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Fine structure of excitons in Cu,O
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Three experimental observations og dxcitons in CyO are not consistent with the picture of the exciton
as a simple hydrogenic bound state: the energies of shexditons deviate from the Rydberg formula, the total
exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above
the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture
arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a
self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet
and the triplet-state excitons, we find excellent agreement with experifggi63-1827)05708-1

. INTRODUCTION the width of the Brillouin zone is of order 4/. This cor-
rection makes the exciton heavier, since away from the zone
The absorption spectrum of light in GO (Ref. 1) shows  center and closer to the edge of the Brillouin zone, the dis-
clear evidence for the existence of excitons. In the simplespersion relation of the bands flattens and the electron and
picture the exciton is described as a hydrogenic atom formegole bare-band masses effectively increase.
from electrons and holes of given effective masses interact- The coupling of the electron and the hole to the LO
ing through a Coulomb interaction modified by a dielectric phonons produces a frequency dependence of the dielectric
constant Three observations indicate that this simple pic-function e(k,w) on the scale of the phonon frequencies. In
ture needs to be refined(l) The exciton Rydberg, the limit that the frequency of the relative electron-hole mo-
we'l2h2es (whereu is the reduced electron-hole mass andtion is much larger than that of the LO phonon, the electron-
€o is the static dielectric constant of the mateyigd 98 meV;  hole interaction is screened by the high-frequency dielectric
experimentally it is measured to be 97 meV for theconstant, since the heavy ions cannot follow the motion of
n=2,3, ... states. However, for theslstate it has the the electron and hole and therefore they do not contribute to
anomalously high value of 153 me\/(2) The mass of the the screening. In the opposite limit the low-frequency dielec-
lowest (yellow serie$ 3S, (ortho) exciton is experimentally tric constante, screens the electron-hole interaction. When
M= (3.0=0.2)m,>* wherem is the free-electron mass; on the Bohr radius is comparable to the lattice constant the
the other hand the sum of the electron effective masgnomentum dependence of the dielectric function, on scales
me=(0.99+0.03)m and hole massm,=(0.69+-0.04ym  of i/a,, becomes important. The more localizesleixciton
(Ref. 5 is only me+m,=(1.68-0.07)m. (3) In a simple states are screened leyat higher momenta, making the ef-
hydrogenic model the ortho and parss§) excitons would fective Coulomb interaction stronger than for the larger ex-
be degenerate. However, the lowest ortho excitons lie 1sited exciton states. Finally the exchange interaction is short
meV higher than the lowest para excitdhs. ranged and is negligible for excitons witizg>a, . All these
Our purpose in this paper is to identify the salient physicscorrections, known as the “central-cell corrections,” act to
responsible for these observations. These are several effecBfoduce the fine structure of excitons.
First, one must take into account the nonparabolicity of the Cuprus oxide has in total ten valence and four conduction
bands>’ Furthermore, the electron-hole interaction is morebands. It has a direct gap, since the minimum of the lowest
properly the bare Coulomb interaction modified by the- ~ conduction bandI(g) is at the same point in momentum
mentumand frequencydependent dielectric functidi’. In  space as the maximum of the highest valence bafd);(
addition, the spin-dependent exchange interaction betwedhe gap energy is= 2.17 eV. See Fig. 1. The yellow-series
the electron and the hole lifts the degeneracy between thexcitons are formed between electrons and holes in these two
triplet- and the singlet-state excitohsll these effects be- bands. Since the conduction and valence bands have the
come important because the Bohr radiigsis not large com-  same (positive parity*! and the dipole moment between
pared with the lattice constaat, of the material® The lat-  them vanishes, the radiative lifetimes of the excitons are rela-
tice constant of the unit cell of GO is 4.26 A The Bohr tively long. Then=1 line in the one-photon absorption spec-
radius of the & state yellow excitonag is expected to be on trum of light is weak due to the equal parity of the conduc-
the order ofe?/(2¢,E,)~7 A, whereE, is the observed tion and valence bands; the#1 lines correspond to
binding energy,~ 153 meV. Because the Bohr radius in- excitons with relative angular momenturs 1 and for this
creases quadratically with the principal quantum nunther reason the absorption process is dipole allowed. The elec-
these effects are much more important for thel state. trons in thel'S band are not in pure spin states, but rather in
The correction due to the nonparabolicity of the bands idotal angular-momentum states; the direct recombination
expected to be significant, since the extent of the excitomprocess of the angular-momentum singlet-state para exciton
wave function in momentum space is of ordeagl/ while  is in fact highly forbidden, and the corresponding line is
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wherep; is the momentum operator of the electron and the
E hole and them; are the effective electron and hole masses.
The Hamiltonian can be written in terms of the momentum
and the coordinate operators of the relative motion of the
electron and the holgy andr, respectively, and the momen-
tum operatorP of the center of mass as
\__36:/ PZ 2 2
— p e

