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Transfer-matrix study of the staggered body-centered solid-on-solid model

Enrico Carlori
Instituut voor Theoretische Fysica, Universiteit Utrecht, Postbus 80006, 3508 TA Utrecht, The Netherlands
and Hachstleistungsrechenzentrum, ForschungszentriiohjuD-52425 Jlich, Germany

Giorgio Mazzeo
Dipartimento di Fisica, Universitali Genova, and Istituto Nazionale per la Fisica della Materia (INFM),
via Dodecaneso 33, 16146 Genova, ltaly

Henk van Beijeren
Instituut voor Theoretische Fysica, Universiteit Utrecht, Postbus 80006, 3508 TA Utrecht, The Netherlands
and Hachstleistungsrechenzentrum, ForschungszentriimhjuD-52425 Jlich, Germany
(Received 16 May 1996; revised manuscript received 13 Septembe) 1996

The phase diagram of the staggered six vertex, or body-centered solid-on-solid model, is investigated by
transfer-matrix and finite-size scaling techniques. The phase diagram contains a critical region, bounded by a
Kosterlitz-Thouless line, and a second-order line describing a deconstruction transition. In part of the phase
diagram the deconstruction line and the Kosterlitz-Thouless line approach each other without merging, while
the deconstruction changes its critical behavior from Ising-like to a different universality class. Our model has
the same type of symmetries as some other two-dimensional models, such as the fully fro6tatediel,
and may be important for understanding their phase behavior. The thermal behavior for weak staggering is
intricate. It may be relevant for the description of surfaces of ionic crystals of CsCl structure.
[S0163-18297)05001-7

[. INTRODUCTION type, confirming previous renormalization-group resBilts.
Experimental situations often are too complex to allow
Six vertex models were introduced by Sldtey describe  even a qualitative description by the exactly solved BCSOS
ferroelectricity in two-dimensional networks. Placing arrowsmodels. Various extensions of the standard six vertex model
on the bonds of a square lattice one can define the 16 posave been proposed to deal with these cases. Two main
sible arrangements of arrows pointing towards and awaylasses may be identified: one where interactions between
from a lattice point as vertices. In six vertex models onlyyertices are added, and another one in which the vertex lat-
those six vertex configurations are képee Fig. 1that sat- tice is split into two sublattices with different vertex ener-
isfy theice rule, i.e., they have two arrows pointing in and gies. These modifications, however, lead to models which,
two pointing out at each vertex. Assigning energiesapart from some particular case’lose the property of be-
€1, ... €6 t0 these vertices one obtains a class of exactlying exactly solvable. Other techniquésg., numerical ongs
solved model$:® have to be adopted. Models in the first class have been pro-
Six vertex models can also be interpreted as surface mogyosed to account for further neighbor interactions between
els, by mapping them to the so-called body-centered solidsyrface atoms, which may change the symmetry of the
on-solid (BCSOS models; defined as limiting cases of a ground state and give rise to phase transitions other than the
lattice gas, or Ising model, on a body-centered-cubic latticeroughening transition. Vertex interactions were introduced to
Therefore the phase structure of the six vertex model as fungeproduce the (2 1) reconstruction of thé110) face of fcc
tion of its vertex weights can be translated directly to thepgble metals like Au and PtThis led to investigations on
surface phase structure of the corresponding BCSOS modelquilibrium phase transitions on these surfaces as well as on
The mapping turned out to be important in understanding thgyrfaces of lighter metals like Ag, Rh, éftA model of the
properties of theoughening transitiont Using the exact so- (100 surface of an fcc crystal exhibiting a ¥2) recon-
lution of the six vertex model it was found that roughening isstrycted ground statk has recently extended the list. The
a transition of infinite order of the Kosterlitz-Thoule@€T) second class of models, with vertex weights alternating on
the two sublattices, are known ataggered six vertex mod-
els A staggering only involving the weights of vertices 5 and

1z @ o 1 ‘l’ ol 'f‘ 21 '1‘ 21 ‘l"’ 6 corresponds to the imposition of a “staggered field,” i.e., a
ehs  ofa1  zy1 o .f 1ozy1 o ,1\ 1 field coupled to the arrow directions that changes sign be-
| 5 3 4 s s tween neighboring arrows. This gives rise to an inverse

roughening transition in part of the phase diagr&amlter-

nating the values for the energies of the vertices 1, 2 and 3, 4
FIG. 1. The six vertices and the corresponding height configuon the two sublattices leads to a model known as “the stag-

rations. gered six vertex model'(or staggered BCSOS modiéh the
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literature. In a large part of its parameter space it can bdiguration. The low-temperature phase is usually called an
mapped onto the Ashkin-Teller mod€lUsing this transfor-  “antiferroelectric” phase, since along both horizontal and
mation Knops investigated the phase structure of the stagrertical rows the arrows predominantly alternate in direction.
gered BCSOS model in part of its phase diagram byFrom the exact solution it is known that this system under-
renormalization-group method$but until recently a large goes an infinite order phase transition to a disordered
region pf the phase diagram has remained unexploreq. paraelectric state ae=In2.
_ In this paper we present a complete account of our inves- ag already pointed out in the Introduction, the six vertex
tigations, over the full range of paramet.ers, of the staggerepnodmS are isomorphic to a class of solid-on-sqi&D9
BCSOS model. A preliminary description has been giveny,qeis called BCSOS modélsviicroscopic configurations
er:zfn%e"; (I)Qfe(;.if]}e?’,ezte:isvtljletspresent further details as well a3f an SOS model are given in terms of discrete heightsf

: e?urface atoms with respect to a reference plane. All lattice

h In the unexplored region of the phase diagram the mod ites up to these heights are occupied and all sites above
as a ground state which is twofold degenerate, therefore %em are empty. In the BCSOS model the height variables

has a symmetry of Ising type. The twofold degeneracy is los

at a second-order transition line which approaches anoth&t'® p_Ia_ced on the dual lattice of the six vertex_lattice. _This Is
line of KT roughening transitions. The interplay between th subdivided into an even and an odd sublattice, which are

two is particularly interesting, especially since a similar in-intertwined in a chessboard pattern and on which the surface

terplay between a KT and a second-order transition has bed}fights assume even, respectively, odd values only. The even
found for several different models, among which other mod-Sites will be referred to as blaciB] sites and the odd ones as
els for reconstructed surfac¥s®but also the fully frustrated White (W) sites. In addition the height differences between
XY modet’*°and coupleX Y-Ising model®?! They have  neighboring sites are restricted to the value$. The map-
received a great deal of attention in recent years and till nowing of six vertex configurations to corresponding configu-
their critical behavior is not fully understood. The strong rations of a BCSOS model is very simple. The height differ-
interplay between Ising and KT degrees of freedom may leag@nces between neighboring sites are put in a one-to-one
to several possible scenarios where, in a certain region of theorrespondence with the arrow directions in the six vertex
phase diagram, either the two transitions occur close to eadtpnfiguration. The convention is that the higher of the two
other but remain separate, or they merge into a single phasgirface sites is at the right side of the arrow. Given a con-
transition, which may perhaps belong to a new universalitffiguration of vertices, the configuration of heights is fixed
class. uniguely once the height of a reference atom has been fixed
Apart from these more theoretical aspects the model i¢see Fig. 1
likely to be relevant for the study of the equilibrium proper- ~ The vertex energies can be reinterpreted in terms of bond
ties of a certain class of crystal surfaces, e.g.(@@1) sur- energies between the atoms. When periodic boundary condi-
face of ionic crystals of the CsCl structure. This too will be tions are applied along thesay) horizontal direction of the
discussed in some detail. vertex lattice the number of vertices 5 and 6 per row is equal,
The paper is structured as follows. In Sec. Il we give atherefore with no loss of generality one can always choose
description of the model. In Sec. Ill we present its full phasees= €5=0, fixing the point of zero energy. The vertices 5
diagram. In Sec. IV we review the techniques employed inand 6 describe local configurations in which the height vari-
our studies, i.e., the transfer-matrix method and finite-sizeéibles on either diagonal are equsée Fig. 1 Vertices 1, 2,
scaling, and discuss the correlation functions and free eneB, and 4 correspond to configurations where the height vari-
gies we calculated to derive our results. In Sec. V we discusgbles along either of the two diagonals are different, there-
the critical exponents of the model and some possible scdore €3, €,, €3, ande, can be viewed as energies needed to
narios for the changes in the critical behavior along the debreak a next-nearest-neighbor bond and produce a height dif-
construction line. In Sec. VI we conclude with a brief dis- ference of two vertical lattice units between neighboring

