PHYSICAL REVIEW B VOLUME 55, NUMBER 12 15 MARCH 1997-II

Quantum wires in staggered-band-line-up single heterostructures with corrugated interfaces
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The spatial shape of the conduction- and valence-band edges of type-Il heterojunctérgranves is
calculated self-consistently. Quantum wires are formed in the groove center only by means of a deformed
potential shape without any further structural confinement. The quantum-wire potential is attractive for one
type of charge carrier only and repulsive for the other type. The influence of structural parameters on the
formation of the wire and on the quantum states is studied. As a model system we use 1gRs8h kASs in
which an electron wire is formed. Structures with periodic arrays of grooves that exhibit a significantly deeper
lateral potential than single grooves are investigated. In those structures an influence of the adjacent side
guantum well can no longer be observed. We find here a subband splitting somewhat smakdr #haoom
temperature and strongly depending on the “sharpness” of the groove tip. A comparison of self-consistent
calculations and the often used semiclassical calculations shows that the latter method is liable to produce
incorrect quantitative resultS0163-18207)03211-9

I. INTRODUCTION tions were presented by Laux and Stern for narrow gate-
induced wires in silicoR® Later Kerkhoveret al. presented
The study of low-dimensional semiconductor structuresself-consistent calculations for field induced quantum wires
has recently become the focus of interest in semiconductaxs well, and for quantum wires in corrugated type-1 double
physics. Much effort has gone into the fabrication of low- heterostructure® Wu and Ruden presented self-consistent
dimensional structures like quantum welfs, quantum  results for quantum wires under etched ridéem addition
wires?™ and quantum dot$:® Fabrication methods make to these calculations, which were performed for rather real-
use of self-organization processes in order to obtain onestic systems, several structures of simplified geometry have
dimensional and zero-dimensional structures, thus makingeen calculated self-consistently, like wires with
redundant post-growth structuring and etching processesgylindrica®®! or rectangular cross sectioffsSuch struc-
Theoretical studies predict interesting features of these lowyres are more of general and theoretical interest.
dimensional structures and their possible usefulness for the The formation of an electron quantum wire in a hetero-
design, e.g., of lasers with interesting properfiéBiough  junction on a corrugated substrate was predicted by
most of this work was done with nesteq _type—l heterostrucSaWada etal, who proposed a modulation-doped
tures, there has nevertheless been significant progress in t SIALGa, ,As junction in aV groove®® and presented

study of staggered type-Il heterostructutéghe formation results of semiclassical calculations latéPorod, Harbury,

of spatially separated confinement potentials for electrons ) . L
and holes on either side of an interface has been observéicﬁ]d Goodnick proposed a GaAsf@a, As junction in a

directly for quantum wel&2 and quantum dot§~*° and groove with an additional latergdn doping introduced by

has been modeled theoreticalfyApplications for devices sglective Si d_opigg, and later presented results of a semiclas-
like long-wavelength detectd’s and tunable-light Si¢@ calculatior?’ ,
emitterd®1° have been presented, and even the observation UP 10 now, to our knowledge, no self-consistent calcula-
of laser emission has been reportéd. tions for quantum wires formed on single heterojunctions in
Along with the improvement of fabrication methods, the-V grooves have been presented. However, self-consistent
oretical modeling has become essential because numericgdiculations are essential to obtain realistic results for those
simulations can stimulate the development of structures ansitructures, because the energy of confined states is close to
reduce the number of experiments necessary to design tliee Fermi energy, and thus the thermal population of the
optimal structure of a device. In the field of quantum wiressubbands is high. All semiclassical calculations for such
the research on their band structure focuses on two maistructures have been based on idealized geometries, the pos-
areas. One is the calculation of the complex band structure isible influence of deviations has not been considered. Fi-
simplified geometriéd=23in order to obtain precise predic- nally, the concept of quantum wires on single heterojunc-
tions of energy dispersion, masses, and densities of statesns inV grooves has not been extended to type-Il interfaces
and the other is the detailed calculation of spatial contours ofilthough here interesting effects are to be expected.
the band edgé$?°in order to estimate recombination ener-  This paper deals with the self-consistent calculation of
gies and probabilities. guantum wires formed in corrugated type-Il single hetero-
The spatial dependence of the band edges in quantujonctions. Section Il describes the theoretical basics of the
wires has been calculated for different shapes and geontalculation, and Sec. Ill the numerical methods used for the
etries. However, in most cases only semiclassical calculasalculation. The results are presented and discussed in Sec.
tions were performed. The first fully self-consistent calcula-1V, and Sec. V contains the conclusions we arrived at.
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The classicaldescription is not appropriate for a charged

