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Theoretical investigation of the excitonic semiconductor response for varying
material thickness: Transition from quantum well to bulk
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For semiconductor slabs with thicknesses varying from the two-dimensional to the three-dimensional limit
the linear optical response is calculated numerically by solving the semiconductor Maxwell-Bloch equations.
For short-pulse excitation the spatiotemporal dynamics of the electronic mode structure and the development of
exciton-free boundary layers are discussed.
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I. INTRODUCTION

The optical properties of semiconductor materials ha
been investigated in great detail over the last few yea1

Within theses studies it has been shown that the linear o
cal response function~susceptibility! is dominated by bound
electron-hole states~excitons! and the Coulomb enhance
scattering states. However, for the description of an opt
experiment, not only Coulomb but also light propagation
fects play an important role for the calculation of measu
spectra, because incident and transmitted field are relate
the wave equation. So far, Coulomb and propagation eff
are treated self-consistently only for half-space samp
~three-dimensional samples, 3D!2 and for idealized multiple
quantum wells~two-dimensional samples, 2D!.3 For the 3D
case the famous half-space problem has been solved by
and co-workers2 using the coherent wave approach. This a
proach clarified the origin of the exciton-free surface lay
~dead layer! and the role of the electronic boundary cond
tions. On the other hand, the theoretical work in the 2D c
has mainly been done for the case where the low
quantum-confined subband is sufficient to describe the e
tronic properties. This limits the validity of the 2D theory
structures where the quantum-well width is well below t
3D exciton bohr diameter.

The exciton binding energy and oscillator strength
function of material thickness has been calculated by va
tional or perturbation methods. A detailed study of the ex
ton binding energy and oscillator strength for quantum we
with a width up until 20 nm has been made in Ref. 4. Co
cerning the transition from 2D to 3D structures, theories w
fractional-dimensional space,5,6 where the fractional dimen
sion of the exciton is a fitting parameter, have been de
oped. A review of the recent literature is given in the pap
by Zimmermann.7 However, in these studies no relation
were made to the influence of light propagation in a th
slab. Concerning calculations of optical transmission, refl
tion, or absorption spectra this has been done, to our kno
edge, only for the ideal 2D or 3D case, the transition fro
the 2D to the 3D regime, especially nonstationary effe
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such as short-pulse excitation have not been fully inve
gated. Furthermore, most of the papers in this field are
cused on excitons, and less on continuum states. Howe
due to the redistribution of oscillator strength in linear opt
the interplay between exciton and continuum states sho
be important in the 2D to 3D transition, because the
continuum develops from higher 2D subbands.

In this paper, we present theoretical calculations of tra
mission spectra for semiconductor slabs with different thi
nesses by solving the semiconductor Bloch equations~SBE!
in combination with Maxwell’s equations. As a reference w
use the ideal 2D case with one quantized state~subband!.
The transition to the 3D case is then investigated by incl
ing more and more quantized states with increasing mate
width. Similar to the coherent wave approach, the bound
conditions are determined by the electronic wave functio
This method enables us to calculate the transmission s
trum for a finite material width without additional bounda
conditions. Numerical calculations are presented for sam
smaller than the wavelength of light. For the case of opti
excitation with short laser pulses we show how the so ca
exciton dead layer, which is known from a stationary ana
sis in the half-space geometry, develops as a function
time.

II. OBSERVABLES

The quantities of interest in an optical experiment are
spectral transmission,a, or the reflection coefficientR:

a~v!52 lnS I t~v!

I 0~v! D , ~1!

R~v!5S I r~v!

I 0~v! D , ~2!

where I t , I r , I 0 are the transmitted, reflected, and incide
intensity of the transversal fieldET . From such measure
ments, the absorbed irradiancev, i.e., the amount of light per
unit length that stays in the sample, can be calculated fr
7715 © 1997 The American Physical Society
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w~v!5F12S I t~v!

I 0~v! D2S I r~v!

I 0~v! D G . ~3!

In the following we focus mainly on the transmissio
which is directly measurable.