cussion of related models. sites of equal color.
In the ordinary BCSOS model the distinction betwdn
Il. THE STAGGERED SIX VERTEX MODEL and W atoms has been introduced only for convenience of

description, but the two sublattices are equivalent and are
The partition function of the six vertex model is given by treated exacﬂy on the same footing_ Kn&fbextended the
model to a two-component system where BhandW atoms
ZZE efﬁEiezlni(Oei, (1) are physically different. While energy zero is still attributed
(c} to all vertices 5 and 6, Knops assigned two different ener-
ngies, e and €', to broken bonds betweew-W and B-B
atoms, respectively. In terms of the six vertex representation
also the vertex lattice is divided into two alternating sublat-
tices | and Il on which the vertices assume different energies
as follows:

where the sum runs over the set of all allowed vertex co
figurations{C} andn;(C) denotes the number of vertices of
typei in the configuratiorC (8=1/kgT, with kg being the
Boltzmann’s constant and being the temperatuye The
model has been solved exaéfly®for any choice of values
of the energieg; (i=1...6). A relatively simple choice of
the vertex energies is given by,=e,=e3=€,=€¢ and
e5= €5=0 which defines, fore>0, the so-called= model.
The ground state is twofold degenerate and is composed of | on sublattice Il: e;=e;=€";e3=€,=€;€5=€5=0.
vertices 5 and 6 arranged alternatingly in a chessboard con- 2

on sublattice I: e;=€,=¢€;e3=€,=€';e5=€5=0
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This choice defines the staggered six vertex model. In tha delocalization of the surface position and to a logarithmic
BCSOS representation the model is described by the Hamidivergence of the mean square height difference at large dis-
tonian: tances:

’ — 2y 942 .
210 20

subject to the constraint that the height difference between . . . . . .

neigj;hboringB andW sites is* 1. The%‘irst sum in Eq(3) with ay being the vertical Iatt|ge spaglng,((T) IS a

runs over all pairs of neighboring/ sites on the surface and tempergture_—de_pend(_ant prefac_llarj, is the dlsta_nce between

the second sum over the correspondi@airs. Throughout the lattice sited andj, andTg, is the roughening tempera-

this article we will also use the paramet&rdefined by the tre. BelowTg, G(R) saturates for largR at a temperature-

relation e’ =e+25. As mentioned already in the Introduc- delpert_entgs r::ons:{tharl[t T \{{?]Iue. f I?enormallzatltohn-grqup
tion the model defined here will be referred to as the stagga culations=show that all  the pretactor assumes the uni-

gered six vertex(or BCSOS model. Obviously when versal value
e=¢€' (6=0) one recovers the usuil model. 1

For negative values of the vertex energeand €', the K(Tg) = —. 5)
system may model ionic crystals of bcc structure as, for in- m
stance, CsCP The constraint of minimal height difference In the particular case of the exactly solvednodel,K(T) is
between neighboring surface sites reflects the effects of thenown for every temperature aboWe ,2° that is
strong attraction between oppositely charged ions, while
neighboring pairs of the same color, having equal charges,
repel each other. It is further assumed that on top of the
Coulombic repulsion other interactions, as for instance spin ) )
exchange, generate a slight difference in the energies fo¥hereA=1—e®#</2. In fact Eqs.(4) and (6) are valid not
broken bonds betweeB-B and W-W pairs (e ¢'). In the only in the h|gh—temp§rature _phase of tﬁemodel,_but also
staggered BCSOS model the interaction range is limited tdor =0, Be<0, which defines the so-called invertéd
next-nearest neighbors and to have a more realistic represeiodel™ = all along the negativge axis the surface is in a
tation of ionic crystals one needs to extend the interactions tfPugh state. o L
further neighbors. Yet we expect the phase structure de- For 6#0 Knops found two critical lines originating from

scribed here for the staggered BCSOS model may be efbe KT point and running into the regions>0 and 6<<0.
countered in real ionic crystals. The lines represent phase transitions of the Ising type from

an ordered low-temperature phase to a disorderedDiaF)
phasg, similar to the phase introduced by Rommelse and Den
Nijs.

We have investigated the phase diagram of our model by The ground state of the model is twofold degenerate. At
means of transfer-matrix and finite-size scaling techniquedhigher temperatures the more weakly bound sublattice fluc-
which will be the subject of Sec. IV. Here we present thetuates above and below the more strongly bound sublattice,
main results. Since the model shows a trivial symmetry uponvhich remains almost localized at a given level. In the limit
exchange ofe and €', corresponding to the replacement 6—o the model can be mappeexactly onto the two-
(8,€)«<(— 6,e+26), we can restrict ourselves to the region dimensional Ising model, which is critical atBe
5=0. The phase diagram naturally divides into three sectors=In(1++/2); the strong sublattice is “frozen” to height
of globally different behavior, though smoothly connected to(say) zero, the only freedom left for the heights of the other
each other. These are described in the three following sulsublattice is to take the valuesl just below or above that
sections. of the strong sublattice(see Fig. 2 According to the

renormalization-group results obtained for the Ashkin-Teller
A. The range e>0;€'>0 modef* the phase transition remains in the universality class

» , 4. _ of the two-dimensional Ising model all along the critical line
For positive values ot and e’ Knops* investigated the down t05=0.

phaselglagram throqgh a mapping onto the Ashkm-T(_eIIer Starting from the low-temperature phase and increasing
model;” the phase diagram of the latter had been obtainege temperature, the system undergoes an Ising transition to
before by renormalization-group m_etho?ﬂ@n theSe axis  the DOF phase, while roughening is pushed up to infinite
the (001) surface in the corresponding BCSOS model is in &emperaturd? We reinvestigated this part of the phase dia-
flat phase forBe>In2, whereas the intervg8e<In2 repre- g5 with the transfer-matrix methods to be described in

sents the temperature region in which the surface is rougtgec v/ and obtained results in full agreement with those of
The infinite order transition occurring at the KT point Knops.

Be=In2, B35=0 corresponds to the roughening transition of
this surface.

