas been understood the electron displays chaotic motion, and its quantum trans-
through the use of stochastic models. More recently, a newort through the dot can be described by a statistical
generation of experimeritsvas designed to measure conduc-S-matrix theory’ Since the Coulomb blockade regime is
tance fluctuations in the ballistic regime where the dynamicglominated by resonances, the conductance peaks can be used
of the electrons in the device is determined by the geometrio probe the chaotic properties of the underlying resonance
of its boundary. The stochastic approach to these systems wgave-functions. A statistical theory of the conductance peaks
justified by the underlying classical chaotic dynamics. Thiswas originally developed in Ref. 8. By usinB-matrix
situation is distinct from the diffusive case, where the corretheory®!°the conductance peak amplitude was expressed in
sponding classical limit of the quantum problem is not fully terms of the electronic resonance wave function across the
understood. contact region between the dot and the leads. When the dy-
In this paper we discuss the conductance fluctuations imamics of the electron inside the dot is chaotic, the fluctua-
guantum dots. These are semiconductor devices in which th#ns of the wave-function inside the dot are assumed to be
electrons are confined to a two-dimensional region whosevell described by random matrix theofRMT). In Ref. 8
typical linear dimension is in the submicrometer raAgdn  the conductance distribution was derived in closed form for
particular we are interested in the Coulomb blockade regimene-channel leads. These results were rederived in Ref. 11,
where the leads are weakly coupled to the dot, either becausad later extended to the case of two-channel leads in the
the leads are very narrow, or because of potential barriers absence of time-reversal symmeétryhrough the use of the
the lead-dot interfacéThe electrons inside the dot are char- supersymmetry techniqdé.However, the calculations re-
acterized by isolated resonances whose width is smaller thaguired by this technique become too complicated to apply in
their average spacing, and conductance occurs through resitre general case of any number of possibly correlated and/or
nant tunneling. As a consequence, the conductance is atreonequivalent channels.
maximum when the Fermi energy matches a resonance en- The conductance distributions for one-channel leads were
ergy of the electrons inside the dot and an additional electrorecently measuré&'® and found to be in agreement with
tunnels into the dot. Such a system resembles the compounkeory for both cases of conserved and broken time-reversal
nucleus in its region of isolated resonanfeBhe macro- symmetry. This indicates that the dephasing effect, which
scopic charging energy required to add an electron to a dot iglays an important role in open ddfs!’ is of little impor-
determined by its capacitan€and is given bye?/C. Since  tance for closed dots.
C is a constant that is determined essentially by the geometry In this paper we discuss in detail the width and conduc-
of the dot, the conductance exhibits equally spaced oscillatance peak distributions for leads with any number of chan-
tions as a function of the gate voltage Fermi energy. At nels that are in general correlated and nonequivalent. Exact
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closed expressions for these distributions are derived foHere W, (r) is the A th resonance wave-function in the dot,
both cases of conserved and broken time-reversab(r) is the transverse wave-function in the lead that corre-
symmetry'® We find that these distributions are entirely sponds to an open channeland the integral is taken over
characterized by the eigenvalues of the channel correlatiothe contact area between the lead and theldoand P, are
matricesM' andM" in the left and right leads, respectively. the longitudinal wave number and penetration factor in chan-
The strength of our approach is in its simplicity, since it nel c, respectively.
relies solely on standard RMT techniques. To test our pre- Equation(2) shows that the contributions to the partial
dictions we compare our analytical findings to numericalwidth amplitude from the internal and external regions of the
simulations of a chaotic dynamical model, the conformaldot factorize. The information from the external region is
billiard.'® Statistical width and conductance distributions of contained ink, andP,. These quantities are determined by
one-channel leads were recently studied in detail in thishe wave dynamics in the leads and are nonuniversal. They
model?® Although our paper deals mainly with ballistic dots affect the average widths and enter explicitly in the correla-
whose classical dynamics is chaotic, our results should alsgon matrix M. However, the fluctuation properties of the
be valid in the diffusive regime of weakly disordered dots,conductance are generic and depend only on the statistical
where random matrix theory is applicable. properties of the electronic wave-function at the dot-lead
We note that the partial width amplitude is analogous toboundary inside the barrier region.
the wave-function amplitude at any given point. Therefore A different physical modeling of a quantum dot assumes
our width distributions can also be tested by microwave cavpointlike contacts, and each lead is composed of several such
ity experimentg!~? where the intensities are measured atpoint contact*2In this model the conductance peak is also
several points that are spatially correlated. As a side resuljiven by Eq.(1) with each point contaat, considered as one
we obtain the joint distribution of a chaotic wave-function channel. The corresponding partial widtfiis
amplitude at several spatial points. From this distribution it is
straightforward to calculate the joint distribution of the acAA
wave-function intensities. Y=\ (o), 3
This paper is organized as follows: In Sec. Il we briefly ) ) .
review the conductance in quantum dots in their CoulomgVhere A is the area of the doty is the mean spacing, and

