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Fine structure of excitons in Cu2O
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Three experimental observations on 1s excitons in Cu2O are not consistent with the picture of the exciton
as a simple hydrogenic bound state: the energies of the 1s excitons deviate from the Rydberg formula, the total
exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above
the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture
arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a
self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet
and the triplet-state excitons, we find excellent agreement with experiment.@S0163-1829~97!05708-1#
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I. INTRODUCTION

The absorption spectrum of light in Cu2O ~Ref. 1! shows
clear evidence for the existence of excitons. In the simp
picture the exciton is described as a hydrogenic atom form
from electrons and holes of given effective masses inter
ing through a Coulomb interaction modified by a dielect
constant.2 Three observations indicate that this simple p
ture needs to be refined:~1! The exciton Rydberg,
me4/2\2e0

2 ~wherem is the reduced electron-hole mass a
e0 is the static dielectric constant of the material!, is 98 meV;
experimentally it is measured to be 97 meV for t
n52,3, . . . states. However, for the 1s state it has the
anomalously high value of 153 meV.2 ~2! The mass of the
lowest ~yellow series! 3S1 ~ortho! exciton is experimentally
Mo5(3.060.2)m,3,4 wherem is the free-electron mass; o
the other hand the sum of the electron effective m
me5(0.9960.03)m and hole massmh5(0.6960.04)m
~Ref. 5! is only me1mh5(1.6860.07)m. ~3! In a simple
hydrogenic model the ortho and para (1S0) excitons would
be degenerate. However, the lowest ortho excitons lie
meV higher than the lowest para excitons.6

Our purpose in this paper is to identify the salient phys
responsible for these observations. These are several ef
First, one must take into account the nonparabolicity of
bands.3,7 Furthermore, the electron-hole interaction is mo
properly the bare Coulomb interaction modified by themo-
mentumand frequencydependent dielectric function.8,9 In
addition, the spin-dependent exchange interaction betw
the electron and the hole lifts the degeneracy between
triplet- and the singlet-state excitons.6 All these effects be-
come important because the Bohr radiusaB is not large com-
pared with the lattice constantal of the material.10 The lat-
tice constant of the unit cell of Cu2O is 4.26 Å.11 The Bohr
radius of the 1s state yellow excitonsaB is expected to be on
the order ofe2/(2e0Eb)'7 Å, whereEb is the observed
binding energy,' 153 meV. Because the Bohr radius i
creases quadratically with the principal quantum numben,
these effects are much more important for then51 state.

The correction due to the nonparabolicity of the bands
expected to be significant, since the extent of the exc
wave function in momentum space is of order 1/aB , while
550163-1829/97/55~12!/7593~7!/$10.00
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the width of the Brillouin zone is of order 1/al . This cor-
rection makes the exciton heavier, since away from the z
center and closer to the edge of the Brillouin zone, the d
persion relation of the bands flattens and the electron
hole bare-band masses effectively increase.

The coupling of the electron and the hole to the L
phonons produces a frequency dependence of the diele
function e(k,v) on the scale of the phonon frequencies.
the limit that the frequency of the relative electron-hole m
tion is much larger than that of the LO phonon, the electro
hole interaction is screened by the high-frequency dielec
constante` since the heavy ions cannot follow the motion
the electron and hole and therefore they do not contribut
the screening. In the opposite limit the low-frequency diele
tric constante0 screens the electron-hole interaction. Wh
the Bohr radius is comparable to the lattice constantal , the
momentum dependence of the dielectric function, on sca
of \/al , becomes important. The more localized 1s exciton
states are screened bye at higher momenta, making the e
fective Coulomb interaction stronger than for the larger e
cited exciton states. Finally the exchange interaction is sh
ranged and is negligible for excitons withaB@al . All these
corrections, known as the ‘‘central-cell corrections,’’ act
produce the fine structure of excitons.