Roughening is a phase transition which can be character-
ized by the vanishing of the free energy o$tep separating When e becomes negative the ground state of the system
two surface regions of different average height. The roughehanges drasticallgirrespective of the sign of"). Breaking
ening transition results into a proliferation of steps leading tdbonds between white atoms now lowers the energy, so that at

for Rj—e and T=Tg (4)

K(T)= 6

Tr arcco\ ’

Ill. THE PHASE DIAGRAM

B. The range €<0;€’'>0
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FIG. 2. Side view of the surface far>0 in one of its ground FIG. 4. The phase diagram of the staggered BCSOS model. We

stateg@) and in the Ising limit35— « at a finite value of tempera- show here only the sect@®@, and part of the sectds in the inset.
ture (b). In the ground state atoms form uninterrupted rows also inOpen circles denote the deconstruction line and open squares the
the [010] direction (orthogonal to the pageThe structure of the roughening line. The estimate for the roughening condition, pro-
DOF phase resembles that @), with broken bonds betweeB vided by Eq.(9), is shown as a dashed line. It is almost indistin-
atoms always less frequent than betw&¥ratoms(their energies  guishable from the correct cursquaresfor Be< —1.3.
aree’, e respectively, withe’ >€>0). In the figure e ande’ denote
bonds the breakage of which would cost these amounts of energpshase found foe>0; no singularities are met in crossing the
B6 axis. Our transfer-matrix calculations confirm the exist-
zero temperature one finds the black sublattice unbrokeance of this critical line and show it exhibits Ising-type criti-
(provided 6>0), while atoms of the white sublattice are cal behavior throughout secté.
found alternatingly above and below the black sublatftsse
Fig. 3. This surface configuration is commonly referred to
as ac(2x2) reconstructed surface. In the equivalent six
vertex representation the ground state is formed by columns For €’ <0 the mapping of the staggered six vertex model
of vertical arrows running alternately all upwards and allto the Ashkin-Teller model leads to negative Boltzmann
downwards, and by rows of horizontal arrows running alter-weights in the latter. It loses its physical relevance and can-
nately all right and all left. Such an arrangement of directednot be used any more to make predictions on the phase be-
paths is known as th#anhattan lattice due to its resem- havior of the staggered six vertex model. In spite of this
blance to the one-way street pattern of Manhattan. As th&ohmoto et al?® have made some conjectures, which have
energy is invariant under the reversal of all arrows, theproven to be correct, on the physical situation beyond the
ground state is twofold degenerate, just as in the casghorizon” e+26=0.
€>0. Indeed in the limitd— the model can be mapped  Our transfer-matrix analysis shows the existence of three
exactlyonto an antiferromagnetic Ising model leading to thephases: a low-temperatuc§2x 2) reconstructed phase and
value Be=—In(1++2) for the critical temperature. This a DOF phase, which are present already in seBtoand a
constitutes a horizontal asymptote, as in the eas@, fora  rough phase, which is found only in the present sector. Two
second-order transition line, whose existence can be deducéitical lines separate these phases, as shown in Fig. 4: the
again from the mapping of the staggered six vertex modefirst one is just the continuation of the second-order line
onto the Ashkin-Teller modéf It separates a low- beyond the horizon. It still separates thé2x2) region
temperaturec(2x2) reconstructed phase from a high- from the DOF region and asymptotically approaches the axis
temperature DOF phase, where the reconstruction order 86=0. We have strong indications that, within at least a
lost but the surface is still globally flat: it is the same DOF major part of the sectoe’ <0, this line does not belong to
the Ising universality class. We will present the evidence for
this in Sec. V. The other critical line is a line of KT points

C. The range €<0;€’'<0

[001] separating the rough regidor critical fan, as predicted al-
ready by Kohmotcet al?®) from the DOF region.
[100] The point where the KT line meets the vertical axis can be

determined from the exact solution of tlve model as the
point where the prefactor of the logarithmic term in the
mean-square height difference is four times as large as its
universal value assumed at the ordinary roughening tempera-
ture of theF model

o o]

FIG. 3. Side view of one of the ground states of the model for
€<0. Notice thatw atoms alternate in height with respect to Be K(T)=4K(Tg)= i )
sublattice also in th€010] direction (orthogonal to the page RO 2
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from which one obtains, inverting E¢6):

Be=%ln(2—ﬁ)~—0.2674. )

The factor four in Eq(7) stems from the fact that fof+ 0
the roughening transition is driven by steps of a height of
two vertical lattice unitgas in Ref. 12, due to the inequiva-
lence between the two atomic sublattices.
A simple estimate of the roughening transition tempera- (b)

ture based on a random-walk approximatieee Ref. 1b ,;{
yields il 1 ,,/
e 2Prrefe=1. ©) 1ol 1o 1]

This line has been drawn in Fig. 4. Indeed, for large and Il I 7 - -
negativeBe it is seen to run very close to the KT line, which 0 -1 0 1|0 1 0
we could determine with great accuracy by the methods de- 4
scribed in the next section. 1 0 1 g” 1 0 1

A most remarkable feature of our phase diagram is the 2 -
apparent merging of the second-order and the KT line into a o | 1 /@/ 1 0 1 0
single line(see Fig. 4. Their horizontal distance as a func- .
tion of Be can be well described by a curve of the form /7
d(Be)=Ce*P9) with a=121 This exponential fit suggests 1 /U 1o 1ol
that although the two lines are coming rapidly closer together % -
asfe is decreasing, they do never actually merge. Other fits, 7 V v V

of the formd(B€) =C|Be— Beo|*, which would be expected
to work in the case of a merging of the lineseat €,, could
not be stabilized against changes in the fitting range. FIG. 5. A domain wall separating two different Ising phases for

The apparent noncrossing of the two critical lines at firste<0, (a) in side view andb) seen from above in the vertex lattice.
looks very surprising. At low temperatures a domain wall
between two different Ising phases mainly consists of diagfough phase again. Instead fo620.4¢| the system goes
onal sequences of vertices 5 and 6, as depicted in Fig. 5; i#8rough a single phase transition from the ordered to a DOF
energy per unit length approximately equalg/\2. On the phase and remains flat for all finite temperatures.
other hand a step consists mainly of long horizontal and
vertical chains of overturned arrows and has an approximate IV. TRANSFER-MATRIX AND FINITE-SIZE
energy per unit length of & To a first approximation steps SCALING METHODS
do not couple with the Ising order, since the reconstructed
phase remains the same at both sides of the(semFig. 6.
Hence one would expect the KT lieharacterized by van-
ishing step free energyand the Ising linglvanishing Ising
domain-wall free energyto cross neare+225=0. We
think that the actual noncrossing of the two lines can b W o diff it f i iented .
explained as follows. When temperature is raised, more and € use two difterent transter matrices, one oriented par
more closed steps will be formed on the surface as one aﬁi-”el to the.axes of the vertex lattice and another one tilted
proaches the roughening temperatlige On these steps the over 45° with respect to these axes. We refe_r to the former as
direction of the arrows is reversed. In this way the I.c,ing\/ert'.(:"’llT'v.I and to the_latter adiagonalTM (.F'g' ’ sho_ws a
order parameter becomes more and more diluted, which Wi"?onﬂguranon of the diagonal TMWe consider a lattice of
eventually, strongly reduce the free energy of a domain wall.

If in the end the closed steps become so prolific that they [001]

cover on average half of the surface, without becoming of

infinite length, the Ising order disappears without roughening
of the surface.

For 26=<0.4 €| the thermal behavior implied by our phase
diagram is quite intricate and remarkable. At low tempera-
tures the surface is in a(2x2) reconstructed flat phase,
then on raising the temperature there is a second-order tran-
sition to a DOF phase, rapidly followed by a KT transition to
a rough phase. Next there is a reentrant KT transition to the
DOF phase. This is an inverted roughening transition similar
to the one described in Ref. 12. Finally, as temperature ap- FIG. 6. Side view of gdouble heightstep as an excitation of
proaches infinity, the system asymptotically approaches &e Manhattan ground state.