blockade regime. In Sec. Il we discuss the statistical modeftc i & dot-lead coupling parameter. _
and derive analytic results for the partial and total width Both models can be treated by our formalism, as becomes

distributions in each lead, for the channel correlation matrix@Pparent from the following considerations. A resonance
and for the conductance distribution. We investigate thetigenfunction with eigenenergy can be approximated by
variation of these distributions as a function of the number 0N expansion in a fixed basgs, of wave-functions with the
channels and their sensitivity to the degree of correlatiordiven energyE inside the dot

between them. Those findings are compared in Sec. IV with

numerical results obtained for the conformal billiard. Finally, v, (N=> Dy uP (1) %)

in Sec. V we discuss the validity of our assumptions in the u

the context of typical experiments. The sum overu is truncated afN basis statesN is much

larger than the number of open channelhe partial width

Il. CONDUCTANCE IN QUANTUM DOTS in channelc can then be expressed by the scalar product
In this section we briefly review the formalism and intro-
duce the notation used throughout this paper. In particular, Yo ={ )=, et 5
we express the conductance peak heights in terms of the s
channel and resonance wave-functions of the dot. where
For T<kT<A, which is typical of many experiments,
the observed on-resonance conductance peak amplitude is h2k P, .
given by*2° bep= - J dS®Z(r)p,(r) (6)
e " r'xr; for the extended leads model, and
Cr=1 g9, Wit gx—my (1) \/m
c *
: = re) )
wherel'\") is the partial decay width of the resonancénto Pou 7 Pulle

the left(right) lead. Since each lead can support several 0pepy, the noint contact model. Thus, we are led to similar for-
channels we havé,"' =3I, whereI'({) is the partial mylations of both the extended leads and pointlike contact
width to decay into channel in the left (right) lead. problems; in the correspondimrdimensional space the par-
In the R-matrix formalism;° the partial widths are related tial width amplitudes of a level are simply the projections of
to the resonance wave-function inside the dot. More specifiits corresponding eigenstate vectby on the channel vectors
cally, introducing the partial amplitudey,, such that 4  The only difference between the two models is the ex-
T'cy=]ya|? one can write plicit expression for the channel vectg, . We note that the
scalar product5) (used throughout this papeis different

/ﬁzkcpc * from the original scalar product defined in the spatial region
Yo m j dSPc (1) W,(1). @ extended by the dot.
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Ill. STATISTICAL MODEL netic field is applied. The width distributiofor equivalently

Because the dot's shape is irregular, the motion of thé[he wave-function intensity distributiprwas derived in the

electron inside the dot is expected to be chaotic. In Ref. 8 wegrOSSOVer regime between symmetries for the case of one

developed a statistical theory of the conductance peaks b%/hannel leads onf:

assuming that the vectorg, that correspond to the reso-
nance wave-functions inside the dot have the same statistical
properties as the eigenvectors of a random matrix ensemble.
Here we study the limits of conserved time-reversal symme- In RMT the eigenvectowy= (41,4, ... ¢) (here and
try, corresponding to the Gaussian orthogonal ensembl@ the following we omit the eigenvector labg) is distrib-
(GOBE), and of broken time-reversal symmetry, correspond-uted randomly’ on a spherd(y) 8(=),_y|4,,|*~1). The
ing to the Gaussian unitary ensemi®UE). The transition joint distribution of the partial width amplitudes
from one symmetry to another occurs when an external magy=(vy1,7%2, - - - »¥a) for A channels is then given by

A. The joint distribution of partial width amplitudes

I'(BN/2
P(9= "oz | DLl

N
5( > lwﬂlz—l), ®
n=1

where D[¢]EHEZ1d¢M for the GOE an®[¢]5H2:1d¢Zd¢M/2wi for the GUE. To evaluate Ed8) we transform the
A channels to a new set of orthonormal channgls

A
r::I;[l &( 7c_<¢c|¢>)

¢c:2 (}C’FC’C! with <‘?’c|‘?’c’>:5cc’- 9

We then take advantage of the invariance of the corresponding Gaussian ensemble under an oftirogogatransforma-
tion to rotate the eigenvectak such that its firsth components are along the new orthonormal channels. Denotiig thy

orthogonal(unitary) matrix whose firstA rows are the orthonormal vectofb‘t(c=1, ..., A), we change variables ifb) to
lﬂM: EV@W% . Using 'ﬁc:<¢c| '7b'> we find
N

A
5(2 lhe2+ 2 [dl2-1]. (10)
c=1 pn=A

=A+1

T(BN2) [ & N A .
Pw)=%z— (;]ldwc)( I dtpﬂ) I oCye=Ferctrer)

u=A+1

The integration over these firdt components is now easily done and gives

T'(BN/2) o N
P(YFW Dl¢]o 7T7’+M=§A:+l|%|2—1)7 (11

where y.=( )=y F_-* are the partial widths to

1
decay to the new channels and the metric is as before but Meer= N<¢C|¢C’>'
excluding the firstA components ofs. Finally, the latter
integral is easily done by introducing spherical coordinatesThe distribution (13) is normalized with the measure