Cuprus oxide has in total ten valence and four conduct
bands. It has a direct gap, since the minimum of the low
conduction band (G6

1) is at the same point in momentum
space as the maximum of the highest valence band, (G7

1);
the gap energy is' 2.17 eV. See Fig. 1. The yellow-serie
excitons are formed between electrons and holes in these
bands. Since the conduction and valence bands have
same ~positive! parity11 and the dipole moment betwee
them vanishes, the radiative lifetimes of the excitons are r
tively long. Then51 line in the one-photon absorption spe
trum of light is weak due to the equal parity of the condu
tion and valence bands; thenÞ1 lines correspond to
excitons with relative angular momentuml51 and for this
reason the absorption process is dipole allowed. The e
trons in theG7

1 band are not in pure spin states, but rather
total angular-momentum states; the direct recombina
process of the angular-momentum singlet-state para exc
is in fact highly forbidden, and the corresponding line
7593 © 1997 The American Physical Society
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absent from the radiative recombination spectrum of Cu2O.
The lowerG8

1 valence band, which lies'130 meV below
theG7

1 band due to the spin-orbit interaction~Fig. 1!, forms,
with theG6

1 band, the green-exciton series. Here we neg
for simplicity any possible mixing between the yellow an
the green-exciton series. This mixing is expected to be on
order of 10%,12 and its only result is to modify slightly the
exciton binding energies.

Recently high-density excitons in Cu2O have been ob-
served to obey Bose-Einstein statistics13–15and indeed Bose
Einstein condensation16 has been observed.17,18These obser-
vations are directly related with the band structure
Cu2O, as we have shown in Refs. 19 and 20.

In this paper we start with the effective-mass approxim
tion, which we describe in Sec. II. In Sec. III we discuss t
central-cell corrections. In Sec. IV we study the exchan
interaction,6 and review the band structure that underlies
properties of excitons in Cu2O.

21 We summarize our result
in Sec. V.

II. EFFECTIVE-MASS APPROXIMATION FOR EXCITONS

An exciton in the effective-mass approximation is a h
drogenlike bound state of an electron and a hole, with ce
of mass in a plane-wave state. In this picture the exci
energies lie in discrete levels below the energy gap, de
mined by the binding energy plus the energy carried by
center of mass. In the effective-mass approximation
HamiltonianH of an electron and a hole that interact throu
their Coulomb attraction, modified by a dielectric consta
e0, is

H5
pe
2

2me
1

ph
2

2mh
2

e2

e0ure2rhu
, ~1!

FIG. 1. Schematic band structure of Cu2O showing the conduc-
tion G6

1 band and theG7
1 , G8

1 valence bands, split by the spin
orbit splitting, which form the yellow and green exciton serie
respectively.
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wherepi is the momentum operator of the electron and
hole and themi are the effective electron and hole mass
The Hamiltonian can be written in terms of the momentu
and the coordinate operators of the relative motion of
electron and the hole,p andr , respectively, and the momen
tum operatorP of the center of mass as

H5
P2

2M
1

p2

2m
2

e2

e0r
, ~2!

where M5me1mh is the total exciton mass an
m5memh /(me1mh) is the reduced mass. The eigenfun
tions of the above Hamiltonian are of the form

CK ,nlm~r ,R!5
1

AV
eiK•RFnl~r !Yl

m~u,f!, ~3!

whereV is volume of the crystal,Yl
m are spherical harmon

ics, andFnl are the radial hydrogenic eigenfunctions. In t
state~3! the center of mass of the exciton carries moment
\K . The corresponding eigenenergies are

EK ,n5Eg1«n
~0!1

\2K2

2M
, ~4!

where«n
(0)52me4/2\2e0

2n2 andEg is the band-gap energy
If we assume for simplicity that the effective electron a

hole masses are equal, the exciton wave function can
expressed as a linear superposition of electron and
Bloch states as

CK ,nlm~re ,rh!5(
q

fq Fc,q1K /2~re!Fv,2q1K /2~rh!,

~5!

where the Bloch states are of the usual form

F j ,k~r !5uj ,k~r !e
ik•r, ~6!

with uj ,k(r ) periodic. To a good approximation we can ide
tify fq as the Fourier transform of the relative electron-ho
wave function timesAV.