Single V-groove Periodic Grooves guantum structure because quantum effects are not taken into
Epilayer Epilayer T_i account. Thesemiclassicamethod uses a classically calcu-
s e lated potential on which the Schiimger equation is solved
W\./ onceto compute quantum levels. If the population of the
/ - corresponding subbands is very small, which is always the
netere ‘ T; ereroimertace case if their energetic distance to the Fermi energy is signifi-
LN £ cantly larger tharkT, the semiclassical method is sufficient
Substrate . @ Substrate ® to calculate the properties of quantum structures with reason-

able accuracy. To achieve proper results for higher tempera-
FIG. 1. Model of the buried/-groove heterojunction fofa) a tures or if quantum levels are close to the Fermi endigy
single groove andb) a periodic ensemble of grooves. The structure tarms ofkT), a self-consistensolution of the Poisson and
is determined by the parametars(the angle enclosed by the side- g iginger equations is required, because of the consider-
walls) andp (the radius of curvature of the groove botforBesides able contribution of confined chérge carriers to the total

a andp, the periodic structure is described by the parametéhe - . o )
lateral groove period The light gray shaded areas are the domainscharge.denSIty). Th's contrlput!on differs from the one ob-
ined in the classical description.

of solution for the Poisson equation, and the dark gray ones are thtél . h f . f
respective Schidinger boxes. Note that the domains are not given _ !N OUr quantum wire the wave functiow (x,y,z) of a

true to scale, but that the Scllinger box is oversized. single charge carrier can be separated@g) ¢/(x,z), where
#(y) is the unconfined part for the motion along the wire
Il. APPROACH and is described by plane waves. The faaldk,z) is the

) ) _ ) ) two-dimensionally confined part. Considering a structure
In this paper we investigate deeply buried singlewith quantum confinement for electrorithe consideration
V-groove heterojunctiongsee Fig. 1a)] and periodically  applies to holes analogouslyy(x,z) is determined within
grooved structures in which the grooves are separated e one-band approximation by the effective-mass equation
triangular ridges with a groove period smaller than 0.5 i the BenDaniel-Duke fornié
um [see Fig. )]
This kind of grooved structures can be fabricated, e.g., by

overgrowingV shaped grooves etched into a substrate. This Hy(x.2)=Eg(x.2), @
method has been used in the production of GaAs-Based
InP-basetf’ double heterostructure type-I quantum wires. 72

An ideal V groove is mathematically described by the H=—?V(mv +Ec(X,2). (©)]

anglea formed by its sidewalls. We introduce a second pa-

rameter in order to describe the realistic deviation from the

. . . . . .
ideally sharpV shapé® the groove tip is approximated by a ™ (x.2) is the spanal-dependel(nlsotropm) effectlve mass
circuIer segFr)nent (?f radiug. This apllowspﬁs to take in>t/o andEc(x,2) is the conduction-band edge which acts as con-

. . oy - 2 .
account rounding effects which occur during etching orfmement pOte’.“'a'- The probabmlty der.‘s'h.” IS used to
growth. derive a quantized electron density which is given by

For our model calculations we assume a quantum wire of
infinite length extended along thyeaxis. In order to describe 5
this system, the shapes of the valence and conduction band ”q(X’Z):Z Nili(x,2)|?, (4)
edges in the X-z) plane must be calculated. The spatial
shape of the conduction-band edgg(x,z) is determined by

: . with i numbering all bound statebl; is the number of elec-
the electrostatic potenti@d as g !

trons per unit length in théth subband, and is given by

Ec(X,2)=Epg—ed(X,2) — x(X,2),
. o _ 2m*kT Er—E
where x(x,z) describes the electron affinity arif}, is the Ni=——35F_1o| —=|.
! . : w°h kT
vacuum level.y is a material parameter, and the difference
of the electron affinities of two materials equals the
conduction-band offset. The electrostatic poterdidl is the
solution of the two-dimensional Poisson equation