III. BASIC EQUATIONS

To compute the observable quantities, the wave equa
has to be solved to determine the transverse electric
ET :

S ¹22
1

c2
]2

]t2DET5
4p

c0
2

] j

]t
, ~4!

where we implicitely assume that the total currentj is purely
transverse. This is always fulfilled for the plane wave ex
tation considered throughout this paper.c is the speed of
light in the semiconductor andc0 is the speed of light in
vacuum. As is well known, the currentj or the polarization
P is the source term for the electric field.1 Thus, to obtain the
measurable quantities, the equation of motion for the po
ization is needed. The polarization is obtained from

j5
]P

]t
5 K c†

\e

i2m0
¹ rc L 1H.a., ~5!

whereC† andC are the Heisenberg creation and annihi
tion operators, respectively.m0 is the bare electron mass,\
is Planck’s constant, ande is the electronic charge.

As usual, the equations of motion for the Heisenberg c
ation and annihilation operators are determined by the t
Hamiltonian which, besides the free parts, contains the C
lomb interaction of the carriers and the carrier interact
with the light field:

Hel5Ho,el1Hel,l1HI , ~6!

H0,el5E d3xc†~rW !S 2
\2

2m0
D1VL~rW !1Vc~rW ! Dc~r !,

~7!

Hel,l5*d3r c†~rW !S 2
\e

im0c0
AW ~rW,t !¹W Dc~rW !, ~8!

HI5
1

2E d3r d3r 8c†~rW !c†~rW8!V~rW2rW8!c~rW8!c~rW !. ~9!

Here Ho,el is free carrier Hamiltonian, which contains th
kinetic energy, the lattice potential, and the confinement
tential including the boundary conditions at the interfac
between the sample and the outside world.Hel,l is the
carrier-light interaction Hamiltonian andHI is the Hamil-
tonian of the carrier-carrier Coulomb interaction.AW (rW,t) is
the transversal vector potential andrW is the three-dimensiona
space coordinate,rW5(x,y,z)5(rW ,z). The Coulomb poten-
tial, V(rW) is in CGS units,

V~rW8!5
e2

«0urW8u
, ~10!
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where«0 is the screening of the Coulomb potential due
off-resonant transitions. To study the basic effects of the
to 3D transition we only consider the ideal condition, whe
the potentialVC which confines the electrons in one directio
of the sample is infinite,

Vc~z!5H 0 when uzu,
Lz
2

` when uzu.
Lz
2
,

~11!

whereLz is the total width of the sample. Effects of a finit
confinement potential on the optical susceptibility are d
cussed, e.g., in Ref. 4.

The tranverse electrical fieldET is determined by the vec
tor potentialAW (rW),

EW T52
1

c0

]AW ~r ,tW !

]t
'
ivL

c0
AW ~rW,t !, ~12!

where in the following the slowly varying envelope and r
tating wave approximation is applied.

To obtain the polarization, which is the source term in t
wave equation, the Heisenberg creation and annihilation
erators are expanded in terms of the eigenfunctions of
free particle Hamiltonian because it is more conventient
our approach to solve the equations of motion in moment
space:

c†~rW !5 (
kW ,n,l

akW ,n,l
† e2 ikW•rW

L
f n,l* ~z!ul* ~kW ,rW !, ~13!

c~rW !5 (
kW ,n,l

akW ,n,l
eik

W
•rW

L
f n,l~z!ul~kW ,rW !. ~14!

Here,l5c,v denotes either the conduction or valence ba
respectively.kW is the in-plane momentum,ul is the Bloch
function, andL2Lz represents the volume of the crystal wi
L2 being the area of the well. The quantum number of
subband is labeled by the indexn. akW ,n,l is the electron an-
nihilation operator andakW ,n,l

† is the electron creation operato

of a Bloch electron with the quantum numberskW , n, l, re-
spectively. Thez dependence of the wave functionf n,l* (z) is
for the quantum numbersn 5 1, 3, 5, 7, . . . ,

f n,l~z!5HA 2

Lz
cosS n p

Lz
zD when uzu<

Lz
2

0 when uzu>
Lz
2
,

~15!

and forn 5 2, 4, 6, 8, . . .

f n,l~z!5HA 2

Lz
sinS n p

Lz
zD when uzu<

Lz
2

0 when uzu>
Lz
2
.

