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Modeling of strained quantum wires using eight-band k–p theory

O. Stier and D. Bimberg
Institut für Festkörperphysik, Technische Universita¨t Berlin, HardenbergstraXe 36, D-10623 Berlin, Germany

~Received 28 August 1996; revised manuscript received 30 October 1996!

We have calculated numerically the one-dimensional band structure and densities of states of aV-shaped
In0.2Ga0.8As/Al xGa12xAs single quantum wire using eight-bandk•p theory. A finite-difference scheme is
used for the calculations. The model includes the realistic orientation, shape, material composition, strain
distribution, and piezoelectric charging of the wire. We find a dominant impact of the piezoelectric potential on
the band structure and a marked spin splitting of the valence bands. Also, the conduction band is strongly
nonparabolic. We propose an efficient procedure to calculate interior eigenvectors from Hamiltonians including
conduction-band–valence-band interactions. This algorithm is 20–90 times faster than the best prevailing
method and also applies to other Hamiltonians for the modeling of nanostructures, including those occurring in
tight-binding or pseudopotential theory.@S0163-1829~97!04312-9#
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I. INTRODUCTION

In recent years semiconductor quantum wires~QW’s!
have attracted growing interest for laser applications, ma
because of their potential for a reduction of the thresh
current density1,2 and their increased gain and differenti
gain achieved by multidimensional confinement.3 A further
enhancement of the gain and bandwidth of QW lasers
expected from the incorporation of strain.4 Technological
progress in the epitaxial fabrication of lattice-mismatch
single and multiple QW’s on nonplanar substrates led
various types of pseudomorphic QW’s among whi
V-groove QW’s have been intensively studied.

Parallel to the effort concerning the fabrication and ch
acterization of strained QW’s, their theoretical modeling w
developed with increasing level of sophistication, in order
enable the prediction of the physical properties of such st
tures and to enable a deeper understanding of experim
results.UnstrainedQW’s of different shapes were invest
gated using the tight-binding5 and effective bond-orbital6

models as well as all the classical envelope funct
schemes: the parabolic band approximation~PBA!,7–9 the
four-band Luttinger model,10 the six-band Luttinger model,11

and the eight-bandk•p model.12,13 On the other hand
strainedQW’s were studied only in the PBA~Refs. 14 and
15! and in the four-band16 and six-band Luttinger models.17

The main effort in these studies focused on a detailed tr
ment of the particular geometry. The interaction between
conduction bands~CB’s! and valence bands~VB’s! as in-
cluded in many of the investigations of unstrained structu
however, has not been considered so far, although the
cations for major modification of the CB~Refs. 18 and 19!
also apply to the strained case.

In this paper we describe the modeling of a pseudom
phic V-groove QW by means of the eight-ban
k•p scheme in order to unify the CB-VB interaction and V
mixing with a detailed consideration of one of the most i
portant realizations of one-dimensional~1D! structures. Our
simulation accounts for the true geometrical shape of
wire and the graded barrier, the particular strain distributi
and the resulting piezoelectric charging of the structure. T
550163-1829/97/55~12!/7726~7!/$10.00
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impact of the strain on the band structure is visualized
crucial part of our method is an efficient numerical proced
to generally calculate bound states in nanostructures u
inclusion of the CB-VB interaction.

Our paper is organized as follows. In Sec. II we descr
the QW sample, the approach used to describe the b
structure by means of the eight-bandk•p scheme, and the
finite-difference method used for discretization. Section II
contains some necessary details about our assumption
garding the strain, boundary conditions of envelope fu
tions, and material parameters. Section II B presents the
cretization of the Hamiltonian. In Sec. III we introduce
special algorithm for eigenvector extraction; its implemen
tion is outlined in the Appendix. Section IV contains th
results of our band-structure calculation and their discuss
In Sec. V we present a performance comparison between
algorithm and prevailing state-of-the-art methods, evide
ing a one to two orders of magnitude acceleration of
calculation by our method.

II. BAND-STRUCTURE MODEL OF THE QW

The nanostructure we consider is a singleV-groove QW
~Ref. 20! with the nominal composition In0.2Ga0.8As sur-
rounded by a barrier of AlcGa12cAs, as shown in Fig. 1. The
growth direction is@001#; we assign to it the geometrica
coordinatey. The Al contentc in the barrier increases lin
early with the distance from the heterointerface in they di-
rection (c50.2–0.7 withinDy5200 nm around the QW!,
thus the barrier forms a graded index separate confinem
heterostructure~GRINSCH!. The orientation of the QW is
along @11̄0#, to which we assign the coordinatez. Thenx
refers to@110#.

