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Signatures of chaos in the statistical distribution of conductance peaks in quantum dots
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Analytical expressions for the width and conductance peak distributions of irregularly shaped quantum dots
in the Coulomb blockade regime are presented in the limits of conserved and broken time-reversal symmetry.
The results are obtained using random matrix theory and are valid in general for any number of nonequivalent
and correlated channels, assuming that the underlying classical dynamics of the electrons in the dot is chaotic
or that the dot is weakly disordered. The results are expressed in terms of the channel correlation matrix, which
for chaotic systems is given in closed form for both pointlike contacts and extended leads. We study the
dependence of the distributions on the number of channels and their correlations. The theoretical distributions
are in good agreement with those computed in a dynamical model of a chaotic billiard.
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I. INTRODUCTION

One of the most interesting aspects of electron trans
in submicrometer-scale devices is the interplay betw
quantum coherence and aperiodic but reproducible con
tance fluctuations. Over the past decade the phenomeno
universal conductance fluctuations in disordered syst
~where impurity scattering dominates! has been understoo
through the use of stochastic models. More recently, a n
generation of experiments1 was designed to measure condu
tance fluctuations in the ballistic regime where the dynam
of the electrons in the device is determined by the geom
of its boundary. The stochastic approach to these system
justified by the underlying classical chaotic dynamics. T
situation is distinct from the diffusive case, where the cor
sponding classical limit of the quantum problem is not fu
understood.

In this paper we discuss the conductance fluctuation
quantum dots. These are semiconductor devices in which
electrons are confined to a two-dimensional region wh
typical linear dimension is in the submicrometer range.2–5 In
particular we are interested in the Coulomb blockade reg
where the leads are weakly coupled to the dot, either bec
the leads are very narrow, or because of potential barrie
the lead-dot interface.2 The electrons inside the dot are cha
acterized by isolated resonances whose width is smaller
their average spacing, and conductance occurs through
nant tunneling. As a consequence, the conductance is
maximum when the Fermi energy matches a resonance
ergy of the electrons inside the dot and an additional elec
tunnels into the dot. Such a system resembles the compo
nucleus in its region of isolated resonances.6 The macro-
scopic charging energy required to add an electron to a d
determined by its capacitanceC and is given bye2/C. Since
C is a constant that is determined essentially by the geom
of the dot, the conductance exhibits equally spaced osc
tions as a function of the gate voltage~or Fermi energy!. At
550163-1829/97/55~12!/7749~12!/$10.00
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low temperaturesG!kT,D the width of the conductance
peaks is;kT, but the heights exhibit order-of-magnitud
variations.3–5

When the electron-impurity mean-free path is larger th
the size of the dot, the classical dynamics of the elect
inside the dot is determined by the scattering from the do
boundary. Owing to small irregularities in the dot’s shap
the electron displays chaotic motion, and its quantum tra
port through the dot can be described by a statist
S-matrix theory.7 Since the Coulomb blockade regime
dominated by resonances, the conductance peaks can be
to probe the chaotic properties of the underlying resona
wave-functions. A statistical theory of the conductance pe
was originally developed in Ref. 8. By usingR-matrix
theory,9,10 the conductance peak amplitude was expresse
terms of the electronic resonance wave function across
contact region between the dot and the leads. When the
namics of the electron inside the dot is chaotic, the fluct
tions of the wave-function inside the dot are assumed to
well described by random matrix theory~RMT!. In Ref. 8
the conductance distribution was derived in closed form
one-channel leads. These results were rederived in Ref
and later extended to the case of two-channel leads in
absence of time-reversal symmetry12 through the use of the
supersymmetry technique.13 However, the calculations re
quired by this technique become too complicated to apply
the general case of any number of possibly correlated an
nonequivalent channels.

The conductance distributions for one-channel leads w
recently measured14,15 and found to be in agreement wit
theory for both cases of conserved and broken time-reve
symmetry. This indicates that the dephasing effect, wh
plays an important role in open dots,16,17 is of little impor-
tance for closed dots.

In this paper we discuss in detail the width and cond
tance peak distributions for leads with any number of ch
nels that are in general correlated and nonequivalent. E
7749 © 1997 The American Physical Society
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7750 55Y. ALHASSID AND C. H. LEWENKOPF
closed expressions for these distributions are derived
both cases of conserved and broken time-reve
symmetry.18 We find that these distributions are entire
characterized by the eigenvalues of the channel correla
matricesMl andMr in the left and right leads, respectivel
The strength of our approach is in its simplicity, since
relies solely on standard RMT techniques. To test our p
dictions we compare our analytical findings to numeri
simulations of a chaotic dynamical model, the conform
billiard.19 Statistical width and conductance distributions
one-channel leads were recently studied in detail in
model.20 Although our paper deals mainly with ballistic do
whose classical dynamics is chaotic, our results should
be valid in the diffusive regime of weakly disordered do
where random matrix theory is applicable.

We note that the partial width amplitude is analogous
the wave-function amplitude at any given point. Therefo
our width distributions can also be tested by microwave c
ity experiments,21–23 where the intensities are measured
several points that are spatially correlated. As a side re
we obtain the joint distribution of a chaotic wave-functio
amplitude at several spatial points. From this distribution i
straightforward to calculate the joint distribution of th
wave-function intensities.