(14

in the (N— A)-dimensional space. We obtain D[y]=M2_,(dy./\27) for the GOE and D[y]
=I12_,(dy*dy/2mi) for the GUE. Note that for both en-
I'(BN/2) sembles the joint partial width amplitudes distribution is
P(Y)=—zar — Gaussian, the main difference being that the partial ampli-
7PAT (B(N—A)/2)|defF| tudes are real for the GOE and complex for the GUE. Such a
X[1— N (FTF) " 1y]PN-M2=1 (12) Gaussian distribution is also obtained by assuming that the

distribution is form invariant under an orthogonainitary)
transformatiorf®

It follows from Eq. (13) that the matrixM is just the
correlation matrix of the partial widths

For A<N and in the limitN— oo, we recover a simplified
expression

— _ Tag—1
P(y)=(detM) Fl2g (B2 1y (13 Moo =72 7er (15

where the matriM =(NF'F) ~! is just the metric defined in In general the channels are correlatéd { #0) and non-
terms of the original channels equivalent(their average partial widths are differgnfc-
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cording to Eq.(14) this is equivalent to assuming channels K2
that are nonorthogonal and have nonequal norms. Mcc’:m\/kckc’PcPc’J de dS' ®g(r)
B. The channel correlation matrix M X Jo(K[r=r"®(r"), (18

~ We shall now derive explicit expressions for the correla-for extended leads, while for the point contact model we find
tion matrix M in a chaotic quantum dot. Using E(.4) and

the definition of the scalar produ¢’) we find VacaA ,
Meer=———Jo(Klre=re]). (19

52 We remark that Eq.(19) is equivalent to C(k|Ar|)
Mccr=ﬂvkckchcPcff de dS' ®g(r) =W*(r)W(r')/|¥(r)[?=Jo(k|r—r’|). This result was first
derived in Ref. 30 based on the assumption that the Wigner
function of a classically chaotic system is microcanonical on
D(r"). (16 the energy surface. It was recently studied extensively in the
Africa billiard®® (this billiard is discussed in Sec. }VWe
note, however, that in these references the average is taken

) ) ) ... for a fixed wave-function over a local spatial region around
We first discuss the case where there is no magnetic flelg,ﬂl)/z while we average over eigenstates.

so that the motion inside the dot is that of a free particle. A" \yhen an external magnetic fieBl is present, the under-
resonance eigenstate inside the dot at en&gyi°k?/2m  |ying classical dynamics undergoes a transition from chaotic
can then be expanded in a basis of free particle states at thg integrable as the field gets stronger, irrespective of the
given energyE. Since RMT is applicable on a local energy billiard’s shape. In the present work, however, we only dis-
scale, this is the fixed basjs, for which the eigenvector cuss the case of weak fields for which the motion is chaotic,
coefficientsy,, are distributed randomlfon the sphere Us-  and we are interested in the transition from orthogonal to
ing polar coordinates, such a basis of free waves is given bynitary symmetry. While in the unitary case the wave-

X

1
N2 Pupu(r’)
M

pu(r)ocd, (kryexpfud) with u=0,+1,+2,..., whereJ,  functions become complex, the arguments that lead to Eq.
are Bessel functions of the first kind. Denoting bythe (17) are still valid and the wave-function correlator
number of such waves on the energy shell, we find C(k|Ar|) is unchanged. For our studies to be experimentally

relevant, it is important to have a range of values of the
magnetic field for which time-reversal symmetry is broken
1E . 1 e 6) but the underlying classical dynamics is still chadfiaVe
N< Pu(DPur )_Zg Ju(kr)J,(kr')e shall discuss this issue in Sec. V.
The wave-function correlatioG(k|Ar|) was also derived
1 for weakly disordered systems using the supersymmetry
=ZJ0(k|r—r’|), (17 techniqué® for the unitary and orthogonal symmetries. Ref-
erence 33 also includes an expression for the joint probabil-
ity distribution for the intensity of an eigenfunction at two
where we have used the addition theorem for the Bessalifferent points. We remark that the joint distribution of the
functions®® A similar relation holds if we choose a plane- wave-function amplitude af\ points ro (c=12,..A) is a
wave basis pM(r)=A‘1’2eprkﬂ~r) at a fixed energy special case of Eq13) obtained fory.,=¥,(r.) [see the
#2k2/2m but with random orientation of, and use the in- point contact caséd) except that the points, can be chosen
tegral representation af,. With the help of Eq.(17) we  anywhere within the dot and not only on its boundaiye
obtain for the correlation matrix then obtain

