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Theoretical investigation of the excitonic semiconductor response for varying
material thickness: Transition from quantum well to bulk
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For semiconductor slabs with thicknesses varying from the two-dimensional to the three-dimensional limit
the linear optical response is calculated numerically by solving the semiconductor Maxwell-Bloch equations.
For short-pulse excitation the spatiotemporal dynamics of the electronic mode structure and the development of
exciton-free boundary layers are discussed.
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[. INTRODUCTION such as short-pulse excitation have not been fully investi-
The optical properties of semiconductor materials hav ated. Furthe(more, most of the Papers in this field are fo-
. . : ) used on excitons, and less on continuum states. However,
been investigated in great detail over the last few y&ars.y e iy the redistribution of oscillator strength in linear optics
Within theses studies it has been shown that the linear optine interplay between exciton and continuum states should
cal response functlo(susceptlblllty is dominated by bound pe important in the 2D to 3D transition, because the 3D
electron-hole stategexcitong and the Coulomb enhanced continuum develops from higher 2D subbands.
Scattering states. However, for the description of an Optical In this paper, we present theoretical calculations of trans-
experiment, not only Coulomb but also light propagation ef-mjssion spectra for semiconductor slabs with different thick-
fects play an important role for the calculation of measurechesses by solving the semiconductor Bloch equati&BE)
spectra, because incident and transmitted field are related by combination with Maxwell's equations. As a reference we
the wave equation. So far, Coulomb and propagation effectase the ideal 2D case with one quantized statébbangl
are treated self-consistently only for half-space sample3he transition to the 3D case is then investigated by includ-
(three-dimensional samples, Band for idealized multiple ing more and more quantized states with increasing material
quantum wells(two-dimensional samples, 2B For the 3D  width. Similar to the coherent wave approach, the boundary
case the famous half-space problem has been solved by Statinditions are determined by the electronic wave functions.
and co-workersusing the coherent wave approach. This ap-This method enables us to calculate the transmission spec-
proach clarified the origin of the exciton-free surface layertrum for a finite material width without additional boundary
(dead layer and the role of the electronic boundary condi- conditions. Numerical calculations are presented for samples
tions. On the other hand, the theoretical work in the 2D cassmaller than the wavelength of light. For the case of optical
has mainly been done for the case where the lowestxcitation with short laser pulses we show how the so called
guantum-confined subband is sufficient to describe the ele@xciton dead layer, which is known from a stationary analy-
tronic properties. This limits the validity of the 2D theory to sis in the half-space geometry, develops as a function of
structures where the quantum-well width is well below thetime.
3D exciton bohr diameter.
The exciton binding energy and oscillator strength as Il. OBSERVABLES
function of material thickness has been calculated by varia-
tional or perturbation methods. A detailed study of the exci- The quantities of interest in an optical experiment are the
ton binding energy and oscillator strength for quantum wellsspectral transmissior, or the reflection coefficieriR:
with a width up until 20 nm has been made in Ref. 4. Con-
cerning the transition from 2D to 3D structures, theories with _ ( l(w) )
. . . X : a(w)=—I , 1)
fractional-dimensional spacé, where the fractional dimen- lo(w)
sion of the exciton is a fitting parameter, have been devel-
oped. A review of the recent literature is given in the paper I (w)
by Zimmermanr. However, in these studies no relations R(“’):(b(_w)
were made to the influence of light propagation in a thin
slab. Concerning calculations of optical transmission, reflecwherel, |, |y are the transmitted, reflected, and incident
tion, or absorption spectra this has been done, to our knowintensity of the transversal fiele;. From such measure-
edge, only for the ideal 2D or 3D case, the transition fromments, the absorbed irradianeei.e., the amount of light per
the 2D to the 3D regime, especially nonstationary effectaunit length that stays in the sample, can be calculated from
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l(w) I (w) wheree, is the screening of the Coulomb potential due to
1- (@) \To(@)] | 3 off-resonant transitions. To study the basic effects of the 2D
0 0 to 3D transition we only consider the ideal condition, where
In the following we focus mainly on the transmission, the potentiaV¢ which confines the electrons in one direction

W(w)=

which is directly measurable. of the sample is infinite,
L
IIl. BASIC EQUATIONS 0 when |Z|<?Z
To compute the observable quantities, the wave equation V.(z)= (17
Eas. to be solved to determine the transverse electric field % when |Z|>?Z,
T .
, 1 92 47 9] wherelL, is the total width of the sample. Effects of a finite
Ve- 22T 4 confinement potential on the optical susceptibility are dis-
0

cussed, e.g., in Ref. 4.