Our starting point in this problem is the effective-ma
approximation, Eq.~1!, which as we now argue is valid a
long as the excitons are sufficiently large, as they in fact
in Cu2O, to satisfy the following restrictions. First of all us
of the quadratic kinetic energy in the Hamiltonian@the first
and second terms in Eq.~1!# requires thatfq be strongly
peaked in momentum space around zero, so that the stru
of the periodic part of the Bloch functions@Eqs.~5! and~6!#
in the range wherefq is appreciable can be ignored.

10 For an
exciton with a hydrogenic wave function
C(r )5e2r /aB/(paB

3)1/2, one has fq58(paB
3)1/2/

@11(qaB)
2#2. Quantitatively ifkD is the Debye wave vec

tor, the radius of a sphere with volume equal to that of
first Brillouin zone, thenfkD

/f0'731024, for aB55.3 Å.
This value of the Bohr radius is one of the results of o
calculation; see Sec. III. In addition the correction terms
the kinetic energy from the nonparabolicity of the bands a
as we show, at most of order 20% of the terms in Eq.~1! for
the 1s excitons, and considerably smaller for excited-st
excitons.

,
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55 7595FINE STRUCTURE OF EXCITONS IN Cu2O
The second approximation in our starting point, Eq.~1!, is
the use of the long-wavelength dielectric constant in
electron-hole interaction. A more accurate expression for
interaction between the electron and the hole involves
spatially dependent dielectric function,22 which for large
electron and hole separation, approaches the static diele
constant of the material. This approximation is in gene
reasonable since the average exciton encompasses a
number of Cu2O molecules. To see this, note that the latt
constant 4.26 Å describes a cube that includes two Cu2O
molecules, with O at the body center and corners and C
a tetrahedron about the central O. The volume of a 1s exci-
ton of radius 5.3 Å is approximately eight times the volum
of the unit cell, or sixteen times the volume per Cu2O mol-
ecule; therefore to a first approximation, the electron and
hole can be considered to be at an average distance
enough generally to allow use of the static dielectric co
stant. In conclusion, use of Eq.~1! is quantitatively justifi-
able for excitons in Cu2O, with, however, important correc
tions for the 1s exciton—the central-cell corrections. For th
excited (n>2) states, this model gives excellent agreem
with the experimental values of the energy levels.

III. CENTRAL-CELL CORRECTIONS

As we mentioned earlier, the binding energy of excitons
modified by the nonparabolicity of the bands,3,7 the coupling
of the electron and the hole with the longitudinal-optic
~LO! phonons,8 the dependence of the dielectric function
the distance between the electron and the hole9 and the ex-
change interaction.6 In this section we study the first thre
mechanisms.

Let us start with the correction due to the nonparabolic
of the bands. In the tight-binding approximation, for e
ample, the electron or hole dispersion relation is a cos
function of kal . Expanding this function around zero, th
zero-order term gives a constant. The first correcti
;(kal )

2, describes a free particle with an effective ba
massmi ,b . The next nonvanishing term is of the form

DVi5
pi
4al

2

24\2mi
. ~7!

More generally, the perturbationDV due to the nonparabo
licity of the Hamiltonian is of the form

DV5
pe
4al

2Ce

24\2me
1
ph
4al

2Ch

24\2mh
, ~8!

where the constantsCi are on the order of unity. We procee
by writing Eq.~8! in terms of the center-of-mass coordinate
keeping terms up to orderp2P2,

DV5DVa1DVb[
p4al

2

24\2m8
2
p2P2al

2

4\2M 8
, ~9!

