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Quantum wires in staggered-band-line-up single heterostructures with corrugated interfaces

V. Türck, O. Stier, F. Heinrichsdorff, M. Grundmann, and D. Bimberg
Institut für Festkörperphysik, TU Berlin, Hardenbergstrabe 36, D-10623 Berlin, Germany

~Received 20 August 1996!

The spatial shape of the conduction- and valence-band edges of type-II heterojunctions inV grooves is
calculated self-consistently. Quantum wires are formed in the groove center only by means of a deformed
potential shape without any further structural confinement. The quantum-wire potential is attractive for one
type of charge carrier only and repulsive for the other type. The influence of structural parameters on the
formation of the wire and on the quantum states is studied. As a model system we use InP on In0.48Al0.52As in
which an electron wire is formed. Structures with periodic arrays of grooves that exhibit a significantly deeper
lateral potential than single grooves are investigated. In those structures an influence of the adjacent side
quantum well can no longer be observed. We find here a subband splitting somewhat smaller thankT at room
temperature and strongly depending on the ‘‘sharpness’’ of the groove tip. A comparison of self-consistent
calculations and the often used semiclassical calculations shows that the latter method is liable to produce
incorrect quantitative results.@S0163-1829~97!03211-6#
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I. INTRODUCTION

The study of low-dimensional semiconductor structu
has recently become the focus of interest in semicondu
physics. Much effort has gone into the fabrication of lo
dimensional structures like quantum wells,1,2 quantum
wires,3–5 and quantum dots.6–8 Fabrication methods mak
use of self-organization processes in order to obtain o
dimensional and zero-dimensional structures, thus mak
redundant post-growth structuring and etching proces
Theoretical studies predict interesting features of these l
dimensional structures and their possible usefulness for
design, e.g., of lasers with interesting properties.9 Though
most of this work was done with nested type-I heterostr
tures, there has nevertheless been significant progress i
study of staggered type-II heterostructures.10 The formation
of spatially separated confinement potentials for electr
and holes on either side of an interface has been obse
directly for quantum wells11,12 and quantum dots,13–15 and
has been modeled theoretically.16 Applications for devices
like long-wavelength detectors17 and tunable-light
emitters18,19 have been presented, and even the observa
of laser emission has been reported.20

Along with the improvement of fabrication methods, th
oretical modeling has become essential because nume
simulations can stimulate the development of structures
reduce the number of experiments necessary to design
optimal structure of a device. In the field of quantum wir
the research on their band structure focuses on two m
areas. One is the calculation of the complex band structur
simplified geometries21–23 in order to obtain precise predic
tions of energy dispersion, masses, and densities of st
and the other is the detailed calculation of spatial contour
the band edges24,25 in order to estimate recombination ene
gies and probabilities.

The spatial dependence of the band edges in quan
wires has been calculated for different shapes and ge
etries. However, in most cases only semiclassical calc
tions were performed. The first fully self-consistent calcu
550163-1829/97/55~12!/7733~10!/$10.00
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tions were presented by Laux and Stern for narrow ga
induced wires in silicon.26 Later Kerkhovenet al. presented
self-consistent calculations for field induced quantum wire27

as well, and for quantum wires in corrugated type-I dou
heterostructures.28 Wu and Ruden presented self-consiste
results for quantum wires under etched ridges.29 In addition
to these calculations, which were performed for rather re
istic systems, several structures of simplified geometry h
been calculated self-consistently, like wires wi
cylindrical30,31 or rectangular cross sections.32 Such struc-
tures are more of general and theoretical interest.

The formation of an electron quantum wire in a hete
junction on a corrugated substrate was predicted
Sawada et al., who proposed a modulation-dope
GaAs/AlxGa12xAs junction in aV groove,33 and presented
results of semiclassical calculations later.34 Porod, Harbury,
and Goodnick proposed a GaAs/AlxGa12xAs junction in a
groove with an additional lateralpn doping introduced by
selective Si doping, and later presented results of a semic
sical calculation.35

Up to now, to our knowledge, no self-consistent calcu
tions for quantum wires formed on single heterojunctions
V grooves have been presented. However, self-consis
calculations are essential to obtain realistic results for th
structures, because the energy of confined states is clo
the Fermi energy, and thus the thermal population of
subbands is high. All semiclassical calculations for su
structures have been based on idealized geometries, the
sible influence of deviations has not been considered.
nally, the concept of quantum wires on single heteroju
tions inV grooves has not been extended to type-II interfa
although here interesting effects are to be expected.

This paper deals with the self-consistent calculation
quantum wires formed in corrugated type-II single hete
junctions. Section II describes the theoretical basics of
calculation, and Sec. III the numerical methods used for
calculation. The results are presented and discussed in
IV, and Sec. V contains the conclusions we arrived at.
7733 © 1997 The American Physical Society
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II. APPROACH

In this paper we investigate deeply buried sing
V-groove heterojunctions@see Fig. 1~a!# and periodically
grooved structures in which the grooves are separated
triangular ridges with a groove periodl smaller than 0.5
mm @see Fig. 1~b!#.