A
> WM Yo W (re) |, (20)

cc’'=1

P(W,(ry),¥\(rp), ... a‘l')\(r/\)):(dew')ﬂlzex[{ —g

whereM o = A~ 1Jg(k|r.—rl|). The distributions of Ref. 33 erally for resonant scattering by complex object&*>For a

are easily obtained from E¢20) when A =2 3 dot with reflection symmetryi''=T"=T" the conductance
peakg in Eq. (1) is proportional tol'. However, such dots
are difficult to fabricate. Instead, one can in principle mea-
sure these distributions for very asymmetric leads where the

C. Total width distribution conductance peak is dominated by the lead with the smaller
We calculate next the total width distributid®(I') in a  Width.
given lead that supports channels and is characterized by a  Using T'=X¢|y¢|?= 'y, the characteristic function of
correlation matrixM . This distribution is relevant more gen- P(I') is given by
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- o ) _ which is they? distribution in four degrees of freedom. More
P(t)= J'o dr eXKItF)P(F)ZJ D[ ylexpity'y)P(y). generally, when ali\ channels are uncorrelated and equiva-
21) lent (M =w?1) we recover the well-know? distribution in
2A degrees of freedofn
Since P(y) is a Gaussian, we readily obtain

_ . _ o . 1
P(t)=[det(l —2iMt/B)]~#”2. The distribution itself is then PO (T)= [A-1g-T/w? 26
given by an inverse Fourier transform cue(l) w2 (A—1)! € ' (26)

T We have denoted this limiting distribution in E¢R6) by

22 P9g as it will serve as our reference distribution against
which to compare the distributions in the general case of
correlated and/or nonequivalent channels.

_ 1 (= e
P(I)= Ef_mdt[deu ~2itM/8) 7P

The matrixM is Hermitean and positive definit@ince For the GOE case, the integral of E&2) is more diffi-
XM X= [x-#1*>0 for anyx+0) and therefore its eigenval- ¢yt to evaluate since the singularities of the integrand along
uesw; are all positive. According to E422), P(T') depends  the negative imaginary axit=—ir are of the type

only onw;. This is a consequence of the invariancelof (7—1/2w?) =2 In this case the semicircular part of the con-
under a orthogonglunitary) transformation of the\ partial  tour (in the lower half of the planeis deformed, going up
width amplitudes. and then down along the negative imaginary axis so as to
We first discuss the simpler GUE case, for which theexclude all the singularities. When going around a singular-
integrand has poles-i/wZ along the negative imaginary ity of this type the integrand changes sign. Therefore, after
axis. Taking a contour integration along the real line and &orting the inverse eigenvalues & in ascending order
half circle that encloses all the poles in the lower half of thewl_2<w2‘2<- .-, we have
plane, we can calculate E(R2) by residues. Assuming that

all eigenvalues ofM are nondegenerate, the poles are all 1 fl,gNZ
i i Pood ') = — — !
simple and we find coeI') 77_2/\/2(1:[ we) iy Jume T
A _
1 1 1 2 I~
PoveM)=| 11 (2| 2 | TI | == a]| e ™ °
Cc WC c=1 c'#c c’ WC 2m—1 A '
23
3 IT (72w IT [aaed)- o)
The distributionPgy(T") given by Eq.(23) must be posi- r=1 s=2m
tive, which can be directly verified by using the concavity of (27

the exponential function. .
For two channels £=2) that are in general non- wherze for an od_d number of channel§, we _deflne
equivalent M,,#M,,) and correlated Ni;,#0), the 1/2wj ,;—. The integrand of each term on the right-hand
eigenvalues are  given by w2,=(My+M)/2 side of EqQ.(27) is singular at the two end points of the

— > > : integration interval, but this singularity is integrable. For the
=\[(M11~M29)/2]"+[My,l°. Equation(23) reduces then to case of two channels that are in general nonequivalent but

correlated, Eq(27) reduces to

2a, e—Zaif/(l—mZ) , .

NeaTE SN ST R LT G
coe(I') 1_|f|26 ol 17z 1)

- [2a yat+]f|.
Xsin 1——|f|2F ) (24) (28)
o wheref anda.. are defined as befofsee text following Eq.
where I'=T/T is the width in units of its average value, (24)} andl is the Bes_sel fun.ction.of order zero. Thg case of
f=M_,/\\My;M,, measures the degree of correlation be-€quivalent channels is obtained in E@S8) by substituting

tween the two channels, anda.=1/2(yM; /M, &+=1anda_=0.

, : istributioR () i
+M,,/My,) are dimensionless parameters such that for The reference distributioR g4, _deflned as before for the _
equivalent channels, =1 anda_=0. In the latter case, we CaS€ where alh channels are equivalent and uncorrelated, is

reproduce the result of Ref. 12. found directly from Eq.(22) to be they? distribution in A

8
For degenerate eigenvalues, we can calculatg®Eyby  degrees of freedofft
using the residue formula for higher-order poles. Alterna-