The lattice mismatch of11.4% leads to mainly compres
sive strain in the QW. The particular strain distribution w
calculated by a finite-element simulation for cubic materia
yielding the strain tensorê with respect to the crystal main
axes as a function of the position in the QW cross-sect
plane (x,y).14 From ê(x,y) the piezoelectric polarization an
its associated Coulomb potentialVp(x,y) were calculated
7726 © 1997 The American Physical Society
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~Ref. 14!, wheree14 is the piezoelectric module of the re
spective material atr 8 and es is the static dielectricity con-
stant.es is taken to be constant all along the structure so t
image charges need not be considered. Note thatVp(r ) pos-
sesses the same translation symmetry as the QW so tha
independent ofz.

A. Eight-band k–p scheme for QW’s

To calculate the 1D band structure in the directionz,
where carrier transport is still possible, we used the eig
bandk•p scheme as outlined previously for bulk materials21

and quantum wells.22 The model neglects strain gradie
terms¹ê(r ) ~Ref. 23! and the strain dependence of the sp
orbit interaction.24 The static scalar potentialVp(r ) yields an
additional diagonal contribution to the Hamiltonian that
not included in Refs. 21 and 22. Applied to a heterostructu
the k•p Hamiltonian Ĥ contains 21 spatially varying pa
rameters, six of which appear in products with compone
of k so thatĤ is originally not Hermitian. Therefore suc
products are symmetrized12 according to

Qki→~Qki1kiQ!/2, Qkikj→~kiQkj1kjQki !/2

~ i , j5x,y,z!. ~1!

Under the assumption of identical zone-center Bloch fu
tions in all materials, this implies the probability flux conse
vation at heterointerfaces.

To take advantage of the translational symmetry of
QW in @11̄0# we introduce wave-vector componen
kx ,ky ,kz with respect to our geometrical coordinates.11,16,22

Then the envelope functions are separable into a plane w
with the wave numberkz and an orthogonal part in the cros
section plane (x,y). In this plane we use the spatial repr
sentation ofĤ because then the material and strain distrib

FIG. 1. The unstrained bulk valence bandEv(x,y) in the het-
erostructure shows the GRINSCH structure of the barrier and
shape of the quantum-wire cross section~white!. The pixel size is
1 nm2, which is the true resolution in our calculations.
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tions are most easy to handle. As a consequence,kx°2 i]x
andky°2 i]y, while kz remains a real number. We obtain
system

Ĥ~x,y,kz ,]x ,]y ,]xx ,]xy ,]yy!C~x,y!5EC~x,y! ~2!

of eight partial differential equations for the eight compl
envelope functionsC5(cs↑ ,cx↑ ,cy↑ ,cz↑ ,cs↓ ,cx↓ ,cy↓ ,
cz↓). The system depends continuously onkz and its eigen-
solutions (En ,Cn) are the bound states of charge carriers
an arbitrarily oriented QW of arbitrary cross section, mater
composition, and strain distribution, including VB mixin
and the CB-VB interaction. The well-known, gener
drawbacks25 of the envelope-function approach are not e
pected to affect our results significantly since the QW
rather large and its band structure is calculated very clos
theG point only, thus matching the validity conditions of th
approach well.

Table I displays the material parameters we have us
From them, the missing parametersP,A8,L8,M ,N8,l ,m,n
can be calculated at each position (x,y) according to Ref. 22.
It is necessary that alwaysg1>1/mso and that A8.0,
L8,0, M,0, andN8,0. An important role for the carrier
confinement play the band discontinuities at the heteroin
faces. We use composition-dependentEv8,

26 which we ob-
tained from an overall fit to carefully selected data abo
heterojunctions involving AlGaAs, InGaAs, and InP fro
the reviews quoted in Table I. The deformation potenti
were obtained from similar fits.B andb8 are related to the
polar nature of the materials and account for the microsco
lack of inversion symmetry, which causes spin splittin
However, in the presence of compressive strain thismicro-
scopic effect is significantly smaller than that due to theme-
soscopic spatial asymmetry of the structure,27 so that we set
B,b850.