~16!
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The Heisenberg equation of motion for the electron o
erators yields within linear optical response theory,

]p
kW
n1
v ,n2

c

]t
52 i ~v

kW
n1
v ,n2

c

2 ig!p
kW
n1
v ,n2

c

1
i

\
dcvEkW

n1
v ,n2

c

1
i

\ (
qW Þ0W ,q1

v ,q2
c
p
kW2qW
q1
v ,q2

c

V
qW
n2
c ,q1

v ,n1
v ,q2

c

, ~17!

wherev
k

n1
v ,n2

c

5v
k

n2
c

2v
k

n1
v

2vL is the transition renormalized
-frequency of the quantized states in the slowly varying
velope approximation, g is a phenomenologically

introduced decay rate of the polarization function (p
kW
n1
v ,n2

c

5^akW ,n1 ,v
†

akW ,n2 ,c&), and dcv is the dipole moment.nx
l and

qx
l are quantum numbers of the quantized states andqW is an
in-plane momentum vector. Since we are interested only
the optical spectra we have neglected terms that are at

uted to intraband transitions.V
qW
n2
c ,q1

v ,n1
v ,q2

c

is the unscreened

Coulomb potential, which fornx
lx 5 1, 3, 5, 7, . . . is given as
q.

uctors

for

an only

omain

l field
V
qW

n
1

l1 ,n
2

l2 ,n
3

l3 ,n
4

l4

5
2pe2

L2e0q

2

p2 S qLzp D 2~e2qLz21!F cosS ~n2
l22n3

l3!
p

2 D
S qLzp D 21~n2

l22n3
l3!2

1

cosS ~n2
l21n3

l3!
p

2 D
S qLzp D 21~n2

l21n3
l3!2

G
3F cosS ~n1

l12n4
l4!

p

2 D
S qLzp D 21~n1

l12n4
l4!2

1

cosS ~n1
l11n4

l4!
p

2 D
S qLzp D 21~n1

l11n4
l4!2

G1
2pe2

L2e0q

1

p
q
Lz
p

1

S qLzp D 21~n2
l22n3

l3!2

3@dn
1

l12n
4

l4 ,n
2

l22n
3

l3~11dn
1

l12n
4

l4,0!1dn
1

l11n
4

l4 ,n
2

l22n
3

l3#1
2pe2

L2e0q

1

p
q
Lz
p

1

S qLzp D 21~n2
l21n3

l3!2

3~dn
1

l12n
4

l4 ,n
2

l21n
3

l31dn
1

l11n
4

l4 ,n
2

l21n
3

l3!, where q5uqW u. ~18!

The expression for the Coulomb potential for other combinations of quantum numbers is similar to the one given in E~18!.
A full listing of the Coulomb potential is given in Appendix A.

The coupling to the light field is treated semiclassically and enters throughE
kW
n1
v ,n2

c

,

E
kW
n1
v ,n2

c

5E
2Lz/2

Lz/2

dz fn
1
v* ~z!ET~z! f n

2
c~z!, ~19!

whereET(z) is determined by solving the wave equation. Often, in the description of optical experiments with semicond
it is assumed that optical absorption occurs between quantized states with an equal quantum numbern15n2. This approxi-

mation assumes that the electric field is not or weakly space dependent. However, as we see from the expressionE
kW
n1
v ,n2

c

transitions between states with unequal quantum number are allowed for spatially varying fields. In general, one c
neglect the transitions between quantized states with unequal quantum number, as long as the material width (Lz) is much

shorter than the wavelength of the exciting pulse. This case yieldsE
kW
n1
v ,n2

c

;dn
1
v ,n

2
c.