where 1/m8[(Ce /me)1(Ch /mh) and M 8[(me /Ce)
1(mh /Ch). The DVa in Eq. ~9! refers to the relative
electron-hole motion; the second couples the relative mo
of the electron and hole with the motion of their center
mass and modifies the total exciton mass. We treatDVa as a
perturbation in calculating its contribution to the binding e
e
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ergy. For the central-cell corrections we use a trial hydrog
like wave function of the formC(r )5e2r /aB/(paB

3)1/2 but
we truncate it outside the first Brillouin zone, assuming th
Cq , the Fourier transform ofC(r ), vanishes foruqu.kD .
The reason for truncatingCq is that for values of the Bohr
radius smaller or comparable to 1/kD , the exciton wave
function is spread in momentum space and therefore with
the truncation the central-cell corrections are overestima
The expectation value ofDVa in Cq is

^DVa&52
\2al

2

24m8 S (
uqu,kD

uCqu2q4D S (
uqu,kD

uCqu2D 21

52
\2al

2

24maB
4

mhCe1meCh

me1mh

I 6~kDaB!

I 2~kDaB!
, ~10!

where

I n~x!5E
0

x yndy

~11y2!4
. ~11!

In the limit aB@kD
21 Eq. ~10! gives the result

^DVa&52
5 \2al

2

24maB
4

mhCe1meCh

me1mh
. ~12!

The second term of Eq.~9!, DVb , is the first correction to
the total exciton mass due to the nonparabolicity of
bands. This term modifies the free dispersion relation for
center-of-mass motion to

EK5
\2K2

2M
1

^p2&al
2

4M 8
K25

\2K2

2M S 12
Mal

2

2M 8aB
2

I 4~kDaB!

I 2~kDaB! D ,
~13!

making the total exciton mass larger thanM . The above
expression is in fact the total exciton mass, since the con
bution of the exchange interaction to the mass is negligib
as shown in Sec. IV. Again, in the limitaB@kD

21 Eq. ~13!
gives the result

EK5
\2K2

2M S 12
Mal

2

2M 8aB
2 D . ~14!

We estimate now the order of magnitude of the consta
Ci , usingk•p perturbation theory. Among the ten valenc
and four conduction bands of Cu2O only oneG8

2 conduction
band, which lies' 449 meV above theG6

1 band, and one
very deepG8

2 valence band, which lies' 5.6 eV below the
G7

1 valence band, have negative parity. The mixing of t
G6

1 and G7
1 bands with these two negative-parity ban

modifies the bare masses of the electrons and the hole~in
addition to the coupling of the electrons and the holes to
optical modes! and also makes the bands nonparabolic.
find the constantsCi in lowest order requires diagonalizing
434 matrix; here we give just an order-of-magnitude es
mate. The correction to the masses is of ord
upi , j u2/mD i , j , where pi , j is the dipole matrix element be
tween the opposite-parity bandsi and j andD i , j is the energy
separation between them. The matrix elementspi , j can be
extracted from experiment; if we assume, for example, t
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they are all of equal magnitude, then from Ref. 2
upi , j u/\'0.13 Å21, which implies thatupi , j u2/mD i , j'0.3,
for D i , j' 0.5 eV. Dimensionally we find

\2al
2Ck4

24m
;

\2k2

2m

upi , j u4

m2D i , j
2

\2k2

mD i , j
, ~15!

which givesC;1.
The Hamiltonian~1! describes the effective interactio

between an electron and a hole at momentum transferk as

V~k!5
4pe2

k2e0
. ~16!

More generally, the interaction is given by

V~k,v!5
4pe2

k2e~k,v!
, ~17!

where e(k,v) is the momentum- and frequency-depend
dielectric function, and\k and\v are the momentum an
energy transferred in the interaction. The coupling of
electron and the hole to the LO phonons introduces the
portant frequency dependencev in the dielectric function.8