B. Finite-differences discretization

To obtain a matrix representationH of Ĥ we use a finite-
difference method on a rectangular grid with square u
cells andÑ5NxNy nodes. The real and imaginary parts
the envelopesc are represented byÑ-dimensional vectors
each. Accordingly, the differential operators and spatia
varying parameters in Eq.~2! becomeÑ3Ñ real matrices,
H is an 8Ñ38Ñ complex matrix, and the final dimension o
C is N516Ñ. The parameter matrices are diagonal. T
matrices for the derivatives must be chosen carefully to
produce the symmetry properties and the commutation r
tions of thek components and to ensure numerical stabi
of the difference scheme.

To accomplish this we introduce two different matric
D (1) andD (2) for both ]x and ]y with @D (1)#T52D (2).
The D (1) are used in the upper right half ofH and the
D (2) in the lower left half only. The discretizations of th
symmetrized expressions forQ]x ,Q]y ,Q]xx ,Q]xy ,Q]yy

e
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TABLE I. Input material parameters for 300 K used in the calculations. The asterisk denotes a s
order Chebyshev approximation to 142411594c1c(c21)(1310c2127) for c<0.45.

Quantity in IncGa12cAs Reference in AlcGa12cAs Reference

E0 ~meV! 142421501c1433c2 28 142811572c2553c2 ~* ! 29
Ev8 ~meV! 269201231c258c2 26,28 269202433c224c2 29,30
D0 ~meV! 340293c1133c2 31 3402131c171c2 29
me (m0) 0.066720.0419c 32 0.06710.083c 29
mso (m0) 0.16320.023c 29,32 0.16510.135c 29
g1 1/@(12c)/7.101c/19.7# 31,33 1/@(12c)/7.101c/3.76# 29
g2 1/@(12c)/2.021c/8.4# 31,33 1/@(12c)/2.021c/0.90# 29
g3 1/@(12c)/2.911c/9.3# 31,33 1/@(12c)/2.911c/1.42# 29
B ( meV nm2) 0 22,27 0 22,27
b8 ~meV! 0 22,27 0 22,27
ac ~meV! 2801312933c 32 2801312373c 26
ag ~meV! 2823312153c 32 282331123c 26
bv ~meV! 21824124c 31 218241124c 26
dv ~meV! 2506211462c 31 250621512c 26
C11 ~GPa! 118.8235.5c 31,33 118.811.4c 29
C12 ~GPa! 53.828.5c 31,33 53.813.2c 29
C44 ~GPa! 59.4219.8c 31,33 59.420.5c 29
es 13.1811.42c 32 13.46
e14 ( C m22) 0.16020.115c 32 0.137
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are then obtained from the standard first-order forw
~backward! difference quotients]x

(1),]y
(1)(]x

(2),]y
(2)) by

Dx
~1 !~Q!5@Q]x

~1 !1]x
~1 !Q#/2,

Dx
~2 !~Q!5@Q]x

~2 !1]x
~2 !Q#/2,

Dy
~1 !~Q!5@Q]y

~1 !1]y
~1 !Q#/2,

Dy
~2 !~Q!5@Q]y

~2 !1]y
~2 !Q#/2,

Dxx~Q!5@]x
~1 !Q]x

~2 !1]x
~2 !Q]x

~1 !#/2,

Dyy~Q!5@]y
~1 !Q]y

~2 !1]y
~2 !Q]y

~1 !#/2,

Dxy~Q!5@]x
~1 !Q]y

~1 !1]y
~1 !Q]x

~1 !1]x
~2 !Q]y

~2 !

1]y
~2 !Q]x

~2 !#/4.

Expanding these matrix expressions gives the differe
quotients we have used. ForQ5qI ~whereI is the identity
matrix andqPR) all of them reduce to standard differenc
quotients. The handling of boundary nodes for the realiza
of Dirichlet and Neumann conditions is standard.H was
implemented as a sequence of linear operations on si
envelope vectorsc. We used Nx5137, Ny599, and
d51 nm, so thatN5217 008. OneHC multiplication con-
sists of 208 linear combinations, 304 parameter multipli
tions, and 104 partial differentiations of complexÑ vectors,
amounting to 47 MegaFLOP in total.

III. EFFICIENT ALGORITHM FOR EIGENVECTOR
CALCULATION

To solve Eq.~2! for eigenstatesCn near the band edge
we use an algorithm developed by ourselves that is a c
d

e

n

le

-

-

bination of the generalized Davidson algorithm34,35 ~GDA!
with residual minimization~RM!.36 Although such a combi-
nation has been discussed earlier for the purpose of calc
ing extremeeigenvalues,35,36 its principal advantage ove
prevailing methods for the calculation ofinterior eigenval-
ues, as required here, was never acknowledged.