This paper is organized as follows: In Sec. II we brie
review the conductance in quantum dots in their Coulo
blockade regime. In Sec. III we discuss the statistical mo
and derive analytic results for the partial and total wid
distributions in each lead, for the channel correlation mat
and for the conductance distribution. We investigate
variation of these distributions as a function of the numbe
channels and their sensitivity to the degree of correlat
between them. Those findings are compared in Sec. IV w
numerical results obtained for the conformal billiard. Final
in Sec. V we discuss the validity of our assumptions in
the context of typical experiments.

II. CONDUCTANCE IN QUANTUM DOTS

In this section we briefly review the formalism and intr
duce the notation used throughout this paper. In particu
we express the conductance peak heights in terms of
channel and resonance wave-functions of the dot.

For G!kT!D, which is typical of many experiments,3

the observed on-resonance conductance peak amplitud
given by24,25

Gl5
e2

h

p

2kT
gl , with gl5

Gl
l Gl

r

Gl
l 1Gl

r , ~1!

whereGl
l (r ) is the partial decay width of the resonancel into

the left~right! lead. Since each lead can support several o
channels we haveGl

l (r )5(cGcl
l (r ) , whereGcl

l (r ) is the partial
width to decay into channelc in the left ~right! lead.

In theR-matrix formalism,10 the partial widths are relate
to the resonance wave-function inside the dot. More spe
cally, introducing the partial amplitudesgcl , such that
Gcl5ugclu2, one can write

gcl5A\2kcPc

m E dSFc* ~r!Cl~r!. ~2!
or
al

n

t
-
l
l
f
is

so
,

o
e
-
t
lt

s

b
el

,
e
f
n
th
,
e

r,
he

is

n

fi-

HereCl(r) is thelth resonance wave-function in the do
Fc(r) is the transverse wave-function in the lead that cor
sponds to an open channelc, and the integral is taken ove
the contact area between the lead and the dot.kc andPc are
the longitudinal wave number and penetration factor in ch
nel c, respectively.

Equation ~2! shows that the contributions to the parti
width amplitude from the internal and external regions of t
dot factorize. The information from the external region
contained inkc andPc . These quantities are determined b
the wave dynamics in the leads and are nonuniversal. T
affect the average widths and enter explicitly in the corre
tion matrix M . However, the fluctuation properties of th
conductance are generic and depend only on the statis
properties of the electronic wave-function at the dot-le
boundary inside the barrier region.

A different physical modeling of a quantum dot assum
pointlike contacts, and each lead is composed of several s
point contacts.11,12In this model the conductance peak is al
given by Eq.~1! with each point contactrc considered as one
channel. The corresponding partial width is11

gcl5AacAD

p
Cl~rc!, ~3!

whereA is the area of the dot,D is the mean spacing, an
ac is a dot-lead coupling parameter.

Both models can be treated by our formalism, as becom
apparent from the following considerations. A resonan
eigenfunction with eigenenergyE can be approximated by
an expansion in a fixed basisrm of wave-functions with the
given energyE inside the dot

Cl~r!5(
m

clmrm~r!. ~4!

The sum overm is truncated atN basis states (N is much
larger than the number of open channels!. The partial width
in channelc can then be expressed by the scalar produc

gcl5^fcucl&[(
m

fcm* clm , ~5!

where

fcm[A\2kcPc

m E dSFc* ~r!rm~r! ~6!

for the extended leads model, and

fcm[AacAD

p
rm* ~rc! ~7!

for the point contact model. Thus, we are led to similar fo
mulations of both the extended leads and pointlike con
problems; in the correspondingN-dimensional space the pa
tial width amplitudes of a level are simply the projections
its corresponding eigenstate vectorcl on the channel vectors
fc . The only difference between the two models is the e
plicit expression for the channel vectorfc . We note that the
scalar product~5! ~used throughout this paper! is different
from the original scalar product defined in the spatial reg
extended by the dot.



th
w

-
tic
b
e
b
nd

a

one

s
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III. STATISTICAL MODEL

Because the dot’s shape is irregular, the motion of
electron inside the dot is expected to be chaotic. In Ref. 8
developed a statistical theory of the conductance peaks
assuming that the vectorscl that correspond to the reso
nance wave-functions inside the dot have the same statis
properties as the eigenvectors of a random matrix ensem
Here we study the limits of conserved time-reversal symm
try, corresponding to the Gaussian orthogonal ensem
~GOE!, and of broken time-reversal symmetry, correspo
ing to the Gaussian unitary ensemble~GUE!. The transition
from one symmetry to another occurs when an external m
b

te
e
e
by

al
le.
-
le
-

g-

netic field is applied. The width distribution~or equivalently
the wave-function intensity distribution! was derived in the
crossover regime between symmetries for the case of
channel leads only.26

A. The joint distribution of partial width amplitudes

In RMT the eigenvectorc[(c1 ,c2 , . . . ,cN) ~here and
in the following we omit the eigenvector labell) is distrib-
uted randomly27 on a sphereP(c)}d((m51

N ucmu221). The
joint distribution of the partial width amplitude
g5(g1 ,g2 , . . . ,gL) for L channels is then given by
P~g!5
G~bN/2!

pbN/2 E D@c#F )
c51

L

d~gc2^fcuc&!GdS (
m51

N

ucmu221D , ~8!

whereD@c#[)m51
N dcm for the GOE andD@c#[)m51

N dcm* dcm/2p i for the GUE. To evaluate Eq.~8! we transform the
L channels to a new set of orthonormal channelsf̂c :

fc5(
c8

f̂c8Fc8c , with ^f̂cuf̂c8&5dcc8. ~9!