In Cu2O only theG15
2 LO-phonon modes with zone-cente

energies of 18.7 and 87 meV contribute to the Fro¨hlich in-
teraction. For\v!18.7 meV, the dielectric function has th
low-frequency value,e057.560.2. As the\v crosses 18.7
meV,e decreases toem57.11, while as\v increases past 87
meV, e drops toe`56.46. Comparing the LO-phonon fre
quencies with the frequency of the relative electron-hole m
tion, we see that the dielectric constant of the 1s state is
&e` , while for the excitedn52,3,4, . . . states the dielec
tric constant is closer toe0. Using the values for the effectiv
electron and hole masses given in the Introduction
e057.5 we find 98 meV for the Rydberg of the excite
states, which is very close to the experimentally determi
value of 97 meV. Assuming thate` screens the electron-hol
interaction, the expectation value^PE&, of the Coulomb in-
teraction in the 1s state is

^PE&52
e2

e` aB
. ~18!

Since the actual dielectric constant is&e` , the choice of
e` overestimates the correction to the potential energy du
the coupling of the electrons and holes to the optical mo
of the crystal. Although there are more sophisticated me
ods of treating this problem,8 they cannot be applied in ou
problem because more than one LO-phonon branch con
utes to the Fro¨hlich interaction.

We turn now to the effects of the momentum depende
of the dielectric function. Equation~17! gives the interaction
between the electron and the hole, where as discussed a
the high-frequency dielectric function must be used. In
limit aB@al , Ck is localized around zero, so we can igno
the k dependence of the dielectric functio
e(k)'e(k50)'e` . On the other hand, if the Bohr radius
comparable to the lattice constant, we need to consider
rections toe(k). For small values ofk,

e~k!'e`2~kal !2 d, ~19!
,
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where, as we calculate below,d'0.18 for Cu2O. Expand-
ing,

4pe2

k2e~k!
'
4pe2

k2e`
1
4pe2

e`
2 al

2d, ~20!

we see that the first-momentum correction toe(k) produces
an effective contact interaction

DVd~r !52
4pe2

e`
2 dal

2 d~r !, ~21!

which lowers the exciton energy by

^DVd&52
4pe2

e`
2 dal

2 uCexact~0!u2, ~22!

whereCexact(r ) is the exact~unknown! wave function of the
1s state. If we evaluateDVd with the trial wave function
C(r ) truncated outside the first Brillouin zone we find

^DVd&52
4pe2dal

2

Ve`
2 u (

uqu,kD
Cqu2S (

uqu,kD
uCqu2D 21

52
2de2al

2

pe`
2aB

3

@ I 28~kDaB!#2

I 2~kDaB!
, ~23!

whereCq is again the Fourier transform ofC(r ). Also

I n8~x!5E
0

x yndy

~11y2!2
. ~24!

In the limit aB@kD
21 Eq. ~23! gives the result

^DVd&52
4pe2

e`
2 dal

2 uF1s~0!u252
4de2al

2

e`
2aB

3 . ~25!

To estimate the constantd we follow Ref. 23. The
Lindhard result gives for the dielectric function

e~k,v!511
4pe2

Vck
2 (
q,l ,l 8

z^ul 8,k1quul ,q& z2

« l 8,k1q2« l ,q2\v
, ~26!

whereVc is the volume of the unit cell and« l ,q is the energy
of bandl at pointq in momentum space. Since we are inte
ested in energies much smaller than the gap energy, we
sume thatv50. The dominant contribution to the abov
sum, given the band structure of Cu2O, involves virtual tran-
sitions between theG8

2 conduction bandc8 ~which lies'
449 meV above the lowestG6

1 conduction band! and the
highestG7

1 valence bandv. The overlap integral in Eq.~26!
satisfies the sum rule24

(
l 8

z^ul 8,k1quul ,q& z2~« l 8,k1q2« l ,q!5
\2k2

2m
, ~27!
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55 7597FINE STRUCTURE OF EXCITONS IN Cu2O
which as in Ref. 23 allows us to write the approximate res
for e(k), with k restricted in the first zone,

e~k!'11
4pe2\2

mVc
(
q

~«c8,k1q2«v,q!
22. ~28!

