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Modeling of strained quantum wires using eight-band kp theory
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We have calculated numerically the one-dimensional band structure and densities of stavéshudzed
Ing ,Gag AS/Al,Ga, _,As single quantum wire using eight-bakdp theory. A finite-difference scheme is
used for the calculations. The model includes the realistic orientation, shape, material composition, strain
distribution, and piezoelectric charging of the wire. We find a dominant impact of the piezoelectric potential on
the band structure and a marked spin splitting of the valence bands. Also, the conduction band is strongly
nonparabolic. We propose an efficient procedure to calculate interior eigenvectors from Hamiltonians including
conduction-band—valence-band interactions. This algorithm is 20-90 times faster than the best prevailing
method and also applies to other Hamiltonians for the modeling of nanostructures, including those occurring in
tight-binding or pseudopotential theofy50163-18207)04312-9

I. INTRODUCTION impact of the strain on the band structure is visualized. A
crucial part of our method is an efficient numerical procedure
In recent years semiconductor quantum wi€W's) to generally calculate bound states in nanostructures under
have attracted growing interest for laser applications, mainlynclusion of the CB-VB interaction.
because of their potential for a reduction of the threshold Our paper is organized as follows. In Sec. Il we describe
current density? and their increased gain and differential the QW sample, the approach used to describe the band
gain achieved by multidimensional confinem@m. further  structure by means of the eight-bakdp scheme, and the
enhancement of the gain and bandwidth of QW lasers iéinite-difference method used for discretization. Section Il A
expected from the incorporation of strédiriTechnological ~contains some necessary details about our assumptions re-
progress in the epitaxial fabrication of lattice-mismatchedgarding the strain, boundary conditions of envelope func-
single and multiple QW’s on nonplanar substrates led tdions, and material parameters. Section Il B presents the dis-
various types of pseudomorphic QW’s among whichcretization of the Hamiltonian. In Sec. Ill we introduce a
V-groove QW’s have been intensively studied. special algorithm for eigenvector extraction; its implementa-
Parallel to the effort concerning the fabrication and chartion is outlined in the Appendix. Section IV contains the
acterization of strained QW’s, their theoretical modeling wasresults of our band-structure calculation and their discussion.
developed with increasing level of sophistication, in order toln Sec. V we present a performance comparison between our
enable the prediction of the physical properties of such strucalgorithm and prevailing state-of-the-art methods, evidenc-
tures and to enable a deeper understanding of experimentaig & one to two orders of magnitude acceleration of the
results. UnstrainedQW'’s of different shapes were investi- calculation by our method.
gated using the tight-bindifgand effective bond-orbitél
models as well as all the classical envelope function
schemes: the parabolic band approximati®BA),’~° the Il. BAND-STRUCTURE MODEL OF THE QW

four-band Luttinger modéf the six-band Luttinger modét, The nanostructure we consider is a singlgroove QW

and the eight-banck-p model'**® On the other hand, (Ref. 20 with the nominal composit
: : . ) . position WpGa gAs sur-
strainedQW'’s were studied only in the PBARefs. 14 and rounded by a barrier of AGa,_ _As, as shown in Fig. 1. The

15) and in the four-banid and six-band Luttinger modefS. ooy girection is[001]; we assign to it the geometrical
The main effort in these studies focused on a detailed treagoordinatey The Al contentc in the barrier increases lin-

ment of the particular geometry. The interaction between th%arl with the distance from the heterointerface in thei-
conduction band$CB’s) and valence bandé/B’s) as in- recti{m €=0.2—0.7 within Ay=200 nm around theWQW

cluded in many of the investigations of unstrained structures.[,hus the barrier forms a graded index separate confinement

however, has not been considered so far, although the indj: - . :

cations for major modification of the CBRefs. 18 and 19 h:aterosltrl_léctutre(GF;!NhSCI-[). Th.e oifntatlor;.o;g(_athW 1S

also apply to the strained case. along[110], to which we assign the coordin enx
refers to[110].