Er is the Fermi energ\g; is the energy of théth state, and
F_,/, the Fermi integral of ordet 3.
This carrier density is used to derive a different charge
div[ e(x,z)gradb(x,2)]= — p(x,2). (1)  density which in turn is used in the Poisson equation. Thus
the Schrdinger and Poisson equations are coupled via the
€(x,z) is the dielectric constant, ang(x,z) is the classical eigenstates K;,¢;) and the confinement potential. It has
charge density obtained from Fermi-Dirac statistics. To simbeen proved that this system of equations offers a unique
plify matters the Fermi integrdf,(z) is often replaced by solution for attractive potentiafS. The repeated successive
the Boltzmann approximation. This is only admissible, how-solution of Poisson and Schtimger equation is similar to a
ever, if the energetic difference between the Fermi energfixed-point iteration, and converges under certain conditions.
and the band edges is significantly larger tkdhWe do not However, the true self-consistent solution of Poisson and
use the Boltzmann approximation here since we want to calSchralinger equation is seldom performed since it requires a
culate device structures at room temperature. large computational effort.
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. NUMERICAL METHODS “bound” states is very large, but the distance between the
two states decreases rapidly as their energy increases. We
choose a small Schdinger box containing, e.g., the lowest
Due to the required global charge neutrality the domairsix wire states; higher states are not taken into account for
on which the Poisson equation must be solved is large. lthe quantized charge density. Instead an instantaneous tran-
amounts to up to X 1um? depending on doping and tem- sition to the continuum above the nominally highest wire
perature. The shape of the domain is either trapezoidal devel is assumed and the contribution of higher bound states
rectangular depending on the type of structure considereig taken into account by means of a classical charge density.
(see the light gray shaded areas in Fig. The different
length scales of potential variations near the boundaries of
the domain and near the interface suggest the choice of an
inhomogeneous orthogonal grid on which the Poisson equa- We have adopted thextrapolated convergence factor
tion is discretized. The central unit cell size is about ¥  methodoriginally introduced by Stefff for quantum wells.
A2 and the total number of mesh points amounts to up togfhis is a quite simple method with .pre.\c_tlcally no overhead.
100 000. We have found that this method significantly improves the
On the upper and lower borders Dirichlet boundary cononvergence rate and leads to greater numerical stability.
ditions are used in order to produce the bulk situation. On thd he self-consistency cycle is repeated uedl varies by less
left and right borders Neumann boundary conditions are emthan 10 ° meV. The accuracy of the result is influenced by
ployed in order to create mirror symmetry. If the grid is Several sources of errors. We estimate the total error to be
sufficiently large, these boundary conditions guarantee glo@bout*0.5 meV. .
bal charge neutrality. A useful criterion for the correct grid  All calculations were carried out on the Cray J932/16-
size is the normal derivative of the potential at the upper an@192 vector computer at the Zuse-Institut-Berlin. For an av-
lower domain boundaries. It must be zero, since the band8rage calculation of six eigenstates the desired accuracy is
will relax to a flatband condition. If a solution does not meetachieved within ten cycles and about 50-min total CPU time.
this criterion, the size of the domain of solution must beAbout 90% of the time is consumed by the Salinger

A. Poisson equation

C. Self-consistency cycle

increased. solver and 10% by the Poisson solver.
For the discretization of the Poisson equation a five-point
star difference scheme was used for the Laplacian and cen- IV. RESULTS

tral difference quotients for the first derivatives. The result- ) ,
ing set of nonlinear equations is solved by a damped, inexact N this section the results for several model systems are
Newton iteration(following the ideas from Ref. 40includ- ~ Presented, starting with a lattice-matched InNRARAl o 5AS

ing a successive over-relax¢8OR solvef®! for the ap- heterOJunctlon ina smglkli groove. By means of this system
proximate inversion of the Jacobian. self-consistent and semiclassical calculations are compared,

and the influence of doping and of the “sharpness” of the
groove tip on the formation of a quantum wire is examined.
. In Sec. IV B the results for structures of the same material
The Schrdinger equation is discretized on a squaresystem, but with periodically arrangad grooves, are pre-
200% 200 unit cell grid with a mesh size of65 A% The  sented. Section IV C deals with the results for the type-|
differential expressionsi(dv)(1/m*)(d/dv) are replaced by = system GaAs/AlGa; _,As. For the sake of device relevance
a symmetrical second-order difference quotf®rthus con- 4| calculations refer t@=300 K. If not stated otherwise the

verting the eigenvalue problem into a sparse matrix eigensidewalls of the grooves afd 11} facets forming an angle of
problem. This eigenproblem is solved by nested iteratiorn, =70.6°.

with a generalized block Davidson algorithm using a tridi-
agonal preconditiongr’**