where we implicitely assume that the total currgiig purely The tranverse electrical fiel; is determined by the vec-
transverse. This is always fulfilled for the plane wave exci-tor potentialA(r),

tation considered throughout this paperis the speed of

light in the semiconductor and, is the speed of light in R 1 0A(TY) o . -
vacuum. As is well known, the curreitor the polarization Et=—— a—t,w —A(r,t), 12
P is the source term for the electric fieldThus, to obtain the Co Co

.megsur.able quantities, the equation of motion for the pOIar\'Nhere in the following the slowly varying envelope and ro-
ization is needed. The polarization is obtained from

tating wave approximation is applied.
JP he To obtain the poIariz_ation, which is. the source Fe.rm.in the
j= _=< T__Vr(/,> +H.a., (5) wave equation, the Heisenberg creation and annihilation op-
at 12mg erators are expanded in terms of the eigenfunctions of the
free particle Hamiltonian because it is more conventient in
our approach to solve the equations of motion in momentum
space:

whereW' and ¥ are the Heisenberg creation and annihila-
tion operators, respectivelyn, is the bare electron mask,
is Planck’s constant, anelis the electronic charge.

As usual, the equations of motion for the Heisenberg cre-
ation and annihilation operators are determined by the total - + S
Hamiltonian which, besides the free parts, contains the Cou- '/’T(r):EE AL faa(@ux (k.r), (13
lomb interaction of the carriers and the carrier interaction A
with the light field: iKp

Hai=Ho ot Hepr+ Hi ©) W= 2 B fa@ukn. (9

—ik-p

2

30 1,2 f - - Here,A =c,v denotes either the conduction or valence band,
Hoe= | d°x¢'(r) —2—mOA+VL(r)+VC(r) (r),

respectively.lz is the in-plane momentumy, is the Bloch
(7)  function, andL?L, represents the volume of the crystal with
L? being the area of the well. The quantum number of the
st he . . . - subband is labeled by the index ag , , is the electron an-
Hey=Jd*r (n)] = imocoA(r’t)V vir, ® nihilation operator andE’M is the electron creation operator
of a Bloch electron with the quantum numbdarsn, X, re-

1 N . N R R . . .
Hi= | &rd WO V= uf). (@ Shectvely. Ther dependence of fhe wave funciéf (2) is

Here H, ¢ is free carrier Hamiltonian, which contains the
kinetic energy, the lattice potential, and the confinement po- \ECO{ nzz) when |z|< L
tential including the boundary condi'tions at the 'interfaces £ (2)= L, L, 2 (15
between the sample and the outside wotltl,, is the nA L,
carrier-light interaction Hamiltonian anHl, is the Hamil- 0 when |z|>?,
tonian of the carrier-carrier Coulomb interactiok(r t) is
the transversal vector potential angs the three-dimensional and forn = 2,4, 6,8, ...
space coordinate;, = (x,y,z)=(p,z). The Coulomb poten-
tial, V(F) is in CGS units, \@Sm(ngz) when Mg%
@2 foa(2)= B (16
V(r')=—=, (10 0 when|z|=—.
eo|r’] 2
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The Heisenberg equation of motion for the electron opfrequency of the quantized states in the slowly varying en-
erators yields within linear optical response theory, velope approximation, ¥ is a phenomenologically

