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Generalized thermodynamic potentials for mesoscopic conductors in the presence of transport
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It is shown that the nonequilibrium steady state of a phase-coherent conductor can be described by a
generalized thermodynamic potential based on the concept of partial densities of states. This is possible due to
the fact that dissipation takes place only in the contacts for the emitted carriers. Long-range Coulomb inter-
action is included, and charge conservation and gauge invariance are satisfied. The theory is illustrated for a
mesoscopic capacitor with leaka&80163-1827)05611-7

The density of state¢$DOS) is the basic quantity from scattered particle, and is a functional of the single-particle
which equilibrium thermodynamic properties of a system arepotentiale U(x), wheree is the electron charge andl(x) is
derived. Once the DOS is known, one can construct an aghe electric potential. Denoting the trace of a matrix by Tr,
propriate thermodynamic potential which has to be mini-one can write the transmission probability of a carrier from
mized in order to find the equilibrium state. Due to a produc-contact to contacta as Taﬁ:Tr(sLﬁsaﬁ). The reflection
tion of entropy in driven systems, on the other hand,probability at contactx is Ra=Tr(szasaa). At thermody-
nonequilibrium states can in general not be obtained by mininamic equilibrium, the response of the particle density to a
mizing a thermodynamic potential. In this work | show, how- variation of the Fermi energy is characterized by the local
ever, that generalized thermodynamic potentials still exist irDOS, which can be expressed in terms of the scattering ma-
mesoscopic conductdrsn the presence of transport, pro- trix elements and its functional derivatives with respect to
vided that dissipation takes place only in the resernvoirs. the potentiaf’
order to treat the nonequilibrium case, the concept of the
DOS is generalized by introducinmartial densities of statés dn(x) 1
which contain the information from whose reservoir the par- dE HE Tr(
ticles are injected. According to Biker,? the specific partial T ap
DOS used below are callenhjectivities The injectivities
play an important role in the theory of time-dependent an
nonlinear electrical transport in mesoscopic conductots. N
One can show that the injectivities are related to the dwell 9n(X.8) _ LZ Tl st 8.5 OSup S )
time of the particles in the conductdf.The injectivities ap- dE 474 “BesU(x) edU(x) *#)’
pear naturally within the scattering approach to conduction, 2
and can be expressed in terms of a scattering maioqui-
librium thermodynamics in terms of scattering matrices hagvhich are the partial DOS’s associated with particles injected
been formulated in a different context by Dashen, Ma, andt contacts. In a nonequilibrium situation where the elec-
Burnstein® Avishai and Band discussed the relation be- trochemical potentiabu s in a single reservoir is changed,
tween the scattering matrix and the total DOS of a onethe response of the particle density is given by
dimensional system. on(x)=(dn(x,B8)/dE)dus. A decomposition of the local

This paper is organized as follows. First, the definition ofDOS into injectivities leads to the following picture. The
the injectivities is recalled for a system of noninteractingtotal sample is decomposed inkb subsystems. Subsystem
particles. Second, the generalized thermodynamic potentialj consists of all those scattering states which are associated
including the Coulomb interaction, is constructed for awith particles injected at conta@. The local DOS of sub-
phase-coherent multiterminal conductor. The charge distrisystemg is given by the injectivitydn(x,8)/dE. In a non-
bution is then determined by a minimization of this potential.equilibrium steady state, these states are filled as if sub-
Finally, the formalism is applied to a symmetric capacitorsystemB were in equilibrium with reservoip. Dissipation
with tunneling between the capacitor plates, and it is shownakes place in the reservoirs only for the outgoing particles,

oS Ss!
T a3 _ af
SefesU(x)  edU(x) S“ﬁ)' @

c]Equation(l) can be interpreted as the sumiojectivities

that the result is in accordance with Ref. 5. which are thermalized to the Fermi distribution of this reser-
Consider a phase-coherent conductor connected via coreir. As long as scattering in the conductor is elastic, dissi-
tacts to reservoirse=1, ... N of noninteracting electrons. pation does not affect the states inside the sample.