The calculation of interior eigenvalues is an intrica
problem if the matrixH cannot be stored, factorized, or in
verted, which is the case here. The classical iterative eig
solution methods, i.e., subspace iteration, molecular dyn
ics simulation, Chebyshev iteration, conjugate gradie
~CG!, Lanczos algorithm~LA !, and also theusualGDA by
their mathematical nature yield only extreme eigenvalu
this cannot be altered by preconditioning. Hence interior
genvalues are obtained by these algorithms only after a s
tral transformation ofH. As the preferable shift-and-inver
operation H°(H2eI )21 is not available, the quadrati
transformH°(H2eI )2 can be used, wheree is the search
energy specifying the closest eigenvalueEn as the wanted
one. The latter replacement is known as the folded spect
method~FSM! and usually combined with the CG~Refs. 37
and 38! or variants of the LA.39 Due to their well-known
mathematical relationship the CG and LA exhibit no dr
matic difference of their convergence properties, which
evates them to be the most powerful elegant basic a
rithms. Regrettably, the FSM causes a severe decrease o
local convergence rate of all mentioned iterations, as
easily be derived from the spectral structures ofH and
(H2eI )2. We now present a method avoiding this dra
back.

Other than in the CG and LA, in the Davidson-type alg
rithms the~i! subspace construction and~ii ! variational cal-
culation of the eigenvector approximations are explici
separated. The eigenvector to which the iteration conver
is solely determined by~ii !, while the convergence rat
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mainly depends on~i!. This offers the unique opportunity t
useH in ~i! and (H2eI )2 in ~ii !. The result is that conver
gence to interior eigenpairs occurs almost as fast as tow
extreme ones. Since the Rayleigh-Ritz~Ritz-Galerkin! pro-
cedure commonly employed for~ii ! applied to (H2eI )2 is
equivalent to the RM with respect to (H,e), the method ob-
tained is a RM GDA operating onH.

We show below that the RM GDA in fact is one to tw
orders of magnitude more efficient than the FSM and t
certainly the fastest algorithm for our purpose at prese
Clearly, it can be applied to any other Hamiltonian accou
ing for the CB-VB interaction~as in tight-binding or pseudo
potential methods! and to any other kind of nanostructu
~e.g., quantum dots! as well. Hence the RM GDA appears
be a valuable general-purpose tool for the entire field
nanostructure band-structure research. Its implementatio
described in the Appendix.

IV. DISCUSSION OF THE BAND STRUCTURE

Figure 2 shows the lowest four 1D conduction bands a
the topmost twelve 1D valence bands in thez direction for
kz between60.2 nm21. All curves were calculated sepa
rately with individuale, i.e., no block algorithm was used
For kz50 we started with a Gaussian random vector and
otherkz values the result of the previous one was taken as
initial guess ande was adjusted by second-order extrapo
tion.

The zero energy is the minimum ofEc over the entire
structure, i.e., the CB edge of unstrained bulk In0.2Ga0.8As.

FIG. 2. Lowest four 1D conduction bands and topmost twe
1D valence bands in the quantum wire~alternating solid and
dashed!. The energy zero isEc of unstrained bulk In0.2Ga0.8As. The
solid markers indicate the quantum levels calculated by a parab
band approximation.
ds
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The VB states are labeled from top to bottom byu1,1&,
u1,2&, u2,1&, u2,2&, . . . to account for the spin; theu, 1& states
belong to solid lines and theu, 2& states to dashed lines. A
can be seen, there is no band crossing except forkz50.40

Between theu, 1& andu, 2& states we observe a meV rang
splitting for kzÞ0. This spin splitting is caused by the me
soscopic violation of the spatial inversion symmetry, whi
is due to the irregular geometrical shape of the QW, str
field, and piezoelectric charging. The spin splitting leads
bimodal peaks in the density of states~DOS! consisting of a
true singularity accompanied by a finite discontinuity. This
seen in the VB DOS; see Fig. 3. In general, the spin splitt
will cause slightly increased linewidths of all transitions,
compared to the unsplit case, and presents a lower limi
the linewidth for disappearing interface roughness. Figur
shows the resulting joint DOS fork-conserving transitions
and visualizes clearly the dominance of the true singulari
at all subband edges. It is well known that the existence
such singularities largely improves the performance of se
conductor lasers.41

The Coulomb potentialVp stemming from the piezoelec
tric interface charging is repulsive for holes and thus eff
tively reduces the actually tapered QW thickness fro
,23 nm to uniformly'7 nm. Hence, for holes the QW
looks approximately like a bent quantum well. This prac
cally leads to the formation of three coupled sub-QW’s alo
the lower interface, which have separate ground state
kz50; see Fig. 5. The lowest of these, the true ground s

e

lic

FIG. 3. Double peaks in the VB DOS reflect the spin splitting.