v Cc
introduced decay rate of the polarization functiom{(fl('nz

v C T N H H A
&pgl,nz e n s :<a§,nl,uak,n2,6>)’ andd., is the dipole momentn, and
_ 12 1 _ 1 . -
a '(“’12 '7)p12 + f deELZ gk are quantum numbers of the quantized statescpisdan
] in-plane momentum vector. Since we are interested only in
n r 2 pl}ivﬁququ’ilnﬁng 17) the optical spectra we have neglected terms that are attrib-
. = qu q 1 . . C’vyv’C_
a#0,a7,03 uted to intraband transmonyg2 9% js the unscreened
v C C v . . N _ . .
wherewﬁl’”zz w:z_ wEl_ w, is the transition renormalized Coulomb potential, which fon * = 1, 3,5, 7, ... is given as
|
No_  Agy T Noy hay
cos (n,2—n3) = cog (n,2+n,) =
nzl,ngz,ng{ny 2me? 2 [ L,\? L 4( 2 3 )2 4( 2 3 )2)
\F =——— —|d_| (e %2—1) 2 e
q L €q ™ m 4 Ay Agy2 z Aoy AA3y2
g—| +(ny*=ng% g—| +(ny*+ng’
o T
Mo Apn T N, A T
cog (n;1—n,% = cos (n;t+n,4 =
" 5<(1 4)2) 5<(1 4)2) +27762le 1
L\ A Y L\ A )\ L%¢ Ear L\ A )\
q? +(n11_n44)2 q? +(n11+n44)2 od q? +(n22_n33)2
27me? 1 L, 1
X[5n)1‘1—n24,n;2—n}3‘3(1+ 5n11—n24,0)+ 5n21+n24,n;2—n;‘3]+ LZqu ; q ; Lz 2 N A2
q? +(ny2+n3%)
X (O pra rapprst Sty e pre2ynts), Whereq= |a| (18
1 4 "2 3 1 4 "2 3

The expression for the Coulomb potential for other combinations of quantum numbers is similar to the one giveii&h Eq.
A full listing of the Coulomb potential is given in Appendix A.

The coupling to the light field is treated semiclassically and enters thrﬁgb’ﬁz,

1 Cc

W L2 .
E.* sz dz f.(2)Ex(2)f,e(2), (19
k —Lp2 M 2

z

whereE+(2) is determined by solving the wave equation. Often, in the description of optical experiments with semiconductors
it is assumed that optical absorption occurs between quantized states with an equal quantumnpemberhis approxi-
v (3
mation assumes that the electric field is not or weakly space dependent. However, as we see from the exprE%éiB% for
transitions between states with unequal quantum number are allowed for spatially varying fields. In general, one can only
neglect the transitions between quantized states with unequal quantum number, as long as the materia))widthuch
v C

shorter than the wavelength of the exciting pulse. This case yﬁ:]ti’sn2~ 5,1;,“;.

Assuming the incoming light field to consist of plane waves, we can solve Maxwell's equation in the frequency domain

analytically. Again we only give the solution for the quantum numbé;rxs= 1, 3,5, 7, ...(afull listing of the solution is
given in Appendix B,

a aa
. <2 cos((ni—ng)l_—z> cos((n‘ﬁng)l_—z)
ny ,n z z
ETl Z(le):L_EZdCUPnli,ng(w). 2.2 + 2.2
z Co

ny—n$)?—H——-1 (nj+n$)2———1
( 1 2) ngz ( 1 2) ngz
o no(@)€ O po(w)e 02, (20)

Here,tni,ng andrng,ng are functions, which have to be determined by applying the boundary conditions for the electrical field
at the interfacescontinuity of field and first derivatiye The polarizatiorPni,ng is defined as
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1 nY ,nS
Pug ng= 122 P2 (21)
k

Using the boundary conditions, the electric field can be determined {mtéex matched structure

o o
V__ aC\ v Cy__
. w2 ekl gikzy o-ikyz CO{(nl nz)z) cos{(n1+n2)2)
Et(z,w)=Ej,e"™? _2773 —de, L 2 2 Pn’i,ng(w) 22 + 2.2
CO -z nl]}_,n(z: (nv_nC)Zﬂ- -1 (nv+nC)2 ¢ -1
z 2 1 2 ngZ 1 2 ngZ
v Cc ™ v Cc ™
2 1 co (nl—nz)L—z co (n1+n2)L—z
w C z z
+2m o ode, EC Pro ne(@) 2z 22
0 an,nz v c\2 v c\2
- ni—n -1 (ni+n -1
R T e 7
i i - co (m”—m°)z co (m”+m°)z
) @ CZd e|kZ(LZ/2) e'kzz-{-e_'kzz 1 2/ 9 1 2/ 9
— 27— — P v nCl W -
c Cé cv LZ 2 o ml,mz( ) ( . C)Z 2-2 L ( U+ C)2 2-2 L
— 1M mi—ms)*—— — mi+ms)°———
z 2 1 2 ngZ 1 2 ngz
co (m”—mC)EZ co (m”+m°)zz
w C? 1 TR, 1L,
t2m o Ezdc:; 3 EC Py me(@) 27 752
0 ZmY c\2 v Cc\2
k, ="M (Mi-m3)*———-1 (Mj+m5)°———1
2 Liw Lyw
- - - sin (m”—nc)z sin (m”JrnC)z
) ® Czd e|kZ(LZ/2) e'kzz+e*'kzz 2 5 1 29 1 279
+27m— = +
el 1, T2 & Pring(e) e T 1 meng
— 1:M2 mi—n$)—— — mj+n3)*—— —
z 2 1 2 ngz 1 2 ngZ
2 sin| (mi—ng)zz sin| (mj + ng)lz
w C d 1 E LZ LZ
+27TEC_S cv Lzmv ' Pmi,ng(w) ) s 2c2 + ] s 7202
= 12 mi—n;)—--=s—-1 (M+n3)°—-=—-1
z 2 ( 1 2) ngZ ( 1 2) ngZ
i i i sin (mc—n”)z sin (n“+m°)z
w C2 e|kZ(LZ/2) eIkZZ+ eflkzz 2 ) 1 2/ 9