Assuming the incoming light field to consist of plane waves, we can solve Maxwell’s equation in the frequency d

analytically. Again we only give the solution for the quantum numbersnx
lx 5 1, 3, 5, 7, . . .~a full listing of the solution is

given in Appendix B!,

E
T

n1
v ,n2

c

~z,v!5
4p

Lz

c2

c0
2dcvPn

1
v ,n

2
c~v!•S cosS ~n1

v2n2
c!

p

Lz
zD

~n1
v2n2

c!2
p2c2

Lz
2v2 21

1

cosS ~n1
v1n2

c!
p

Lz
zD

~n1
v1n2

c!2
p2c2

Lz
2v2 21

D
1tn

1
v ,n

2
c~v!ei ~v/c!z1r n

1
v ,n

2
c~v!e2 i ~v/c!z. ~20!

Here,tn
1
v ,n

2
c andr n

1
v ,n

2
c are functions, which have to be determined by applying the boundary conditions for the electrica

at the interfaces~continuity of field and first derivative!. The polarizationPn
1
v ,n

2
c is defined as
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Pn
1
v ,n

2
c5

1

L2(kW
p
kW
n1
v ,n2

c

. ~21!

Using the boundary conditions, the electric field can be determined to be~index matched structure!

ET~z,v!5Eine
ikzz22p

v

c

c2

c0
2dcv

eikz~Lz/2!

kz
Lz
2

eikzz1e2 ikzz

2 (
n1
v ,n2

c
Pn

1
v ,n

2
c~v!S cosS ~n1

v2n2
c!

p

2 D
~n1

v2n2
c!2

p2c2

Lz
2v2 21

1

cosS ~n1
v1n2

c!
p

2 D
~n1

v1n2
c!2

p2c2

Lz
2v2 21

D
12p

v

c

c2

c0
2dcv

1

kz
Lz
2

(
n1
v ,n2

c
Pn

1
v ,n

2
c~v!S cosS ~n1

v2n2
c!

p

Lz
zD

~n1
v2n2

c!2
p2c2

Lz
2v2 21

1

cosS ~n1
v1n2

c!
p

LZ
zD

~n1
v1n2

c!2
p2c2

Lz
2v2 21

D
22p

v

c

c2

c0
2dcv

eikz~Lz/2!

kz
Lz
2

eikzz1e2 ikzz

2 (
m1
v ,m2

c
Pm

1
v ,m

2
c~v!S cosS ~m1

v2m2
c!

p

2 D
~m1

v2m2
c!2

p2c2

Lz
2v2 21

2

cosS ~m1
v1m2

c!
p

2 D
~m1

v1m2
c!2

p2c2

Lz
2v2 21

D
12p

v

c

c2

c0
2dcv

1

kz
Lz
2

(
m1
v ,m2

c
Pm

1
v ,m

2
c~v!S cosS ~m1

v2m2
c!

p

Lz
zD

~m1
v2m2

c!2
p2c2

Lz
2v2 21

2

cosS ~m1
v1m2

c!
p

LZ
zD

~m1
v1m2

c!2
p2c2

Lz
2v2 21

D
12p

v

c

c2

c0
2dcv

eikz~Lz/2!

kz
Lz
2

eikzz1e2 ikzz

2 (
m1
v ,n2

c
Pm

1
v ,n

2
c~v!S sinS ~m1

v2n2
c!

p

2 D
~m1

v2n2
c!2

p2c2

Lz
2v2 21

1

sinS ~m1
v1n2

c!
p

2 D
~m1

v1n2
c!2

p2c2

Lz
2v2 21

D
12p

v

c

c2

c0
2dcv

1

kz
Lz
2

(
m1
v ,n2

c
Pm

1
c ,n

2
v~v!S sinS ~m1

v2n2
c!

p

Lz
zD

~m1
v2n2

c!2
p2c2

Lz
2v2 21

1

sinS ~m1
v1n2

c!
p

LZ
zD

~m1
v1n2

c!2
p2c2

Lz
2v2 21

D
12p

v

c

c2

c0
2dcv

eikz~Lz/2!

kz
Lz
2

eikzz1e2 ikzz

2 (
n1
v ,m2

c
Pn

1
v ,m

2
c~v!S sinS ~m2

c2n1
v!

p

2 D
~m2

c2n1
v!2

p2c2

Lz
2v2 21

1

sinS ~n1
v1m2

c!
p

2 D
~n1

v1m2
c!2

p2c2

Lz
2v2 21

D
12p

v

c

c2

c0
2dcv

1

kz
Lz
2

(
n1
v ,m2

c
Pn

1
v ,m

2
c~v!S sinS ~m2

c2n1
v!