If we define

S~k![(
q

~«c8,k1q2«v,q!
22, ~29!

the dielectric function can be written as

e~k!511~e`21!S~k!/S~0!. ~30!

We calculate the above quantity numerically, using the
fective mass of the conductionG8

2 bandme850.35m, the
effective mass of the valenceG7

1 bandmh50.69m and the
energy gap between them,' 2.62 eV. The integration over
q is restricted toq<kD . Fork→0, Eq.~30! is of the form of
Eq. ~19! with d'0.18.

Equations~10!, ~18!, and ~23! give the total exciton en-
ergy as function of the Bohr radius,

Etot~aB!5
\2

2maB
2 2

e2

e`aB
2
C \2al

2

24maB
4

I 6~kDaB!

I 2~kDaB!

2
2 de2al

2

pe`
2aB

3

@ I 28~kDaB!#2

I 2~kDaB!
. ~31!

The first term is the kinetic energy of the electron-hole pa
^KE&. The second term is the potential energy^PE&, the
third term is the correction due to the nonparabolicity of th
bands,̂ DVa&, and the last term is the correction due to th
dependence of the dielectric function on the momentu
^DVd&. In the third term we have made the simplifying as
sumptionCe5Ch5C. For givenC the binding energy has a
minimum ataB5aB,0 , which is the exciton Bohr radius for
the specific choice ofC. The corresponding binding energ
is Etot(aB,0). The total exciton mass is then given by Eq.~13!

FIG. 2. The solid line shows the expectation value of the ener
of the 1s exciton in Cu2O as a function of the Bohr radius, Eq
~31!; the dotted line shows the same function with the central-c
corrections not taken into account.
lt

f-

,

,

with aB5aB,0 . Equation~15! gave us an order of magnitud
estimate C;1. The value C51.35 gives the result
aB,055.3 Å and the observed total ortho-exciton mass
3m. This choice forC then yieldsEtot(aB,0)5164.9 meV
~see Fig. 2!, in good agreement~10%! with the experimen-
tally known binding energy of 153 meV. The expectatio
value of each of the terms separately in~31! is
^PE&52420.4 meV, ^KE&5335.8 meV, ^DVa&5265.3
meV, and^DVd&5215.0 meV. We expect to find a large
binding energy here than the experimental value, since
choice of e` for the dielectric constant overestimates t
potential energy. The Bohr radius used in the literature
excitons in Cu2O is 7 Å, the number resulting from th
uncorrected formulaaB5e2/(2e0Eb) with Eb5153 meV,
the observed binding energy. The value ofEb598 meV,
which is the Rydberg of the excited states, givesaB'11.1 Å
in this way. But as we have seen the formu
aB5e2/(2e0Eb) neglects the central-cell corrections.

The total mass of then51 para excitons must be th
same as that of the ortho excitons, since the correction du
the nonparabolicity of the bands is the same for both
singlet and the triplet; the correction due to the exchan
interaction that is nonzero only for the ortho excitons is ne
ligible in our problem. Furthermore, the quadratic depe
dence of the Bohr radius on the quantum numbern implies
that the total exciton mass is very close tome1mh'1.68m
for the excited states. Neither then51 para-exciton mass
nor then>2 exciton masses has yet been measured.

IV. BAND STRUCTURE OF Cu 2O – EXCHANGE
INTERACTION AND OPTICAL PROPERTIES

OF EXCITONS IN Cu 2O

The virtual annihilation of an exciton, shown in Fig. 3,
responsible for raising the ortho exciton by an ener
DEex512 meV above the para exciton at the zone cen
(K50) of Cu2O.

6 The energy splittingDEex(K) is given by

DEex~K !5
2

3E CK~x,x!
e2

e`ux2x8u
CK* ~x8,x8! dx dx8.

~32!