+27TE ?d(:v L 2 Pn‘i,mg(w) 2.2 + 2.2

0 z v C
2 . (mg=n)* gz =1 (NIt me)* 77 1
H C v ™ H v C ™
2 sin (m;—nj)—z sinl (nj+m3)—z
wC 1 L, L,
+2m o e 2 Prng(w) 27—+ 25— | - (22
Co Ry mS 12 c 2 T C v o2 TC
sz 1M (m;—nj) _L’lez_l (n7+m3) —ngz—
I
Here, nQ labels the quantized states 1, 3, 5, ... an;d way, linear spectra can be calculated in the frequency do-

labels the quantized states 2, 4, 6,.. w is the optical main. Our approach uses a time domain integration. The
carrier frequency, an#l,= w/c. E;, is the electrical field of transformation of the energy field to the time domain is done
the incoming light field. by assuming the spectral frequency to be equal to the optical
n? ,nS . . ) carrier frequencyw, , which is an approximation similar to

The termE " is now calculated by inserting EG22)  the slowly varying envelope approximation. This approxima-
into Eq.(19). Equation(17) can be solved to yield the polar- tion allows us to calculate short-pulse excitation and nonsta-
izations of the different transitions which in turn determinetionary effects very efficiently. Note however that this ap-
the transversal energy field and thus the transmission. In thigroximation breaks down amnf+n$)(#2c?/LZw?)—1=0.
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FIG. 1. The linear transmission spectrum Egr= 10 nm, where
the off-diagonal transisions are includ¢e-) and when the off- FIG. 2. The binding energy of theslexciton for GaAs as a
diagonal transisions are neglected {). Two subbands must be fynction of the material thickneds,, (—). (- - -) 1s exciton bind-
included in the calculationsEo is the ideal 3D exciton blndlng mg energy, when on|y one quantized state is COﬂSidEE@dS the
energy. ideal 3D exciton binding energy.

In this case the sample thickness is a multiple.t#. So, in
the following we will restrict our investigation to the case
whereL ,<\/2. However, we expect to obtain the basic fea-
tures of the 2D to 3D transition to take place before
L,~\/2.

ing energy, if only one quantized state is considered. We see
that one quantized state is only sufficient to describe the
exciton binding energy, as long as the quantum well width is
less than 15 nm, which is about 1.25 times the 3D bohr
radius. Furthermore, we see that the ideal 2D exciton binding
energy only is obtained for a material width of less than 1
IV. STATIONARY TRANSMISSION SPECTRA nm, while the ideal 3D exciton binding energy is almost
reached fol, = 80 nm.

Figure 3 shows the peak height of the lowest subband
1s exciton in the transmission spectrum for three different

In the following stationary transmission spectra for the
case of GaAs are presented. The relative electrog/ifny),
relative hole massng, /my), the refractive index, and the
phenomenological dephasing rataused in our calculations
are given in Table Im; is the free electron mass.