p

Lz
zD

~m2
c2n1

v!2
p2c2

Lz
2v2 21

1

sinS ~n1
v1m2

c!
p

LZ
zD

~n1
v1m2

c!2
p2c2

Lz
2v2 21

D . ~22!
-
ne
th

do-
he
ne
tical

a-
sta-
p-
Here, nx
l labels the quantized states 1, 3, 5, . . . andmx

l

labels the quantized states 2, 4, 6,. . . . v is the optical
carrier frequency, andkz5v/c. Ein is the electrical field of
the incoming light field.

The termE
kW
n1
v ,n2

c

is now calculated by inserting Eq.~22!

into Eq.~19!. Equation~17! can be solved to yield the polar
izations of the different transitions which in turn determi
the transversal energy field and thus the transmission. In
 is

way, linear spectra can be calculated in the frequency
main. Our approach uses a time domain integration. T
transformation of the energy field to the time domain is do
by assuming the spectral frequency to be equal to the op
carrier frequencyvL , which is an approximation similar to
the slowly varying envelope approximation. This approxim
tion allows us to calculate short-pulse excitation and non
tionary effects very efficiently. Note however that this a
proximation breaks down at (n1

v6n2
c)(p2c2/Lz

2vL
2)2150.
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In this case the sample thickness is a multiple ofl/2. So, in
the following we will restrict our investigation to the cas
whereLz,l/2. However, we expect to obtain the basic fe
tures of the 2D to 3D transition to take place befo
Lz'l/2.

IV. STATIONARY TRANSMISSION SPECTRA

In the following stationary transmission spectra for t
case of GaAs are presented. The relative electron (mc /m0),
relative hole mass (mv /m0), the refractive indexng , and the
phenomenological dephasing rateg used in our calculations
are given in Table I.m0 is the free electron mass.

In Fig. 1 a comparison of transmission spectra includ
and neglecting nondiagonal subband transitions in the in
action matrix Eq.~19! is given. The figure confirms that fo
a sample width smaller than the wavelength of light the
fluence of the nondiagonal terms is indeed negligible.

In the following we restrict our analysis to sampl
smaller than the wavelength of light where the neglection
transitions between states with different subband quan
numbers is an excellent approximation. In Fig. 2 we sh
the exciton binding energy obtained from the transmiss
spectrum as a function of the material thicknessLz . For
comparison we have included the curve for the exciton bi

TABLE I. Parameter values for GaAs.

Symbol Unit Value

mv m0 0.3770
mc m0 0.0655
ng 3.6786
a0 Å 128
gk s21 231012

dcv (e) Å e 7.2

FIG. 1. The linear transmission spectrum forLz 5 10 nm, where
the off-diagonal transisions are included~—! and when the off-
diagonal transisions are neglected (•••). Two subbands must be
included in the calculations.E0 is the ideal 3D exciton binding
energy.
-

g
r-

-

f
m

n

-

ing energy, if only one quantized state is considered. We
that one quantized state is only sufficient to describe
exciton binding energy, as long as the quantum well width
less than 15 nm, which is about 1.25 times the 3D b
radius. Furthermore, we see that the ideal 2D exciton bind
energy only is obtained for a material width of less than
nm, while the ideal 3D exciton binding energy is almo
reached forLz 5 80 nm.

Figure 3 shows the peak height of the lowest subba
1s exciton in the transmission spectrum for three differe

FIG. 2. The binding energy of the 1s exciton for GaAs as a
function of the material thicknessLz , ~—!. ~- - -! 1s exciton bind-
ing energy, when only one quantized state is considered.E0 is the
ideal 3D exciton binding energy.