IV rae @

Eqr2.17eV where M=m,+m, is the total exciton mass and
pm=msm,/(mg,+m,) is the reduced mass. The eigenfunc-
tions of the above Hamiltonian are of the form
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/\ where(Q is volume of the crystalY|" are spherical harmon-
ics, and®,, are the radial hydrogenic eigenfunctions. In the

state(3) the center of mass of the exciton carries momentum
K. The corresponding eigenenergies are

FIG. 1. Schematic band structure of £ showing the conduc- £2K?2
tion 'y band and thd'S, T'y valence bands, split by the spin- Exn=Eq+ g0+ oM (4
orbit splitting, which form the yellow and green exciton series,
respectively.

wheree (V= — ue*/2h2e5n? andE, is the band-gap energy.
o o If we assume for simplicity that the effective electron and
absent from+the radiative recom_bmapon spectrum ob@U  pole masses are equal, the exciton wave function can be
The lowerl'g valence band, which lies-130 meV below  expressed as a linear superposition of electron and hole
theI'; band due to the spin-orbit interacti¢Rig. 1), forms,  Bloch states as
with the rg band, the green-exciton series. Here we neglect
for simplicity any possible mixing between the yellow and
the green-exciton series. This mixing is expected to be on the Wicnim(Te:h) = % bq P griale) Py —qrrraTh),
order of 10%? and its only result is to modify slightly the (5)
exciton binding energies.

Recently high-density excitons in GO have been ob- Where the Bloch states are of the usual form
served to obey Bose-Einstein statistic$®and indeed Bose- _ ikor
Einstein condensatidfhhas been observéd!® These obser- Pj (1) =uj(r)et, ©)
vations are directly related with the band structure ofwith u; () periodic. To a good approximation we can iden-

Cu,0, as we have shown in Refs. 19 and 20. tify ¢4 as the Fourier transform of the relative electron-hole
In this paper we start with the effective-mass approximawave function times/Q.

tion, which we describe in Sec. Il. In Sec. Ill we discuss the Our Starting point in this prob|em is the effective-mass

pentral-pell correctipns. In Sec. IV we study the eXC}hangQapproximation, Eq(1), which as we now argue is valid as
interaction® and review the band structure that underlies theong as the excitons are sufficiently large, as they in fact are
properties of excitons in G#D.** We summarize our results  jn Cu,0, to satisfy the following restrictions. First of all use

in Sec. V. of the quadratic kinetic energy in the Hamiltonigthe first
and second terms in Eql)] requires thatp, be strongly
Il. EFFECTIVE-MASS APPROXIMATION FOR EXCITONS peaked in momentum space around zero, so that the structure

of the periodic part of the Bloch function&gs. (5) and(6)]

An exciton in the effective-mass approximation is a hy-in the range where, is appreciable can be ignorédFor an
drogenlike bound state of an electron and a hole, with centesxciton  with a  hydrogenic wave function,

of mass in a plane-wave state. In this picture the excitonp(r):e—rlaB/(Wag)lla one has ¢q=8(wa§)1’2/
energies lie in discrete levels below the energy gap, detel[—1+(an)2]2_ Quantitatively ifkp is the Debye wave vec-
mined by the binding energy plus the energy carried by thgq, the radius of a sphere with volume equal to that of the

center of mass. In the effective-mass approximation thej st Brillouin zone theng, /do~7x10"%, for ag=5.3 A.
HamiltonianH of an electron and a hole that interact through, . b
This value of the Bohr radius is one of the results of our

their Coulomb attraction, modified by a dielectric CorlStantcalculation; see Sec. lll. In addition the correction terms to