In this paper we describe the modeling of a pseudomor ; . .
pap g P The lattice mismatch of-1.4% leads to mainly compres-

hic V-groove QW by means of the eight-band . - . g
E' D sch(gme in ordQer to ur):ify the CB-VB interactior? and vB Sive strain in the QW. The particular strain distribution was
calculated by a finite-element simulation for cubic materials,

mixing with a detailed consideration of one of the most im-~"""" . . )
portant realizations of one-dimensior{aD) structures. Our Yielding the strain tensoe with respect to the crystal main
simulation accounts for the true geometrical shape of thé&Xes as a funct|onA of the position in the QW cross-section
wire and the graded barrier, the particular strain distributionplane &,y).** Frome(x,y) the piezoelectric polarization and
and the resulting piezoelectric charging of the structure. Thés associated Coulomb potenti)(x,y) were calculated

0163-1829/97/58.2)/77267)/$10.00 55 7726 © 1997 The American Physical Society



55 MODELING OF STRAINED QUANTUM WIRES USING . . . 7727

dr/3

1 jm fw JOC diV[e14(r’)‘{€yz+ €2y ExzT €zx1 ExyT eyx}(r,)]

Vp(r):_41'reoes [r’—r]

(Ref. 14, wheree,, is the piezoelectric module of the re- tions are most easy to handle. As a consequekge,—id,
spective material at’ and ¢ is the static dielectricity con- and ky— —idy, while k, remains a real number. We obtain a
stant.e, is taken to be constant all along the structure so thagystem

image charges need not be considered. Note\th@at) pos- .

sesses the same translation symmetry as the QW so thatitis  H(X,y,K;,dx,dy,dxx,dxy,dyy) V(X,Y) =EV(X,y) (2)

. Xy
independent of. of eight partial differential equations for the eight complex

_ envelope functionsW = (g, thyy Py Pz s x Wy
A. Eight-band k-p scheme for QW's i,)). The system depends continuously lonand its eigen-

To calculate the 1D band structure in the directipn Solutions €,,¥,) are the bound states of charge carriers in
where carrier transport is still possible, we used the eightan arbitrarily oriented QW of arbitrary cross section, material
bandk-p scheme as outlined previously for bulk matedals composition, and strain distribution, including VB mixing
and quantum well¥ The model neglects strain gradient @hd the CB-VB interaction. The well-known, general
termsV e(r) (Ref. 23 and the strain dependence of the spin-(:ir"’lv\/k)"’l(:|<%5 of the envelope-fu_rlct!qn approaCh are not ex-
orbit interactior?® The static scalar potentiad,(r) yields an pected to affect our results significantly since the QW is

additional diagonal contribution to the Hamiltonian that is rather large and its band structure is calculated very close to

not included in Refs. 21 and 22. Applied to a heterostructurether point only, thus matching the validity conditions of the

oA ) . i approach well.
the k-p HamiltonianH contains 21 spatially varying pa- " 1ape | displays the material parameters we have used.
rameters, six of which appear in products with components o them. the missing parametePsA’,L’",M,N’,I,m,n

of k so thatﬂ is Origina”y not Hermitian. Therefore such can be calculated at each posmoﬂ)o according to Ref. 22.

products are symmetriz&daccording to It is necessary that always;=1/m, and thatA’>0,
L'<0, M<0, andN’<0. An important role for the carrier
Qki—(Qk+kiQ)/2, Qkik;— (kiQk;+k;Qk;)/2 confinement play the band discontinuities at the heterointer-

faces. We use composition-depend&jt*® which we ob-
(i,j=x,y,2). (1) tained from an overall fit to carefully selected data about
heterojunctions involving AlGaAs, InGaAs, and InP from
Under the assumption of identical zone-center Bloch functhe reviews quoted in Table |. The deformation potentials
tions in all materials, this implies the probability flux conser- were obtained from similar fit8 andb’ are related to the
vation at heterointerfaces. polar nature of the materials and account for the microscopic
To take advantage of the translational symmetry of thdack of inversion symmetry, which causes spin splitting.
QW in [110] we introduce wave-vector components However, in the presence of compressive strain thisro-
Ky ,ky .k, With respect to our geometrical coordinaté4622  scopic effect is significantly smaller than that due to rine-
Then the envelope functions are separable into a plane wagscopic spatial asymmetry of the structdfeso that we set
with the wave numbek, and an orthogonal part in the cross B,b’=0.
section plane X,y). In this plane we use the spatial repre-

sentation o because then the material and strain distribu- B. Finite-differences discretization