This kind of grooved structures can be fabricated, e.g.
overgrowingV shaped grooves etched into a substrate. T
method has been used in the production of GaAs-based3 or
InP-based36,37 double heterostructure type-I quantum wire

An ideal V groove is mathematically described by th
anglea formed by its sidewalls. We introduce a second p
rameter in order to describe the realistic deviation from
ideally sharpV shape:3 the groove tip is approximated by
circular segment of radiusr. This allows us to take into
account rounding effects which occur during etching
growth.

For our model calculations we assume a quantum wire
infinite length extended along they axis. In order to describe
this system, the shapes of the valence and conduction b
edges in the (x-z) plane must be calculated. The spat
shape of the conduction-band edgeEC(x,z) is determined by
the electrostatic potentialeF as

EC~x,z!5E02eF~x,z!2x~x,z!,

wherex(x,z) describes the electron affinity andE0 is the
vacuum level.x is a material parameter, and the differen
of the electron affinities of two materials equals t
conduction-band offset. The electrostatic potentialeF is the
solution of the two-dimensional Poisson equation

div@e~x,z!gradF~x,z!#52r~x,z!. ~1!

e(x,z) is the dielectric constant, andr(x,z) is the classical
charge density obtained from Fermi-Dirac statistics. To s
plify matters the Fermi integralF1/2(z) is often replaced by
the Boltzmann approximation. This is only admissible, ho
ever, if the energetic difference between the Fermi ene
and the band edges is significantly larger thankT. We do not
use the Boltzmann approximation here since we want to
culate device structures at room temperature.

FIG. 1. Model of the buriedV-groove heterojunction for~a! a
single groove and~b! a periodic ensemble of grooves. The structu
is determined by the parametersa ~the angle enclosed by the side
walls! andr ~the radius of curvature of the groove bottom!. Besides
a andr, the periodic structure is described by the parameterl ~the
lateral groove period!. The light gray shaded areas are the doma
of solution for the Poisson equation, and the dark gray ones are
respective Schro¨dinger boxes. Note that the domains are not giv
true to scale, but that the Schro¨dinger box is oversized.
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The classicaldescription is not appropriate for a charge
quantum structure because quantum effects are not taken
account. Thesemiclassicalmethod uses a classically calcu
lated potential on which the Schro¨dinger equation is solved
once to compute quantum levels. If the population of th
corresponding subbands is very small, which is always
case if their energetic distance to the Fermi energy is sign
cantly larger thankT, the semiclassical method is sufficie
to calculate the properties of quantum structures with reas
able accuracy. To achieve proper results for higher temp
tures or if quantum levels are close to the Fermi energy~in
terms ofkT), a self-consistentsolution of the Poisson and
Schrödinger equations is required, because of the consid
able contribution of confined charge carriers to the to
charge densityr. This contribution differs from the one ob
tained in the classical description.

In our quantum wire the wave functionC(x,y,z) of a
single charge carrier can be separated asf(y)c(x,z), where
f(y) is the unconfined part for the motion along the wi
and is described by plane waves. The factorc(x,z) is the
two-dimensionally confined part. Considering a structu
with quantum confinement for electrons~the consideration
applies to holes analogously!, c(x,z) is determined within
the one-band approximation by the effective-mass equa
in the BenDaniel-Duke forms38

Hc~x,z!5Ec~x,z!, ~2!

H52
\2

2
¹S 1

m* ~x,z!
¹ D1EC~x,z!. ~3!

m* (x,z) is the spatial-dependent~isotropic! effective mass
andEC(x,z) is the conduction-band edge which acts as c
finement potential. The probability densityucu2 is used to
derive a quantized electron density which is given by

nq~x,z!5(
i
Ni uc i~x,z!u2, ~4!

with i numbering all bound states.Ni is the number of elec-
trons per unit length in thei th subband, and is given by

Ni5
2m* kT
p2\2 F21/2SEF2Ei

kT D .
EF is the Fermi energy,Ei is the energy of thei th state, and
F21/2 the Fermi integral of order2 1

2.
This carrier density is used to derive a different char

density which in turn is used in the Poisson equation. Th
the Schro¨dinger and Poisson equations are coupled via
eigenstates (Ei ,c i) and the confinement potential. It ha
been proved that this system of equations offers a uni
solution for attractive potentials.39 The repeated successiv
solution of Poisson and Schro¨dinger equation is similar to a
fixed-point iteration, and converges under certain conditio
However, the true self-consistent solution of Poisson a
Schrödinger equation is seldom performed since it require
large computational effort.
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III. NUMERICAL METHODS

A. Poisson equation

Due to the required global charge neutrality the dom
on which the Poisson equation must be solved is large
amounts to up to 131mm2 depending on doping and tem
perature. The shape of the domain is either trapezoida
rectangular depending on the type of structure conside
~see the light gray shaded areas in Fig. 1!. The different
length scales of potential variations near the boundarie
the domain and near the interface suggest the choice o
inhomogeneous orthogonal grid on which the Poisson eq
tion is discretized. The central unit cell size is about 53 7
Å 2, and the total number of mesh points amounts to up
100 000.