In Fig. 1 a comparison of transmission spectra including 1.0 ]
and neglecting nondiagonal subband transitions in the inter- — 0.9
action matrix Eq.(19) is given. The figure confirms that for I
a sample width smaller than the wavelength of light the in- O] 0.8
fluence of the nondiagonal terms is indeed negligible. % o 0.7

In the following we restrict our analysis to samples » = 0.6
smaller than the wavelength of light where the neglection of < Z
transitions between states with different subband quantum H_J :’ 0.5
numbers is an excellent approximation. In Fig. 2 we show - D4
the exciton binding energy obtained from the transmission '®) % T
spectrum as a function of the material thickndéss For = '—'0-3__
comparison we have included the curve for the exciton bind- 2 0.2

TABLE |. Parameter values for GaAs. L 0.1 N T
0.0 I I

Symbol Unit Value 0 20 40 60 80
m, mg 0.3770 L, [nm]
m, Mg 0.0655
Ng 3.6786 FIG. 3. The & exciton peak height in the linear transmission
Ao A 128 spectrum as a function of the material thickness-§ and the peak
Vi st 2x10% height, if only one quantized state is included -). The solid line
dev (e) A e7.2 shows the lowest subband contribution to the peak height, when all

gquantized states are included.
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FIG. 5. The linear transmission spectrum for the material thick-
) o i .~ ness of 10 nn{—), 40 nm (...), and 60 nnt+ - -). The propaga-
FIG. 4. The linear transmission spectrum for the material thick-;;,, equation and SBE are solved by inclusion of higher subbands.

ness of 1 nm(—), 10 nm (.....), 20 nm(- - -), and 60 NM(- - -).  The jinear transmission is calculated by only considering the lowest
The imaginary part of(w,z=0) is plotted forL, = 1 nm(---). g phandE, is the 3D exciton binding energy.
E, is the ideal 3D exciton binding energy.

o ) ] the subband indices. Thus it can be concluded that with in-
cases. The dotted line is the &xciton peak height, when all ¢reasing sample width the off-diagonal Coulomb matrix ele-
subband transitions are taken into account. The dashed linfients cause a gradual transfer of oscillator strength from the
represents the case when the transmission spectrum is Ca'%hergetically higher exciton peaks to the lowestekciton
lated by considering only the lowest subband. Finally, thepeak, see Fig. 6. This is elucidated by Fig. 5, which shows
solid line is the B exciton peak hEIght in the case where thethe “pure” lowest subband 4 exciton p|us continuum for a
wave-propagation equation and the SBE are solved by ingifferent sample thickness. The second and higisezxciton
cluding all subband contributions; however, only the contri-p|ys their continuum are omittegubtractedlin this figure.
butions of the lowest subband to the linear transmission ar¢here is a significant reduction in the continuum of the trans-
plotted. The dashed line in Fig. 3 shows again the impormjssijon spectrum at the positions of the higher subband ex-

tance of including more than one subband for a materiatitons, which is a result of the transfer of oscillator strength
width larger than 15 nm. The difference between the solidyy the Coulomb potential.

and the dotted line indicates how the higher subband contri-" | Fig. 4 we have fol., = 1 nm included a plot of the

The change of the transmission spectrum due to the Coulom@mpje(short-long dashed lineThe difference between the
potential is elucidated by the solid line. The difference be-

tween the solid and dotted line depends to some degree on

the chosen phenomenological decay rate, which determines 0.3
the width of the 5 excitons. The tail of the second and )
higher subband transitions lines increase the lowsstxci-

ton peak height depending on the decay rate and material
width. To illustrate this behavior further, the transmission
spectra for a few material widths corresponding to the dotted
line are shown in Figs. 4 and 6, while a few transmission
spectra corresponding to the solid line are plotted in Fig. 5.
The linear transmission spectra shown in Fig. 4 are for the
material widthL, = 1 nm, 10 nm, 20 nm, and 60 nm. We see
with increasing material width a significant decrease of both
exciton binding energy and peak height.

The decrease in the exciton binding energy and the de-
crease of the exciton peak height is a result of the depen-
dence of the Coulomb potential on the sample thickness. 0.0
However, the inclusion of more than one subband leads to an 6-4-202 46
increase in the exciton binding energy and peak height com- ENERGY [UNITS OF E,]
pared to the calculations where only one subband is consid-
ered. A numerical analysis shows that this increment of the F|G. 6. The linear transmission spectrum for the material thick-
binding energy and the peak height is caused by the Cothess of 40 nn{— - —), 60 nm(- - -), and 80 nm—) E, is the ideal
lomb matrix elements, which are off diagonal with respect to3D exciton binding energy.