To obtain a matrix representatidh of H we use a finite-
] T ° difference method on a rectangular grid with square unit

cells andﬁ=NXNy nodes. The real and imaginary parts of
the envelopesy are represented bi-dimensional vectors

- -94 % each. Accordingly, the differential operators and spatially
E varying parameters in Eq2) becomeNxN real matrices,
§ H is an aNX8N complex matrix, and the final dimension of
-188 5 V¥ is N=16N. The parameter matrices are diagonal. The

matrices for the derivatives must be chosen carefully to re-
produce the symmetry properties and the commutation rela-
.28 tions of thek components and to ensure numerical stability
of the difference scheme.
To accomplish this we introduce two different matrices
— . T_ —

FIG. 1. The unstrained bulk valence baBg(x,y) in the het- D) arld DO for both 4, and d, with [DM]T=-DO).
erostructure shows the GRINSCH structure of the barrier and thd he D( ) are used in the upper flght. ha|f_ o .and the
shape of the quantum-wire cross sect{arhite). The pixel size is D) in the lower left half only. The discretizations of the
1 nn?, which is the true resolution in our calculations. symmetrized expressions foQdy,Qdy,Qdyy,Qdyy,Qdyy

) 100 nm
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TABLE I. Input material parameters for 300 K used in the calculations. The asterisk denotes a second-
order Chebyshev approximation to 1424594 +c(c—1)(131@—127) forc=<0.45.

Quantity in InGa,_As Reference in AlGa, _.As Reference
Ey (meV) 1424— 1501 + 4332 28 1428+ 1572 — 5532 (*) 29
E, (meV) — 6920+ 231c—58c2 26,28 —6920- 433 — 24c? 29,30
Ay (MmeV) 340-93c+133%:2 31 340-131c+ 71c? 29
m, (Mg) 0.06670.041% 32 0.0670.08% 29
Mg, (Mg) 0.163-0.02% 29,32 0.165-0.13% 29
V1 11(1-c)/7.10+c/19.7] 31,33 1J(1—c)/7.10+c/3.76] 29
V2 11(1—c)/2.02+c/8.4] 31,33 1J(1—c)/2.02+¢/0.90] 29
V3 11(1-c)/2.91+¢c/9.3] 31,33 1 (1—c)/2.91+c/1.42] 29

B ( meV nnt) 0 22,27 0 22,27
b’ (meV) 0 22,27 0 22,27
a. (meV) —8013+293% 32 —8013+237% 26
ag (meV) —8233+215% 32 —8233+12% 26
b, (meV) —1824+24c 31 — 1824+ 124 26
d, (meV) —5062+ 146 31 —5062+51 26
Cq1 (GP3 118.8-35.x 31,33 118.8-1.4c 29
Ci, (GP3 53.8-8.5¢ 31,33 53.8-3.2 29
C.s (GP3 59.4-19.& 31,33 59.4-0.5c 29

€ 13.18+1.4% 32 13.46

e (Cm? 0.160-0.11% 32 0.137

are then obtained from the standard first-order forwarcbination of the generalized Davidson algoritHriP (GDA)
(backward difference quotients,(*),a,(*) (9, 7,0,{7)) by  with residual minimizationRM).*® Although such a combi-
nation has been discussed earlier for the purpose of calculat-