FIG. 3. The 1s exciton peak height in the linear transmissio
spectrum as a function of the material thickness (•••) and the peak
height, if only one quantized state is included~- - -!. The solid line
shows the lowest subband contribution to the peak height, whe
quantized states are included.
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cases. The dotted line is the 1s exciton peak height, when a
subband transitions are taken into account. The dashed
represents the case when the transmission spectrum is c
lated by considering only the lowest subband. Finally,
solid line is the 1s exciton peak height in the case where t
wave-propagation equation and the SBE are solved by
cluding all subband contributions; however, only the con
butions of the lowest subband to the linear transmission
plotted. The dashed line in Fig. 3 shows again the imp
tance of including more than one subband for a mate
width larger than 15 nm. The difference between the so
and the dotted line indicates how the higher subband co
butions increase the peak height of the first subband exc
The change of the transmission spectrum due to the Coul
potential is elucidated by the solid line. The difference b
tween the solid and dotted line depends to some degre
the chosen phenomenological decay rate, which determ
the width of the 1s excitons. The tail of the second an
higher subband transitions lines increase the lowest 1s exci-
ton peak height depending on the decay rate and mat
width. To illustrate this behavior further, the transmissi
spectra for a few material widths corresponding to the do
line are shown in Figs. 4 and 6, while a few transmiss
spectra corresponding to the solid line are plotted in Fig
The linear transmission spectra shown in Fig. 4 are for
material widthLz 5 1 nm, 10 nm, 20 nm, and 60 nm. We s
with increasing material width a significant decrease of b
exciton binding energy and peak height.

The decrease in the exciton binding energy and the
crease of the exciton peak height is a result of the dep
dence of the Coulomb potential on the sample thickne
However, the inclusion of more than one subband leads t
increase in the exciton binding energy and peak height c
pared to the calculations where only one subband is con
ered. A numerical analysis shows that this increment of
binding energy and the peak height is caused by the C
lomb matrix elements, which are off diagonal with respect

FIG. 4. The linear transmission spectrum for the material thi
ness of 1 nm~—!, 10 nm ( . . . ), 20 nm~- - -!, and 60 nm~- • -!.
The imaginary part ofx(v,z50) is plotted forLz 5 1 nm ~– - –!.
E0 is the ideal 3D exciton binding energy.
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the subband indices. Thus it can be concluded that with
creasing sample width the off-diagonal Coulomb matrix e
ments cause a gradual transfer of oscillator strength from
energetically higher exciton peaks to the lowest 1s exciton
peak, see Fig. 6. This is elucidated by Fig. 5, which sho
the ‘‘pure’’ lowest subband 1s exciton plus continuum for a
different sample thickness. The second and higher 1s exciton
plus their continuum are omitted~subtracted! in this figure.
There is a significant reduction in the continuum of the tra
mission spectrum at the positions of the higher subband
citons, which is a result of the transfer of oscillator streng
by the Coulomb potential.

In Fig. 4 we have forLz 5 1 nm included a plot of the
imaginary part of the susceptibility at the center of t
sample~short-long dashed line!. The difference between th

-

FIG. 5. The linear transmission spectrum for the material thi
ness of 10 nm~—!, 40 nm ( . . . ), and 60 nm~- • -!. The propaga-
tion equation and SBE are solved by inclusion of higher subban
The linear transmission is calculated by only considering the low
subband.E0 is the 3D exciton binding energy.

FIG. 6. The linear transmission spectrum for the material thi
ness of 40 nm~– • –!, 60 nm~- - -!, and 80 nm~—! E0 is the ideal
3D exciton binding energy.
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susceptibility and the linear transmission spectrum veri
that the inclusion of the propagation effects are importa
We see that the inclusion of the propagation effects resu
a reduction in the 1s exciton peak height and significan
broadening of the 1s exciton. This corresponds to the radi
tive damping mechanism for exciton polaritons in low d
mensional systems.3 Furthermore, since the polarization
space dependent the definition of an effective space inde
dent susceptibility is somewhat arbitrary, especially wh
more than one subband is needed to describe the op
properties of the sample.