PAGAT)=

tively we can slightly break the degeneracy of the eigenval- PO (T)= [AR-1g-Ti20%  (og
ues by » and take the limity—0. For examzple, forztwo soel) (2w?)Me(A2—1)! 29
channels Eg. (23) gives P(I')=(e '""i-e 1"2)/ The top panelga) and (b) in Fig. 1 show the width dis-
(w5—w3). By takingw5=w3+ 7, in the limit 7—0 we re-  tributions for a two-channel lead in the GOE statistics. The
cover left panel is for equivalent channel#(,/M,=1) and for
various degrees of correlations=0.25, 0.5, 0.75, and
P(F)zle‘”‘”z (25) 0.95. The right panel is for uncorrelated=0) but non-
w# ' equivalent channeldf ,,/M,=2, 3, 4, and 5. The bottom
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A=2 GUE
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FIG. 2. Total width distributions for & -point lead A =2, 6)
with k|Ar|=0.25, 1, and 4 in a quantum dot with orthogonal sym-

metry (GOE) and with unitary symmetryGUE). The dashed lines
correspond to uncorrelated and equivalent channels. Increasing val-
ues ofk|Ar| correspond to curves that approach the case of uncor-
related channels.

FIG. 1. Total width distribution$®(I") for a two-channel lead.
Panelga),(b) correspond to the orthogonal symmetry dojd(d) to
the unitary symmetryP(I") for equivalent but correlated channels
with f=0.25, 0.5, 0.75, and 0.95 are shown(a and (c), while
P(I') for uncorrelated but nonequivalent channels with
M,,/M1,=2, 3, 4, 5 are shown ifb) and(d). Descending values
of f (or Mx/My,) correspond to distributions that extend to larger
values ofT".

correlated channelglashed lines in Fig.)2ecomes larger as
the number of channels increases for a gikghr|.

D. Conductance peaks distribution

To calculate the conductance distributiB(g) in the gen-
eral case, we assume that the left and right leads are far from

N - each other and thus uncorrelatédlhe left and right leads
panels(c) and(d) in Fig. 1 are similar tq(a) and (b) except are characterized by their own correlation matkiX and

that they correspond to the GUE case. We note that all figl-vIr respectively. Under this assumption

ures display the normalized total widfWT" asT . ' ' '
The correlation matrix in the point contact model is fully Irr

determined byk|Ar| and the number of channets. The left P(g)=f dF'dF'é(g— T

panels in Fig. 2 show the GOE width distributions for

k|Ar|=0.25, 1, 4 and for different number of channelswhereP(T") is given by Eq.(23) in the unitary case and by

A=2 and 6. The right panels of Fig. 2 show similar resultsEg. (27) in the orthogonal case.

but for the GUE statistics. The deviation of the width distri-  The distributionP(g) can be evaluated by the following

bution from the one that corresponds to equivalent and unidentity

P('YP(C"), (30

s
T,+1,

Ko

) —4ge~ (141 +1/5)9 . (3D

- N 29 |\ 1 8 & 29
dr f dlye T1/%e 2/ g— +_(\ﬁ+ \ﬁ)K
Joars]ar ° Voo, 2\ Vo V& ss,
provided &6;,6,>0. To obtain this identity we have used the integral

KV(Z) = 1/2(2/2) Vfgdt t Vﬁle*t*22/4t ]
For the unitary case, Eq&3) and (31) give

representation of the Bessel function

-1

[

¢’ #c

[1

d’ #d

IR D

c Ug¢ d Wg/ cd

PGUE(g):169<

1 1 1 1
Ui/ Ug Ws/ Wg

« e—(l/v§+1/w§)g

:

29
U Wy

)+

Wherevg aﬂdvﬁare the eigenvalues of the left and right lead correlation mathteandM", respectively. For one-channel
leads withI'=T" (i.e.,v;=w;), Eq.(32) reproduces the results of Refs. 8 and 11, while the distribution of Ref. 12 is obtained

1

2

|

Uc
Wy

Wy

Uc

s

29
U Wy

)

(32
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for two- (equivalent channel leads whose matrices are related by an overall asymmetry K&ictoaM'.
A similar calculation for the orthogonal limit gives

49 1 1 1202, v, e
PGOE(g):_,n_22A<H _)(H ) > f " dr 2™ dr'e (r=7)9
m,m

¢ ve/\d Wy vad o Juawd
1 T 7’
Ko(2gy77')+ > \g-l- \E) Ki(2gy77')
XTam-1 A 2m' -1 A 172: (33
[T (w23 ] @w2?-» 1 =-v2w?) II (v2w?-+)
r=1 s=2m r'=1 s’ =2m’
|
Figure 3 shows the GOHeft) and GUE(right) conduc- IV. DYNAMICAL MODEL

tance peak distributio83) and (32), respectively, for sym- - - T
metric A-point leads withk|Ar|=0.25, 1, 4 and for = 2 To test the RMT predictions for the statistical distribu

- . ; tions, we modeled a quantum dot by a system whose classi-
and ,6 (the same cases shown in F'Q' i all figures dis- cal dynamics is chaotic. The chosen model is the conformal
playing P(g), g denotes the normalized conductarg®. pjjjiard, 193 whose shape is defined by the image of the unit