On the upper and lower borders Dirichlet boundary co
ditions are used in order to produce the bulk situation. On
left and right borders Neumann boundary conditions are
ployed in order to create mirror symmetry. If the grid
sufficiently large, these boundary conditions guarantee
bal charge neutrality. A useful criterion for the correct gr
size is the normal derivative of the potential at the upper
lower domain boundaries. It must be zero, since the ba
will relax to a flatband condition. If a solution does not me
this criterion, the size of the domain of solution must
increased.

For the discretization of the Poisson equation a five-po
star difference scheme was used for the Laplacian and
tral difference quotients for the first derivatives. The resu
ing set of nonlinear equations is solved by a damped, ine
Newton iteration~following the ideas from Ref. 40! includ-
ing a successive over-relaxed~SOR! solver40,41 for the ap-
proximate inversion of the Jacobian.

B. Schrödinger equation

The Schro¨dinger equation is discretized on a squa
2003200 unit cell grid with a mesh size of 535 Å2. The
differential expressions (]/]n)(1/m* )(]/]n) are replaced by
a symmetrical second-order difference quotient,42 thus con-
verting the eigenvalue problem into a sparse matrix eig
problem. This eigenproblem is solved by nested iterat
with a generalized block Davidson algorithm using a tri
agonal preconditioner.43,44

The domain of solution of the Schro¨dinger equation
~‘‘Schrödinger box’’! is significantly smaller than that of th
Poisson equation, covering only the central region of theV
groove ~see the dark shaded areas in Fig. 1!. The modified
charge density Eq.~4! has to be calculated only inside th
Schrödinger box, outside of it the classical expression can
used. On all boundaries of the Schro¨dinger box Neumann
boundary conditions are applied. Additionally the iterati
process has explicitly been restricted to vectors that also
fill Dirichlet conditions. Thus the Schro¨dinger box possesse
infinitely high barriers, and it is important to ensure that t
box is sufficiently large to avoid any influence of these b
riers. This is a difficult task because the confinement pot
tial shape of a type-II interface quantum well is appro
mately triangular near the interface, and shows a smo
transition to a flatband towards the bulk material. The ene
spectrum of bound states in such a quantum well is so
what similar to the spectrum of hydrogen and the numbe
n
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‘‘bound’’ states is very large, but the distance between
two states decreases rapidly as their energy increases
choose a small Schro¨dinger box containing, e.g., the lowe
six wire states; higher states are not taken into account
the quantized charge density. Instead an instantaneous
sition to the continuum above the nominally highest w
level is assumed and the contribution of higher bound sta
is taken into account by means of a classical charge den

C. Self-consistency cycle

We have adopted theextrapolated convergence facto
methodoriginally introduced by Stern45 for quantum wells.
This is a quite simple method with practically no overhea
We have found that this method significantly improves t
convergence rate and leads to greater numerical stab
The self-consistency cycle is repeated untileF varies by less
than 1023 meV. The accuracy of the result is influenced
several sources of errors. We estimate the total error to
about60.5 meV.

All calculations were carried out on the Cray J932/1
8192 vector computer at the Zuse-Institut-Berlin. For an
erage calculation of six eigenstates the desired accurac
achieved within ten cycles and about 50-min total CPU tim
About 90% of the time is consumed by the Schro¨dinger
solver and 10% by the Poisson solver.

IV. RESULTS

In this section the results for several model systems
presented, starting with a lattice-matched InP/In0.48Al0.52As
heterojunction in a singleV groove. By means of this system
self-consistent and semiclassical calculations are compa
and the influence of doping and of the ‘‘sharpness’’ of t
groove tip on the formation of a quantum wire is examine
In Sec. IV B the results for structures of the same mate
system, but with periodically arrangedV grooves, are pre-
sented. Section IV C deals with the results for the typ
system GaAs/AlxGa12xAs. For the sake of device relevanc
all calculations refer toT5300 K. If not stated otherwise the
sidewalls of the grooves are$111% facets forming an angle o
a570.6°.