The domain of solution of the Schdimger equation
(“Schrodinger box”) is significantly smaller than that of the  An InP/Ing 46Alg 5,AS heterojunction has been chosen be-
Poisson equation, covering only the central region of\the cause it can be grown easily by metal-organic chemical-
groove (see the dark shaded areas in Fiy. The modified vapor deposition(MOCVD) on planat* and corrugatet}
charge density Eq(4) has to be calculated only inside the substrates. On a planar substrate and under appropriate dop-
Schralinger box, outside of it the classical expression can béng conditions a type-ll interface quantum well is formed,
used. On all boundaries of the Sctilmger box Neumann electrons are located in the InP, and holes in the
boundary conditions are applied. Additionally the iterationIn, Al ;_,As. The MOCVD-grown 1g 46Al o 5, As was always
process has explicitly been restricted to vectors that also fufound"! to ben doped withN,=10' cm~2. The nominally
fill Dirichlet conditions. Thus the Schdinger box possesses undoped InP had shown a slightbackground. Hence we
infinitely high barriers, and it is important to ensure that theassume am-background doping oRp=4X 10" cm~3 for
box is sufficiently large to avoid any influence of these bar-the InP. The growth sequence for the model groove is InP on
riers. This is a difficult task because the confinement potenig 46Al g 50AS.
tial shape of a type-ll interface quantum well is approxi- We examine a groove withp=10 nm and an
mately triangular near the interface, and shows a smooting 46Al, 5,As doping level ofNp=4.6x 10" cm™ 3. Figure 2
transition to a flatband towards the bulk material. The energghows the calculated conduction-band profile. An attractive
spectrum of bound states in such a quantum well is someaotential for electrons is formed in the center of the groove
what similar to the spectrum of hydrogen and the number ofvhere two effects can be observed: First, the conduction-

B. Schradinger equation

A. InP/In g 46Al g 5,AS heterojunction in a singleV groove
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FIG. 2. Self-consistent conduction-band edge with respect to the _150 L ]
(@ InP bulk conduction-band edge ar) probability density ® n=1 wn=2 en=3
|* | of the electron wire ground state. For better visibility, only -160 — T0°
the left half of the isolines is shown ifa); the spacing between Doping (cm™)
isolines is 30 meV. The Fermi energy is below the InP bulk
conduction-band edge at127.7 meV. In(b) the outermost isoline FIG. 4. Energies of the lowest three electron states in a single
indicates 99% probability. V-groove wire for different doping levels of thegmAl 5,As layer

calculated self-consistently and semiclassically, respectively. All
band edge near the interface is shifted to lower energies itwo-dimensional states with an energy above the side quantum-well
the vicinity of the groove tip. Second, the triangular-shapediround state are not truly bound.

type-ll confinement potential at the interface becomes nar- . . o o
rower near the tigsee Fig. 3 trons leading to a wider charge distribution, which in turn

The first effect is a consequence of the global charge neithanges the electrostatic potential shape in a way that the
trality. It requires equal space charge zones on both sides &Pe-Il confinement potential perpendicular to the interface is
the heterojunction. In order to maintain this balance in thearrowed. This narrowing increases the energy of confined
vicinity of the groove tip, the InP space-charge zone is ex£lectrons. o
tended further away from the interface and thgAh, _,As Although both effects have opposite influences on the
space-charge zone is constricted around the tip. This leads Bdectron energies, the first one is dominant, and produces an
a change of the electrostatic potential shape, so that its eqLﬁaddltlt_)nal potential variation parallel to the_ interface. In the
potential lines do not follow the sharp bend of the interface following “parallel” means “parallel to the interface.” The
Hence the energy of electrons is lowered near the groove tiparallel variation is rather shallogeee Fig. ¥ compared to
The spatial extent of the space-charge zone deformation is #f€ perpendicular one, but it is strong enough to create a
the order of the Debye length, which is about 65 nm for bulkconfinement in a second direction. Thus in the groove an
InP but is expected to be less in the space-charge zone, dg}_ﬁectronlc quantum wire is formed which is connect_ed to the
to the higher charge-carrier density. We estimate the averagéangular type-Il interface quantum well on the sidewalls
Debye length near the interface to be 20—-30 nm. (side quantum wells _ .

The second effect can be observed only by means of self- Due to the shallowness of the lateral potential the wire has

consistent calculations. It is due to the confinement of elecvery few bound states. In this particular example only the
ground state at-122.9 meV is bound. The distance between

the wire ground state and the side quantum-well ground state
amounts to 10.6 meV, and is smaller thah at room tem-
perature, so that evaporation of electrons from the wire into
the well surely will occur.

All energies of electron levels in the InPglgsAl g 55AS
system refer to the conduction-band edge of bulk InP, which
is at 0 meV. In a type-Il triangular potential the usual method
of measuring energies with respect to the bottom of the po-
tential well becomes risky because the bottom is not flat. The
difficulties even increase for a wire, since the minimum of

1 00 T T T T T
In, Aly,AS InP
50 [ (N, =4.6x10" ecm™) (Np = 4x10" em™) 5

0

-50

-100

Energy (meV)

-150 | i o : - .
the confinement potential is a single point and its energy
200 [ T=300K cannot be determined exactly due to the discretization error.
p=10 nm .
The problem can be solved by using the bulk InP
-250 . : . . : conduction-band edge as a reference level, because it forms
-150 -100  -50 o 50 100 150

the upper edge of the potential well and its energy can be
calculated precisely. Thus all electron energies are negative