By comparing Fig. 3 with Fig. 2 we conclude that, s circle in the complexz plane under the conformal mapping
increases, the conductance distribution shows stronger devia-

tion from its limiting case of uncorrelated equivalent chan- 7+ bZ2+ced73
nels (dashed linesthan the width distribution does. w(z)= — (39
Figure 4 shows the case of asymmetric leads for the V1+2b°+3c

asymmetry factora=1 and 10, for four-point Ie_ads W't_h The parameterb, ¢, and é control the billiard shape. Equa-
k|Ar|f1, and for both Fhe orthogonal and the unitary limits. i, (34) ensures that the ared enclosed byw(z) is nor-
P(g) is not very sensitive to the lead’s asymmetry and amgjized tow and is independent of the shape. The billiard
large value ofa is needed to see significant variation from cnaracterized by =0 is known as the Africa billiard. We
the symmetric lead’s case. In the lindt—, one can ne- analyze the casb=0.2,c=0.2, andé==/2, for which the
glect the smaller width in EC(].) and the conductance peak classical dynamics is known to be chadfidVe have veri-
g is proportional to the partial width in the dominating lead. fied that the corresponding spectrum exhibits GOE-like spec-
In this limit P(g) is reduced tdP(I') shown by the dashed tral fluctuations(we used 300 converged levels by diagonal-
lines in Fig. 4. The asymmetry effect becomes larger for arizing a matrix of order 1000 This is demonstrated in Fig. 5,
increasing number of channekhis effect can be noticed by where the nearest-neighbor level spacing distribufi{s)
comparing the GOE and GUE cases, since for the same numnd theA; statistics, which measures the spectral rigidity,
ber of physical channeld the GUE has a larger number of are shown.
“effective” channels. To investigate the effect of an external magnetic field, we
consider the same billiard threaded by an Aharonov-Bohm

flux line32° which does not affect the classical dynamics.
The flux is parametrized b = a®,, whered,, is the unit
GUE flux. We use the same set of values Iigr ¢, and 6 as above
P A=21
N E
A =
1 [ [ 1
3 T AI\ T T i
2 \ A=61
] 1 005 115 225
0.00 bt g
0056 1 15 2 25 0 05 1 15 2 25
g g FIG. 4. Conductance peak distributioRfg) for asymmetric

four-point leads withk|Ar|=1 and an asymmetry factor @f=1
FIG. 3. Same as Fig. 2 but for the conductance peak distribuanda=10. Left: GOE; right: GUE. The dashed curves describe the
tions P(g) in dots with symmetricA -point leads. limit a—o whereP(g) reduces td>(I").
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FIG. 5. The nearest-neighbor level spacing distributf(s)

and the A; statistics for the conformal billiard ~with FIG. 6. The spatial wave-function correlati@(k|Ar|) calcu-

=02, ¢=0.2, and§=m/2. We consider the states between the e for the conformal billiardsquarel compared with the theo-
50th aqd the 3_50th' Left: no magnetic flux£0). Right: with retical prediction]y(k|Ar|) (solid line). The top panel corresponds
magnetic fluxe=1/4. to =0 and the bottom panel to=1/4.

(to ensure classical chaotic motiprand choosexr=1/4 for o significant fluctuations from E@L9), but for such values
maximal time-reversal symmetry breaking. The statisticalyf k|Ar| the width and conductance distributions are closer

tests shown in Fig. 5 confirm that this choice @fcorre- 4 their limiting case of independent channels and are not
sponds to the unitary limit. We remark that thg statistics very sensitive to the exact correlations.

is a better measure to distinguish between the GOE and GUE ¢ results were obtained by using the billiard eigenfunc-