A. InP/In 0.48Al0.52As heterojunction in a singleV groove

An InP/In0.48Al0.52As heterojunction has been chosen b
cause it can be grown easily by metal-organic chemic
vapor deposition~MOCVD! on planar11 and corrugated36

substrates. On a planar substrate and under appropriate
ing conditions a type-II interface quantum well is forme
electrons are located in the InP, and holes in
In xAl 12xAs. The MOCVD-grown In0.48Al0.52As was always
found11 to ben doped withND>1016 cm23. The nominally
undoped InP had shown a slightn background. Hence we
assume ann-background doping ofND5431015 cm23 for
the InP. The growth sequence for the model groove is InP
In0.48Al0.52As.

We examine a groove withr510 nm and an
In0.48Al0.52As doping level ofND54.631017 cm23. Figure 2
shows the calculated conduction-band profile. An attract
potential for electrons is formed in the center of the groo
where two effects can be observed: First, the conducti
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7736 55V. TÜRCK et al.
band edge near the interface is shifted to lower energie
the vicinity of the groove tip. Second, the triangular-shap
type-II confinement potential at the interface becomes n
rower near the tip~see Fig. 3!.

The first effect is a consequence of the global charge n
trality. It requires equal space charge zones on both side
the heterojunction. In order to maintain this balance in
vicinity of the groove tip, the InP space-charge zone is
tended further away from the interface and the InxAl 12xAs
space-charge zone is constricted around the tip. This lead
a change of the electrostatic potential shape, so that its e
potential lines do not follow the sharp bend of the interfa
Hence the energy of electrons is lowered near the groove
The spatial extent of the space-charge zone deformation
the order of the Debye length, which is about 65 nm for b
InP but is expected to be less in the space-charge zone
to the higher charge-carrier density. We estimate the ave
Debye length near the interface to be 20–30 nm.

The second effect can be observed only by means of s
consistent calculations. It is due to the confinement of e

FIG. 2. Self-consistent conduction-band edge with respect to
~a! InP bulk conduction-band edge and~b! probability density
uc*cu of the electron wire ground state. For better visibility, on
the left half of the isolines is shown in~a!; the spacing between
isolines is 30 meV. The Fermi energy is below the InP bu
conduction-band edge at2127.7 meV. In~b! the outermost isoline
indicates 99% probability.

FIG. 3. One-dimensional cuts of the conduction-band edge f
Fig. 2~a! perpendicular to the interface~see the inset!. The dashed
cut is 0.5 mm off the groove center and gives the potential shap
the flat interface. The dash-dotted line is a cut of the semiclassic
calculated conduction-band profile in the center of the groove.
horizontal solid line indicates the position of the Fermi energy.
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trons leading to a wider charge distribution, which in tu
changes the electrostatic potential shape in a way that
type-II confinement potential perpendicular to the interface
narrowed. This narrowing increases the energy of confi
electrons.

Although both effects have opposite influences on
electron energies, the first one is dominant, and produce
additional potential variation parallel to the interface. In t
following ‘‘parallel’’ means ‘‘parallel to the interface.’’ The
parallel variation is rather shallow~see Fig. 7! compared to
the perpendicular one, but it is strong enough to creat
confinement in a second direction. Thus in the groove
electronic quantum wire is formed which is connected to
triangular type-II interface quantum well on the sidewa
~side quantum wells!.

Due to the shallowness of the lateral potential the wire
very few bound states. In this particular example only t
ground state at2122.9 meV is bound. The distance betwe
the wire ground state and the side quantum-well ground s
amounts to 10.6 meV, and is smaller thankT at room tem-
perature, so that evaporation of electrons from the wire i
the well surely will occur.

All energies of electron levels in the InP/In0.48Al0.52As
system refer to the conduction-band edge of bulk InP, wh
is at 0 meV. In a type-II triangular potential the usual meth
of measuring energies with respect to the bottom of the
tential well becomes risky because the bottom is not flat. T
difficulties even increase for a wire, since the minimum
the confinement potential is a single point and its ene
cannot be determined exactly due to the discretization er
The problem can be solved by using the bulk In
conduction-band edge as a reference level, because it fo
the upper edge of the potential well and its energy can
calculated precisely. Thus all electron energies are nega
and 0 meV is the ‘‘ionization energy.’’ However, this refe
ence level seems to be more appropriate.

The formation of a two-dimensional electron confineme
potential in the center of the groove implies that the poten
shape of the upper valence-band edge becomes repulsi
this place. If the layer sequence is reversed, i

e

m

t
lly
e

FIG. 4. Energies of the lowest three electron states in a sin
V-groove wire for different doping levels of the In0.48Al0.52As layer
calculated self-consistently and semiclassically, respectively.
two-dimensional states with an energy above the side quantum-
ground state are not truly bound.
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In0.48Al0.52As on InP, a hole wire in In0.48Al0.52As is formed
in the V groove. This is an important property of type-
heterojunctions, which will be discussed in more detail b
low.