D, (Q)=[Qa " +4,"Q]/2, ing extremeeigenvalues>® its principal advantage over
. Y prevailing methods for the calculation ofterior eigenval-
Dy (Q)=[Qdyx '+ 35 'Ql/2, ues, as required here, was never acknowledged.
YR +) +) The calculation of interior eigenvalues is an intricate
Dy (Q)=[Qdy' "+ 4y "'QJ/12, problem if the matrixH cannot be stored, factorized, or in-
Y =) =) verted, which is the case here. The classical iterative eigen-
Dy (Q)=[Qdy' +4y 'QJ/12, solution methods, i.e., subspace iteration, molecular dynam-
(D (o) (=)Ao (+) ics simulation, Chebyshev iteration, conjugate gradients
Du(Q)=[dx Qa4+ 7'Qdy 112, (CG), Lanczos algorithm(LA), and also thaisual GDA by
e (PhAa (<) 4 (=) () their mathematical nature yield only extreme eigenvalues;
Dyy(Q)=[dy'"'Qay' ' +4y''Qay' ]/2, this cannot be altered by preconditioning. Hence interior ei-
genvalues are obtained by these algorithms only after a spec-
Dy(Q)=[3"Q4, "' +4,/7Q4, )+, Q4 tral transformation oH. As the preferable shift-and-invert
+4,\7Qa, )14, operation H—(H—e€l) ! is not available, the quadratic

transformH+~—(H— €l )? can be used, where is the search
Expanding these matrix expressions gives the differencenergy specifying the closest eigenvaldg as the wanted
quotients we have used. FQr=ql (wherel is the identity one. The latter replacement is known as the folded spectrum
matrix andq e R) all of them reduce to standard difference method(FSM) and usually combined with the CRefs. 37
quotients. The handling of boundary nodes for the realizatiomnd 38 or variants of the LA® Due to their well-known
of Dirichlet and Neumann conditions is standak.was mathematical relationship the CG and LA exhibit no dra-
implemented as a sequence of linear operations on singleatic difference of their convergence properties, which el-
envelope vectorsy. We used N,=137, N,=99, and evates them to be the most powerful elegant basic algo-
d=1nm, so thalN=217 008. OneH¥ multiplication con- rithms. Regrettably, the FSM causes a severe decrease of the
sists of 208 linear combinations, 304 parameter multiplicalocal convergence rate of all mentioned iterations, as can

tions, and 104 partial differentiations of compleixvectors, ~€asily be derived from the spectral structures Hofand

amounting to 47 MegaFLOP in total. (H—¢€l)?. We now present a method avoiding this draw-
back.
lll. EFFICIENT ALGORITHM FOR EIGENVECTOR _ Other than in the CG and LA, in the Davidson-type algo-
CALCULATION rithms the(i) subspace construction afid) variational cal-

culation of the eigenvector approximations are explicitly
To solve Eq.(2) for eigenstatedV,, near the band edges separated. The eigenvector to which the iteration converges
we use an algorithm developed by ourselves that is a comis solely determined byii), while the convergence rate
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FIG. 3. Double peaks in the VB DOS reflect the spin splitting.

The VB states are labeled from top to bottom 1),
11,2),12,2),]2,2), . .. to account for the spin; tHe 1) states
belong to solid lines and the 2) states to dashed lines. As
can be seen, there is no band crossing excepk,fei0.*°
Between the, 1) and|, 2) states we observe a meV range
splitting for k,# 0. This spin splitting is caused by the me-
= A soscopic violation of the spatial inversion symmetry, which
015 -01 -005 0 005 01 015 02 is due to the irregular geometrical shape of the QW, strain
(b) kz (1/nm) field, and piezoelectric charging. The spin splitting leads to
bimodal peaks in the density of stat@»0S) consisting of a
FIG. 2. Lowest four 1D conduction bands and topmost twelvetrue singularity accompanied by a finite discontinuity. This is
1D valence bands in the quantum wifalternating solid and seen in the VB DOS; see Fig. 3. In general, the spin splitting
dashedl The energy zero iE. of unstrained bulk 1 ,Gay oAs. The  will cause slightly increased linewidths of all transitions, as
solid markers indicate the quantum levels calculated by a paraboligompared to the unsplit case, and presents a lower limit of
band approximation. the linewidth for disappearing interface roughness. Figure 4
shows the resulting joint DOS fdt-conserving transitions
mainly depends ofi). This offers the unique opportunity to and visualizes clearly the dominance of the true singularities
useH in (i) and H—e€l)? in (ii). The result is that conver- at all subband edges. It is well known that the existence of
gence to interior eigenpairs occurs almost as fast as towardsich singularities largely improves the performance of semi-
extreme ones. Since the Rayleigh-R{Ritz-Galerkin pro-  conductor laser&