We then take advantage of the invariance of the corresponding Gaussian ensemble under an orthogonal~unitary! transforma-
tion to rotate the eigenvectorc such that its firstL components are along the new orthonormal channels. Denoting byO the
orthogonal~unitary! matrix whose firstL rows are the orthonormal vectorsf̂c(c51, . . . ,L), we change variables in~5! to
ĉm5(nOmncn . Using ĉc5^f̂cuc& we find

P~g!5
G~bN/2!

pbN/2 E S )
c51

L

dĉcD S )
m5L11

N

dĉmD F )
c51

L

d~gc2Fc8cĉc8!GdS (
c51

L

uĉcu21 (
m5L11

N

uĉmu221D . ~10!

The integration over these firstL components is now easily done and gives

P~g!5
G~bN/2!

pbN/2udetFu E D@ĉ#dS ĝ†ĝ 1 (
m5L11

N

uĉmu221D , ~11!
e

-
is
pli-
h a
the
where ĝc[^f̂cuc&5(c8gc8Fc8c
21* are the partial widths to

decay to the new channels and the metric is as before
excluding the firstL components ofc. Finally, the latter
integral is easily done by introducing spherical coordina
in the (N2L)-dimensional space. We obtain

P~g!5
G~bN/2!

pbL/2G„b~N2L!/2…udetFu

3@12g†~F†F !21g#b~N2L!/221. ~12!

ForL!N and in the limitN→`, we recover a simplified
expression

P~g!5~detM !2b/2e2~b/2!g†M21g, ~13!

where the matrixM[(NF†F)21 is just the metric defined in
terms of the original channels
ut

s

Mcc85
1

N
^fcufc8&. ~14!

The distribution ~13! is normalized with the measur
D@g#[)c51

L (dgc /A2p) for the GOE and D@g#
[)c51

L (dgc* dgc/2p i ) for the GUE. Note that for both en
sembles the joint partial width amplitudes distribution
Gaussian, the main difference being that the partial am
tudes are real for the GOE and complex for the GUE. Suc
Gaussian distribution is also obtained by assuming that
distribution is form invariant under an orthogonal~unitary!
transformation.28

It follows from Eq. ~13! that the matrixM is just the
correlation matrix of the partial widths

Mcc85gc* gc8. ~15!

In general the channels are correlated (Mcc8Þ0) and non-
equivalent~their average partial widths are different!. Ac-
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7752 55Y. ALHASSID AND C. H. LEWENKOPF
cording to Eq.~14! this is equivalent to assuming channe
that are nonorthogonal and have nonequal norms.

B. The channel correlation matrix M

We shall now derive explicit expressions for the corre
tion matrixM in a chaotic quantum dot. Using Eq.~14! and
the definition of the scalar product~5! we find

Mcc85
\2

2m
Akckc8PcPc8E dSE dS8Fc* ~r!

3F 1N(
m

rm~r!rm~r8!GFc~r8!. ~16!

We first discuss the case where there is no magnetic
so that the motion inside the dot is that of a free particle
resonance eigenstate inside the dot at energyE5\2k2/2m
can then be expanded in a basis of free particle states a
given energyE. Since RMT is applicable on a local energ
scale, this is the fixed basisrm for which the eigenvector
coefficientscm are distributed randomly~on the sphere!. Us-
ing polar coordinates, such a basis of free waves is given
rm(r)}Jm(kr)exp(imu) with m50,61,62, . . . , where Jm
are Bessel functions of the first kind. Denoting byN the
number of such waves on the energy shell, we find

1

N(
m

rm* ~r!rm~r8!5
1

A(
m

Jm~kr !Jm~kr8!eim~u82u!

5
1

AJ0~kur2r8u!, ~17!

where we have used the addition theorem for the Be
functions.29 A similar relation holds if we choose a plane
wave basis rm(r)5A21/2exp(ikm•r) at a fixed energy
\2k2/2m but with random orientation ofkm and use the in-
tegral representation ofJ0. With the help of Eq.~17! we
obtain for the correlation matrix
a
-

-

ld

the

y

el

Mcc85
\2

2mAAkckc8PcPc8E dSE dS8Fc* ~r!

3J0~kur2r8u!Fc~r8!, ~18!

for extended leads, while for the point contact model we fi

Mcc85
AacacD

p
J0~kurc2rc8u!. ~19!

We remark that Eq. ~19! is equivalent to C(kuDru)
[C* (r)C(r8)/uC(r)u25J0(kur2r8u). This result was first
derived in Ref. 30 based on the assumption that the Wig
function of a classically chaotic system is microcanonical
the energy surface. It was recently studied extensively in
Africa billiard31 ~this billiard is discussed in Sec. IV!. We
note, however, that in these references the average is t
for a fixed wave-function over a local spatial region arou
(r1r8)/2, while we average over eigenstates.

