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Generalized thermodynamic potentials for mesoscopic conductors in the presence of transport
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ABB Corporate Research, CH-5405 Baden-Da¨ttwil, Switzerland

~Received 23 September 1996!

It is shown that the nonequilibrium steady state of a phase-coherent conductor can be described by a
generalized thermodynamic potential based on the concept of partial densities of states. This is possible due to
the fact that dissipation takes place only in the contacts for the emitted carriers. Long-range Coulomb inter-
action is included, and charge conservation and gauge invariance are satisfied. The theory is illustrated for a
mesoscopic capacitor with leakage.@S0163-1829~97!05611-7#
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The density of states~DOS! is the basic quantity from
which equilibrium thermodynamic properties of a system
derived. Once the DOS is known, one can construct an
propriate thermodynamic potential which has to be mi
mized in order to find the equilibrium state. Due to a produ
tion of entropy in driven systems, on the other han
nonequilibrium states can in general not be obtained by m
mizing a thermodynamic potential. In this work I show, ho
ever, that generalized thermodynamic potentials still exis
mesoscopic conductors1 in the presence of transport, pro
vided that dissipation takes place only in the reservoirs.2 In
order to treat the nonequilibrium case, the concept of
DOS is generalized by introducingpartial densities of states3

which contain the information from whose reservoir the p
ticles are injected. According to Bu¨ttiker,3 the specific partial
DOS used below are calledinjectivities. The injectivities
play an important role in the theory of time-dependent a
nonlinear electrical transport in mesoscopic conductors3–5

One can show that the injectivities are related to the dw
time of the particles in the conductor.6,7 The injectivities ap-
pear naturally within the scattering approach to conducti
and can be expressed in terms of a scattering matrix.3 Equi-
librium thermodynamics in terms of scattering matrices h
been formulated in a different context by Dashen, Ma, a
Burnstein.8 Avishai and Band9 discussed the relation be
tween the scattering matrix and the total DOS of a o
dimensional system.

This paper is organized as follows. First, the definition
the injectivities is recalled for a system of noninteracti
particles. Second, the generalized thermodynamic poten
including the Coulomb interaction, is constructed for
phase-coherent multiterminal conductor. The charge dis
bution is then determined by a minimization of this potenti
Finally, the formalism is applied to a symmetric capaci
with tunneling between the capacitor plates, and it is sho
that the result is in accordance with Ref. 5.

Consider a phase-coherent conductor connected via
tacts to reservoirsa51, . . . ,N of noninteracting electrons
Such a conductor is characterized by a unitary single-par
scattering matrix which can be decomposed into submatr
sab . The indicesa andb label contacts, and the dimension
of the submatrices are equal to the numbers of channe
the associated contacts. The first and second indices ofsab
correspond to outgoing and incoming particles, respectiv
The scattering matrix is a function of the energyE of the
550163-1829/97/55~12!/7606~3!/$10.00
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scattered particle, and is a functional of the single-parti
potentialeU(x), wheree is the electron charge andU(x) is
the electric potential. Denoting the trace of a matrix by T
one can write the transmission probability of a carrier fro
contactb to contacta asTab5Tr(sab

† sab). The reflection
probability at contacta is Ra5Tr(saa

† saa). At thermody-
namic equilibrium, the response of the particle density t
variation of the Fermi energy is characterized by the lo
DOS, which can be expressed in terms of the scattering
trix elements and its functional derivatives with respect
the potential,3,7

dn~x!

dE
52

1

4p i(ab
TrS sab

† dsab

edU~x!
2

dsab
†

edU~x!
sabD . ~1!

Equation~1! can be interpreted as the sum ofinjectivities3

dn~x,b!

dE
52

1

4p i(a TrS sab
† dsab

edU~x!
2

dsab
†

edU~x!
sabD ,

~2!

which are the partial DOS’s associated with particles injec
at contactb. In a nonequilibrium situation where the ele
trochemical potentialdmb in a single reservoir is changed
the response of the particle density is given
dn(x)5„dn(x,b)/dE…dmb . A decomposition of the loca
DOS into injectivities leads to the following picture. Th
total sample is decomposed intoN subsystems. Subsystem
b consists of all those scattering states which are associ
with particles injected at contactb. The local DOS of sub-
systemb is given by the injectivitydn(x,b)/dE. In a non-
equilibrium steady state, these states are filled as if s
systemb were in equilibrium with reservoirb. Dissipation
takes place in the reservoirs only for the outgoing particl
which are thermalized to the Fermi distribution of this res
voir. As long as scattering in the conductor is elastic, dis
pation does not affect the states inside the sample.