In Fig. 6 the 2D to 3D transition is indicated by showin
the vanishing oscillator strength of the second and hig
subband 1s excitons with increasing material thickness. T
change in exciton binding energy for the first subbands
exciton is small, when increasing the material width fro
Lz 5 40 nm toLz 5 80 nm. The peak height is also almo
unchanged. However it should be noted that this is due
compensation effect since the change in peak height
depends on the linewidth of the higher subbands, which
compensate for the peak decrease with increasing thickn
Nevertheless, the second subband exciton and higher
band excitons lose a significant amount of oscillator stren
with increasing material thickness. Thus, the 3D absorp
spectrum is expected to be obtained for a thickness where
second and higher subband 1s excitons will have an oscilla-
tor strength comparable to their continuum.

The complexity of the Coulomb potential in our approa
makes it computationally very demanding to study the f
transition to the 3D absorption spectrum. One should kee
mind that in this paper we have shown that the transiti
between unequal quantum numbers are negligible when
material width is much smaller than the wavelength. Ho
ever, the full transition to the 3D spectrum is expected
occur at a material width comparable with the optical wa
length. In this case the transitions between unequal quan
numbers have to be taken into account and the Fourier tr
form of the solution of the wave-propagation equation has
be calculated without any approximations. This will increa
the computational demands considerably. On the other h
the studies given above for a thickness smaller than half
wavelength already yield the basic transition mechanism

V. NONSTATIONARY EFFECTS

In the prevoius section we studied how the transition fr
the 2D to 3D transmission spectrum takes place for differ
sample thicknesses. The spectra contain the informatio
which extent certain electronic states of the material sys
are excited after the light is switched off. However, the sa
information is contained as well in the temporal interferen
of the polarization of different electronic states. In Fig. 7 w
present a logarithmic plot of the incident and transmit
electrical field for the case of a 60 nm sample, where
input pulse is a hyperbolic-secant-shaped pulse with a
width at half maximum~FWHM! of 80 fs. In the figure we
have also included a logarithmic plot of the absolute value
the polarization at the center of the sample. The transmi
electrical field and the polarization exhibit a dominant osc
lation with a period of 260 fs. This oscillation is due to th
beating of the lowest subband 1s exciton with the third sub-
s
t.
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band 1s exciton ~260 fs!. The beating between the secon
and first subband is not seen in the figure since the co
sponding period is about 688 fs. However, the beating
tween the first subband and energetic higher excitons t
the second is visible in the figure as a superposition of os
lations with different periods and different oscillato
strengths weightened by the pulse spectra.

Figure 8 shows the dynamic evolution of the polarizatio

FIG. 7. Plot of the incident,Ein , transmitted,Etra , electrical
field, and the absolute value of the polarization at the center of
sample. The material thickness isLz 5 60 nm.

FIG. 8. The polarization (̂Pn,n&5(1/L2)(kupk
n,nu2) as function

of time after excitation by a pulse with FWHM of 80 fs. The m
terial thickness isLz 5 60 nm. The different curves are for th
subband polarizationŝP1,1& ~—!, ^P2,2& ~- - -!, ^P3,3& (•••),
^P4,4& ~– –!, ^P5,5& ~– • –!, and^P6,6& ~– - –!.
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of different subbands. It can be recognized that after
pulse is switched on all states develop according to th
respective oscillator strength and decay after the pulse m
mum, corresponding to their detuning with respect to
pulse. Thus, at different times different subbands contrib
to the development of the total electron density, because
subband polarizations determine the weight of
z-dependent confinement functions. The expectation valu
the electron density is given by

^N&5
1

L2(k,n1
uPk

n1 ,n1u2. ~23!

It should be noted that Eq.~23! only is valid when the tran-
sitions between states with unequal quantum number ca
neglected.

Figure 9 shows the resulting electron density as a func
of the space coordinatez at the timeT52200 fs,280 fs, 0
fs, 80 fs, 160 fs and 240 fs. The time is measured w
respect to the pulse peak. The excitation pulse is again
sen to be a hyperbolic-secant pulse with a FWHM of 80
and the material thickness is 60 nm. Note that the space
has been normalized with respect to the 3D exciton B
radius. The figure shows the development of an electro
mode structure, which is determined by the length of
material, similar to the optical mode structure in a laser c
ity. We see an almost homogenous electron density in
structure with a characteristic peak at the sample center
fore the pulse peak has passed through the sample. The
at the center of the sample is a result of the early deve
ment of an electron mode structure. Not all transitions
equally excited, as seen in Fig 8. The peak at the cente