Transfer-matrix techniques are frequently used in studies
of the critical properties of two-dimensional systems with
short-range interactions. The construction of the transfer ma-
trix (TM) follows a standard procedure and the interested
ereader is referred to the existing literattifer details.

[100]

(@] (¢]
o &6 &6 o o
OO0 O O 0 0 O

o

O )
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flat surface. The subcentral blocksith polarization =2)
describe surfaces with one step.

The difference between the free energies of a surface with
a step and of a flat surface gives the step free energy, which,
per unit of length, on amlNXx o strip can be expressed as

Bfs(N)=—[Ink1(N)—Inko(N)], (12

where \o(N) and A;(N) are the largest eigenvalue of the
central and the subcentral block, respectiv@l§he study of
this quantity will allow us to determine the roughening tem-
perature.

The deconstruction transition can be studied by consider-
ing two correlation lengths, which are both defined within
thel central block. We define the inverse correlation length
&' as

&5 (N)=—[IN\(N)—InXo(N)], (13

wherel,(N) is the second largest eigenvalue of the central
FIG. 7. Part of a ground-state configuration of i system  block. The other correlation length can be calculated from
with N odd. Due to partial frustration, the system produces a dothe diagonal TM as the inverse of the domain-wall free en-

main wall made of a sequence of vertices 5 anddénoted by  ergy per unit IengtH\jvl(N), wherefy(N) is given by
circles.

f(N+1)+f(N=-1)
width N and heightM, with periodic boundary conditions in fw(N)=f(N)— 5
the horizontal direction. For the vertical TM the subdivision
of the lattice into a white and a black sublattice, combinedyith N odd. Indeed in the diagonal TM axix = strip, with
with the periodic boundary conditions, restridisto even N odd, is partially frustrated since it cannot accommodate
are chosen along the diagonals of the vertex latticeNandn (see Fig. 7. f\jvl(N) can be interpreted as the correlation

be odd as well as even. The elemdhf of the matrix is  |gngth connected to the correlation function between two dis-
defined as the Boltzmann weight of a row Nf vertices  ,qer variables!

generated by arrow configurations labeled by the indices  conformal invarianc® predicts that, at a critical point,
andj. One hasT;; =0 if this row of vertices does not satisfy the correlation lengths scale Ns so the deconstruction tran-
the ice rule. For the.vert|cal TM, |f.andj are identical t.here _ sition can be located at the crossing point of the curves rep-
are in fact two possible conflguratlons of rows qf vertices: iNresenting the scaled quantitiééy, andNf,, as functions
this case the transfer-matrix simply sums their Boltzmannys the temperature for different sizes. In reality, as shown in
weights. _ . . ~ Figs. 8a) and 8b), no perfect crossing is found. Instead,
There are 2 different arrow configurations for the verti- pairs of curves obtained for sizésandN+ 2 intersect each
cal TM, whereas for the diagonal TM this number i€\2 other in a sequence of pointsB3,(N),Bep(N)], respec-
The largest value_s oN we could treat r_1umer|cally were tively [ B6w(N), Bew(N)], which converges to the infinite
N=22 for the vertical z;nsz 12 for the diagonal TM. Ac- system critical point 85 ,Bep), respectively By, Bew).
tually, due to the rotation of the lattice over 45° the latter A extrapolation procedure requiring several iterafioris
should be compared to $2~17 for the vertical TM. then used to estimat@s, or Bd,,. Of course the two inde-
In the limit M — o the partition function per row becomes pendent estimates of the critical point have to coincide,
) which provides a good check on the internal consistency and
lim (Zysem) ™ =No(N) (100 accuracy of our procedures.
M= To locate the roughening temperature one has to employ a

with Ao(N) the largest eigenvalue df, from which the free different method. The scalinfg(N) ~1/N holds not only at

(14)

energy per row follows as the KT transition but also inside the rough region, where the
surface is in a critical state. There the curifg(N), plotted
BE(N)=—In\g(N). (11)  as functions of temperature for different valueshf coa-

lesce in the limitN—o and the point where they detach

To each statei we associate a polarizatiorP, from each other can be _identified as the KT pdsee F_ig.
=N;;—N;,, with N;; andN;, the total numbers of up and 9). For an qccurate location dTR_(_)ne has_ to use th_e univer-
dowr?® arrows in the state By virtue of the periodic bound- S&l properties of t?4e KT transition which give rise to the
ary conditions in the horizontal direction the transfer matrixScaling predictiot?:
can be reduced to blocks of fixed polarization, sifige=0 if
Pi# P; (see, for instance, Ref) 3The so-called central block NBf(N)= ™ n 1 (15)
is the one corresponding to zero polarization and describes a S 4 A+BInN’
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wn N=18
15 o Inverse
Z 12 roughening
\
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FIG. 9. The scaled step free eneiyyBfg(N) for different sys-
(b) tem sizes along a vertical scan across the phase diagram

0.55 (B6=0.14). Coalescence of curves is an indication that the surface
oF is in a rough state. Both the roughening transition and the inverse
‘2— roughening transition are visible: they can be roughly localized in

0.50 | the regions where the curves approach the vatlée

ing finite-size scaling methods. The two exponemtand v

are related to the behavior of the singular part of the surface
free energyfsmg~t2‘“ and of the domain-wall free energy
fuw~1t" (Ref. 36 (wheret=(T—Tp)/Tp, Tp the decon-

045 |

040 struction temperatuje They satisfy the finite-size scaling
predictions
0.35 s . . . s
0.187 018 0189 0190 0191 0192 0193 1 #*f(N) )
p3 N iz N (16)

FIG. 8. The scaled correlation lengths&y (N) (a) and and
NBfw(N) (b) used to analyze the deconstruction transition by
means of the vertical, respectively, the diagonal transfer matrix. The Nﬁfw( N) N (17)
curves for different system sizes intersect in a sequence of points at !
which for increasingN extrapolate to the deconstruction transition
temperature. The figures refer to a scan along the thermal trajectofgspectively, valid at the critical poinf=Tp. Two other
(Ref. 28 characterized by/5= —6.0. The extrapolated values for critical indices we will calculate are

(a) and(b) (dashed linescoincide within error bargnot shown.

1 N
which holds exactly aT =Tg, with A and B nonuniversal X= 27-rN“an§D(N) S (18
constants. The constant4 is characteristic for steps with a °
height of two vertical lattice spacings. The free energy of 1
such a step corresponds to the line tension between a vortex- X' ==—lim NBfy(N) , (19
antivortex pair with vorticity 2 in the dual representatin. 27N e =T,

The KT transition temperature is determined by requiring
that a three-point fit of the formNBfg(N)=A,  which represent the exponent of the spin-spin correlation
+1/(A+BInN) yields Ag= /4. For the extrapolation we functior?’ and that of the correlation function between dis-
used iterated fits in the spirit of Ref. 35. We performed thisorder variables’ respectively. The numerical errors on the
procedure along different lines across the phase diagramvalues assumed by these quantities are obtained as follows.
scanning lines with3 s fixed, lines withBe fixed, and ther-  We first evaluate the error on the determination of the critical
mal trajectories® temperatureATp from the quality of the extrapolation to
N— o of our finite-size datd®> Subsequently, we extract the
values of the exponents, again by iterated fits, at three dif-
ferent temperaturesTp—ATp, Tp, and Tp+ATy. This

As we noted in the previous section, the critical line sepaprocedure allows us to determine the maximum possible
rating the flat from the rough region can be well charactervariation on the values aok/v, v, X, andx’, thus assigning
ized as a KT line. As we will see, the critical properties of them an error bar. Notice these errors are typically small if
the second-order line are less well determined, especially ithe critical temperature is determined accurately enough.
the regione’<0. We will calculate critical exponents and  Finally, from conformal invarianc&®it follows that the
central charge pertaining to the deconstruction transition udeading finite-size correction to the free energy per site of an

V. CRITICAL EXPONENTS AND CENTRAL CHARGE
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infinite system with periodic boundary conditiorfs,, is de- (a)
termined by the central charder conformal anomalyc as 0.19
f(N) ~ C 4
N ~f,+ NZ (20 ois |
In fact we analyzed the central charge using the finite-size @~ }—"—-+-—-—-—%*%-—----——
approximation 0.11 f
N N2 3 N2(N+2)2/f(N) f(N+2) o1
CNN+2) =72~ NFD | N Ntz | @Y 007 |
which converges ta in the limit N—o.