For simplicity, I assume zero temperature, and conside
discretized version of a mesoscopic conductor. Importan
all nearby conductors and gates are included in this mo
The whole system consists of regionsVk (k51, . . . ,M )
with electrostatic potentialsUk , chargesqk , and injectivities
Dka . For later convenience, the injectivities are written
the form
7606 © 1997 The American Physical Society
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Dka5e2E
Vk

d3x
dn~x,a!

dE
, ~3!

which have the dimension of a capacitance. The local D
of a single regionVk and the total DOS of the sample a
Dk5(aDka and D5(kaDka , respectively. IfeVa

(eq) de-
notes the equilibrium electrochemical potential of reserv
a, the part of the charge on conductork which is injected
from contacta for a variationDVa5Va2Va

(eq) of the volt-
age becomes

qka5E
Va

~eq!

Va
dVDka~V!. ~4!

The total charge inVk is qk5(aqka . The energyED of the
noninteracting system is given by the sum of the energ
over all single-particle states

ED5(
ka

E
Va

~eq!

Va
dVVDka~V!, ~5!

where the energy scale is defined such that the equilibr
system has zero energy,ED

(eq)50. After an expansion of Eqs
~4! and ~5! to second order inDVa , one can eliminate
DVa, and express the energy as a function of the par
chargesqka ,

ED~$qka%!5(
k,a

~Va
~eq!qka1 1

2 Dka
21qka

2 !. ~6!

In order to include the long-range Coulomb interaction, it
convenient to introduce a geometric capacitance matrixCkl
for the regionsVk , which is determined by the Poisso
equation. An arbitrary charge distribution$ql% induces elec-
trostatic potential shiftsUk given by

Uk5(
l51

N

Ckl
21ql1U0 . ~7!

Note that a global voltage shiftU0 is always a solution of the
Poisson equation. The Coulomb energy of the charge di
bution is thus

EC~$qka%!5 1
2 (
ka lb

qkaCkl
21qlb1U0(

ka
qka . ~8!

At zero temperature, the free energy is equal to the t
energy of the closed system, and is given by the sum of
kinetic energyED and the Coulomb energyEC ,

E~$qka%!5(
ka

~U01Va
~eq!!qka1 1

2 (
ka lb

qkaC̃ka lb
21 qlb ,

~9!

where the following matrix is introduced:

C̃ka lb
21 5Dka

21dkldab1Ckl
21 . ~10!

Since the open system is appropriately described by
grand-canonical ensemble, the potential which must be m
mized is
S

ir

s

m

al

ri-

al
e

e
i-

E~$qka%!2(
ka

Vaqka[min. ~11!

Variation with respect to the chargesqka yields finally a set
of M3N equations,

(
lb

C̃ka lb
21 qlb5DVa2U0 , ~12!

whereDVa5Va2Va
(eq) corresponds to the~electrochemical!

voltage shift in contacta. The still free global shiftU0 of the
electric potential is determined by the additional condition
charge conservation,

(
ka

qka50. ~13!

ThusU0 can be interpreted as a Lagrange parameter ass
ated with condition~13!. Charge conservation is a gener
property of a complete set of conductors connected to e
tron reservoirs, since electric fields are fully screened in
reservoirs.3 In order to solve Eq.~12! for qka , the matrix
C̃ka lb is introduced as the inverse matrix ofC̃ka lb

21 . Note that
this quadratic matrix acts onM3N-dimensional vectors
qka ~see also the example below!. Combination of Eqs.~12!
and ~13! yields

U05

(
ka lb

C̃ka lbDVb

(
ka lb

C̃ka lb

. ~14!

Once the partial chargesqka are known, one can calculat
the electrochemical capacitance which relates the st
charge distributionqk5(aqka to the voltage shiftsDVa in
the contacts,

Cm,la5
]ql

]DVa
5

(
kbmgnd

~C̃lbkaC̃mgnd2C̃lbndC̃mgka!