cedure commonly employed fdii) applied to H—€l)? is The Coulomb potentiaV/,, stemming from the piezoelec-
equivalent to the RM with respect téd(e), the method ob-  tric interface charging is repulsive for holes and thus effec-
tained is a RM GDA operating oH. tively reduces the actually tapered QW thickness from

We show below that the RM GDA in fact is one to two <23 nm to uniformly ~7 nm. Hence, for holes the QW
orders of magnitude more efficient than the FSM and thusooks approximately like a bent quantum well. This practi-
certainly the fastest algorithm for our purpose at presentcally leads to the formation of three coupled sub-QW'’s along
Clearly, it can be applied to any other Hamiltonian accountthe lower interface, which have separate ground states at
ing for the CB-VB interactior{as in tight-binding or pseudo- k,=0; see Fig. 5. The lowest of these, the true ground state
potential methodsand to any other kind of nanostructure
(e.g., quantum dotsas well. Hence the RM GDA appears to
be a valuable general-purpose tool for the entire field of
nanostructure band-structure research. Its implementation is  —~gs

described in the Appendix. £
©0.6
IV. DISCUSSION OF THE BAND STRUCTURE Boa
[a]
Figure 2 shows the lowest four 1D conduction bands and = k
: S 0.2
the topmost twelve 1D valence bands in thdirection for L
k, between+0.2 nmi'1. All curves were calculated sepa- 0
rately with individuale, i.e., no block algorithm was used. 1295 1300 1305 1310 1315 1320 1325
For k,=0 we started with a Gaussian random vector and for Energy (meV)

otherk, values the result of the previous one was taken as an

initial guess ande was adjusted by second-order extrapola- FIG. 4. Joint DOS fok-conserving transitiongwithout broad-

tion. ening. The dipole matrix elementkale- p|b)|? between(a| and
The zero energy is the minimum & over the entire  spin split stategb,1), |b,2) may differ by a factor 100, thus dem-

structure, i.e., the CB edge of unstrained bulk JBa, gAS.  onstrating the well-known spin-selection rule.
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[1]
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[2]
S X z
[3] FIG. 5. Envelopes$|? of the Bloch functions

[sT), |XT), and|z1) in the VB stated1,), |2,),

h, A A A R P |3,), and|8,) atk,=0.

s X Z
[8]
S X z
100 nm

|1,) is located in the center as usual and succeeded by its first Fortunately, this is available at a comparable computa-
excited statd2,). The next two statef3,) and|4,), have a tional expense as for a separate treatment of the CB and VB
guantization energy that is 7 meV larger , while their sepa- or for a perturbational approximation of their interaction,
ration is only=0.5 meV. This gives rise to a weak left-right namely, by means of the eigensolution algorithm presented
symmetry breaking producing the two other quasi-groundin the Appendix. To prove the tremendous savings achieved
states. Figure 5 shows the leftmost of them. Symmetnpy this method we finally report a comparison with the well-
breaking in this QW was previously discussed by us in theestablished FSM.
PBA, which neglects any band mixift§ There the symme-
try breaking was found to concern the tlrue .grOL.md state V. ASSESSMENT OF THE ALGORITHM
|1,). Our presenk-p calculation reveals this slight inaccu-
racy and indicates that parabolic band approximations are In regard to the eigenstate iteration, the spin splitting pro-
unsuited in such complex situations involving strain and pi-duces a more adverse spectral structure Hf for
ezoelectricity within an irregular geometry. The main sourcek,=0.02 nm ! than for k,=0 because the separations be-
of inaccuracy of the PBA in the case of irregular geometry istween distinct eigenvalues decrease. To compare the RM
that different stateghere|1,) and|3,)) may experience dif-
ferent directions of strongest confinement. The effective
masses are not flexible enough to resemble this situation in
the Hamiltonian. For a direct comparison with a PBA calcu-
lation using the heavy hole masse[110]) in the x and 0.15
m([001]) in they direction see the solid markers in Fig. 2. .