FIG. 3. One-dimensional cuts of the conduction-band edge fron?nd 0 meV is the “ionization energy.” However, this refer-
Fig. 2a) perpendicular to the interfagsee the insgt The dashed €nce level seems to be more appropriate.
cutis 0.5 um off the groove center and gives the potential shape at The formation of a two-dimensional electron confinement
the flat interface. The dash-dotted line is a cut of the semiclassicallpotential in the center of the groove implies that the potential
calculated conduction-band profile in the center of the groove. Thehape of the upper valence-band edge becomes repulsive at
horizontal solid line indicates the position of the Fermi energy.  this place. If the layer sequence is reversed, i.e.,

Position (hnm)
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FIG. 5. Dependence of the ground-state energy on the tip radius FIG. 6. Linear electron density in the quantum wire as a func-
p. For p>30 nm there is no confinement. These states were calcuion of the Iy 46Al g 5,AS doping level. The densities are calculated
lated neglecting the side quantum well. according to Eq(4) involving theboundstates only.

“see” the side quantum well. To some small extent they are

INo.4gAlo.52AS on InP, a hole wire in lguAlgsAs is formed  inquenced by the Schdinger box.

in the V groove. This is an important property of type-l|
heterojunctions, which will be discussed in more detail be- 2. Influence of the tip radius
low.

. L . . . In a second set of calculations the radius of the groove tip
The formation of quantum wires in a single heterojunction as been varied between O and 60 nm for a fixed

has several advantages: they are easy to fabricate, they sufter - _ 7 3
less from interface defects than quantum wires in doubl -%0'48“-0'526‘3 doping ofNp=4.6x10"" cm~%. The groove

a Sip radius has a strong influence on the formation of the
heterostructures, and there should be no spectral broadeniyd, inensional confinement Figure 5 displays the energy

due to size fluctuations. In the following the influence of two & o '\ e ground state as a function of the tip radius. Ad-

parameters on the band structure and the wire states will be.. - )
examined: the doping of the Jaglo s,As layer and the ra- (ﬁtlonally, the energy of the side quantum-well ground state

dius p of the groove fip is marked. _The wire ground-state energy increases p\z_ittt
' p~30 nm it equals that of the well ground state while the
wire confinement disappears. The energiespfor30 nm are
1. Influence of doping computed neglecting this effect. The increase of the ground-
To demonstrate the influence of doping of the State energy is due to a reduction of the parallel confinement,
its minimum in particular increasing as the tip radius in-
creases. We note that the Debye length in the InP layer near

radiusp=10 nm. The energies of the wire ground state anOthe interface is 20—30 nm. Thus, if the tip radius approaches

excited states are displayed in Fig. 4 together with that of théhIS _Vall_Je' the parallgl con_flnement dl_sappears. F_OT device
side quantum-well ground state. The latter has been obtainéiPPlications a small tip radiys<10 nm is a prerequisite.
from a one-dimensional self-consistent calculation. The wire
states shift to lower energies with increasing doping level.
This is an interesting observation, because the wire itself is
located in the undoped InP. The wire states can be tuned Figure 4 shows the energies of the three lowest wire states
within a certain range by doping the substrate, without intro-as a function of the lggAl s,As doping. In addition to the
ducing impurities into the quantum wire, which would re- self-consistent results those obtained by the semiclassical ap-
duce the electron mobility. The overall behavior is similar toproach are displayed. In the semiclassical calculation, yield-
that of the samples presented in Ref. 46. ing energies lower by about 10 meV, the first and second
The energy of the wire ground state is close to or everexcited wire states are now below the side quantum-well
below the Fermi energy which is below the InP bulk ground state. This effect is caused by the difference between
conduction-band edge at127.7 meV. Thus the thermal the charge densities on which the calculation of the electro-
population of the one-dimensional subband of the groundtatic potential is based. As mentioned above, the inclusion
state is high, and the formation of a one-dimensional electronf quantum effects leads to a wider and “smoother” charge
gas is to be expected. This is an important feature for thelistribution, which in turn yields a narrower perpendicular
design of conducting channels. type-1l potential. Hence the energies of the wire states in-
The first excited state cannot really be considered a wirereasegfiguratively speaking the wire states are “squeezed”
state, since its energy is above the side quantum-well grount higher energies The difference of the potential shapes is
state. The transition between wire and well states cannot baisplayed in the cuts in Fig. 3. Comparing the semiclassical
properly modeled in two-dimensional calculations so that theand self-consistent potentials, the narrower shape of the latter
excited states in Fig. 4 still are pure wire states that do nobecomes obvious. The difference between the energy levels

In,Al ,_,As layer we calculated the bound wire states for
doping levelsNp between 1& and 138 cm™2 for a tip

3. Comparison between self-consistent
and semiclassical calculation
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FIG. 7. Conduction-band edge along the interface. The dashed
line refers to a singlé/ groove and the solid line to a periodic
groove ensemble witk =150 nm. The improvement of the parallel
potential in the latter is evident. 1 (c) (d)

n = 4 (-98.6 meV) Valence Band (meV)
is mainly due to the different perpendicular confinement po- ] (1,1)-mode
tentials. In fact the parallel potential shapes are nearly iden-
tical.