cases than the level spacing distributiB(s) (used in Ref.  {jons with Neumann boundary conditions where the normal
20). derivative of the wave-functions vanishes on the boundaries.
We analyze eigenfunctions in the vicinity of the 100th ex-
A. Spatial correlations cited level, which resembles the experimental situation. By
] ) ) ] moving the points around the circle we generate more statis-
The eigenfunction amplitude correlatiorC(k|Ar])  tics and average over orientations. The results are shown in
=W*(r)W(r')/|W(r)|* was recently investigated thoroughly Fig. 6 where the correlations in the modsblid line) com-
for the conformal billiard’* The results agree fairly well pare well with the theoretical resuldashed ling for both
with the theoretical prediction, namelyC(k|Ar[)= " cases with and without magnetic flux. The agreement is rea-
Jo(Klr=r'[),** if one averages over the orientation &f.  sonable, particularly fok|Ar|<5 (no average over orienta-
This result is based on semiclassical arguments, and thgyn is made. Fork|Ar|>1, the deviations from the theoret-
eigenfunctions studied in Ref. 31 were chosen accordingly t@a| value ofC(k|Ar|) are not important since the channels
be highly excited statefi.e., deep in the semiclassical re- are weakly correlated and the distributions are very close to
gion). those describing uncorrelated channels. Thus, corrections to
To apply this result to quantum dots, further consider-oyr analytical findings should not be large, as is supported by
ations are in order. First, a typical semiconductor quantumhe numerical evidence presented below.
dot in the submicrometer range contains several hundred \we remark that in order to simplify the calculations we
electrons, and it is therefore not obvious that the eigenstatqgsed Neumann boundary conditions around the entire bil-
around the Fermi level are necessarily semiclassical. Secongd's boundary and not just at the dot-lead interface. To
scars associated with isolated periodic orbits give correctiongesemble the experimental situation we would have to use
to C(k|Ar]) that are of orde©(#/%). The fluctuations of the mixed boundary conditior®, which would make the calcu-
Spatial correlation of the billiard eigenfunctions Were re-jations much more Computaﬁona”y intensive. However,
cently estimated analyticafly and found also to be sup- while the actual values of the eigenfunctions depend on the
pressed byO(%'?). These corrections are negligible if one poundary conditions, the eigenfunctions’ statistics does not
averages over all orientations around a given poitkeep-  and our simplified calculations are sufficient.
ing the modulugAr| fixed), but this is difficult to implement
experimentally. At a fixed orientation the fluctuations of the
spatial correlations seem to be rather snfell comparison
with the average correlatoif k|Ar|<3 so that Eq(19) is a We first studied the pointlike contact model by describing
good approximation. For larger valueskdfAr|, there could the lead as a sequence Af equally spaced points on the

B. Coupling to leads and distributions
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FIG. 7. Total width distribution®(I") for broken time-reversal

symmetry (GUE) for several values ok|Ar|=0.5, 1, 2 and for FIG. 8. Total width distributionsP(T") for conserved time-
various number of channels =2, 4, 6. The solid lines are the reversal symmetrfGOE). Conventions are as in Fig. 7 but with

theoretical distribution§23), while the dashed lines correspond to SOlid lines describing the orthogonal predicti@7). The conformal
uncorrelated and equivalent channels. The histograms are the rBilliard has no magnetic flux linea=0).
sults from the conformal billiardd=0.2, ¢c=0.2, 6= n/2) where

a magnetic flux line ¢=1/4) breaks time-reversal symmetry. Figures 9 and 10 show a comparison between the theoret-

boundary of the billiardin the w plane. According to Eq. ic_al conductance peak distributions fpr symmetric leads, as
(19) the correlation matriM is then completely determined 9iven by Eqs.(32) and (33) for the unitary and orthogonal
by K|Ar|~ka6lw'(r=1,6)| (where 56 is the angle that Cases, respectively, and those calculated for the conformal
spans the arc between two neighboring points inztpéang  billiard with symmetricA-point leads (A =2, 4, and 6 and
andA.. In this model it is easy to generate strong correlationdor different values ok|Ar|. The dashed lines are again the
by choosing the points close enougie., the distance is limiting case of uncorrelated and equivalent leads. Observa-
chosen to be shorter than the Fermi wavelengthis should tions can be made with respect to the conductance peak dis-
be contrasted with thadiscretizedd Anderson modéf where  tributions that are similar to the ones made above for the
the channels are weakly correlated even if the lead is comwidth distributions. Comparing the width and conductance
posed of nearest-neighboring points. The eigenvamfeare peak distributions, we note that the conductance distribution
found by diagonalizing the matrik. shows stronger deviation from its limit for uncorrelated
In Figs. 7 and 8 we compare, for both the unitary andequivalent channels than does the width distribution.
orthogonal limits, respectively, the total width distribution  We also studied extended leads by taking the contact re-
P(I") in the conformal billiardhistogramg with the theoret-  gion of the lead and the dot to have a finite length
ical predictions(solid lineg. This is done for several values D~|w’|A6 on the dot's boundaryin the w plang where
of k|Ar|=05, 1, 2 andA=2, 4, 6. The case of equivalent ' is evaluated at the corresponding angle where the lead is

and lénCQVV?'at?d channgtlisplayed by dashed lines just  |ocated. In this case the channels are defined by the allowed
the y~ distributions inA (2A) degrees of freedom for the quantized  transverse momentak.=mn./D  with

GOE (GUE). The agreement between the model andthe ang; _1 5 A, whereA = int[kD/]. To calculate the par-
lytic RMT predictions confirms the validity of the statistical - .~ '

. . tial amplitude for the conformal billiard, the integral in Eq.
model for a chaotic dot. We observe from Figs. 7 and 8 tha - ; ; ; ;

T 2) (defined in thew plane is mapped into an integral alon
for the larger values ok|Ar|, the distributions get closer to ) ( plang PP g g

S : i an arc in thez plane, which is spanned by an angl®:
those for uncorrelated channels. This is consistent with the P P y die

decrease in spatial correlatio(see Fig. 6. Another interest-
ing observation is that, for a constakjtAr| (i.e., fixed cor-
relationg, the deviation from the limiting case of indepen-

i i ; h
dent channels becomes larger with an increasing number _ _f dolw (r=1.0)®* (O W.(r=1.0 35
channels. Yo N 2m ) 1p W' (r=1,0)|PZ(OHWy(r=1,0). (35
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FIG. 9. Conductance peak distributioR¢g) for broken time- .
reversal symmetryGUE). The histograms display the results ob- _ FIG- 10. Same as Fig. 9 but for the orthogonal symmetry where
tained from the conformal billiard for symmetric-point leads and ~ the theoretical distribution is given by E(3). The results for the

different values ofk|Ar|. The solid lines are the RMT prediction conformal billiard correspond ta=0.