In addition, the CB is essentially nonparabolic: for 01
k,=0-1.4 nm?! the ground-state relative effective mass
rises from 0.066 to 0.208; see Fig. 6. Due to the large size of 0.05
the QW the electron effective mass approximately takes on
its bulk value atk,=0 and the previously predict&tin- 0
crease occurs at higher wave numbers only, when the wave 02 04 06 08 1 1.2
function is more affected by the structural and piezoelectric kz (1/nm)
confinement. This demonstrates the importance of including .
the CB-VB interaction in the modeling, otherwise no reason- FIG. 6. Relative effective magd 10] in the|1,1) CB state. The
able prediction of the CB dispersion is possible. nonparabolicity of the CB due to tHe p interaction is obvious.
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TABLE Il. Effective local convergence raté€R’s) for differ-
ent spectral structures dfi (due to differentk,) and restarting
lengths S,,.. ¢ is the averageCR and ¢, the maximumCR
encountered in the local phasfr(|<0.5 me\} of the respective
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VI. SUMMARY

We have calculated the one-dimensional band structure of
a realistic, pseudomorphic §nGay gAs/Al,Ga; _,As
V-groove quantum wire in eight-ban#d-p theory. The

s k-p Hamiltonian was discretized using a finite-difference
Method Siax k,=0 nm?! k,=0.02 nni ! method specially designed to realize flux conservative
— — matching of the envelopes at the heterointerfaces. The cross-
FSM 11 #=0.0008 #=0.0001 section shape of the wire was taken directly from a TEM
¢max=0.0008 Pmax=0.0007 image and digitalized with 1-nm resolution, giving 13 563
19 ¢$=0.0009 ¢$=0.0003 pixels. The calculation fully accounts for the graded barrier,
bmax=0.0009 dmax=0.0008 the particular strain distribution, and the resulting piezoelec-
RM GDA 11 $=0.0179 $=0.0090 tric charging of the structure. We found a dominant impact
Gma=0.0179 brm=0.0215 of the strain-indu_ced pie_zoelectricity on the band structure
19 $=0.0263 $=0.0157 and a mar_ked spin spllt'qng_ of th_e valence bands due to the
ra=0.0263 ra=0.0297 mesoscopic lack of spatial inversion symmetry. The conduc-

tion band is strongly nonparabolic.
To calculate arbitrary eigenstates from discrete Hamilto-

) nians that include both CB’s and VB’s we have developed a
GDA with the FSM we have calculated the VB ground stateresidual minimization variant of the generalized Davidson

|1,1) at both k, values and with two different restarting algorithm. This algorithm serves the same purpose as the
lengthsSy,a. The runs were started with Gaussian randomfolded spectrum methotf;** but in our case exhibits one or
vectors ande=—1230 meV. Table Il comprises the effec- two orders of magnitude faster local convergence than the
tive local convergence rates observed in these eight runs. latter.

¢ is defined asp= —log,ox/z, wherex is the local conver- We like to emphasize that the algorithm can readily be
gence factor of the residual norm amdis the number of applied to any other Hamiltonian describing single particles
Hx multiplications per iteration cycle. Note that 1 for the  in nanostructures as well, e.g., in the frame of tight-binding
RM GDA, while z=2 for the FSM. Figure 7 shows the ©Or pseudopotential calculations. The computational progress
residual norm versus theédx multiplication count for €stablished by this work is not restricted to the envelope-
k,=0.02 nnT ! andS, .= 19. function approach.