FIG. 4. Joint DOS fork-conserving transitions~without broad-

ening!. The dipole matrix elementsz^auê•p¢ub& z2 between^au and
spin split statesub,1&, ub,2& may differ by a factor 100, thus dem
onstrating the well-known spin-selection rule.
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FIG. 5. Envelopesucu2 of the Bloch functions
us↑&, ux↑&, and uz↑& in the VB statesu1,&, u2,&,
u3,&, andu8,& at kz50.
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u1,& is located in the center as usual and succeeded by its
excited stateu2,&. The next two statesu3,& and u4,&, have a
quantization energy that is'7 meV larger , while their sepa
ration is only'0.5 meV. This gives rise to a weak left-righ
symmetry breaking producing the two other quasi-grou
states. Figure 5 shows the leftmost of them. Symme
breaking in this QW was previously discussed by us in
PBA, which neglects any band mixing.14 There the symme-
try breaking was found to concern the true ground st
u1,&. Our presentk•p calculation reveals this slight inaccu
racy and indicates that parabolic band approximations
unsuited in such complex situations involving strain and
ezoelectricity within an irregular geometry. The main sou
of inaccuracy of the PBA in the case of irregular geometry
that different states~hereu1,& and u3,&) may experience dif-
ferent directions of strongest confinement. The effect
masses are not flexible enough to resemble this situatio
the Hamiltonian. For a direct comparison with a PBA calc
lation using the heavy hole massesm(@110#) in the x and
m(@001#) in the y direction see the solid markers in Fig. 2

In addition, the CB is essentially nonparabolic: f
kz50–1.4 nm21 the ground-state relative effective ma
rises from 0.066 to 0.208; see Fig. 6. Due to the large siz
the QW the electron effective mass approximately takes
its bulk value atkz50 and the previously predicted18 in-
crease occurs at higher wave numbers only, when the w
function is more affected by the structural and piezoelec
confinement. This demonstrates the importance of includ
the CB-VB interaction in the modeling, otherwise no reaso
able prediction of the CB dispersion is possible.
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Fortunately, this is available at a comparable compu
tional expense as for a separate treatment of the CB and
or for a perturbational approximation of their interactio
namely, by means of the eigensolution algorithm presen
in the Appendix. To prove the tremendous savings achie
by this method we finally report a comparison with the we
established FSM.

V. ASSESSMENT OF THE ALGORITHM

In regard to the eigenstate iteration, the spin splitting p
duces a more adverse spectral structure ofH for
kz50.02 nm21 than for kz50 because the separations b
tween distinct eigenvalues decrease. To compare the

FIG. 6. Relative effective mass@11̄0# in the u1,1& CB state. The
nonparabolicity of the CB due to thek•p interaction is obvious.
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GDA with the FSM we have calculated the VB ground sta
u1,1& at both kz values and with two different restartin
lengthsSmax. The runs were started with Gaussian rand
vectors ande521230 meV. Table II comprises the effec
tive local convergence ratesf observed in these eight run
f is defined asf52 log10k/z, wherek is the local conver-
gence factor of the residual norm andz is the number of
Hx multiplications per iteration cycle. Note thatz51 for the
RM GDA, while z52 for the FSM. Figure 7 shows th
residual norm versus theHx multiplication count for
kz50.02 nm21 andSmax519.

We find the following in ample accordance with the th
oretical analysis.~i! The RM GDA is a factor 22 – 90 faste
than the FSM~measured byf̄). ~ii ! The more complicated
spectrum ofH for kz50.02 nm21 leads to slower and non
monotonic local convergence of both methods. Forkz50 the
local convergence is uniform so thatf̄5fmax. In contrast,
the global convergence is hardly affected.~iii ! Restarting
earlier slows down the local convergence. Therefore,
usedSmax'30 in all other runs. We conclude that the R
GDA is by far the fastest algorithm to calculate interi
eigenpairs of at least thek•p Hamiltonian operators.