FIG. 9. The electron density (^N&5(1/L2)(k,nupk
n,nu2) as func-

tion of the space coordiantez after excitation by a pulse with a
FWHM of 80 fs. The material thickness isLz 5 60 nm. The polar-
ization is shown for the times2200 fs ~—!, 280 fs (• • •), 0 fs
~- - -!, 80 fs~– –!, 160 fs~– • –!, and 240 fs~– - –!. a0 is the ideal
3D bohr radius.
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Fig. 9 corresponds to the highest odd (nx
l 5 1, 3, 5, . . .!

quantized state, which contributes significantly to t
electron-hole density expectation value. The observation
an almost homogenous electron density agrees well with
common approximation that the absorption spectrum is sp
independent in a semiconductor structure. However, on
trailing edge of the optical pulse the picture changes. T
almost spatially homogenous electron density at early tim
and the developement of the electronic mode structure ca
understood when we look at the expectation value of
polarization for the different subband transitions, Fig. 8. T
resulting polarization adiabatically follows the optical pul
more and more. This explains the almost homogenous po
ization at early times. The material ‘‘does not know’’ th
spectral width of the exciting pulse, and so all states~fre-
quencies! are excited by the pulse front. However, with tim
the spectral properties of the exciting pulse become not
able and the electronic mode structure develops.

The solution of the half-space problem2 shows that the
stationary electronic mode-structure exhibits a character
exciton free layer of the order of one bohr radius at t
interface, the so called dead layer. Figure 10 shows the s
dependent electron density near the material interface for
ferent times corresponding to the graphs in Fig. 9. Howev
the curves in Fig. 10 have been normalized to a peak he
of one. The development of an exciton-free layer~dead
layer! with time can be observed near the material interfa
The width of the dead layer is forLz 5 60 nm only one-third
of the 3D bohr radius, while the exciton-free layer~dead
layer! in the half-space problem has a width of appro

FIG. 10. The normalized electron densi
@^N&5(1/L2)(k,nupk

n,nu2# as function of the space coordiantez after
excitation by a pulse with FWHM of 80 fs. All curves have bee
normalized to a height of one. The material thickness isLz 5 60
nm. The polarization is shown for the times2200 fs ~—!, 280 fs
(•••), 0 fs ~- - -!, 80 fs ~– –!, 160 fs~– • –!, and 240 fs~– - –!.
a0 is the ideal 3D bohr radius.
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mately one bohr radius.2 This shows that our results hav
still not reached the ideal 3D case.

VI. SUMMARY

In summary we have derived the equations for the opt
properties of an arbitrary thick semiconductor sample,
cluding Coulomb and light propagation effects. For sam
thicknesses less than half the wavelength we have desc
the basic effects of how the transition from the 2D to 3
regime of semiconductor material takes place. The chang
the 2D transmission spectrum towards the 3D transmis
spectrum is explained by showing the importance of the
diagonal Coulomb potential elements, which increase the
citon binding energy and transfers oscillator strength fr
higher 1s excitons to the lowest quantized state 1s exciton.
Furthermore, we see the development of a dead layer
l
-
e
ed

of
n
f-
x-

th

material thickness, which is an important factor in the the
ries applied for solving the half-space problem.
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APPENDIX A: THE COULOMB POTENTIAL
MATRIX ELEMENTS

In this appendix we have written down the expressions
the Coulomb potential for the different combinations
quantum numbers. Here,nx

lx label the quantized statesnx
lx 5

1, 3, 4, 7, . . . , andmx
lx label the quantized statesmx

lx 5 2,
4, 6, 8, . . . .
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l1 ,n
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This concludes the presentation of the different Coulomb potential terms.

APPENDIX B: THE WAVE-PROPAGTION SOLUTION

In this appendix we have written down the wave-propagation solution. Here,nx
lx labels the quantized statesnx

lx 5 1, 3, 5,

7, . . . andmx
lx labels the quantized statesmx

lx 5 2, 4, 6, 8, . . . ,
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