When an external magnetic fieldB is present, the under
lying classical dynamics undergoes a transition from cha
to integrable as the field gets stronger, irrespective of
billiard’s shape. In the present work, however, we only d
cuss the case of weak fields for which the motion is chao
and we are interested in the transition from orthogonal
unitary symmetry. While in the unitary case the wav
functions become complex, the arguments that lead to
~17! are still valid and the wave-function correlato
C(kuDru) is unchanged. For our studies to be experimenta
relevant, it is important to have a range of values of t
magnetic field for which time-reversal symmetry is brok
but the underlying classical dynamics is still chaotic.32 We
shall discuss this issue in Sec. V.

The wave-function correlationC(kuDru) was also derived
for weakly disordered systems using the supersymm
technique33 for the unitary and orthogonal symmetries. Re
erence 33 also includes an expression for the joint proba
ity distribution for the intensity of an eigenfunction at tw
different points. We remark that the joint distribution of th
wave-function amplitude atL points rc (c51,2,...,L! is a
special case of Eq.~13! obtained forgcl[Cl(rc) @see the
point contact case~3! except that the pointsrc can be chosen
anywhere within the dot and not only on its boundary#. We
then obtain
P„Cl~r1!,Cl~r2!, . . . ,Cl~rL!…5~detM !2b/2expF2
b

2 (
cc851

L

Cl* ~rc!~M
21!cc8Cl~rc8!G , ~20!
a-
the
ller

f

whereMcc85A
21J0(kurc2rc8u). The distributions of Ref. 33

are easily obtained from Eq.~20! whenL52.34

C. Total width distribution

We calculate next the total width distributionP(G) in a
given lead that supportsL channels and is characterized by
correlation matrixM . This distribution is relevant more gen
erally for resonant scattering by complex objects.21,22,35For a
dot with reflection symmetryG l5G r[G the conductance
peakg in Eq. ~1! is proportional toG. However, such dots
are difficult to fabricate. Instead, one can in principle me
sure these distributions for very asymmetric leads where
conductance peak is dominated by the lead with the sma
width.

Using G5(cugcu25g†g, the characteristic function o
P(G) is given by
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P̃~ t !5E
0

`

dG exp~ i tG!P~G!5E D@g#exp~ i tg†g!P~g!.

~21!

Since P(g) is a Gaussian, we readily obtai
P̃(t)5@det(I22iMt /b)#2b/2. The distribution itself is then
given by an inverse Fourier transform

P~G!5
1

2pE2`

`

dt
e2 i tG

@det~ I22i tM /b!#b/2 . ~22!

The matrixM is Hermitean and positive definite~since
x†Mx5ux•gu2.0 for anyxÞ0) and therefore its eigenva
ueswc

2 are all positive. According to Eq.~22!, P(G) depends
only on wc

2 . This is a consequence of the invariance ofG
under a orthogonal~unitary! transformation of theL partial
width amplitudes.

We first discuss the simpler GUE case, for which t
integrand has poles2 i /wc

2 along the negative imaginar
axis. Taking a contour integration along the real line an
half circle that encloses all the poles in the lower half of t
plane, we can calculate Eq.~22! by residues. Assuming tha
all eigenvalues ofM are nondegenerate, the poles are
simple and we find

PGUE~G!5S )
c

1

wc
2D (c51

L F )
c8Þc

S 1

wc8
2 2

1

wc
2D G21

e2G/wc
2
.

~23!

The distributionPGUE(G) given by Eq.~23! must be posi-
tive, which can be directly verified by using the concavity
the exponential function.

For two channels (L52) that are in general non
equivalent (M11ÞM22) and correlated (M12Þ0), the
eigenvalues are given by w1,2

2 5(M111M22)/2
6A@(M112M22)/2#21uM12u2. Equation~23! reduces then to

PGUE
L52~ Ĝ !5

2a1

Aa2
2 1u f u2

e22a1
2 Ĝ/~12u f u2!

3sinhS 2a1Aa2
2 1u f u2

12u f u2
Ĝ D , ~24!

where Ĝ5G/Ḡ is the width in units of its average value
f5M12/AM11M22 measures the degree of correlation b
tween the two channels, anda651/2(AM11/M22

6AM22/M11) are dimensionless parameters such that
equivalent channelsa151 anda250. In the latter case, we
reproduce the result of Ref. 12.

For degenerate eigenvalues, we can calculate Eq.~22! by
using the residue formula for higher-order poles. Altern
tively we can slightly break the degeneracy of the eigenv
ues byh and take the limith→0. For example, for two

channels Eq. ~23! gives P(G)5(e2G/w1
2
2e2G/w2

2
)/

(w2
22w1

2). By takingw2
25w1

21h, in the limit h→0 we re-
cover

P~G!5
G

w4e
2G/w2, ~25!
a

ll

f

-

r

-
l-

which is thex2 distribution in four degrees of freedom. Mor
generally, when allL channels are uncorrelated and equiv
lent (M5w2I ) we recover the well-knownx2 distribution in
2L degrees of freedom6

PGUE
~0! ~G!5

1

w2L~L21!!
GL21e2G/w2. ~26!