LINEAR TRANSMISSION
[ARB. UNITS]
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susceptibility and the linear transmission spectrum verifies
that the inclusion of the propagation effects are important.
We see that the inclusion of the propagation effects result in
a reduction in the & exciton peak height and significant
broadening of the 4 exciton. This corresponds to the radia-
tive damping mechanism for exciton polaritons in low di-
mensional systemtsFurthermore, since the polarization is
space dependent the definition of an effective space indepen-
dent susceptibility is somewhat arbitrary, especially when
more than one subband is needed to describe the optical
properties of the sample.

In Fig. 6 the 2D to 3D transition is indicated by showing
the vanishing oscillator strength of the second and higher
subband § excitons with increasing material thickness. The
change in exciton binding energy for the first subbarsd 1
exciton is small, when increasing the material width from
L, = 40 nm toL, = 80 nm. The peak height is also almost gl ‘
unchanged. However it should be noted that this is due to a -
compensation effect since the change in peak height also -200 0 200 400 600
depends on the linewidth of the higher subbands, which can TIME [fs]
compensate for the peak decrease with increasing thickness.

Nevertheless, the second subband exciton and higher sub- FIG. 7. Plot of the incidentE,,, transmitted,E,,, electrical
band excitons lose a significant amount of oscillator strengthield, and the absolute value of the polarization at the center of the
with increasing material thickness. Thus, the 3D absorptiorsample. The material thicknesslis = 60 nm.

spectrum is expected to be obtained for a thickness where the

second and higher subband éxcitons will have an oscilla- band Is exciton (260 f9. The beating between the second
tor strength comparable to their continuum. and first subband is not seen in the figure since the corre-

The complexity of the Coulomb potential in our approachsponding period is about 688 fs. However, the beating be-
makes it computationally very demanding to study the fulltween the first subband and energetic higher excitons than
transition to the 3D absorption spectrum. One should keep ithe second is visible in the figure as a superposition of oscil-
mind that in this paper we have shown that the transitiondations with different periods and different oscillator
between unequal quantum numbers are negligible when thgirengths weightened by the pulse spectra.
material width is much smaller than the wavelength. How- Figure 8 shows the dynamic evolution of the polarizations
ever, the full transition to the 3D spectrum is expected to

0)1), LN(IE, J),

LN(IE,,|) [ARB. UNITS]

LN(IP(z

occur at a material width comparable with the optical wave- 0
length. In this case the transitions between unequal quantum =
numbers have to be taken into account and the Fourier trans- D+
form of the solution of the wave-propagation equation has to — -
be calculated without any approximations. This will increase 0 4
the computational demands considerably. On the other hand, E B
the studies given above for a thickness smaller than half the % -6 B
wavelength already yield the basic transition mechanisms. 0 -8
T -10-
V. NONSTATIONARY EFFECTS é - \,\f\v\ ~
In the prevoius section we studied how the transition from g.A -12 B i
the 2D to 3D transmission spectrum takes place for different 0\7 -14
sample thicknesses. The spectra contain the information to ~
which extent certain electronic states of the material system E -16
are excited after the light is switched off. However, the same
information is contained as well in the temporal interference -18
of the polarization of different electronic states. In Fig. 7 we o0 Lol L
present a logarithmic plot of the incident and transmitted 2200 0 200400600800
electrical field for the case of a 60 nm sample, where the
input pulse is a hyperbolic-secant-shaped pulse with a full TIME [fs]

width at half maximum(FWHM) of 80 fs. In the figure we

have also included a logarithmic plot of the absolute value of G, 8. The polarization(P™")=(11L?)=,|pl"|?) as function
the polarization at the center of the sample. The transmitteds time after excitation by a pulse with FWHM of 80 fs. The ma-
electrical field and the polarization exhibit a dominant oscil-terial thickness id, = 60 nm. The different curves are for the
lation with a period of 260 fs. This oscillation is due to the subband polarization§P*?) (—), (P?? (- - -), (P33 (--.),
beating of the lowest subband &xciton with the third sub- (P*% (= ), (P9 (- - -), and(P®%) (- - ).
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FIG. 9. The electron density )= (1L?) = .[pg"|?) as func-

tion of the space coordiante after excitation by a pulse with a FIG. 10. The normalized electron density

FWHM of 80 fs. The material thickness s, = 60 nm. The polar-  [(N)=(1/L?)S, ,|pg"|?] as function of the space coordiaztafter

ization is shown for the times-200 fs(—), —80fs (- - -), 0fs  excitation by a pulse with FWHM of 80 fs. All curves have been