The formation of quantum wires in a single heterojuncti
has several advantages: they are easy to fabricate, they s
less from interface defects than quantum wires in dou
heterostructures, and there should be no spectral broade
due to size fluctuations. In the following the influence of tw
parameters on the band structure and the wire states wi
examined: the doping of the In0.48Al0.52As layer and the ra-
dius r of the groove tip.

1. Influence of doping

To demonstrate the influence of doping of t
In xAl 12xAs layer we calculated the bound wire states
doping levelsND between 1017 and 1018 cm23 for a tip
radiusr510 nm. The energies of the wire ground state a
excited states are displayed in Fig. 4 together with that of
side quantum-well ground state. The latter has been obta
from a one-dimensional self-consistent calculation. The w
states shift to lower energies with increasing doping lev
This is an interesting observation, because the wire itse
located in the undoped InP. The wire states can be tu
within a certain range by doping the substrate, without int
ducing impurities into the quantum wire, which would r
duce the electron mobility. The overall behavior is similar
that of the samples presented in Ref. 46.

The energy of the wire ground state is close to or ev
below the Fermi energy which is below the InP bu
conduction-band edge at2127.7 meV. Thus the therma
population of the one-dimensional subband of the grou
state is high, and the formation of a one-dimensional elec
gas is to be expected. This is an important feature for
design of conducting channels.

The first excited state cannot really be considered a w
state, since its energy is above the side quantum-well gro
state. The transition between wire and well states canno
properly modeled in two-dimensional calculations so that
excited states in Fig. 4 still are pure wire states that do

FIG. 5. Dependence of the ground-state energy on the tip ra
r. For r.30 nm there is no confinement. These states were ca
lated neglecting the side quantum well.
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‘‘see’’ the side quantum well. To some small extent they a
influenced by the Schro¨dinger box.

2. Influence of the tip radius

In a second set of calculations the radius of the groove
has been varied between 0 and 60 nm for a fix
In0.48Al0.52As doping ofND54.631017 cm23. The groove
tip radius has a strong influence on the formation of
two-dimensional confinement. Figure 5 displays the ene
of the wire ground state as a function of the tip radius. A
ditionally, the energy of the side quantum-well ground st
is marked. The wire ground-state energy increases withr; at
r'30 nm it equals that of the well ground state while t
wire confinement disappears. The energies forr.30 nm are
computed neglecting this effect. The increase of the grou
state energy is due to a reduction of the parallel confinem
its minimum in particular increasing as the tip radius i
creases. We note that the Debye length in the InP layer n
the interface is 20–30 nm. Thus, if the tip radius approac
this value, the parallel confinement disappears. For de
applications a small tip radiusr<10 nm is a prerequisite.

3. Comparison between self-consistent
and semiclassical calculation

Figure 4 shows the energies of the three lowest wire st
as a function of the In0.48Al0.52As doping. In addition to the
self-consistent results those obtained by the semiclassica
proach are displayed. In the semiclassical calculation, yie
ing energies lower by about 10 meV, the first and seco
excited wire states are now below the side quantum-w
ground state. This effect is caused by the difference betw
the charge densities on which the calculation of the elec
static potential is based. As mentioned above, the inclus
of quantum effects leads to a wider and ‘‘smoother’’ char
distribution, which in turn yields a narrower perpendicul
type-II potential. Hence the energies of the wire states
crease~figuratively speaking the wire states are ‘‘squeeze
to higher energies!. The difference of the potential shapes
displayed in the cuts in Fig. 3. Comparing the semiclass
and self-consistent potentials, the narrower shape of the la
becomes obvious. The difference between the energy le

us
u-

FIG. 6. Linear electron density in the quantum wire as a fu
tion of the In0.48Al0.52As doping level. The densities are calculate
according to Eq.~4! involving theboundstates only.
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7738 55V. TÜRCK et al.
is mainly due to the different perpendicular confinement
tentials. In fact the parallel potential shapes are nearly id
tical.

The energies of the wire states determine the thermal
cupation of their subbands, and incorrect energy levels
lead to wrong predictions about the electron density in
wire. To illustrate this, we have calculated the linear elect
density of the wire for different doping levels of th
In0.48Al0.52As, based on self-consistent and semiclassical
sults, respectively. In Eq.~4! we summed over allbound
wire states, i.e., the three lowest semiclassical states an
self-consistent ground state. The result is shown in Fig
The semiclassical calculation yields densities about th
times larger than the more accurate self-consistent calc
tion.