The factor 2/3 comes from the angular-momentum states
we show in the next section. If the electrons and the hole
the conduction and valence bands are in pure-spin states
above interaction is nonzero for the singlet excitons on
Since it is positive, it shifts the energy of the singlet high
than the triplet. In the next section we explain how the ba
structure of Cu2O makes the exchange interaction nonze
for the ortho excitons and zero for the para excitons, shift

y

ll

FIG. 3. The virtual annihilation of an exciton, possible only f
pure spin-singlet states.
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the ortho excitons higher in energy than the para excito
Using Eq.~5! for the exciton wave function we find that

DEex~K !5
2

3

1

Vc
(

q,p,GÞ0

4pe2

uGu2e`
fq^uv,quuc,q&G

3fp* ^uv,puuc,p&G*1
2

3

1

Vc

3(
q,p

4pe2

uK u2e`
fq^uv,q2K /2uuc,q1K /2&

3fp* ^uv,p2K /2uuc,p1K /2&* , ~33!

where

^uv,quuc,p&G5E dx uc,p~x!uv,q* ~x!eiG•x. ~34!

The first sum in Eq.~33! is over all the nonzero reciproca
lattice vectorsG of the crystal. In this equation we have us
the high-frequency dielectric constant in the Coulomb int
action because the energy transfer in the virtual annihila
process of an exciton is on the order of the energy gapEg .
As we show below, the overlap integrals25,26 that appear in
the second term of Eq.~33! are proportional to (K2)2 be-
cause the dipole moment between the conduction and
valence bands vanishes. The second term of Eq.~33! there-
fore goes asK2, since it is proportional to 1/K2 from the
Coulomb interaction times (K2)2 from the overlap integrals
it vanishes at the zone center and renormalizes the or
exciton mass. To calculateDEex atK50, we assume that th
first sum of Eq.~33! is dominated by the terms with smalle
G’s ~six in number because of the cubic symmetry of t
crystal!, which we denote byG0; then

DEex~K50!&
16pe2

Vce`
VcuF1s~0!u2

al
2

4p2 z^uv,0uuc,0&G0
z2

5
e2

aBe0

4

p2 S e0
e`

D S alaBD
2

z^uv,0uuc,0&G0
z2. ~35!

Since experimentallyDEex(K50)'12 meV, we have
z^uv,0uuc,0&G0

z'0.45.

In most semiconductors the dipole matrix elementpc,v
between the conduction and the valence bands does not
ish. In this case the second term in Eq.~33! is proportional to
1/K2 from the Coulomb interaction timesK2 from the over-
lap integrals and therefore fromk•p perturbation theory27 is
;(pc,v•K̂ )

2, whereK̂ is the unit vector in the direction o
K . This term, therefore, is responsible for the nonanaly
behavior of the energy of dipole-allowed excitons at the zo
center, i.e.,K→0, depending on the relative direction ofK
with respect topc,v .

10 The exchange interaction in this ca
lifts the degeneracy between longitudinal (K ipc,v) and trans-
verse (K'pc,v) excitons, with the longitudinal lying highe
than the transverse. The same phenomenon appears in o
phonons, i.e., the longitudinal modes have higher ene
than the transverse atK50, because in the case of longitu
dinal oscillations there is charge accumulation~not present in
the case of transverse oscillations!, which creates an interna
electric field.28
s.
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o-

an-

c
e

ical
y

By contrast, in Cu2O, the second term of Eq.~33!
(;K2) makes the total mass of the ortho excitons sma
thanme1mh ; for the para excitons it vanishes. To estima
this correction, we usek•p perturbation theory to write

uul ,q1K /2&'uul ,q&1
\

m (
nÞ l

^un,qu~K /2!•p uul ,q&
« l ,q2«n,q

uun,q&,

~36!

where the sum is over all the bands of parity opposite to t
of bandl . Thus, for the sums in the second term of Eq.~33!,

(
q

fq^uc,q1K /2uuv,q2K /2&

'S \

2mD 2S (
n

^uc,0uK•p uun,0&^un,0uK•p uuv,0&
~«c,02«n,0!~«n,02«v,0!