With the te_chnlques described above we find th_at the _de- 0035 o2 014 oTe T 020
construction line fore<<0 belongs no doubt to the Ising uni- B3
versality class in sectd of our phase diagram. Good con-
vergence with increasing size is obtained for the critical (b)
exponents as well as for the central charge, the values of 0.16
which are =

Z

]
=0 =1 _x -1 1L 22
a=0, v=1, x=x'=g, c=3. (22

In the regione’ <0 the situation is less clear. The conver-
gence of the data with increasing system size is worse, the
values of some of the critical exponents seem to vary along
the critical line and the central charge cannot be determined
with any great accuracy. Yet our results seem to clearly rule s
out the possibility that the critical line remains in the Ising 0.08 i . . . X .
universality class. We present the results for the various ex- 4 6 8 10 12 14 16
ponents and for the central charge below and then draw some N
more general conclusions.

FIG. 10. (a) The exponenx calculated along the deconstruction
line, in the range of values @8 where the convergence is mono-
tonic. (b) Nonmonotonic behavior ok(N) as a function ofN:

In part of sectorC of the phase diagram we find difficul- curves 1, 2, and 3 refer to critical points in secBof the phase
ties in convergence for the quantities extracted from the cordiagram (and tend to the value 1/2), while all the other curves
relation lengthép(N). Figure 1@a) shows the behavior of (4-10 refer to points in secto€ (see text For (4—10, due to the
the exponenx obtained from Eq(18), only along part of the limitation in the maximum system size availatlarger than that
deconstruction line. The extrapolation procedure to infiniteshown hergit is almost impossible to obtain a good extrapolation
size is in fact far from trivial close to the horizon for N—co.
e+26=0, where we find nonmonotonic behavior with in-
creasing size forN/¢p(N) and even for the sequence mum. The position of the maximum gradually shifts to
Bop(N). In order to give an estimate of the exponent higher values of size until it exceeds the largest value acces-
nonetheless, we looked at the quantityx(N)  sible to our calculations and eventally disappears from sight.
=N/[27&p(N)], where é5(N) is the correlation length As already mentioned, no accurate fit can be performed on
evaluated now at the intersection points curves 4, 5, 6, and 7 of Fig. 18, though a rough estimate
[BSp(N),Bep(N)]. provides values ok below 1/8. When a fitted value can be

Figure 1@b) shows some plots af(N) vs N along the extracted agaifat smaller values oB86) and drawn in Fig.
deconstruction line. The curves 1, 2, and 3 refer to criticallO(a@), one should thus be cautioned against the possibility of
points in sectorB located on the deconstruction line at missing a maximum and a decreasing part. This would pro-
B86=0.88,86=0.60, and85=0.45. They show a good con- Vide values ofk possibly below 1/8 and more in accordance
vergence to the Ising exponert=1/8. The other curves, Wwith those ofx’ given in the following subsection. However,
(4-10, refer to the valuesB5=0.37, 0.31, 0.28, 0.25, another difficulty may arise: in the vicinity of the roughening
0.23, 0.21, 0.20, 0.19 in sect@ of the phase diagram. As transition the correlation lengtf, may also be strongly in-
the system size increases the cur¢gs?) show a reentrant fluenced by steplike excitatiori$ A better quantity to look at
behavior towards the value=1/8. At values of36<0.20 s represented by the exponexit
we find monotonic convergence again as function of system
size, but to values which vary continuously as shown in Fig.
10(a). The behavior of this set of curves suggests that along
any thermal scan in sect@ of the phase diagram the quan-  The quantity NBfy(N), converges monotonically as
tity x(N) will show an asymptotic decrease after a maxi-function of the system siz&l all along the deconstruction

A. The exponentx

B. The exponentx’
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0.19 . . . : patible with Ising exponents wheri <0. They do satisfy the
! hyperscaling relation 2=2— « within error bars.
w
0.15 D. The central charge
AL In general the central charge vanishes in noncritical
0.11 | phaseghere the flat reconstructed phase and the DOF phase
| and assumes finite values at critical points or inside critical
12125 %, f regions(like the rough phageAs in the determination of the
0.07 1 § T exponentsy andv, ¢ is calculated with the diagonal TM, as
; this leads to better convergence and smaller finite-size effects
, than calculations with the vertical TM. Figure (BB shows
003 o5 o015 0.25 035 0.45 0.55 finite-size approximations of along vertical lines in the

B phase diagram based on Eg81). The left part of Fig. 18)
refers to a scan wittB5=0.55, which crosses the decon-
FIG. 11. The exponent’ calculated along the deconstruction Struction line in a point of sectds, where we find exponents
line. The horizontal dashed lines represent the Ising value 1/8 anih the Ising universality class. In this case the central charge
the four-state Potts exponent 2/25. Error bars smaller than the synat the transition shows good convergence towards the Ising
bol size are not shown. value (€=1/2). The right part of Fig. 1) refers to a scan
which crosses the deconstruction line in a point of se€or
line. For 0.255 85=<0.40 the convergence is slow, but it is With 86=0.25. Figure 1) shows two other plots of central
still possible to give an estimate of the exponehtising Eq. ~ charges along vertical lines witi36=0.22 (left) and
(19). However the error bars are fairly large. We notice a89=0.20 (right). In this part of the phase diagram the cen-
change in the direction of convergendegf, (N)/2m con- tral charge increases _markgbly beyond the Ising value
verges tox’ from above in sectoB of the phase diagram but ¢=1/2. Due to strong finite-size effects, slow convergence
from below in sectorC. Around the linee’ =0 finite-size  @nd nearness of the KT line we cannot give a reasonable

effects are very small. For 0s336=0.4 the exponent is still €Stimate for its actual value.

compatible, within error bars, with the Ising value of 1/8, as Figure 13c) shows the central charge calculated along the
shown in Fig. 11, but for36=<0.3 the exponent shifts to- thermal trajectorye+ 106=0, starting from the rough region
wards values well below this. (at smallB6) towards the reconstructed phase at largér

According to our numerical results the line+105=0

crosses the roughening and the deconstruction line in two
C. The exponentser and v points very close in temperature. In the infinite system limit
. . the central charge should be 1 in the rough region, drop
Figure 12 shows the exponenisand » calculated with abruptly from 1 to O at the KT point, remain 0 in the DOF

the diagonal transfer-matrix along the deconstruction Iinere ion assume a nonzero value at the sinale point where the
with the aid of standard extrapolation methods based on thteragecté)r crosses the deconstruction Iinegandp remain O be-
scaling relationg16,17.%C It is almost impossible to obtain J y

these exponents using the vertical transfer matrix, due t ond that. In finite systems this behavior is smeared out, as is

difficulties in convergence with increasing size. These prob- .? caisr:at al‘;(()j Ththed Othﬁr t$|0t§’ 'rr: tFrlgr'] %S'nHe?ce’ Xstlrncrﬁ tlhe
lems are much less severe with the diagonal transfer matrigosgoon tﬁis tra:ctoicooieu;x Oectsa'tosseoe aﬁ g eareent ecc))/n-
(see also the Appendixeven though the maximum available ! Y, P bp

system size is smaller. The values thus obtained are not co ergence of; to the sum of the KT value 1 qnd that of th.e
econstruction transition. For a deconstruction of the Ising

type this would yieldc=3/2. From conformal invariancgit
1.0 . : . follows that for unitary models with central charge smaller
than unityc can only assume the values

6 .
Czl—m with M=34,.... (23)
The Ising valuec=1/2 is the lowest possible value, obtained
with M =3. Higher values oM correspond to phase transi-
tions in different universality classes. From Fig.(@3it is
apparent that converges to a value larger than 3/2, which

041 ] we estimate around=1.7-1.8.
0'30 10 0 '15 0 éo 055 0.30
' ' ’ ’ 85 ’ E. Deconstruction of non-Ising type?