(---),80fs(—-),160 fs(— - —), and 240 f{— - -). ap isthe ideal  normalized to a height of one. The material thicknesk,is= 60

3D bohr radius. nm. The polarization is shown for the times200 fs(—), —80 fs
(---),0fs(---), 80 fs(- —), 160 fs(— - —), and 240 fg— - -).

of different subbands. It can be recognized that after they is the ideal 3D bohr radius.

pulse is switched on all states develop according to their

respective oscillator strength and decay after the pulse maxgig, 9 corresponds to the highest oddf} (= 1, 3, 5, .. .)

mum, corresponding to their detuning with respect to theyyantized state, which contributes significantly to the
pulse. Thus, at different times different subbands contribut@|ectron-hole density expectation value. The observation of
to the developm_ent_of the total el_ectron density, because thgn almost homogenous electron density agrees well with the
subband polarizations determine the weight of thecommon approximation that the absorption spectrum is space
z-dependent confinement functions. The expectation value Qhdependent in a semiconductor structure. However, on the
the electron density is given by trailing edge of the optical pulse the picture changes. The
almost spatially homogenous electron density at early times
and the developement of the electronic mode structure can be
understood when we look at the expectation value of the
polarization for the different subband transitions, Fig. 8. The
It should be noted that Eq23) only is valid when the tran- resulting polarization adiabatically follows the optical pulse
sitions between states with unequal quantum number can beore and more. This explains the almost homogenous polar-
neglected. ization at early times. The material “does not know” the
Figure 9 shows the resulting electron density as a functiosspectral width of the exciting pulse, and so all states-
of the space coordinateat the timeT=—200 fs,—80 fs, 0  quencieg are excited by the pulse front. However, with time
fs, 80 fs, 160 fs and 240 fs. The time is measured withthe spectral properties of the exciting pulse become notice-
respect to the pulse peak. The excitation pulse is again chable and the electronic mode structure develops.
sen to be a hyperbolic-secant pulse with a FWHM of 80 fs The solution of the half-space problémshows that the
and the material thickness is 60 nm. Note that the space ax@&ationary electronic mode-structure exhibits a characteristic
has been normalized with respect to the 3D exciton Bohexciton free layer of the order of one bohr radius at the
radius. The figure shows the development of an electroniinterface, the so called dead layer. Figure 10 shows the space
mode structure, which is determined by the length of thedependent electron density near the material interface for dif-
material, similar to the optical mode structure in a laser cavferent times corresponding to the graphs in Fig. 9. However,
ity. We see an almost homogenous electron density in théhe curves in Fig. 10 have been normalized to a peak height
structure with a characteristic peak at the sample center be@f one. The development of an exciton-free layeead
fore the pulse peak has passed through the sample. The pdalgen with time can be observed near the material interface.
at the center of the sample is a result of the early developThe width of the dead layer is fdar, = 60 nm only one-third
ment of an electron mode structure. Not all transitions aref the 3D bohr radius, while the exciton-free lay@ead
equally excited, as seen in Fig 8. The peak at the center ilayen in the half-space problem has a width of approxi-

1
(Ny=122 PR ™). (23
Ny
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mately one bohr radiusThis shows that our results have material thickness, which is an important factor in the theo-
still not reached the ideal 3D case. ries applied for solving the half-space problem.
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the basic effects of how the transition from the 2D to 3D APPENDIX A: THE COULOMB POTENTIAL
regime of semiconductor material takes place. The change of MATRIX ELEMENTS
the 2D transmission spectrum towards the 3D transmission

. . . ; _In this appendix we have written down the expressions for
spectrum is explained by showing the importance of the Offthe Coulomb potential for the different combinations of

diagonal Coulomb potential elements, which increase the ex- Ay ) o
citon binding energy and transfers oscillator strength fromfiu@ntum numbers. Hera, * label the quantized stateg* =

higher Is excitons to the lowest quantized state dxciton. 1, 3, 4, 7, ... , andn* label the quantized states,* = 2,
Furthermore, we see the development of a dead layer with, 6, 8, ... .
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This concludes the presentation of the different Coulomb potential terms.

APPENDIX B: THE WAVE-PROPAGTION SOLUTION

In this appendix we have written down the wave-propagation solution. Iﬁéréabels the quantized stat(aﬁX =1,3,5
7, ... andmiX labels the quantized stateﬁX =2,4,6,8, ...,

a a
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