B. InP/In 0.48Al0.52As periodical V grooves

All calculations presented so far were performed for
singleV groove. Obviously the most severe problem of th
structure is its small parallel confinement. One method
increase the parallel confinement is lateralp-n doping.35 An-
other way to overcome this difficulty is to remove the si
quantum well. This can be done by creating a periodic
quence ofV grooves with small lateral distance, separated
triangular ridges@see Fig. 1~b!#. Such a ridge can be consid
ered as aV groove with an inverse layer sequence, turn
upside down. Hence the electrostatic potential near the r
top is similar to that around a groove tip but, due to t
reversed layer sequence, the parallel potential is repulsive
electrons and attractive for holes. If the distancel between
the grooves is reduced below 500 nm, which is technolo
cally no problem, their parallel potentials will overlap. As
result the side quantum wells disappear, and evaporation
the wells is no longer possible. As a consequence, the e
tron wires have more bound states. Figure 7 shows the va
tion of the conduction band edge as a function of the posi
along the junction for a singleV groove and a periodic struc
ture. We have assumed identical radiir for ridge tops and
groove tips.

FIG. 7. Conduction-band edge along the interface. The das
line refers to a singleV groove and the solid line to a periodi
groove ensemble withl5150 nm. The improvement of the paralle
potential in the latter is evident.
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In the type-II system InP/In0.48Al0.52As, the ridges contain
quantum wires for holes, thus in a periodic structure spatia
separated quantum wires for electrons and holes are form
in alternating sequence. Figure 8 shows the conduction-
valence-band profiles for such a structure withr510 nm,
l5150 nm, andND54.631017 cm23 together with isoline
plots of electron and hole wave functions. The valence-ba
edge in the ridge forms an attractive potential for holes lyi

ed

FIG. 8. ~a! Conduction- and~f! valence-band edges and~b!–~e!
probability densitiesuc*cu of selected electron and~h! hole~g! and
states in a periodic groove structure withr510 nm,a570.6°, and
l5150 nm. All electron related energies refer to the InP bu
conduction-band edge and all hole related energies refer to
In0.48Al0.52As bulk valence-band edge. In the band-edge plots~a!
and ~f!, the isoline spacing is 50 meV. The Fermi energy is belo
the InP bulk conduction-band edge at2127.7 and 1430.8 meV
above the In0.48Al0.52As bulk valence-band edge, respectively. I
pictures~b!–~e!, ~g!, and ~h!, the outermost isoline indicates 99%
probability.



e
e
T

th
o
e
ee
lk
in
l
rg
ra
t
0

r
o
tr
et
he
ca
e

t
tin

ai
en
te
ce
l-
u
tw
v
n
at
a
ld
e

the
po-

ss
and
le
is
e-

ge
the
e
ce
un-
by

e
er
nd
-
-
the
nifi-
un-
on-
ires

as
ce
f a
sion
el
p-

ire

in-
ly.
eV

se
allel

y
is
only
or

he
ar-
a
d

ve

d
rin

InP

55 7739QUANTUM WIRES IN STAGGERED-BAND-LINE-UP . . .
about 1300 meV below the Fermi energy; therefore the th
mal occupation of the bound states is negligible, and a s
consistent calculation of the hole states is not necessary.
energies of hole states refer to the In0.48Al0.52As bulk
valence-band edge, and are thus positive. However, in
case the reference level is not the upper barrier of the c
finement potential. In the model system described here
cited holes can overcome the potential barrier betw
In0.48Al0.52As and InP, and do not evaporate into the bu
Since in this process tunneling effects should be taken
account the upper edge of the wire confinement potentia
not exactly defined. For this reason we think that the ene
of the bulk valence-band edge constitutes a more accu
reference. Nevertheless one should keep in mind that
upper barrier of the confinement potential is at about 11
120 meV.

The electron wave functions have a symmetrical structu
and their nodelines can be identified as either vertical
horizontal. Vertical means parallel to the axis of symme
and horizontal means perpendicular to the axis of symm
at least at the point of their intersection. Accordingly t
wire states can be labelled by two quantum numbers indi
ing the numbers of horizontal and vertical nodes, resp
tively. The ground state is the~0,0! mode, the first excited
state a~0,1! mode, the second excited state a~1,0! mode, and
so on. Table I gives the energies of the 14 lowest states in
electron wire. The wire states form a sequence of alterna
parities up to the 14th state which is the~2,0! mode. States
with the same sum of quantum numbers arrange in p
which have a small energy splitting, indicating near deg
eracy. Concerning the wave functions above the ninth sta
can be safely assumed that the wave functions of adja
grooves are coupled to form a ‘‘wire superlattice.’’ Our ca
culation is not well suited to describe this coupling acc
rately, since superlattice states cannot be normalized in
dimensions due to their Dirac vector property. The wa
functions also indicate the disparity of perpendicular a
parallel confinement. The first being much stronger, no st
with a parallel node, corresponding to the first excited st
of the type-II quantum well, can be found. The same ho
true for the hole states, although the wave functions hav

TABLE I. The 14 lowest electron states in a periodic groo
structure, r510 nm, a570.6°, l5150 nm, and
ND(In0.48Al0.52As)54.631017 cm23. The wire states are arrange
in pairs by the sum of quantum numbers. This systematic orde
is broken by the~0,2! mode atn514. All states aboven59 are
likely to couple to the adjacent groove. All energies refer to the
bulk conduction-band edge.