D
3Vc

1/2F1s~0!, ~37!

where the sum is over the two negative-parity bands
Cu2O. This correction modifies the free dispersion relati
of the ortho excitons to

EK5
\2K2

2M F11
1

3

M

m

e0
e`

S \

maB
D 4

3(
n

~K̂•pc,n!
2~K̂•pn,v!

2

~«c,02«n,0!
2~«n,02«v,0!

2G . ~38!

The above equation predicts that the ortho-exciton mass
to the correction caused by the exchange interaction is
isotropic. Using the estimateupi , j u/\'0.13 Å21 and the en-
ergy levels of Cu2O, we find that the correction@i.e., the
second term in the parentheses in Eq.~38!# of the exchange
interaction to the~ortho! exciton mass is negligibly small
'0.001.

A. Band structure of Cu2O and optical properties

The G6
1 conduction band in Cu2O is formed by Cu 4s

orbitals and theG7
1 valence band by Cu 3d orbitals.11 The

fivefold degenerate~without spin! Cu 3d orbitals split under
the crystal field into a higher threefoldG25

1 and a lowerG12
1

twofold degenerate band. Finally,G25
1 splits further because

of the spin-orbit interaction into two bands, a higherG7
1

nondegenerate band and a lower twofold degenerateG8
1

band~Fig. 1!.
The total angular momentum functions for the yellow

exciton triplet states are

uJ51,Jz51&5u↑e ,↑H&, ~39!

uJ51,Jz50&5
1

A2
~ u↑e ,↓H&2u↓e ,↑H&), ~40!

uJ51,Jz521&5u↓e ,↓H&, ~41!

and for the singlet states,

uJ50,Jz50&5
1

A2
~ u↑e ,↓H&1u↓e ,↑H&). ~42!

The indicese,H refer to the electron and the hole, respe
tively: while the electron states are pure spin states, the h
states aretotal angular momentum states,
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u↑H&52
1

A3
@~X1 iY! u↓h&1Z u↑h&] ~43!

and

u↓H&52
1

A3
@~X2 iY! u↑h&2Z u↓h&], ~44!

where the states with lower caseh are pure spin states. Th
spatial functionsX,Y,Z transform asyz, xz, andxy, respec-
tively.

The above angular-momentum functions explain why
exchange interaction is nonzero only for the ortho excito
as well as why the direct recombination of the para excit
is highly forbidden. If we assume that there is no spin flip~a
higher-order effect!, the above angular-momentum functio
imply that the exchange diagram shown in Fig. 3~virtual
annihilation of the exciton! vanishes for the singlet. For th
triplet state the exchange interaction does not vanish
raises the ortho-exciton with respect to the para-exciton
ergy. The factor of 2/3 we used for the calculation of t
exchange energy in Eq.~32! comes from the above angula
momentum functions. The radiative recombination proc
of excitons is essentially described by the left~right! half of
the virtual annihilation diagram, with the only difference th
a real instead of a virtual photon is emitted. The matrix e
ment for the recombination process, therefore, is prop
tional to A2/3 times the result from the spatial part of th
d-

riv

l
,

e
s,
s

d
n-

s

t
-
r-

calculation for the ortho excitons, but it vanishes for the p
excitons. The same physics is responsible for the ortho e
tons lying higher than the para excitons, and the direct
combination of the para excitons being highly forbidden.

V. SUMMARY

Based on the effective-mass approximation, we have u
perturbation theory and the variational method to calcul
the binding energy, the Bohr radius as well as the total m
of the 1s state of the yellow-exciton series. We have sho
that the nonparabolicity of the bands gives consistent cor
tions for the total exciton mass and the exciton binding
ergy, as well. The coupling of the electrons and the holes
the LO phonons and the momentum dependence of the
electric function also contribute to the binding energy. T
exchange interaction is responsible for the energy splitt
between the triplet and the singlet-state excitons at the z
center, with the triplet lying higher because of the ba
structure of Cu2O. Finally, the contribution of the exchang
interaction to the exciton mass is negligible.
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