(
mgnd

C̃mgnd

.

~15!

The nonequilibrium electric potential follows from Eq.~14!
and the charge distribution with the help of Eq.~7!.

An important consequence of charge conservation is
the electrochemical capacitance matrix satisfi
( lCm,la50.3 Additionally, the result is gauge invarian
(aCm,la50,3 i.e., it does not depend on a global voltag
shift. The global voltage shift is absorbed by the const
U0, and does not change the total energy of the system, s
the total charge vanishes.

As a simple example, consider a symmetric two-termi
capacitor with tunneling between the capacitor plates~leak-
age!. Assume a single one-dimensional open channel wit
transmission probabilityT512R. Equivalently, this system
describes a symmetric quantum-point contact with a sin
open channel, or a one-dimensional conductor containin
symmetric impurity. This system has already been discus
in Ref. 5 in the context of time-dependent transport. I sh
that the thermodynamic treatment introduced in this work
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in accordance with the results of Ref. 5. Within a semicl
sical approximation, the injectivity from reservoir 2 to pla
1 is proportional to one-half of the DOS,D1 (5D2), of plate
1, and to the transmission probabilityT. The factor12 occurs
since only particles with a velocity in direction to contact
contribute to this partial DOS. Due to symmetr
D125D215D1T/2 holds, which impliesD115D22 5D1

2D12 5D1(12T/2).5,7 The diagonal elementsA[C11
21

5C22
21 and the off-diagonal elementsB[C12

215C21
21 of the

inverse geometrical capacitance matrix are given
A5C11/(C11

2 2C12
2 ) and B52C12/(C11

2 2C12
2 ). The effec-

tive ~charge conserving! geometric capacitanceC0 between
the two capacitor plates is given byC05(C112C12)/2. In
order to represent the matrixC̃ka lb in a simple way, it is
convenient to abbreviateK15D11

211A and K25D12
211A.

Equations~12! then read

S K1 A B B

B B K2 A

A K2 B B

B B A K1

D S q11q12

q21

q22

D 5S DV12U0

DV12U0

DV22U0

DV22U0

D . ~16!

By taking charge conservation@Eq. ~13!# into account, these
equations can be solved forqka . From the charge
q152q25q111q12 on the capacitor plates, one finds th
electrochemical capacitance

Cm5
]q1

]DV1
52

]q1
]DV2

5
R

C0
2114D21 . ~17!

This result states that, in the case of vanishing transmiss
the electrochemical capacitance is the geometrical cap
tance in series, with quantum corrections given by the D
of the plates.4 In the macroscopic limit where the DOS d
-
5

-

-

y

n,
ci-
S

verges (D→`), one recovers the pure geometric capa
tance,Cm5C0. On the other hand, for increasing transm
sion the capacitance decreases and vanishes forT51.
Clearly, without reflection there is no charge dipole at all.
more extensive discussion is provided by Refs. 5 and
Transportproperties such as, e.g., the current cannot be
culated directly from such a generalized thermodynamic
tential which contains only information on the charge~or
potential! distribution. However, it must be emphasized th
a knowledge of the nonequilibrium state is crucial for t
determination of the currents beyond linear
response.3–5,10,12

In conclusion, I have shown that it is possible to descr
the stationary nonequilibrium charge distribution of a me
scopic phase-coherent conductor with a generalized ther
dynamic potential. The theory is based on the concep
partial densities of states~injectivities!. The result includes
the long-range Coulomb interaction, and is charge cons
ing and gauge invariant. To illustrate the theory, I used
simple approximation of a descretized version of the mes
copic sample. However, in principle the generalization to
field theory, e.g., in the framework of a density-function
theory, is straightforward. The generalization to finite te
peratures and to other thermodynamic questions~e.g., me-
chanical properties of the system!, remains an interesting fu
ture task but does not require additional concep
Furthermore, I considered only small deviations from t
equilibrium state, but as long as dissipation is restricted
the reservoirs, a nonequilibrium potential also exists in
nonlinear regime.

I thank M. Büttiker for helpful discussions. This work
was mainly supported by the Swiss National Science Fo
dation under Grant No. 43966.
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