The results presented above strongly suggest that the de-
FIG. 12. The critical exponents and v calculated along the ~construction transition is not in the Ising universality class
deconstruction line. The dashed line represents their value in thi#, at least, part of the regios’<0. One cannot entirely
four-state Potts model. exclude the possibility that the observed deviations of critical
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exponents and central charge from their Ising values are due Of course, the next intriguing question is: what, if not
to strong crossover effects, induced by the vicinity of the KTIsing, is the universality class of this reconstruction line? The
line,3° rather than being a genuine feature of the deconstrucanswer to this question is not easy and our numerical results
tion transition; in view of our numerical results however, we are not conclusive.
believe this is quite unlikely. In general the exponents vary along the deconstruction
line, although some vary less than others. The exporent
shows generally worse convergence than the exporént
and extrapolation of the values af in part of the phase
(a) diagram turned out impossible due to the nonmonotonic be-
; ; ' y ' havior of the finite-size data as a function of the system size
N.

The exponenk’ varies along the deconstruction line as
well, but it remains roughly constant in a limited region
around the value oB&~0.2, with small error bars thanks to
rapid convergence of the finite-size data. At smaller values of
B4 its value increases as well as its error bars. This may be
due to the vicinity of the KT line or to the finite-size effects
caused by the increasing length of straight step segments. In
general finite-size effects increase at smaller valueg &f
(see also the Appendixin this part of the phase diagram the
00 S s T10 05 20 —15 —i0 —o0s 0.0 most important excitations consist of closed loops of re-

Be Pe versed arrows which may become very elongated as the en-
ergy per unit of length for a straight segment is proportional
I(b) ' . . ' ' ' s to 26. One should expect that finite-size effects are particu-
' larly strong when the typical size of a loop becomes of the
same order of magnitude as the width of the stNp,Slow
convergence also is present in a region to the left of the line
0k 110 €'=0, as can be seen from the large error bars around
Y \ B6~0.3in Fig. 11. This is due to a poor determination of the
value of the deconstruction temperatdrg.
The exponents andv, as calculated from Eq$16),(17),
193 vary along the deconstruction line in sec@rHowever, the
hyperscaling relation 2=2—« is always satisfied within
error bars. In general, as shown in Fig. B2fends to have
larger error bars tham. In the regiong6~0.2, the conver-

1.5

B5=0.55

c(N,N+2)

1.0 |
Reconstr. DOF

0.5 [~/ -\1 ]

1.5

Reconstr.

c(N,N+2)

05}

%0 20 Ji5 110 05 20 -5 10 05 00 00 gence is rapid in the sense that a two-parameter fit is suffi-
Pe Pe cient to extracte and v from Eqs.(16) and(17). At smaller
values off36 one, in general, needs to consider corrections to
20 © ' scaling using a three-parameter fit.
. 16 —— Unfortunately our numerical results do not allow an in-
& equivocal identification of the critical behavior of the decon-
é 15| 10 S struction transition in the regior’ <0. We notice however
T 14 that the exponenk’ remains constant in a region around
B6~0.2, where the error bars are smallest. In this region
1.0 ¢ | 6 also @ and v converge rapidly with increasing size, com-
2 N pared to other parts of the deconstruction line in se€or
10012 014016 One possible candidate for the observed exponents in this
031 Rough Reconstr. | region could be that of the four-state Potts model, for which
a=v=2/3, compatible with our calculated values @fand
N N . V.
.05 0.10 0.15 0.20 0.25 Conformally invariant models are classified according to

pd the value of their central charge, which can assume only
discrete values depending on some intelyeras given in
FIG. 13. Finite-size approximations(N,N+2) of the central ~Ed. (23). At fixed values ofM conformal invarianc& pre-
charge from Eq(22) (numbers denote the system si¥g across  dicts also the possible values for the exponents of correlation
different phases in the phase diagram calculated along verticdunctions at the critical point. For the four-state Potts model,
scans at[(a), left] 85=0.55, [(a), right] 85=0.25, [(b), left]  the predicted exponents are of the typa’ =2p?/g? with
B6=0.22,[(b), right] 85=0.20 and(c) along the thermal trajectory p and q integers, as pointed out in Ref. 41. Fer=1 and
€/ 5=—10.0. The inset inc) is just an enlargement of the same gq=4 one indeed obtains the well-known magnetic exponent
graph emphasizing the convergence of the central charge to valuggg, instead fop=1, g=5 one obtains the value 2/25. Both
larger than 1.5. values are shown as horizontal dashed lines in Fig. 11; the
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exponentx’ =2/25 seems to fit the measured values of the The point along the deconstruction line where the change
exponent very well for36~0.2. For the two-dimensional of universality class occurs is not sharply determined by our
Ising model conformal invariance predicts the exponentgiumerical results. We do not observe an abrupt jump of the
x=1/8 (magneti¢ andx=1 (therma) only. Thus a measured €xponents at a given point, rather a continuous shift. A rea-
exponent of value' ~2/25 is a quite clear sign of non-Ising sonable candidate for the point separating the two regions
critical behavior. (i.e., Ising and non-Ising could be the point where the de-

Further, the central charge clearly shifts away from itsconstruction line crosses the lin€ =€+25=0. Crossing
Ising valuec=1/2. For the four-state Potts model we shouldthis line, we find changes in the type of convergence of the
expect a central charge equal tdNl — in Eq. (23)]. The  exponentx andx’ (Secs. V A and V B, although without
central charge markably increases in the regibx0. How-  an abrupt change in their values. We recall that in the surface
ever, as for the critical exponents, this increase goeepresentation of the model, in one region the coupling con-
smoothly from the Ising values=1/2, towards higher val- stants between the atoms in the two sublattices are both
ues. The central charge calculated along the lindiegative €<0, €'<0); in the otherfwhere the deconstruc-
€+105=0, where the deconstruction and roughening linetion transition is of Ising typeone of the two coupling con-
are almost coinciding in temperature, extrapolates tdtants is positive €' >0). In terms of the vertex lattice, in
c=1.7-1.8, well above the Ising plus KT value the regione’>0, vertices 5 and 6 are the excited vertices
c=1/2+1=3/2. As pointed out above, this is another indi- with the lower energy above the ground-state value; at
cation of non-Ising behavior of the deconstruction transition,€' <0, vertices 5 and 6 get the higher excitation energy.
though not quite compatible with that of the four-state Potts All these considerations suggest that the properties of the
model, which would imply a central charge equal toSystem may change between the two regiens-0 and
c=1+1=2. €' <0 and make it more plausible that the shifts in the ex-

Finally, also the possibility of having a line with continu- ponents are not just due to crossover, but also result from a
ously varying exponents, as the behavior of especially théeal change of universality class of the deconstruction
exponentx in the sectorC suggest§Fig. 10a)], should be transition®
considered. In this case the central charge would equal unity,
as in the four-state Potts model.