€0 1S the kinetic energy from the nonparabolicity of the bands are,
as we show, at most of order 20% of the terms in @gfor

the 1s excitons, and considerably smaller for excited-state
excitons.
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The second approximation in our starting point, B, is  ergy. For the central-cell corrections we use a trial hydrogen-
the use of the long-wavelength dielectric constant in theike wave function of the form¥ (r)=e""2e/(7a3)*? but
electron-hole interaction. A more accurate expression for theve truncate it outside the first Brillouin zone, assuming that
interaction between the electron and the hole involves thep, the Fourier transform off(r), vanishes forlq|>kp .
spatially dependent dielectric functidh,which for large  The reason for truncating  is that for values of the Bohr
electron and hole separation, approaches the static dielectiigdius smaller or comparable tok/, the exciton wave
constant of the material. This approximation is in generakunction is spread in momentum space and therefore without

reasonable since the average exciton encompasses a latge truncation the central-cell corrections are overestimated.
number of CyO molecules. To see this, note that the latticeThe expectation value afV,, in W, is

constant 4.26 A describes a cube that includes twgQCu

molecules, with O at the body center and corners and Cu in 2a2 -
i Vo) =- |¥l%g* W2
a tetrahedron about the central O. The volume obaesci- (AV, 240"\ |5k q o=k q
ton of radius 5.3 A is approximately eight times the volume ° °
of the unit cell, or sixteen times the volume per Lumol- ﬁzaff M, Co+m.C,, I5(kpag)
ecule; therefore to a first approximation, the electron and the == 24,ua‘é metm,  I,(Kpag)’ (10)

hole can be considered to be at an average distance large
enough generally to allow use of the static dielectric con-where
stant. In conclusion, use of EqL) is quantitatively justifi-

able for excitons in CyO, with, however, important correc- LX) = JX y"dy (11)
tions for the & exciton—the central-cell corrections. For the n o (1+y?)*
excited 1=2) states, this model gives excellent agreement o 1 i
with the experimental values of the energy levels. In the limit ag>kp ™ Eq. (10) gives the result
5 #.%a>
Ill. CENTRAL-CELL CORRECTIONS (AV,)=— 7 MnCe MeCh (12)

24uag  Met+my,
As we mentioned earlier, the binding energy of excitons is

modified by the nonparabolicity of the baritisthe coupling The second term of E¢9), AV, is the first correction to

of the electron and the hole with the longitudinal-opticalthe total exciton mass due to the nonparabolicity of the

(LO) phononég the dependence of the dielectric function on bands. This term modifies the free dispersion relation for the

the distance between the electron and the thatel the ex-  center-of-mass motion to

change interactiof.In this section we study the first three

mechanisms. c K2 (pPal  hPK? MaZ 1,(kpag)
Let us start with the correction due to the nonparabolicity =K~ 2 aMm’ S T 2M 2M’a2 I,(kpag) |’
of the bands. In the tight-binding approximation, for ex- (13)

ample, the electron or hole dispersion relation is a cosine )
function of ka, . Expanding this function around zero, the Making the total exciton mass larger thah. The above
zero-order term gives a constant. The first correction€Xpression is in fact the total exciton mass, since the contri-
~(ka,)?, describes a free particle with an effective bandbution of the exchange interaction to the mass is negligible,
massm; ,. The next nonvanishing term is of the form as shown in Sec. IV. Again, in the limig>ky* Eq. (13)
gives the result
pia’

AVi :m. (7) £
K

72K? MaZ
(14

T 2M |\ 2mal)

More generally, the perturbatiohV due to the nonparabo-

licity of the Hamiltonian is of the form We estimate now the order of magnitude of the constants
C;, usingk-p perturbation theory. Among the ten valence

®) and four conduction bands of GO only onel'g conduction
band, which lies~ 449 meV above thd'{ band, and one

where the constan@; are on the order of unity. We proceed VeY déepl’s valence band, which lies- 5.6 eV below the
by writing Eq.(8) in terms of the center-of-mass coordinates,r7+ valence band, have negative parity. The mixing of the