Such a conductor is characterized by a unitary single-particle For simplicity, | assume zero temperature, and consider a
scattering matrix which can be decomposed into submatricediscretized version of a mesoscopic conductor. Importantly,
S« The indices and 3 label contacts, and the dimensions all nearby conductors and gates are included in this model.
of the submatrices are equal to the numbers of channels iihe whole system consists of regiofy, (k=1,... M)

the associated contacts. The first and second indicegof Wwith electrostatic potentialdy, chargesy,, and injectivities
correspond to outgoing and incoming particles, respectivelyD,, . For later convenience, the injectivities are written in
The scattering matrix is a function of the enerfyof the  the form
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dn(x, .
Dka:ezf()kdgx%’ (3) E({qka})_% VaqkaEmln' (11)

which have the dimension of a capacitance. The local DOYariation with respect to the chargeg, yields finally a set
of a single region), and the total DOS of the sample are of M XN equations,

D=3,Dy, and D=3,,D,,, respectively. lfeV\*? de-

notes the equilibrium electrochemical potgntia_ll c_)f_reservoir 2 EIZalIﬁqIB:AVa_UO! (12
«a, the part of the charge on conductorwhich is injected 18

from contacte for a variationAV,=V,— V& of the volt-

whereAV,=V,— V% corresponds to théelectrochemical
age becomes

voltage shift in contact. The still free global shiftJ, of the
electric potential is determined by the additional condition of

\%
Jk :j (aa)dVDk (V). (4)  charge conservation,
a Vae o
The total charge i), is qx=2 .0k, . The energyEp of the kE Qka=0. (13
noninteracting system is given by the sum of the energies “
over all single-particle states ThusU, can be interpreted as a Lagrange parameter associ-

ated with condition(13). Charge conservation is a general
property of a complete set of conductors connected to elec-
tron reservoirs, since electric fields are fully screened in the
Leservoirs”. In order to solve Eq(12) for gy,, the matrix
where the energy scale is defined such that the equilibrium;kalﬁ is introduced as the inverse matrix@fal,ﬁ. Note that
system has zero energys®=0. After an expansion of Egs. this quadratic matrix acts o x N-dimensional vectors

(4) and (5) to second order inAV,, one can eliminate g, (see also the example belpwCombination of Eqs(12)
AV,, and express the energy as a function of the partiahnd (13) yields

chargesyy,

VD(
Ep=2> f dVVD(V), (5)
ka Va

> CralpAVp
Eo({auad) = 2 (V{0 t 3 D G- (6) Up—f (14)
C
In order to include the long-range Coulomb interaction, it is kgﬁ kalf
convenient to introduce a geometric capacitance ma&tfix
for the regions(),, which is determined by the Poisson
equation. An arbitrary charge distributi¢g,} induces elec-
trostatic potential shift&J, given by

Once the partial charges,, are known, one can calculate
the electrochemical capacitance which relates the static
charge distributiorg,= = gy, to the voltage shiftAV, in

the contacts,

N

Uc=2>, Cqla+U,. 7 Cia.Co - Cra C
k Igl ki di 0 ( ) (?q| kﬁ%nﬁ (CI,BkaCm—ynzS Clﬁnﬁcmyka)
,|a: =
Note that a global voltage shift, is always a solution of the a IAV, E ¢
Poisson equation. The Coulomb energy of the charge distri- myns mmé
bution is thus (15)

The nonequilibrium electric potential follows from E.4)

Ec{a))= %>, QkaCQlQ|B+ UoY Oy - (8)  and the charge distribution with the help of Bd).
kalp ka An important consequence of charge conservation is that

At zero temperature, the free energy is equal to the tot%he electrochemical  capacitance — matrix  safisfies

_ 3 e . . .
energy of the closed system, and is given by the sum of th 1Cpuio=0- Additionally, the result is gauge invariant,