Number
Energy
~meV! Mode Number

Energy
~meV! Mode

1 2121.1 ~0,0! 8 292.0 ~3,1!
2 2103.2 ~0,1! 9 291.0 ~4,0!
3 2102.3 ~1,0! 10 287.6 ~4,1!
4 298.6 ~1,1! 11 286.4 ~5,0!
5 298.0 ~2,0! 12 282.9 ~5,1!
6 295.6 ~2,1! 13 281.5 ~6,0!
7 294.9 ~3,0! 14 280.0 ~0,2!
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smaller spatial extent due to the larger effective mass and
steeper and more constricted shape of their confinement
tential.

An important question is whether recombination of exce
carriers generated by external excitation in the electron
hole wires is likely. In the framework of Fermi’s golden ru
and envelope-function theory, the transition probability
proportional to the square of the two-dimensional wav
function overlap

P5E
R2

ucech* ud2r ~5!

of the electron and hole wave functionsce andch . We have
found P2,1028 for the ground state because of the lar
lateral distance between the electron and hole wires and
spatially indirect nature of the type-II quantum well. Th
wave functions overlap in a narrow zone along the interfa
only; its perpendicular extension is determined by the t
neling length. The perpendicular overlap zone is enlarged
the electric field in the space-charge zone~quantum-confined
Stark effect! similar to the situation of a flat interface. Th
overlap increases further with the lateral extent of eith
wave function. However, even for the fourth electron a
light hole statesP2'631025. To give an accurate estima
tion of the further evolution ofP by our calculations is there
fore very difficult because higher states tend to couple to
adjacent grooves or ridges, respectively. In any case sig
cant overlap is only to be expected for very high states
likely to be populated. We have therefore come to the c
clusion that effects of recombination between adjacent w
are marginal compared to type-I wires.

We have examined the influence of the tip radiusr and
the distancel between the ridges using the same methods
for singleV grooves. We have also examined the influen
of doping but since the results are very similar to those o
single groove there is no need to go into a detailed discus
here. The only finding worth mentioning is that the lev
distance in the wires is practically not influenced by the do
ing level.

1. Influence of the tip radius

Figure 9 displays the energies of the five lowest w
states as a function ofr. Similar to the singleV-groove
structure, the ground state shifts to higher energies with
creasingr, while the first excited state decreases slight
Thus the energetic separation between them is only 3.3 m
at r540 nm. All higher states shift slightly upwards. The
observations are explained by the attenuation of the par
potential in the same way as for singleV grooves.

The level crossing atr'7.5 nm indicates a degenerac
with vertical and horizontal nodes being equivalent. This
quite surprising, since such behavior has been observed
in highly symmetrical wire cross sections like circles
squares.

At r540 nm the levels are nearly equidistant, but t
level separation is very small. This indicates a vanishing p
allel quantization by which the wire slowly transforms into
well. Only for small r is the distance between the groun
state and the first excited state comparable tokT.

g
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2. Influence of the lateral distance

We have varied the groove periodl between 35 and 300
nm. Forl<150 nm the entire spectrum of the wires shifts
higher energies asl decreases~see Fig. 10!. The energy
splitting between symmetrical pairs of sublevels increas
too. This fact can be explained by the influence of the late
potential modulation. The basic idea of periodic grooves is
remove the side quantum well. However, for smalll the
lateral potential modulation induced by the ridges leads
enhanced lateral confinement; in particular, excited states
influenced by this effect because of their greater spatial
tension. A small groove periodl could so improve the lo-
calization in the quantum wires. Regrettably,V groove struc-
tures withl smaller than 50 nm or below are still difficult t
fabricate, and methods like electron beam lithography h
to be employed. In addition the coupling between neighb
ing grooves is enhanced by the decreasing parallel pote
barrier. That way a quantum-wire superlattice is form
which may exhibit interesting properties due to a possi
lateral transport between one-dimensional states.

FIG. 9. Energy levels in the electron wire as a function of the
radiusr. An increase of the tip radius leads to a decrease of
level separation betweenn51 and 2 which indicates an attenuatio
of the parallel confinement.