4.2 4.2
pea/ce pha/ch

Av= 24h%m, * 24h°my,’

keeping terms up to order?P2, I's and I'; bands with these two negative-parity bands
modifies the bare masses of the electrons and the lioles

p*a?  p?P?aZ addition to the coupling of the electrons and the holes to the

AV=AV,+AV,= YR T VIR (9)  optical modesand also makes the bands nonparabolic. To

find the constant€; in lowest order requires diagonalizing a
where 1L'=(Ce/mg)+(Ch/m,) and M'=(m./Cp) 4X 4 matrix; here we give just an order-of-magnitude esti-
+(m,/C;). The AV, in Eg. (9) refers to the relative mate. The correction to the masses is of order
electron-hole motion; the second couples the relative motio¢pi,j|2/mAi,j , Wherep; ; is the dipole matrix element be-
of the electron and hole with the motion of their center oftween the opposite-parity bandandj and4, ; is the energy
mass and modifies the total exciton mass. We the4f asa  separation between them. The matrix elemgntscan be
perturbation in calculating its contribution to the binding en-extracted from experiment; if we assume, for example, that
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they are all of equal magnitude, then from Ref. 21,where, as we calculate below~0.18 for Cu,O. Expand-
Ipi j|/A~0.13 A~%, which implies that|p; ;|#/mA; ;~0.3, ing,
for A ;~ 0.5 eV. Dimensionally we find

2 2

47e?  Aqe 5
+ 2 azd, (20)

(15) Ke(k)  Ke.,

hfaZCk*  72k2 |p;|* hi2k?
24m - 2m mzAﬁ] mAi’j ’
which givesC~1. we see that the first-momentum correctione{&) produces

The Hamiltonian(1) describes the effective interaction an €ffective contact interaction
between an electron and a hole at momentum trahsées

4e? 5
47e? AVy(r)=———day &(r), (21)
V(K= 17— (16) €

€

More generally, the interaction is given by which lowers the exciton energy by

2 4 2

4 e
V(ko)= oea a7 (AVg=- T delVeudO (22

where e(k,w) is the momentum- and frequency-dependenRNhereq,
dieleciric function, a_nchk a_ndﬁw are the mome”F“m and 1s state. If we evaluatéd\Vy with the trial wave function
energy transferred in the interaction. The coupling of the\If(r) truncated outside the first Brillouin zone we find
electron and the hole to the LO phonons introduces the im-
portant frequency dependenaein the dielectric functiorf. 52 .
In Cu,O only thel' ;5 LO-phonon modes with zone-center (AVg)=— 4me da/| v 2 |2
energies of 18.7 and 87 meV contribute to thefiah in- d O = \q;kD a
teraction. Forh @w<<18.7 meV, the dielectric function has the

exackl) IS the exactunknowr) wave function of the

low-frequency valuegy=7.5+0.2. As thefiw crosses 18.7 _ 2de?a’ [15(kpag)]? 23
meV, e decreases te,,= 7.11, while agi v increases past 87 ~ melas ly(kpag)
meV, e drops toe,,=6.46. Comparing the LO-phonon fre-
guencies with the frequency of the relative electron-hole MowhereV, is again the Fourier transform af (r). Also
tion, we see that the dielectric constant of the state is
<e€,, while for the excitedh=2,3,4, ... states the dielec- x ydy
tric constant is closer tey. Using the values for the effective 1h(X)= f —. (24)
electron and hole masses given in the Introduction and 0(1+y%)
e,=7.5 we find 98 meV for the Rydberg of the excited
states, which is very close to the experimentally determinedn the limit ag>kp* Eq. (23) gives the result
value of 97 meV. Assuming that, screens the electron-hole
interaction, the expectation valy® E), of the Coulomb in- Are? 4de2a3
teraction in the % state is (AVg)y=— 2 daZ|d,4(0)|2=— 62a3’ . (29
) «“B
e2
(PE)=—— a (18 To estimate the constard we follow Ref. 23. The
- Lindhard result gives for the dielectric function
Since the actual dielectric constant $se,., the choice of
€,, overestimates the correction to the potential energy due to 4re? KUy solun o) 2
the coupling of the electrons and holes to the optical modes e(k,w)=1+ K > LA (26)

of the crystal. Although there are more sophisticated meth- gl €17 keqT ElgT R

ods of treating this problefhthey cannot be applied in our ) ) )

problem because more than one LO-phonon branch contrigvhere(l. is the volume of the unit cell angl 4 is the energy