We have denoted this limiting distribution in Eq.~26! by
PGUE
(0) as it will serve as our reference distribution again

which to compare the distributions in the general case
correlated and/or nonequivalent channels.

For the GOE case, the integral of Eq.~22! is more diffi-
cult to evaluate since the singularities of the integrand alo
the negative imaginary axist52 i t are of the type
(t21/2wc

2)21/2. In this case the semicircular part of the co
tour ~in the lower half of the plane! is deformed, going up
and then down along the negative imaginary axis so as
exclude all the singularities. When going around a singu
ity of this type the integrand changes sign. Therefore, a
sorting the inverse eigenvalues ofM in ascending order
w1

22,w2
22,•••, we have

PGOE~G!5
1

p2L/2 S )
c

1

wc
D (
m51

E
1/2w2m21

2

1/2w2m
2

dt

3
e2Gt

A )
r51

2m21

@t2~1/2wr
2!# )

s52m

L

@~1/2ws
2!2t!]

,

~27!

where for an odd number of channelsL, we define
1/2wL11

2 →`. The integrand of each term on the right-ha
side of Eq. ~27! is singular at the two end points of th
integration interval, but this singularity is integrable. For t
case of two channels that are in general nonequivalent
correlated, Eq.~27! reduces to

PGOE
L52~ Ĝ !5

a1

A12u f u2
e2a1

2 Ĝ/~12u f u2!I 0S a1Aa2
2 1u f u2

12u f u2
Ĝ D ,

~28!

wheref anda6 are defined as before@see text following Eq.
~24!# andI 0 is the Bessel function of order zero. The case
equivalent channels is obtained in Eq.~28! by substituting
a151 anda250.

The reference distributionPGOE
(0) , defined as before for the

case where allL channels are equivalent and uncorrelated
found directly from Eq.~22! to be thex2 distribution inL
degrees of freedom36,8

PGOE
~0! ~G!5

1

~2w2!L/2~L/221!!
GL/221e2G/2w2. ~29!

The top panels~a! and ~b! in Fig. 1 show the width dis-
tributions for a two-channel lead in the GOE statistics. T
left panel is for equivalent channels (M22/M1151) and for
various degrees of correlationsf50.25, 0.5, 0.75, and
0.95. The right panel is for uncorrelated (f50) but non-
equivalent channels:M22/M1152, 3, 4, and 5. The bottom
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panels~c! and ~d! in Fig. 1 are similar to~a! and ~b! except
that they correspond to the GUE case. We note that all
ures display the normalized total widthG/Ḡ asG.

The correlation matrix in the point contact model is ful
determined bykuDru and the number of channelsL. The left
panels in Fig. 2 show the GOE width distributions f
kuDru50.25, 1, 4 and for different number of channe
L52 and 6. The right panels of Fig. 2 show similar resu
but for the GUE statistics. The deviation of the width dist
bution from the one that corresponds to equivalent and

FIG. 1. Total width distributionsP(G) for a two-channel lead.
Panels~a!,~b! correspond to the orthogonal symmetry and~c!,~d! to
the unitary symmetry.P(G) for equivalent but correlated channe
with f50.25, 0.5, 0.75, and 0.95 are shown in~a! and ~c!, while
P(G) for uncorrelated but nonequivalent channels w
M22/M1152, 3, 4, 5 are shown in~b! and~d!. Descending values
of f ~or M22/M11) correspond to distributions that extend to larg
values ofG.
-

n-

correlated channels~dashed lines in Fig. 2! becomes larger as
the number of channels increases for a givenkuDru.

D. Conductance peaks distribution

To calculate the conductance distributionP(g) in the gen-
eral case, we assume that the left and right leads are far f
each other and thus uncorrelated.37 The left and right leads
are characterized by their own correlation matrixMl and
Mr , respectively. Under this assumption,

P~g!5E dG ldG rdS g2
G lG r

G l1G r DP~G l !P~G r !, ~30!

whereP(G) is given by Eq.~23! in the unitary case and by
Eq. ~27! in the orthogonal case.

The distributionP(g) can be evaluated by the followin
identity

FIG. 2. Total width distributions for aL-point lead (L52, 6)
with kuDru50.25, 1, and 4 in a quantum dot with orthogonal sym
metry ~GOE! and with unitary symmetry~GUE!. The dashed lines
correspond to uncorrelated and equivalent channels. Increasing
ues ofkuDru correspond to curves that approach the case of un
related channels.
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provided d1 ,d2.0. To obtain this identity we have used the integral representation of the Bessel fun
Kn(z)51/2(z/2)n*0

`dt t2n21e2t2z2/4t .
For the unitary case, Eqs.~23! and ~31! give
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wherevc
2 andwd

2 are the eigenvalues of the left and right lead correlation matricesMl andMr , respectively. For one-channe
leads withḠl5Ḡr ~i.e.,v15w1), Eq.~32! reproduces the results of Refs. 8 and 11, while the distribution of Ref. 12 is obta



55 7755SIGNATURES OF CHAOS IN THE STATISTICAL . . .
for two- ~equivalent! channel leads whose matrices are related by an overall asymmetry factorMr5aMl .
A similar calculation for the orthogonal limit gives
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Figure 3 shows the GOE~left! and GUE~right! conduc-
tance peak distribution~33! and ~32!, respectively, for sym-
metricL-point leads withkuDru50.25, 1, 4 and forL52
and 6 ~the same cases shown in Fig. 2!. In all figures dis-
playing P(g), g denotes the normalized conductanceg/ḡ.
By comparing Fig. 3 with Fig. 2 we conclude that, asL
increases, the conductance distribution shows stronger de
tion from its limiting case of uncorrelated equivalent cha
nels ~dashed lines! than the width distribution does.