TABLE II. Effective local convergence rates~CR’s! for differ-
ent spectral structures ofH ~due to differentkz) and restarting
lengthsSmax. f̄ is the averageCR andfmax the maximumCR
encountered in the local phase (uur uu,0.5 meV! of the respective
run.

Method Smax kz50 nm21 kz50.02 nm21

FSM 11 f̄50.0008 f̄50.0001
fmax50.0008 fmax50.0007

19 f̄50.0009 f̄50.0003
fmax50.0009 fmax50.0008

RM GDA 11 f̄50.0179 f̄50.0090
fmax50.0179 fmax50.0215

19 f̄50.0263 f̄50.0157
fmax50.0263 fmax50.0297

FIG. 7. Typical convergence behavior of the RM GDA and t
well-known FSM. The onset of the local convergence
uur uu'1 meV is shown clearly. Restarting was performed at a len
of Smax519 vectors.
e

VI. SUMMARY

We have calculated the one-dimensional band structur
a realistic, pseudomorphic In0.2Ga0.8As/Al xGa12xAs
V-groove quantum wire in eight-bandk•p theory. The
k•p Hamiltonian was discretized using a finite-differen
method specially designed to realize flux conservat
matching of the envelopes at the heterointerfaces. The cr
section shape of the wire was taken directly from a TE
image and digitalized with 1-nm resolution, giving 13 56
pixels. The calculation fully accounts for the graded barri
the particular strain distribution, and the resulting piezoel
tric charging of the structure. We found a dominant impa
of the strain-induced piezoelectricity on the band struct
and a marked spin splitting of the valence bands due to
mesoscopic lack of spatial inversion symmetry. The cond
tion band is strongly nonparabolic.

To calculate arbitrary eigenstates from discrete Hami
nians that include both CB’s and VB’s we have develope
residual minimization variant of the generalized Davids
algorithm. This algorithm serves the same purpose as
folded spectrum method,38,39 but in our case exhibits one o
two orders of magnitude faster local convergence than
latter.

We like to emphasize that the algorithm can readily
applied to any other Hamiltonian describing single partic
in nanostructures as well, e.g., in the frame of tight-bind
or pseudopotential calculations. The computational progr
established by this work is not restricted to the envelo
function approach.
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APPENDIX: IMPLEMENTATION OF THE RM GDA

We describe the calculation of one eigenvector only;
simultaneous operation is straightforward. One iterat
cycle consists of the following steps.

~i! The orthonormal trial vectorsx(s) from the steps
s51, . . . ,S and their imagesy(s)5(H2eI )x(s) are stored on
disk. TheS3S RM projection matrixP(S)5(pi j ) with

pi j5^x~ i !u~H2eI !2x~ j !&5^y~ i !uy~ j !& ~A1!

is in the core memory.
~ii ! The variational eigenvector approximationv and its

imagew are calculated from the lowest, normalized eige
vectoruW 5(u1 , . . . ,uS) of P

(S),

v5(
s51

S

usx
~s!, w5(

s51

S

usy
~s!,

and stored on disk.
~iii ! The Rayleigh quotientm5^vuw& and the residual

r5w2mv are calculated.

t
h



th
,
d-

k

d,

re
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~iv! If uur uu,e the procedure terminates, andC5v and
E5m are returned.

~v! s is chosen according to a shifting strategy and
preconditioner C5M2sI is prepared. In particular
M5diag(H) ands5m constitute the nongeneralized Davi
son algorithm. The pseudoresidualq5C21r is calculated
and orthonormalized againstx(1), . . . ,x(S), giving q̃.

~vi! If the storage of 2S14 vectors would exceed the dis
capacity the algorithm is restarted: allx(s), all y(s), and
P(S) are disposed;v(S21) is orthonormalized againstv(S) and
w(S21) is updated accordingly;v(S21), w(S21), v(S), and
at,

s,

um

l,

o,
.
e

a,

g-
al

m

ra
ki

,

e

w(S) are stored on disk asx(1), y(1), x(2), and y(2), respec-
tively; andS°2 andP(2) is calculated fromy(1) and y(2)

according to Eq.~A1!. Otherwisev(S21) andw(S21) are dis-
posed from disk.

~vii ! q̃ is stored on disk asx(S11) andS°S11.
~viii ! The image of the new basis vector is calculate

y(S)5(H2eI )x(S), andP(S) is updated byy(S) according to
Eq. ~A1!.

We note thatq̃ can be obtained from a different procedu
from step~v! as well, for instance, by the one suggested
Ref. 42.
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