utes to the Frblich interaction. of bandl at pointq in momentum space. Since we are inter-
We turn now to the effects of the momentum dependencé&sted in energies much smaller than the gap energy, we as-

of the dielectric function. Equatiofi7) gives the interaction sume thato=0. The dominant contribution to the above

between the electron and the hole, where as discussed abotém, given the band structure of €D, involves virtual tran-

the high-frequency dielectric function must be used. In thesitions between thé's conduction banct’ (which lies ~

limit ag>a,, ¥, is localized around zero, so we can ignore 449 meV above the lowedt; conduction bandand the

the k dependence of the dielectric function, highestl'; valence band. The overlap integral in E426)

e(k)~e(k=0)~e¢... On the other hand, if the Bohr radius is satisfies the sum ruié

comparable to the lattice constant, we need to consider cor-

rections toe(k). For small values ok, 72K2

! K+ 2 ' k+g =, 2
)~ e (ka2 d, 19 ; KUy ks ol U )1 (817 ks q— &1.0) om (27)
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FIG. 3. The virtual annihilation of an exciton, possible only for
pure spin-singlet states.
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with ag=agp o. Equation(15) gave us an order of magnitude
estimate C~1. The value C=1.35 gives the result
ago=>5.3 A and the observed total ortho-exciton mass of
-150 ¢ 3m. This choice forC then yieldsE(ag o) =164.9 meV
-200 ; : - : : - (see Fig. 2, in good agreementL0%) with the experimen-
tally known binding energy of 153 meV. The expectation
ap (4) value of each of the terms separately Bl is
(PE)=—420.4 meV, (KE)=335.8 meV, (AV,)=—65.3
FIG. 2. The solid line shows the expectation value of the energyM€V, and(AVq)=—15.0 meV. We expect to find a larger
of the 1s exciton in Cy,O as a function of the Bohr radius, Eq. Dbinding energy here than the experimental value, since the
(31); the dotted line shows the same function with the central-celichoice of €., for the dielectric constant overestimates the
corrections not taken into account. potential energy. The Bohr radius used in the literature for
excitons in CyO is 7 A, the number resulting from the
which as in Ref. 23 allows us to write the approximate resultuncorrected formulaag=e?/(2¢,E,) with E,=153 meV,

50 F
-100

for e(k), with k restricted in the first zone, the observed binding energy. The value Bf=98 meV,
_ which is the Rydberg of the excited states, giggs=11.1 A
e(K)~1+ 4meh S (s via—e, )2 (28) in this way. But as we have seen the formula
Q. cikta “v.a ag=e€?/(2¢,E,) neglects the central-cell corrections.

The total mass of thed=1 para excitons must be the
same as that of the ortho excitons, since the correction due to
the nonparabolicity of the bands is the same for both the

S (k)= (80’,k+q_8u,q)_2- (29)  singlet and the triplet; the correction due to the exchange
q interaction that is nonzero only for the ortho excitons is neg-
the dielectric function can be written as ligible in our problem. Furthermore, the quadratic depen-
dence of the Bohr radius on the quantum numbémplies
e(k)=1+(e,—1)2(k)/Z(0). (300  that the total exciton mass is very closenbg+ my,~1.68n
for the excited states. Neither the=1 para-exciton mass
nor then=2 exciton masses has yet been measured.

If we define

We calculate the above quantity numerically, using the ef
fective mass of the conductiofiy band m,=0.35m, the
effective mass of the valende; bandm;,=0.69n and the

energy gap between theny, 2.62 eV. The integration over IV. BAND STRUCTURE OF Cu ,0 — EXCHANGE
g is restricted taq<kp . Fork—0, Eq.(30) is of the form of INTERACTION AND OPTICAL PROPERTIES
Eqg. (19) with d~0.18. OF EXCITONS IN Cu ,0
Equations(10), (18), and (23) give the total exciton en-
ergy as function of the Bohr radius, The virtual annihilation of an exciton, shown in Fig. 3, is
) ) 2 responsible for raising the ortho exciton by an energy
Eo(ag) = he e°  Ch%aylg(kpag) AE.=12 meV above the para exciton at the zone center
AT 2uas  e.ag  24uag |a(Kpap) (K=0) of Cu,0.5 The energy splitting\ E.(K) is given by
2 de?a? [15(kpag)]? a1 ) o2
~me2ad  Iy(kpag) @D AEg(K)= §f qu(x,x)T_x,| (x',x") dx dx’.
The first term is the kinetic energy of the electron-hole pair, (32