Anyhow, as discussed in Secs. V A and V B, the conver-
gence ofx is much poorer than that of . The slow shift of In this article we studied the critical properties of the stag-
x" away from the Ising value ag8é decreases in sect@  gered BCSOS model. Using transfer-matrix techniques we
(Fig. 11 is known to be a common feature of finite-size found two critical lines describing the deconstruction and the
scaling in the vicinity of points where a change of universal-roughening of the (001) surface of a two-component bcc
ity class occurs. Moreover, 36 becomes very small, the crystal.
nearness of the KT line is seen to influence the convergence The two lines approach each other in part of the phase
of the exponents of the deconstruction line. In conclusion, idiagram, apparently without merging. According to our re-
seems quite plausible to have in practice only a window ofkults the deconstruction line in part of the phase diagram
B4 values where constant critical exponents are found. Tehanges its universality class from Ising to non-Ising, al-
enlarge this window one would have to consider larger systhough further investigations are needed to make this point
tem sizes. more convincing. On the basis of the exponents we find, we

Bastiaansen and Knofsrecently studied a six vertex conclude that a possible universality class matching these
model with an extended range of interactions. They als@xponents reasonably well, in the region where the best con-
found a phase diagram with a second-order line approachingergence is found, is that of the four-state Potts model. An-
a KT line. The exponents of the second-order line clearlyother possible scenario is that proposed by Bastiaansen and
deviate from their Ising values and the authors suggesteRnops?!! In their six vertex model with interactions extended
they might be explained as tricritical Ising exponents. Ap-to further neighbors it is too hard to distinguish between a
plied to the staggered BCSOS model this would mean a desingle critical line and two lines approaching each other, but
construction line of Ising type with a tricritical point, con- remaining separate. They find critical exponents for the de-
tinuing beyond this point as a first order line, which is theconstruction transition clearly deviating from the Ising val-
phase behavior of the annealed diluted Isin@r ues and conjecture that the observed criticality could be ex-
Blume-Capé¥®) model. The exponents at the tricritical point plained as ftricritical Ising behavior. The idea of a diluted
would be =8/9, v=>5/9, and the central charge=7/10.  Ising model is particularly attractive in our case where, as we
For the exponentx’ conformal invariance predicts have seen, the deconstruction transition is, to all likeliness,
x"=3/40. Around 85~0.2 the extrapolated value of’ the consequence of the dilution of the Ising order in the
would also be compatible with this value, hwtandv are far  system caused by the formation of a large number of closed
away from their tricritical values. At smaller values g5  steps of finite length. Unfortunately we find little numerical
we do find exponents which approach those of the tricriticakevidence for this scenario. Finally, also the possibility of
Ising model, but this happens in a region where the valuebaving a line with continuously varying exponents cannot be
we obtain forx’ clearly shift away from 3/40 and where in completely excluded. Other models of reconstructed surfaces
general finite-size effects are quite strong. These same finitdvave been studied by several authors. Den*Rlijgroduced
size effects also make it impossible to tell whether at suffi-a model that describes (110) missing-row reconstructed sur-
ciently smallBé the deconstruction line becomes first orderfaces of some fcc metaldu,Pt .. .). He found a decon-
or not. struction and a roughening line merging into a single critical

VI. DISCUSSION AND CONCLUSION
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FIG. 15. Whend<e, finite-size effects may show up in the form
of closed loops of reversed arrows winding around the cylinder. In
(b) the diagonal transfer matrib) however they are less frequent than
in the vertical transfer matrixa) since they require at least one
couple of vertices 5 and @ircles for closing up the lace.

would not coincide with that of some known models has not
been established yet. In the most recent study concerning the
fully frustratedX'Y model, Olssot? presents evidence of two
separate transitions, a KT and an Ising one where the former
occurs at somewhat lower temperature than the latter:
Tx1<Ts. This would be in agreement with our results since
the XY model can be mapped onto a solid-on-solid model via
a duality transformatiof® which maps the low-temperature
: phase of one model onto the high-temperature phase of the
8 g 10 other and vice versa. Olsson’s work suggests that the non-
¢ Ising exponents observed by other groups are due to the fail-
ure of some finite-size scaling hypothesis used in previous
works. In the staggered BCSOS model instead, we find clear
evidence of non-Ising exponents. Unfortunately there exists
no exact mapping between this model and the fully frustrated
XY model, therefore they may well be in different universal-
ity classes. Yet, we hope that some of the ideas developed in
this paper to study the staggered BCSOS model, will be gen-
eralized to other models so as to reach a deeper understand-
line, with Ising and KT behavior simply superimposed. Froming of their critical properties.
his data, as presented in the literature, it is not possible to
really distingu[sh between agtqal merging or mere 'rapid ap- ACKNOWLEDGMENTS
proach of the lines. A clear distinction to our model is that in
Den Nijs’ model the deconstruction transition remains Ising It is a pleasure to thank Paul Bastiaansen, HenkeBlo
type throughout. Another class of models for the same metatubert Knops, Bernard Nienhuis, and Marcel den Nijs for
surfaces has been developed and extensively studied by tismulating discussions. Financial support permitting several
Trieste group®** Again a deconstruction line and a KT meetings between the authors of this paper is gratefully ac-
roughening line are seen to approach each other. Dependifgowledged. In particular H.v.B. thanks the Centro di Fisica
on the microscopic details of the model, the deconstructiodelle Superfici e delle Basse Temperat(@NR), Genova,
line keeps its Ising character either all along, or up to awhile G.M. thanks the Instituut voor Theoretische Fysica,
tricritical point where it changes to a first-order line. Utrecht, and acknowledges the kind hospitality of Professor
As mentioned in the Introduction there are several otheDietrich Wolf at HLRZ, Jlich.
two-dimensional models with KT and Ising degrees of free-
dom. Or_we Fhat has received a lot (_)f attention, starting from APPENDIX: FINITE-SIZE EFFECTS
the beginning of the last decatfejs the fully frustrated
XY model, which describes certain two-dimensional We show here how the diagonal and the vertical transfer
Josephson-junction arrays. The study of its critical behaviomatrix have different finite-size effects in part of the phase
has led to several different conjectures about its universalitgiagram. Consider first the phase poéfi# 0, e— —. Ver-
class and critical exponents. Several papéfsreport non- tices 5 and 6 are absent and the partition function can be
Ising exponents and it has been suggested that the modedlculated easily. Consider lattices of side& M with cylin-
would belong to a novel type of universality class. To ourdrical geometry, that is the vertices along a horizontal row
knowledge, whether this type of universality class would orare connected to each other through periodic boundary con-

FIG. 14. Free energy along the li#<+e 2f=1 [Eq. (9)]
calculated(a) with the vertical transfer matrix an¢b) with the
diagonal transfer matrix for different system sizes. Notice the dif-
ferent scaling behavior especially at the panf??=1: in (a) the
curves for increasingl tend to the infinite system size val(®merg
like In2/N, in (b) theyare zero. It is apparent that finite-size effects
are generally smaller itb).
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ditions. In the vertical transfer matrix there are in total independent of the value &f. The conclusion is that the free
2N*M configurations, and the free energy per site is given byenergy shows finite-size corrections of the ordeM it the
vertical transfer matrix, while there are no finite-size effects

o N+M In2 Al for the diagonal transfer matrix. In Fig. 14 we plot the free
—Bt=m N (A1) energy calculated along the lieé€+ e~ 2%=1 with the ver-
tical and diagonal transfer matrices. The endpoint