The energies of the wire states determine the thermal oc-
cupation of their subbands, and incorrect energy levels will
lead to wrong predictions about the electron density in the
wire. To illustrate this, we have calculated the linear electron
density of the wire for different doping levels of the (e)
Ing 46Al g 55AS, based on self-consistent and semiclassical re- -
sults, respectively. In Eq4) we summed over albound HH:n = 4 (197.2 meV) LH: n - 4(162.9 meV)
wire states, i.e., the three lowest semiclassical states and the InP (1,1)-mode (1,1)-mode
self-consistent ground state. The result is shown in Fig. 6.
The semiclassical calculation yields densities about three

150 nm

times larger than the more accurate self-consistent calcula- § S
tion. 2 Hetero-
junction
B. InP/Ing 467l 5 sAS periodical V grooves Ing 45Alp 52AS (@) (h)
All calculations presented so far were performed for a ' 150 nm ot 150 nm

singleV groove. Obviously the most severe problem of this

structure is its small parallel confinement. One method to

increase the parallel confinement is latgrail doping® An- » "

other way topovercome this difficulty i;p to rergo?e the sideIDrObabIIIty densitiegy/* y| of selected electron ar(#) hole (g) and
states in a periodic groove structure wjth- 10 nm,a=70.6°, and

quantum well. This can be done by creating a periodic S€5 =150 nm. All electron related energies refer to the InP bulk

quence of\/_grooves W'_th small lateral d!stance, separatet_:l by(:onduction-band edge and all hole related energies refer to the
triangular ridgegsee Elg. 1b)1 Such a ridge can be consid- IngusAl o sAs bulk valence-band edge. In the band-edge plats
ered as & groove with an inverse layer sequence, tumedanq f), the isoline spacing is 50 meV. The Fermi energy is below
upside down. Hence the electrostatic potential near the ridgge InP bulk conduction-band edge at127.7 and 1430.8 meV
top is similar to that around a groove tip but, due to theabove the I1p44AlosAs bulk valence-band edge, respectively. In
reversed layer sequence, the parallel potential is repulsive fgfictures(b)—(e), (g), and (h), the outermost isoline indicates 99%
electrons and attractive for holes. If the distancbetween  probability.

the grooves is reduced below 500 nm, which is technologi-

cally no problem, their parallel potentials will overlap. As a  In the type-Il system InP/jugAl5AS, the ridges contain
result the side quantum wells disappear, and evaporation intguantum wires for holes, thus in a periodic structure spatially
the wells is no longer possible. As a consequence, the eleseparated quantum wires for electrons and holes are formed
tron wires have more bound states. Figure 7 shows the varian alternating sequence. Figure 8 shows the conduction- and
tion of the conduction band edge as a function of the positiorvalence-band profiles for such a structure witkr 10 nm,
along the junction for a singlé groove and a periodic struc- A =150 nm, andNp=4.6x 10" cm~? together with isoline
ture. We have assumed identical ragiifor ridge tops and plots of electron and hole wave functions. The valence-band
groove tips. edge in the ridge forms an attractive potential for holes lying

FIG. 8. () Conduction- andf) valence-band edges afio)—(e)
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TABLE I. The 14 lowest electron states in a periodic groove smaller spatial extent due to the larger effective mass and the
structure, p=10 nm, «=70.6°, A=150 nm, and steeper and more constricted shape of their confinement po-
Np(Ing 467l 5,AS)=4.6x 10" cm™3. The wire states are arranged tential.
in pairs by the sum of quantum numbers. This systematic ordering An important question is whether recombination of excess
is broken by the(0,2) mode atn=14. All states abover=9 are  carriers generated by external excitation in the electron and
likely to coup_le to the adjacent groove. All energies refer to the InPp e wires is likely. In the framework of Fermi's golden rule
bulk conduction-band edge. and envelope-function theory, the transition probability is
proportional to the square of the two-dimensional wave-
function overlap

Energy Energy
Number (meV) Mode  Number (meV) Mode

1 —-121.1 (0,0 8 -92.0 3,2

2 ~1032 (0,0 9 —91.0 (4,0 P=f e [d2r (5

3 —-102.3 (1,0 10 —-87.6 4,1 K

4 —98.6 LD 11 —86.4 (5.0 of the electron and hole wave functiotts and ¢, . We have