(KE). The second term is the potential enerdyE), the

third term is the correction due to the nonparabolicity of theThe factor 2/3 comes from the angular-momentum states, as
bands(AV,), and the last term is the correction due to thewe show in the next section. If the electrons and the holes in
dependence of the dielectric function on the momentumthe conduction and valence bands are in pure-spin states, the
(AVy). In the third term we have made the simplifying as- above interaction is nonzero for the singlet excitons only.
sumptionC.=Cy=C. For givenC the binding energy has a Since it is positive, it shifts the energy of the singlet higher
minimum atag=ag o, Which is the exciton Bohr radius for than the triplet. In the next section we explain how the band
the specific choice o€. The corresponding binding energy structure of CyO makes the exchange interaction nonzero
is Eyo(@p o). The total exciton mass is then given by Et@)  for the ortho excitons and zero for the para excitons, shifting
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the ortho excitons higher in energy than the para excitons. By contrast, in CyO, the second term of Eq(33)
Using Eq.(5) for the exciton wave function we find that (~K?) makes the total mass of the ortho excitons smaller

thanmg+my,; for the para excitons it vanishes. To estimate
21 D 4me? this correction, we usk- p perturbation theory to write

AE(K)= 3 DoqiZso m¢q<uv,q|uc,q>6
fi <un,q|(K/2)'p |ul,q>
2 |ul,q+K/2>%|ul,q>+a E — |un,q>-
* I n#l €197 €n,q
><()Zsp<uv,p||"lc,p>G 3 Qc (36)
4 where the sum is over all the bands of parity opposite to that
- .
Xqu KT ¢>q<Uu,q—K/2|Uc,q+K/2> of bandl. Thus, for the sums in the second term of E2B),
% ¢; <uv,p—K/2| uc,p+K/2>* , (33) % ¢q<uc,q+ K/2| Uu,qu/2>
where ~ ﬁ 2 2 <uc,0|K'p |un,0><un,0|K'p |uu,0>
J' . “ 2m n (8c,0—€n,0)(€n0~ €y,0)
u, glu = | dx uc p(x)uy ((x)e'= 34
< ,q| C,p)G C,p( ) Yq( ) ( ) XQg‘/Zle(O), (37)

The first sum in Eq(33) is over all the nonzero reciprocal where the sum is over the two negative-parity bands of
lattice vectorsG of the crystal. In this equation we have used Cu,O. This correction modifies the free dispersion relation
the high-frequency dielectric constant in the Coulomb inter-of the ortho excitons to

action because the energy transfer in the virtual annihilation

212 4
process of an exciton is on the order of the energy Bap E _hK IMe( A
As we show below, the overlap integr&é® that appear in K™ 2M 3 u e, |\ Mag
the second term of Eq33) are proportional to K?)? be- . .
cause the dipole moment between the conduction and the (K- pen)?(K-pp,)?
valence bands vanishes. The second term of(&8). there- X ; (eco—€n0)(Eno— €y 02| (38)

fore goes a?, since it is proportional to K? from the

Coulomb interaction timesk(2)2 from the overlap integrals: The above equation predicts that the ortho-exciton mass due

do the correction caused by the exchange interaction is not
Isotropic. Using the estimate; ;|/7~0.13 A" and the en-

exciton mass. To calculateE,, atK =0, we assume that the ergy levels of CyO, we find that the correctiofi.e., the

first sum of Eq.(33) is dominated by the terms with smallest second term in the parentheses in E§)] of the exchange

G’s (six in number because of the cubic symmetry of the : ; . .
. interaction to the(ortho exciton mass is negligibly small,
crysta), which we denote bys,; then ~0.001. & ) glgibly