(the symbolf is used to distinguish the free energy per sitee =259
from f, the free energy per rowln the thermodynamic limit  lated in Egs(A1) and(A3). As can be seen from the figure,
N,M—x the free energy per site vanishes. there is a wide area to the left of this point where the free
However in transfer-matrix calculations one takes theenergies calculated from the vertical transfer-matrix show
limit M —o keepingN finite; this gives a free energy per large finite-size effects, while the convergence is much faster
site equal to for the diagonal transfer-matrix. In both cases the conver-
gence is faster foe 2#%<1/2, that is in the region of the
phase diagram where only a second-order line is present.
Obviously, for small values ob the boundary effects are
very strong, due to closed loops of reversed arrows winding
With the diagonal transfer matrix the total number of con-around the cylinder, i.e., the ribbon which constitutes our
figurations available is 2", since once the arrows on a row System with periodic boundary conditions in the horizontal
are fixed the whole configuration is fixed. Repeating thedirection(see Fig. 1h These closed loops are more frequent
same calculation as done above one finds a free energy p'@k the vertical transfer matrix, since one can reverse the ar-
site: rows along a horizontal line with a cost in energy afN\2
Closed loops in the diagonal transfer matrix require at least a
vertex 5 and a vertex 6, and therefore occur less frequently.

=1 corresponds to the free energy which we calcu-

- 1
—B=gn2. (A2)

—pBf=0 (A3)

“Present address: Instituut voor Theoretische Fysica, Katholiek
Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven,
Belgium.

1J. C. Slater, J. Chem. Phy8, 16 (1941).

2E. H. Lieb and F. Y. Wu, irPhase Transitions and Critical Phe-
nomena edited by C. Domb and M. S. GreéAcademic, Lon-
don, 1972, Vol. 1, pp. 331-490.

3R. J. Baxter,Exactly Solved Models in Statistical Mechanics
(Academic, London, 1982

4H. van Beijeren, Phys. Rev. Lef®8, 993(1977.

SH. van Beijeren and I. Nolden, iStructure and Dynamics of

Surfaces edited by W. Schommers and P. von Blanckenhagen,g

(Springer-Verlag, Berlin, 1987 Vol. 2, pp. 259-300.

6S. T. Chui and J. D. Weeks, Phys. Rev1B 4978(1976.

"R. J. Baxter, Phys. Rev. B, 2199(1970.

8F. Y. Wu and K. Y. Lin, Phys. Rev. B2, 419(1975.

9A. C. Levi and M. Touzani, Surf. ScR18, 223 (1989.

190G, Mazzeo, G. Jug, A. C. Levi, and E. Tosatti, Phys. Revi9B
7625(1994.

11p, J. M. Bastiaansen and H. J. F. Knops, Phys. Re83B126
(1996.

2E . Luijten, H. van Beijeren, and H. W. J. Bl Phys. Rev. Lett.
73, 456 (1994.

133, Ashkin and E. Teller, Phys. Re§4, 178(1943.

1H. J. F. Knops, Phys. Rev. B0, 4670(1979.

15G. Mazzeo, E. Carlon, and H. van Beijeren, Phys. Rev. [7t.
1391 (1995; Surf. Sci.352-354 960(1996.

M. den Nijs, Phys. Rev. Let66, 907 (1991); Phys. Rev. B46,
10 386(1992.

17G. Ramirez-Santiago and J. V. Jodhys. Rev. Lett68, 1224
(1992.

18y, M. M. Knops, B. Nienhuis, H. J. F. Knops, and H. W. J.'&lp
Phys. Rev. B50, 1061(1994.

19p, Olsson, Phys. Rev. Left5, 2758(1995.

20E. Granato and J. M. Kosterlitz, Phys. Rev3B, 4767(1986.

21E. Granato, J. M. Kosterlitz, J. Lee, and M. P. Nightingale, Phys.
Rev. Lett.66, 1090(1991).

&E. H. Lieb, Phys. Rev. Lettl8, 1046(1967).

ZCrystallographically CsCl has a simple cubic structure; however,
if one ignores the identities of the different ions one obtains a
bcc lattice.

24F. Y. Wu and K. Y. Lin, J. Phys. @, L181 (1974; H. J. F.
Knops, J. Phys. /8, 1508(19759; S. E. Ashley,ibid. 11, 2015
(1978.

25T, Ohta and K. Kawasaki, Prog. Theor. Phgs, 365 (1978.

26R. W. Youngblood and J. D. Axe, Phys. Rev.2B, 232 (1981).

27K . Rommelse and M. den Nijs, Phys. Rev. L&9, 2578(1987);

M. den Nijs and K. Rommelse, Phys. Rev.4B, 4709(1989.

M. Kohmoto, M. den Nijs, and L. P. Kadanoff, Phys. Rev2B

5229(1981).

2In the diagonal transfer-matriX;, andN;, refer to the number of
arrows with vertical components pointing up or down, respec-
tively.

%0The largest eigenvalue of the transfer-matrix is always found in
the central block.

31| . p. Kadanoff and H. Ceva, Phys. Rev.333918(1971).

323, L. Cardy, inPhase Transitions and Critical Phenomerealited
by C. Domb and J. L. Lebowit@Academic, London, 1987Vol.

11, pp. 55-126.

334, W. J. Bldte and B. Nienhuis, J. Phys. 22, 1415(1989.

34H. w. J. Blae and P. Nightingale, Phys. Rev. &7, 15 046
(1993.

%5The thermal trajectories are those trajectories in the phase dia-
gram obtained by fixing the values of the energies and varying
the temperature.

3éwith v we indicate both the exponent of the correlation length
¢ and of the interface free enerdy,. We recall that the general
scaling hypothesis predicts that for all systems near the critical
point fy&~kgT holds. For more details the reader may consult
B. Widom, J. Chem. Phy4.3, 3892(1965 and43, 3898(1965,
and D. B. Abraham, Phys. Rev. B9, 3833(1979. In Ref. 15
we adopted to extracty, here better convergence is achieved
by using fy,, anyway the finite-size scaling analysis on these



770 ENRICO CARLON, GIORGIO MAZZEO, AND HENK van BEIJEREN 55

two different quantitites lead to the same estimate ifovhen 42M. Blume, Phys. Revl41, 517(1966; H. W. Capel, Physic&2,

they both converge. 966 (1966.
3"The exponeni is related to the more standard exponens  “30f course, if the second scenario, of a diluted Ising line, would

X=nl2. apply, the tricritical point is far removed from the poiat=0
38H. W. J. Blde, J. L. Cardy, and M. P. Nightingale, Phys. Rev.  and there would have to be strong crossover effects.

Lett. 56, 742 (1986; |. Affleck, ibid. 56, 746 (1986. 44G. Santoro and M. Fabrizio, Phys. Rev4B, 13 886(1994); G.
39M. den Nijs (private communication Santoro, M. Vendruscolo, S. Prestipino, and E. Tosiitl. 53,
4OM. P. Nightingale, J. Appl. Phys3, 7927(1982. 13 169(1996.

41B. Nienhuis and H. J. F. Knops, Phys. Rev3B 1872(1985,  “°S. Teitel and C. Jayaprakash, Phys. Re\213598 (1983.
and references therein. 46H. J. F. Knops, Phys. Rev. Le®9, 766 (1977).