We find the following in ample accordance with the the-
oretical analysis(i) The RM GDA is a factor 22 — 90 faster
than the FSM(measured byp). (i) The more complicated
spectrum ofH for k,=0.02 nmi ! leads to slower and non-
monotonic local convergence of both methods. ket 0 the
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eigenpairs of at least the-p Hamiltonian operators.

We describe the calculation of one eigenvector only; the

simultaneous operation is straightforward. One iteration

1000 4 cycle consists of the following steps.

(i) The orthonormal trial vector!® from the steps
100y s=1,... Sand theirimageg®=(H— el )x® are stored on
%E, 10 disk. TheSX S RM projection matrixPS= (p;;) with
e 1] pij =(xVI(H—e)2xV) = (y"[y) (A1)
E o1 is in the core memory.

@ 3 AmGD (i) The variational eigenvector approximatienand its
0ot "GDA Fsu imagew are calculated from the lowest, normalized eigen-
3 vectoru=(uy, ... us) of P,
1E-3 T T T T M T T T T T T
0 2000 4000 6000 8000 10000 12000

s s
Hx multiplications V= z USX(S), w= 2 usy(S),
s=1 s=1
FIG. 7. Typical convergence behavior of the RM GDA and the )
well-known FSM. The onset of the local convergence atand stored on disk. _ .
||r]|~1 meV is shown clearly. Restarting was performed at a length (i) The Rayleigh quotienfu=(v|w) and the residual
of Spa= 19 vectors. r=w-—uv are calculated.
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(iv) If [[r|[<e the procedure terminates, aid=v and  w(9 are stored on disk ag®), y1), x(?, andy®, respec-
E=u are returned. tively; and S—2 andP® is calculated fromy(*) andy®
(v) o is chosen according to a shifting strategy and theaccording to Eq(A1). Otherwisev(®~ 1) andw(~ 1 are dis-
preconditioner C=M—o¢l is prepared. In particular, posed from disk.
M =diag(H) ando= u constitute the nongeneralized David-  (vii) § is stored on disk ag®"?) andS—S+1.

son algorithm. The pseudoresidug=C~'r is calculated (viii) The image of the new basis vector is calculated,

and orthonormalized against”, . .. x®, giving q. yO=(H—€l)x®, andP® is updated byy'S according to
(vi) If the storage of 3+ 4 vectors would exceed the disk Eq. (A1).

capacity the algorithm is restarted: aif®, all y®, and We note thafj can be obtained from a different procedure

P® are disposedyS~ 1) is orthonormalized against® and  from step(v) as well, for instance, by the one suggested in
w1 is updated accordinglyyS™Y, w1 v and Ref. 42.

IM. Walther, E. Kapon, E. Colas, D. M. Hwang, and R. Bhat, 2*P. Enders, A. Bavolff, M. Woerner, and D. Suisky, Phys. Rev. B

Appl. Phys. Lett.60, 521 (199J). 51, 16 695(1995.
2s. Tiwari, G. D. Pettit, K. R. Milkove, F. Legoues, R. J. Davis, ?D. Gershoni, C. Henry, and G. Baraff, IEEE J. Quantum Electron.
and J. M. Woodall, Appl. Phys. Let64, 3536(1994). 29, 2433(1993.
3M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum?3Y. Zhang, Phys. Rev. B9, 14 352(1994.
Electron.22, 1915(1986. 24M.-E. Pistol, M. Gerling, D. Hessman, and L. Samuelson, Phys.
4E. Kapon, D. M. Hwang, M. Walther, R. Bhat, and N. G. Stoffel, ~ Rev. B45, 3628(1992.
Surf. Sci.267, 593(1992. 25A. Zunger, inProceedings of the 23rd International Conference
5Y. Arakawa, Y. Yamauchi, and J. N. Schulman, Phys. Re¥3B on the Physics of Semiconductoeslited by M. Scheffler and R.
4732(199)). Zimmermann(World Scientific, Singapore, 1996p. 1341.
D. S. Citrin and Y. Chang, IEEE J. Quantum Electr@9, 97  2°C. G. Van de Walle, Phys. Rev. 89, 1871(1989.
(1993. 270. Mauritz and U. Ekenberg, iRroceedings of the 23rd Interna-
"T. Tadicand Z. Ikonig Phys. Rev. B50, 7680(1994). tional Conference on the Physics of Semicondudiess. 25, p.
8G. Bastard and J. Marzin, Solid State Comm@, 39 (1994). 1823.