Figure 4 shows the case of asymmetric leads for
asymmetry factora51 and 10, for four-point leads with
kuDru51, and for both the orthogonal and the unitary limi
P(g) is not very sensitive to the lead’s asymmetry and
large value ofa is needed to see significant variation fro
the symmetric lead’s case. In the limita→`, one can ne-
glect the smaller width in Eq.~1! and the conductance pea
g is proportional to the partial width in the dominating lea
In this limit P(g) is reduced toP(G) shown by the dashed
lines in Fig. 4. The asymmetry effect becomes larger for
increasing number of channels~this effect can be noticed b
comparing the GOE and GUE cases, since for the same n
ber of physical channelsL the GUE has a larger number o
‘‘effective’’ channels!.

FIG. 3. Same as Fig. 2 but for the conductance peak distr
tionsP(g) in dots with symmetricL-point leads.
ia-
-
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IV. DYNAMICAL MODEL

To test the RMT predictions for the statistical distrib
tions, we modeled a quantum dot by a system whose cla
cal dynamics is chaotic. The chosen model is the confor
billiard,19,38whose shape is defined by the image of the u
circle in the complexz plane under the conformal mappin

w~z!5
z1bz21ceidz3

A112b213c2
. ~34!

The parametersb, c, andd control the billiard shape. Equa
tion ~34! ensures that the areaA enclosed byw(z) is nor-
malized top and is independent of the shape. The billia
characterized byc50 is known as the Africa billiard. We
analyze the caseb50.2, c50.2, andd5p/2, for which the
classical dynamics is known to be chaotic.20 We have veri-
fied that the corresponding spectrum exhibits GOE-like sp
tral fluctuations~we used 300 converged levels by diagon
izing a matrix of order 1000!. This is demonstrated in Fig. 5
where the nearest-neighbor level spacing distributionP(s)
and theD3 statistics, which measures the spectral rigidi
are shown.

To investigate the effect of an external magnetic field,
consider the same billiard threaded by an Aharonov-Bo
flux line,38,20 which does not affect the classical dynamic
The flux is parametrized byF5aF0, whereF0 is the unit
flux. We use the same set of values forb, c, andd as above

-

FIG. 4. Conductance peak distributionsP(g) for asymmetric
four-point leads withkuDru51 and an asymmetry factor ofa51
anda510. Left: GOE; right: GUE. The dashed curves describe
limit a→` whereP(g) reduces toP(G).
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7756 55Y. ALHASSID AND C. H. LEWENKOPF
~to ensure classical chaotic motion!, and choosea51/4 for
maximal time-reversal symmetry breaking. The statisti
tests shown in Fig. 5 confirm that this choice ofa corre-
sponds to the unitary limit. We remark that theD3 statistics
is a better measure to distinguish between the GOE and G
cases than the level spacing distributionP(s) ~used in Ref.
20!.

A. Spatial correlations

The eigenfunction amplitude correlationC(kuDru)
5C* (r)C(r8)/uC(r)u2 was recently investigated thorough
for the conformal billiard.31 The results agree fairly wel
with the theoretical prediction, namely,C(kuDru)5
J0(kur2r8u),30 if one averages over the orientation ofDr.
This result is based on semiclassical arguments, and
eigenfunctions studied in Ref. 31 were chosen accordingl
be highly excited states~i.e., deep in the semiclassical re
gion!.

To apply this result to quantum dots, further consid
ations are in order. First, a typical semiconductor quant
dot in the submicrometer range contains several hund
electrons, and it is therefore not obvious that the eigenst
around the Fermi level are necessarily semiclassical. Sec
scars associated with isolated periodic orbits give correct
toC(kuDru) that are of orderO(\1/2). The fluctuations of the
spatial correlation of the billiard eigenfunctions were r
cently estimated analytically39 and found also to be sup
pressed byO(\1/2). These corrections are negligible if on
averages over all orientations around a given pointr ~keep-
ing the modulusuDru fixed!, but this is difficult to implement
experimentally. At a fixed orientation the fluctuations of t
spatial correlations seem to be rather small~in comparison
with the average correlator! if kuDru<3 so that Eq.~19! is a
good approximation. For larger values ofkuDru, there could

FIG. 5. The nearest-neighbor level spacing distributionP(s)
and the D3 statistics for the conformal billiard with
b50.2, c50.2, andd5p/2. We consider the states between t
50th and the 350th. Left: no magnetic flux (a50). Right: with
magnetic fluxa51/4.
l
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be significant fluctuations from Eq.~19!, but for such values
of kuDru the width and conductance distributions are clo
to their limiting case of independent channels and are
very sensitive to the exact correlations.