2 2
A. Band structure of Cu,O and optical properties

16we , ay 5
Oe Q| ®1(0)] m|<uv,o|uc,o>eo| N _ _ _
cCe TheI'y conduction band in C30 is formed by Cu 4
a,\? orbitals and thd'; valence band by Cudorbitals™ The
a—' |<uv,o|ucyo)G0|2. (350 fivefold degeneratéwithout spin Cu 3d orbitals split under
B the crystal field into a higher threefold;; and a lower |,
Since experimentallyAE.(K=0)~12 meV, we have twofold degenerate band. Finalli7;5 splits further because
{uy ol U, 0) g |~ 0-45. of the spin-orbit interaction into two bands, a higHey
In most semiconductors the dipole matrix elemept, ~ nondegenerate band and a lower twofold degeneFate
between the conduction and the valence bands does not vap@nd(Fig. 1. _
ish. In this case the second term in E8P) is proportional to The total angular momentum functions for the yellow-
1/K2 from the Coulomb interaction time&? from the over- ~ €XCiton triplet states are
lap integrals and therefore frokn p perturbation theor/ is J=13,=1)=|1Te.Tr), (39

~ (P, K)2, whereK is the unit vector in the direction of

AE(K=0)=

2

82 4 €p
B ano v

€y

K. This term, therefore, is responsible for the nonanalytic 1

behavior of the energy of dipole-allowed excitons at the zone 9=1.,= 0>:E(| Tesbw)=lle.Th), (40
center, i.e.K—0, depending on the relative direction I§f

with respect tqo, , .1% The exchange interaction in this case [I=13,=—1)=|le,ln) (41

lifts the degeneracy between longitudinil|p, ,) and trans-
verse KLp.,) excitons, with the longitudinal lying higher
than the transverse. The same phenomenon appears in optical 1

phonons, i.e., the longitudinal modes have higher energy [3=0J,=0)=—(|Te,lr)+|le:TH))- (42
than the transverse #&=0, because in the case of longitu- V2

dinal oscillations there is charge accumulationt presentin  The indicese,H refer to the electron and the hole, respec-
the case of transverse oscillationahich creates an internal tively: while the electron states are pure spin states, the hole
electric field?® states ardotal angular momentum states,

and for the singlet states,
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calculation for the ortho excitons, but it vanishes for the para
[THy=——=[(X+iY) [l +Z |Th)] (43)  excitons. The same physics is responsible for the ortho exci-
tons lying higher than the para excitons, and the direct re-
and combination of the para excitons being highly forbidden.

%ll—\

1 V. SUMMARY
|iH>:_ﬁ[(X—iY) [T =Z [In)], (44)

Based on the effective-mass approximation, we have used
perturbation theory and the variational method to calculate
the binding energy, the Bohr radius as well as the total mass
of the 1s state of the yellow-exciton series. We have shown

tively. that the nonparabolicity of the bands gives consistent correc-

The above angular-momentum functions explain why the[ions for the total exciton mass and the exciton binding en-

exchange interaction is nonzero only for the ortho excr;onsergy, as well. The coupling of the electrons and the holes to

the LO phonons and the momentum dependence of the di-
electric function also contribute to the binding energy. The
exchange interaction is responsible for the energy splitting
between the triplet and the singlet-state excitons at the zone
étenter, with the triplet lying higher because of the band

ructure of CyO. Finally, the contribution of the exchange
teraction to the exciton mass is negligible.

where the states with lower cabeare pure spin states. The
spatial functionsX,Y,Z transform ayz, xz, andxy, respec-

is highly forbidden. If we assume that there is no spin ftp
higher-order effegt the above angular-momentum functions
imply that the exchange diagram shown in Fig(\@rtual
annihilation of the excitonvanishes for the singlet. For the
triplet state the exchange interaction does not vanish an
raises the ortho-exciton with respect to the para-exciton en
ergy. The factor of 2/3 we used for the calculation of the
exchange energy in E32) comes from the above angular-
momentum functions. The radiative recombination process
of excitons is essentially described by the Igftht) half of This work was supported by NSF Grant No. PHY94-
the virtual annihilation diagram, with the only difference that21309. Helpful comments from K. OHara, L.
a real instead of a virtual photon is emitted. The matrix ele<O’Suilleabhain, D.W. Snoke, and J.P. Wolfe are gratefully
ment for the recombination process, therefore, is proporacknowledged. G.M.K. would like to thank the Research
tional to \/2/3 times the result from the spatial part of the Center of Crete, Greece for its hospitality.
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