9R. Rinaldi, R. Cingolani, M. Lepore, M. Ferrara, |I. M. Catalano, 28Properties of Lattice-Matched and Strained Indium Gallium
F. Rossi, L. Rota, E. Molinari, P. Lugli, U. Marti, D. Martin, F. Arsenide,edited by P. Bhattachary@NSPEC, London, 1993
Morier-Gemoud, P. Ruterana, and F. K. Reinhart, Phys. Rev?°Properties of Aluminium Gallium Arsenidedited by S. Adachi
Lett. 73, 2899(1994). (INSPEC, London, 1993

103, C. Yia and N. Dagli, IEEE J. Quantum Electr@1.208(1999.  °°E. T. Yu, J. O. McCaldin, and T. C. McGill, Solid State Phys.

M. Notomi, S. Nojima, M. Okamoto, H. lwamura, T. Tamamura, 1 (1992.
J. Hammersberg, and H. Weman, Phys. Rev5B 11073 31Numerical Data and Functional Relationships in Science and
(1995. Technology,edited by O. Madelung, Landolt-Bastein, New

12G., A. Baraff and D. Gershoni, Phys. Rev.A, 4011(1991). Series, Group lll, Vol. 17, Pt. &Springer, Berlin, 1982

13|, pfeiffer, H. Baranger, D. Gershoni, K. Smith, and W. Weg- 32S. Adachi, Physical Properties of 1ll-V Semiconductor Com-
scheider, inLow Dimensional Structures Prepared by Epitaxial pounds(Wiley, New York, 1992.
Growth or Regrowth on Patterned Substrateslited by K. 33Properties of Gallium Arsenide2nd ed. (INSPEC, London,

Eberl, P. M. Petroff, and P. Demeester, Vol. 298NATO Ad- 1990.

vanced Study Institute, Series E: Applied Sciefidawer, Dor-  3“E. R. Davidson, Comput. Phyg, 519(1993.

drecht, 1995 p. 93. 35C. W. Murray, S. C. Racine, and E. R. Davidson, J. Comp. Phys.
M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev5® 103 382(1992.

14 187(1994. 36D, M. Wood and A. Zunger, J. Phys. 88, 1343(1985.
15, De Caro and L. Tapfer, J. Appl. Phyg9, 9188(1996. S7L. Wang and A. Zunger, imNanocrystalline Semiconductor Ma-
18| vurgaftman, J. M. Hinckley, and J. Singh, IEEE J. Quantum terials, edited by P. V. Kamat and D. MeiséElsevier Science,

Electron.30, 75 (1994. New York, 1996.

"M. Notomi, J. Hammersberg, H. Weman, S. Nojima, H. Sugiura,®®L. Wang and A. Zunger, J. Chem. Phy€0, 2394 (1994
M. Okamoto, H. lwamura, T. Tamamura, and M. Potemski, 3°G. Grosso, L. Martinelli, and G. P. Parravicini, Phys. Revb B

Phys. Rev. B52, 11 147(1995. 13 033(1995.
8R. Chen and K. K. Bajaj, Phys. Rev. 5, 1949(1994. 400. stier, M. Grundmann, and D. Bimberg, Rroceedings of the
1A, T. Meney and G. Jones, Appl. Phys. Leif, 1512(1995. 23rd International Conference on the Physics of Semiconductors

20M. Grundmann, V. Trck, J. Christen, E. Kapon, D. M. Hwang, (Ref. 25, p. 1177.
C. Caneau, R. Bhat, and D. Bimberg, Solid State Elect8an. 4ly. Arakawa and H. Sakaki, Appl. Phys. Le#t0, 939(1982.
1097 (1994. 42A. Booten and H. van der Vorst, Comp. Phyt§), 239 (1996.