FIG. 10. Dependence of the electron levels on the lateral gro
distancel, calculated forr510 nm and an In0.48Al0.52As doping of
ND54.631017 cm23.
s,
al
o

o
re
x-

e
r-
ial
d
e

C. GaAs/AlxGa12xAs type-I heterojunction

The influence of the substrate corrugation on interfa
quantum wells was first studied on GaAs/AlxGa12xAs
type-I inversion layers.33,35 However, up to now no self-
consistent calculations have been presented for this mat
system. Recently Vacek, Sawada, and Usagawa34 described a
corrugated, modulation-doped GaAs/Al0.3Ga0.7As hetero-
junction, which forms a periodicV-groove structure with
a590°, r50 nm, andl585 nm. Unfortunately neither the
calculation method nor the assumed temperature were m
tioned. Using a semiclassical calculation for room tempe
ture, we arrive at results similar to the ones of Ref. 34,
least for the ground state; the shape of the conduction-b
edge, however, turn out to be slightly different@see Fig.
11~a!#. This difference can be due either to different boun
ary conditions or temperatures, or to the Boltzmann appro
mation used in Ref. 34. In contrast to Ref. 34 we use the b
GaAs conduction-band edge as a reference level for the
ergies of the wire states, and not the Fermi energy, which
this sample is 1228 meV below the conduction band ed
By employing self-consistent calculation we obtain a sh
of 17.1 meV to higher energies, similar to the In
In0.48Al0.52As system. The self-consistent potential cause
moderate change in the wave functions@see Figs. 11~b!–
11~d!#. The interpretation given in Ref. 34 that the quantu
wire can be considered a bent quantum well with a sli
lateral confinement~adiabatic approximation24! is no longer

e

e

FIG. 11. ~a! Self-consistent conduction-band edge and~b!–~d!
probability densities uc*cu of selected electron states in
GaAs/Al0.3Ga0.7As modulation-doped heterojunction, wit
a590°, r50 nm, l585 nm,ND(Al0.3Ga0.7As!5131018 cm23,
andNA(GaAs)5131014 cm23 ~according to Ref. 34!. All energies
are related to the GaAs bulk conduction-band edge; the Fermi
ergy is at21228 meV.
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valid when looking at the fact that the wire possesses bo
states which are inconsistent with this explanation@see, e.g.,
Fig. 11~d!#.

V. CONCLUSION

We have calculated the spatial dependence of
conduction- and valence-band edges of type-II heteroju
tions inV grooves self-consistently. We have found that
attractive potential for charge carrier is formed in the groo
center. This potential forms a quantum wire which is attr
tive for one type of charge carriers while repelling the oth
We have studied the influence of structural parameters on
formation of the wire and its energy states. As a model s
tem we used InP on In0.48Al0.52As, in which an electron wire
is formed. In singleV grooves only the ground state can
considered truly bound, while excited states evaporate
the side quantum well. The strength of the parallel confi
ment is heavily influenced by the sharpness of theV groove.
The energy of the wire state can be tuned by doping
In0.48Al0.52As layer, without introducing scattering cente
ci
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into the actual wire region. The problem of evaporation c
be overcome by constructing periodic structures in wh
triangular ridges separate the grooves in such a way tha
distance between two grooves is less than 500 nm. We
vestigated such structures, and found that the energetic
tance between levels in the quantum wires is small compa
to kT, and also strongly dependent on the sharpness of
groove tip. For device applications the tip radiusr must be
significantly smaller than the Debye length. We have co
pared results of the self-consistent and semiclassical m
ods, and found that the latter yields quantization energ
that are too small, leading to overestimated charge-car
densities. The semiclassical method should not be used
quantitative calculations of strongly populated subbands.
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7742 55V. TÜRCK et al.
35W. Porod, H. K. Harbury, and S. M. Goodnick, Appl. Phys. Le
61, 1823~1992!.

36M. Kappelt, V. Türck, M. Grundmann, H. Cerva, and D. Bim
berg,Proceedings of the Eigth International Conference on
dium Phosphide and Related Materials, Schwa¨bisch Gimu¨nd,
1996 ~IEEE, New York, 1996!.

37M. Kappelt, M. Grundmann, A. Krost, V. Tu¨rck, and D. Bimberg,
Appl. Phys. Lett.68, 3596~1996!.

38D. J. BenDaniel and C. B. Duke, Phys. Rev.152, 683 ~1966!.
39R. Illner, P. F. Zweifel, and H. Lange, Math. Methods Appl. S

17, 349 ~1994!.
40W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla
-

nery,Numerical Recipes in C, 2nd ed.~Cambridge University
Press, Cambridge, 1992!.

41O. Axelsson,Iterative Solution Methods~Cambridge University
Press, Cambridge, 1996!.

42T. L. Li and K. J. Kuhn, J. Comput. Phys.110, 292 ~1994!.
43C. W. Murray, S. C. Racine, and E. R. Davidson, J. Comp

Phys.103, 382 ~1992!.
44E. R. Davidson, Comput. Phys.7, 519 ~1993!.
45F. Stern, J. Comput. Phys.6, 56 ~1970!.
46V. Türck, O. Stier, F. Heinrichsdorff, M. Grundmann, and D

Bimberg, Appl. Phys. Lett.67, 1712~1995!.