Our results were obtained by using the billiard eigenfun
tions with Neumann boundary conditions where the norm
derivative of the wave-functions vanishes on the boundar
We analyze eigenfunctions in the vicinity of the 100th e
cited level, which resembles the experimental situation.
moving the points around the circle we generate more sta
tics and average over orientations. The results are show
Fig. 6 where the correlations in the model~solid line! com-
pare well with the theoretical result~dashed line! for both
cases with and without magnetic flux. The agreement is r
sonable, particularly forkuDru,5 ~no average over orienta
tion is made!. For kuDru@1, the deviations from the theore
ical value ofC(kuDru) are not important since the channe
are weakly correlated and the distributions are very close
those describing uncorrelated channels. Thus, correction
our analytical findings should not be large, as is supported
the numerical evidence presented below.

We remark that in order to simplify the calculations w
used Neumann boundary conditions around the entire
liard’s boundary and not just at the dot-lead interface.
resemble the experimental situation we would have to
mixed boundary conditions,20 which would make the calcu
lations much more computationally intensive. Howev
while the actual values of the eigenfunctions depend on
boundary conditions, the eigenfunctions’ statistics does
and our simplified calculations are sufficient.

B. Coupling to leads and distributions

We first studied the pointlike contact model by describi
the lead as a sequence ofL equally spaced points on th

FIG. 6. The spatial wave-function correlationC(kuDru) calcu-
lated for the conformal billiard~squares! compared with the theo-
retical predictionJ0(kuDru) ~solid line!. The top panel correspond
to a50 and the bottom panel toa51/4.
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boundary of the billiard~in thew plane!. According to Eq.
~19! the correlation matrixM is then completely determined
by kuDru'kduuw8(r51,u)u ~where du is the angle that
spans the arc between two neighboring points in thez plane!
andL. In this model it is easy to generate strong correlatio
by choosing the points close enough~i.e., the distance is
chosen to be shorter than the Fermi wavelength!. This should
be contrasted with the~discretized! Anderson model12 where
the channels are weakly correlated even if the lead is co
posed of nearest-neighboring points. The eigenvalueswc

2 are
found by diagonalizing the matrixM .

In Figs. 7 and 8 we compare, for both the unitary an
orthogonal limits, respectively, the total width distributio
P(G) in the conformal billiard~histograms! with the theoret-
ical predictions~solid lines!. This is done for several values
of kuDru50.5, 1, 2 andL52, 4, 6. The case of equivalen
and uncorrelated channels~displayed by dashed lines! is just
the x2 distributions inL (2L) degrees of freedom for the
GOE ~GUE!. The agreement between the model and the a
lytic RMT predictions confirms the validity of the statistica
model for a chaotic dot. We observe from Figs. 7 and 8 th
for the larger values ofkuDru, the distributions get closer to
those for uncorrelated channels. This is consistent with
decrease in spatial correlations~see Fig. 6!. Another interest-
ing observation is that, for a constantkuDru ~i.e., fixed cor-
relations!, the deviation from the limiting case of indepen
dent channels becomes larger with an increasing numbe
channels.

FIG. 7. Total width distributionsP(G) for broken time-reversal
symmetry ~GUE! for several values ofkuDru50.5, 1, 2 and for
various number of channelsL52, 4, 6. The solid lines are the
theoretical distributions~23!, while the dashed lines correspond t
uncorrelated and equivalent channels. The histograms are the
sults from the conformal billiard (b50.2, c50.2, d5p/2) where
a magnetic flux line (a51/4) breaks time-reversal symmetry.
s
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Figures 9 and 10 show a comparison between the theo
ical conductance peak distributions for symmetric leads,
given by Eqs.~32! and ~33! for the unitary and orthogona
cases, respectively, and those calculated for the confor
billiard with symmetricL-point leads (L52, 4, and 6! and
for different values ofkuDru. The dashed lines are again th
limiting case of uncorrelated and equivalent leads. Obse
tions can be made with respect to the conductance peak
tributions that are similar to the ones made above for
width distributions. Comparing the width and conductan
peak distributions, we note that the conductance distribu
shows stronger deviation from its limit for uncorrelate
equivalent channels than does the width distribution.

We also studied extended leads by taking the contact
gion of the lead and the dot to have a finite leng
D'uw8uDu on the dot’s boundary~in the w plane! where
w8 is evaluated at the corresponding angle where the lea
located. In this case the channels are defined by the allo
quantized transverse momentakc5pnc /D with
nc51,2, . . . ,L, whereL5 int@kD/p#. To calculate the par-
tial amplitude for the conformal billiard, the integral in Eq
~2! ~defined in thew plane! is mapped into an integral alon
an arc in thez plane, which is spanned by an angleDu:

gcl5A \2

2mEDu
duuw8~r51,u!uFc* ~u!Cl~r51,u!. ~35!

re-

FIG. 8. Total width distributionsP(G) for conserved time-
reversal symmetry~GOE!. Conventions are as in Fig. 7 but wit
solid lines describing the orthogonal prediction~27!. The conformal
billiard has no magnetic flux line (a50).
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7758 55Y. ALHASSID AND C. H. LEWENKOPF
Here Fc(u)5A2/Dsin(kcuw8uu) are the transverse channe
wave-functions and for simplicity we have setkcPc51. The
resonance eigenfunctionCl is given in terms of its expan-
sion ineil u ~with l50,61,62, . . . )

Cl~r51,u!5Nl(
j

cj
l

Ap~g j
22ul j2au2!

ei l ju, ~36!

whereNl is a normalization constant,g j are the zeroes of
Jul j2au8 , andcj are expansion coefficients as in Ref. 20.