(32) and the dashed lines correspond to uncorrelated and equivalent | . 5 )
channels. The cases presented are the same as in Fig. 7. insignificant for current experimerifs' that deal with dots

containing several hundred electron$ Indeed, from the

Weyl formula we have kexANY2 so that &kg/ke
Here ®(0) = \2Dsin(kJw'|¢) are the transverse channel =0AN/2N<1. The latter inequality is obtained when we es-
wave-functions and for simplicity we have deP.=1. The timate SA/to be the number of observed Coulomb blockade
resonance eigenfunctiolr, is given in terms of its expan- peaks(since each Coulomb blockade peak corresponds to the

sion ine'? (with 1=0,%1,%2, ...) addition of one electron into the dofThe relative variation
of kg is thus small and can be neglected.
ch We find that the channels in the extended leads model are
v, (r= 1,0)=/\&E > ! , e’i?  (36) weakly correlated and that the average partial widths in the
T Y~ 17— al?) various channels exhibit a moderate variation. In such a case

where A, is a normalization constany; are the zeroes of the total width distrit_)ution is not very different from the case
, A - . . of uncorrelated equivalent channels. Our model calculations
Ji/;-a|» andc; are expansion coefficients as in Ref. 20. ¢, oytended leads are shown in Fig. 11 and are in agreement
To guarantee that the correlation matkkin Eq. (10) is  with the RMT predictions for uncorrelated channésshed

the same for eigenfunctions of the billiard that belong tojines). An interesting effect is that with an increasing number
different energies, we choode such thatkD=const and of channels even small deviations R{(I") give rise to rela-

scale the partial amplitud®) by k*/2. The resulting matrix is tively large deviations irP(g).

2
KMo = A if dgf do’'|w'(r=1,0)||w'(r=1,0")] V. CONNECTION TO EXPERIMENTS

2m kD Jag  Jao AND CONCLUSIONS

_[mne, , , We have discussed the cases of both orthogonal and uni-
Xsin 1o lw |‘9)Jo(|W [[6—0']) tary symmetries. To relate to actual experimental situations,

it is important to estimate the minimal strength of the mag-

e netic field B, which ensures complete time-reversal sym-

Xsin| - |w'[ 6" ]. (37 metry breaking. For a ballistic electrdf2°%° B_A

1/, Where 7, is the time it takes the electron to
This scaling has the advantage of being consistent witleross the dot and is the Heisenberg time=h/A. For an
the theoretical approach presented above, but experimentalfectron at the Fermi enerd A= N~ Y4®,, where\ is the
it is difficult to accomplish. Fortunately, this scaling Bfis  number of electrons in the dot. The proportionality factor is
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any two-point correlator is the change in magnetic flux
through the area enclosed by the classical trajectory, while

1.0 the bending of the trajectory itself is second ortfeFor
08 larger magnetic fields, when this is no longer valid, the phys-
o8 ics is different and in particular the classical motion begins
B 04 to be regular. Using the same reasoning, the assumption that

0.2 the correlatolC(k|Ar|) is unchanged by the magnetic field is

0.0 strictly valid only for the regime where classical perturbation

0 applies. Nevertheless, it is noteworthy that these small varia-
tions in the magnetic field lead to appreciable quantum me-

1.0 chanical effects, i.e., the crossover from orthogonal to uni-
08 tary symmetry.

G In conclusion, we have derived closed expressions for the
04 width and conductance pea_lk distributions in quantum QOts in
0.8 the Coulomb blockade regime. The main assumption is that
0.0 for a ballistic dot the irregular boundary gives rise to chaotic

005 115 225005 115 225 motion. For given correlation matrices that characterize the

g g left and right leads, these distributions are universal and dis-
tinct for conserved and broken time-reversal symmetry.
FIG. 11. Comparison of conformal billiard results for extendedV\_/h'I_e rece”t_ experlmenFs have measured the_conductance
leads with infkD/#7]=6 (histogram$ and theoretical predictions. Q'St”but'ons In symmetric one-channe_l leads, it would be
Shown are the total width distributioR(I") (top) and the conduc-  interesting to measure and compare with theory the conduc-
tance distributiorP(g) (bottom for both orthogonalleft) and uni-  tance distributions in dots with multichannel leads.
tary (right) limits. The dashed lines correspond to uncorrelated
equivalent channels. ACKNOWLEDGMENTS
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