5 —98.0 2,0 12 -829 (5D found P?2<10 8 for the ground state because of the large
6 —956 (2D 13 —815 (60 lateral distance between the electron and hole wires and the
7 949 (30 14 —-800 (0,2 spatially indirect nature of the type-ll quantum well. The

wave functions overlap in a narrow zone along the interface
only; its perpendicular extension is determined by the tun-
about 1300 meV below the Fermi energy; therefore the therneling length. The perpendicular overlap zone is enlarged by
mal occupation of the bound states is negligible, and a selfthe electric field in the space-charge z¢geantum-confined
consistent calculation of the hole states is not necessary. THetark effect similar to the situation of a flat interface. The
energies of hole states refer to they gAlgsAs bulk overlap increases further with the lateral extent of either
valence-band edge, and are thus positive. However, in thi¥ave function. However, even for the fourth electrop and
case the reference level is not the upper barier of the coright hole statesP?~610"°. To give an accurate estima-
finement potential. In the model system described here exdon of the further evolution oP by our calculations is there-
cited holes can overcome the potential barrier betweefre very difficult because higher states tend to couple to the
Ino.4Al0.5,AS and InP, and do not evaporate into the bulk_adjacent grooves or ridges, respectively. In any case signifi-

Since in this process tunneling effects should be taken intﬁam overlap is only to be expected for very high states un-

account the upper edge of the wire confinement potential |sk6|y to be populated. We haye t.herefore come to the con-
not exactly defined. For this reason we think that the energCIUS'on that effects of recomblnatlo_n between adjacent wires
i Yre marginal compared to type-l wires.

of the bulk valence-band edge constitutes a more accurate We have examined the influence of the tip radiuand

reference. .Nevertheless one should kgep_m mind that thﬁ]e distance. between the ridges using the same methods as
upper barrier of the confinement potential is at about 110+ gingle v grooves. We have also examined the influence
120 meV. . ) of doping but since the results are very similar to those of a
The electron wave functions have a symmetrical structuregingle groove there is no need to go into a detailed discussion
and their nodelines can be identified as either vertical ofere. The only finding worth mentioning is that the level

horizontal. Vertical means parallel to the axis of symmetrygisiance in the wires is practically not influenced by the dop-
and horizontal means perpendicular to the axis of symmetryng level.

at least at the point of their intersection. Accordingly the
wire states can be labelled by two quantum numbers indicat-
ing the numbers of horizontal and vertical nodes, respec-
tively. The ground state is th@®,0) mode, the first excited Figure 9 displays the energies of the five lowest wire
state a0,1) mode, the second excited statéls)) mode, and States as a function gf. Similar to the singleV-groove

so on. Table | gives the energies of the 14 lowest states in thgructure, the ground state shifts to higher energies with in-
electron wire. The wire states form a sequence of alternatingreasingp, while the first excited state decreases slightly.
parities up to the 14th state which is tt®0) mode. States Thus the energetic separation between them is only 3.3 meV
with the same sum of quantum numbers arrange in pairgt p=40 nm. All higher states shift slightly upwards. These
which have a small energy splitting, indicating near degenobservations are explained by the attenuation of the parallel
eracy. Concerning the wave functions above the ninth state potential in the same way as for singlegrooves.

can be safely assumed that the wave functions of adjacent The level crossing ap~7.5 nm indicates a degeneracy
grooves are coupled to form a “wire superlattice.” Our cal- with vertical and horizontal nodes being equivalent. This is
culation is not well suited to describe this coupling accu-quite surprising, since such behavior has been observed only
rately, since superlattice states cannot be normalized in twim highly symmetrical wire cross sections like circles or
dimensions due to their Dirac vector property. The wavesquares.

functions also indicate the disparity of perpendicular and At p=40 nm the levels are nearly equidistant, but the
parallel confinement. The first being much stronger, no statelevel separation is very small. This indicates a vanishing par-
with a parallel node, corresponding to the first excited statellel quantization by which the wire slowly transforms into a
of the type-Il quantum well, can be found. The same holdsvell. Only for smallp is the distance between the ground
true for the hole states, although the wave functions have state and the first excited state comparabl&To

1. Influence of the tip radius
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FIG. 9. Energy levels in the electron wire as a function of the tip
radiusp. An increase of the tip radius leads to a decrease of the
level separation betwean=1 and 2 which indicates an attenuation
of the parallel confinement.