To guarantee that the correlation matrixM in Eq. ~10! is
the same for eigenfunctions of the billiard that belong
different energies, we chooseD such thatkD5const and
scale the partial amplitude~2! by k1/2. The resulting matrix is

kMcc85
\2

2m

2

kDEDu
duE

Du
du8uw8~r51,u!uuw8~r51,u8!u

3sinS pnc
kD

uw8uu D J0~ uw8uuu2u8u!

3sinS pnc8
kD

uw8uu8D . ~37!

This scaling has the advantage of being consistent w
the theoretical approach presented above, but experimen
it is difficult to accomplish. Fortunately, this scaling ofD is

FIG. 9. Conductance peak distributionsP(g) for broken time-
reversal symmetry~GUE!. The histograms display the results ob
tained from the conformal billiard for symmetricL-point leads and
different values ofkuDru. The solid lines are the RMT prediction
~32! and the dashed lines correspond to uncorrelated and equiva
channels. The cases presented are the same as in Fig. 7.
th
lly

insignificant for current experiments14,15 that deal with dots
containing several hundred electronsN. Indeed, from the
Weyl formula we have kF}N1/2 so that dkF /kF
5dN/2N!1. The latter inequality is obtained when we e
timatedN to be the number of observed Coulomb blocka
peaks~since each Coulomb blockade peak corresponds to
addition of one electron into the dot!. The relative variation
of kF is thus small and can be neglected.

We find that the channels in the extended leads model
weakly correlated and that the average partial widths in
various channels exhibit a moderate variation. In such a c
the total width distribution is not very different from the cas
of uncorrelated equivalent channels. Our model calculatio
for extended leads are shown in Fig. 11 and are in agreem
with the RMT predictions for uncorrelated channels~dashed
lines!. An interesting effect is that with an increasing numb
of channels even small deviations inP(G) give rise to rela-
tively large deviations inP(g).

V. CONNECTION TO EXPERIMENTS
AND CONCLUSIONS

We have discussed the cases of both orthogonal and
tary symmetries. To relate to actual experimental situatio
it is important to estimate the minimal strength of the ma
netic fieldBc , which ensures complete time-reversal sym
metry breaking. For a ballistic electron38,8,20,40 BcA
}Atcr /tF0, where tcr is the time it takes the electron to
cross the dot andt is the Heisenberg timet5h/D. For an
electron at the Fermi energyBcA}N21/4F0, whereN is the
number of electrons in the dot. The proportionality factor

ent

FIG. 10. Same as Fig. 9 but for the orthogonal symmetry whe
the theoretical distribution is given by Eq.~33!. The results for the
conformal billiard correspond toa50.
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55 7759SIGNATURES OF CHAOS IN THE STATISTICAL . . .
nonuniversal and depends on the exact geometry of the
In a semiclassical analysis41,42it can be expressed in terms o
classical quantities. Typical values ofBc in some recent
experiments14,15 are of the order of a few mT. Such sma
values ofBc are in the range where classical perturbat
theory is valid, and the leading semiclassical correction

FIG. 11. Comparison of conformal billiard results for extend
leads with int@kD/p#56 ~histograms! and theoretical predictions
Shown are the total width distributionP(G) ~top! and the conduc-
tance distributionP(g) ~bottom! for both orthogonal~left! and uni-
tary ~right! limits. The dashed lines correspond to uncorrela
equivalent channels.
s

Y.
,
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B

B

ot.

o

any two-point correlator is the change in magnetic fl
through the area enclosed by the classical trajectory, w
the bending of the trajectory itself is second order.41 For
larger magnetic fields, when this is no longer valid, the ph
ics is different and in particular the classical motion beg
to be regular. Using the same reasoning, the assumption
the correlatorC(kuDru) is unchanged by the magnetic field
strictly valid only for the regime where classical perturbati
applies. Nevertheless, it is noteworthy that these small va
tions in the magnetic field lead to appreciable quantum m
chanical effects, i.e., the crossover from orthogonal to u
tary symmetry.

In conclusion, we have derived closed expressions for
width and conductance peak distributions in quantum dot
the Coulomb blockade regime. The main assumption is
for a ballistic dot the irregular boundary gives rise to chao
motion. For given correlation matrices that characterize
left and right leads, these distributions are universal and
tinct for conserved and broken time-reversal symme
While recent experiments have measured the conducta
distributions in symmetric one-channel leads, it would
interesting to measure and compare with theory the cond
tance distributions in dots with multichannel leads.
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