- aC#,,a=O,3 i.e., it does not depend on a global voltage
kinetic energyEp and the Coulomb enerdyc, shift. The global voltage shift is absorbed by the constant

_ Uy, and does not change the total energy of the system, since
E{0ke}) =2 (Uo+ VN Aka+3 > dkaCraigllis the total charge vanishes.
ke kalp As a simple example, consider a symmetric two-terminal
©) capacitor with tunneling between the capacitor pldteak-

where the following matrix is introduced: age. Assume a single one-dimensional open channel with a
transmission probabilityr =1—R. Equivalently, this system
CI:a]iﬁ:DI:algklaaB—i— Clﬁl- (10) describes a symmetric quantum-point contact with a single

open channel, or a one-dimensional conductor containing a
Since the open system is appropriately described by theymmetric impurity. This system has already been discussed
grand-canonical ensemble, the potential which must be miniin Ref. 5 in the context of time-dependent transport. | show
mized is that the thermodynamic treatment introduced in this work is
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in accordance with the results of Ref. 5. Within a semiclasverges D—x), one recovers the pure geometric capaci-
sical approximation, the injectivity from reservoir 2 to plate tance,C,=C,. On the other hand, for increasing transmis-
1 is proportional to one-half of the DOB, (=D,), of plate  sion the capacitance decreases and vanishesTfof.

1, and to the transmission probabilify The factor; occurs  Clearly, without reflection there is no charge dipole at all. A
since only particles with a velocity in direction to contact 1 more extensive discussion is provided by Refs. 5 and 11.
contribute to this partial DOS. Due to symmetry, Transportproperties such as, e.g., the current cannot be cal-

D1,=D,;=D;T/2 holds, which impliesDy;=D,, =D;
—Dy, =Dy(1-T/2)>7 The diagonal elementd=Ci;'
=C,; and the off-diagonal elemenB=C,'=C,;" of the

culated directly from such a generalized thermodynamic po-
tential which contains only information on the charg®
potentia) distribution. However, it must be emphasized that

inverse geometrical capacitance matrix are given byy knowledge of the nonequilibrium state is crucial for the

A=C,,/(C3,—C2) and B=—C;,/(C%,—C2,). The effec-
tive (charge conservinggeometric capacitancg, between
the two capacitor plates is given y,=(Cy;—C12)/2. In

order to represent the matri€,, z in a simple way, it is
convenient to abbreviat&;=D;;'+A and K,=D; +A.

Equations(12) then read

K, A B B\ /qu AV;—U,
B B K2 A qlz AVl—UO

= . (10
A K2 B B q21 AVZ_UO
B B A K/ \gx» AV,—U,

determination of the currents linear dc
responsé>10:12

In conclusion, | have shown that it is possible to describe
the stationary nonequilibrium charge distribution of a meso-
scopic phase-coherent conductor with a generalized thermo-
dynamic potential. The theory is based on the concept of
partial densities of state@njectivities). The result includes
the long-range Coulomb interaction, and is charge conserv-
ing and gauge invariant. To illustrate the theory, | used the
simple approximation of a descretized version of the mesos-
copic sample. However, in principle the generalization to a

field theory, e.g., in the framework of a density-functional

beyond

By taking charge conservatidikg. (13)] into account, these theory, is straightforward. The generalization to finite tem-

equations can be solved fogy,-

From the charge peratures and to other thermodynamic questi@ng., me-

g:=—0d,=011+ 01> On the capacitor plates, one finds the chanical properties of the systgmemains an interesting fu-

electrochemical capacitance

dd; dq; R
CM: = — = 71 71 .
9AV;  9AV, Colt4D

17

This result states that, in the case of vanishing transmissio

ture task but does not require additional concepts.
Furthermore, | considered only small deviations from the
equilibrium state, but as long as dissipation is restricted to
the reservoirs, a nonequilibrium potential also exists in the
nonlinear regime.

n,
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