2. Influence of the lateral distance \@
(c)

100 nm

We have varied the groove periadbetween 35 and 300 <

nm. ForA <150 nm the entire spectrum of the wires shifts to
higher energies aa decreasegsee Fig. 1D The energy
splitting between symmetrical pairs of sublevels increases,
too. This fact can be explained by the influence of the lateral FIG. 11. (a) Self-consistent conduction-band edge dhy-(d)
potential modulation. The basic idea of periodic grooves is tqrobability densities|4* ¢| of selected electron states in a
remove the side quantum well. However, for smalithe  GaAs/ALGa-As modulation-doped heterojunction,  with
lateral potential modulation induced by the ridges leads tax=90°, p=0 nm, A\=85 nm, Ny (Al sGa As)=1x10"% cm~3,
enhanced lateral confinement; in particular, excited states amndN,(GaAs)=1x 10" cm™? (according to Ref. 34 All energies
influenced by this effect because of their greater spatial exare related to the GaAs bulk conduction-band edge; the Fermi en-
tension. A small groove perioN could so improve the lo- ergy is at—1228 meV.

calization in the quantum wires. Regrettablgroove struc-
tures withA smaller than 50 nm or below are still difficult to
fabricate, and methods like electron beam lithography have The influence of the substrate corrugation on interface
to be employed. In addition the coupling between neighborquantum wells was first studied on GaAs/Sa;_,As

ing grooves is enhanced by the decreasing parallel potentigjpe-I inversion layers>*® However, up to now no self-
barrier. That way a quantum-wire superlattice is formedconsistent calculations have been presented for this material
which may exhibit interesting properties due to a possiblesystem. Recently Vacek, Sawada, and Usadadescribed a
lateral transport between one-dimensional states. corrugated, modulation-doped GaAsfAGa,-As hetero-
junction, which forms a periodid/-groove structure with
a=90°, p=0 nm, and\ =85 nm. Unfortunately neither the

(d)

85 nm ' ' 85 nm

C. GaAs/Al,Ga;_,As type-I heterojunction

—60 T T T T T T .
calculation method nor the assumed temperature were men-
70 | A T=300K ‘D’:f; ] tioned. Using a semiclassical calculation for room tempera-
W \\ p=10nm on=3 ture, we arrive at results similar to the ones of Ref. 34, at
-80 | \S \ An=4 — least for the ground state; the shape of the conduction-band
s \\ N\ edge, however, turn out to be slightly differefgee Fig.
E -9%r¢ N\ \A\ ] 11(a)]. This difference can be due either to different bound-
& 100 | Q N Aol ] ary conditions or temperatures, or to the Boltzmann approxi-
2 - \b \\*it@,:—»—_{ii_'_____@_______i__@ mation used in Ref. 34. In contrast to Ref. 34 we use the bulk
u 10 b N ] GaAs conduction-band edge as a reference level for the en-
\\n ergies of the wire states, and not the Fermi energy, which in
-120 | e ] this sample is 1228 meV below the conduction band edge.
By employing self-consistent calculation we obtain a shift
-130 50 100 150 200 250 300 350 of 17.1 meV to higher energies, similar tq the InP/
Lateral Distance (nm) Ing 4eAl o 5,AS System. The self-consistent potential causes a

moderate change in the wave functioisee Figs. 1(b)—
FIG. 10. Dependence of the electron levels on the lateral groovd1(d)]. The interpretation given in Ref. 34 that the quantum
distancex, calculated fop=10 nm and an Ig,sAl 5,As doping of ~ wire can be considered a bent quantum well with a slight
Np=4.6x 10" cm™3, lateral confinementadiabatic approximatidf) is no longer
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valid when looking at the fact that the wire possesses bounihto the actual wire region. The problem of evaporation can
states which are inconsistent with this explanafieee, e.g., be overcome by constructing periodic structures in which
Fig. 11(d)]. triangular ridges separate the grooves in such a way that the
distance between two grooves is less than 500 nm. We in-
V. CONCLUSION vestigated such structures, and found that the energetic dis-
] tance between levels in the quantum wires is small compared
We have calculated the spatial dependence of the, kT and also strongly dependent on the sharpness of the
conduction- and valence-band edges of type-Il heterojuncgroo\,e tip. For device applications the tip radjusnust be
tions inV grooves self-consistently. We have found that angignificantly smaller than the Debye length. We have com-
attractive potential for charge carrier is formed in the grooveyared results of the self-consistent and semiclassical meth-
center. This potential forms a quantum wire which is attracgs, and found that the latter yields quantization energies
tive for one type of charge carriers while repelling the otherinhat are too small, leading to overestimated charge-carrier
We have studied the influence of structural parameters on thgansities. The semiclassical method should not be used for

formation of the wire and its energy states. As a model sysgyantitative calculations of strongly populated subbands.
tem we used InP on Al 52AS, in which an electron wire

is formed. In singlev grooves only _the ground state can be ACKNOWLEDGMENTS

considered truly bound, while excited states evaporate into
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