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Transfer-matrix study of the staggered body-centered solid-on-solid model
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The phase diagram of the staggered six vertex, or body-centered solid-on-solid model, is investigated by
transfer-matrix and finite-size scaling techniques. The phase diagram contains a critical region, bounded by a
Kosterlitz-Thouless line, and a second-order line describing a deconstruction transition. In part of the phase
diagram the deconstruction line and the Kosterlitz-Thouless line approach each other without merging, while
the deconstruction changes its critical behavior from Ising-like to a different universality class. Our model has
the same type of symmetries as some other two-dimensional models, such as the fully frustratedXY model,
and may be important for understanding their phase behavior. The thermal behavior for weak staggering is
intricate. It may be relevant for the description of surfaces of ionic crystals of CsCl structure.
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I. INTRODUCTION

Six vertex models were introduced by Slater1 to describe
ferroelectricity in two-dimensional networks. Placing arrow
on the bonds of a square lattice one can define the 16
sible arrangements of arrows pointing towards and aw
from a lattice point as vertices. In six vertex models on
those six vertex configurations are kept~see Fig. 1! that sat-
isfy the ice rule, i.e., they have two arrows pointing in an
two pointing out at each vertex. Assigning energ
e1, . . . ,e6 to these vertices one obtains a class of exa
solved models.2,3

Six vertex models can also be interpreted as surface m
els, by mapping them to the so-called body-centered so
on-solid ~BCSOS! models,4 defined as limiting cases of
lattice gas, or Ising model, on a body-centered-cubic latt
Therefore the phase structure of the six vertex model as fu
tion of its vertex weights can be translated directly to t
surface phase structure of the corresponding BCSOS mo
The mapping turned out to be important in understanding
properties of theroughening transition.5 Using the exact so-
lution of the six vertex model it was found that roughening
a transition of infinite order of the Kosterlitz-Thouless~KT!

FIG. 1. The six vertices and the corresponding height confi
rations.
550163-1829/97/55~2!/757~14!/$10.00
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type, confirming previous renormalization-group results.6

Experimental situations often are too complex to allo
even a qualitative description by the exactly solved BCS
models. Various extensions of the standard six vertex mo
have been proposed to deal with these cases. Two m
classes may be identified: one where interactions betw
vertices are added, and another one in which the vertex
tice is split into two sublattices with different vertex ene
gies. These modifications, however, lead to models wh
apart from some particular cases,7,8 lose the property of be-
ing exactly solvable. Other techniques~e.g., numerical ones!
have to be adopted. Models in the first class have been
posed to account for further neighbor interactions betw
surface atoms, which may change the symmetry of
ground state and give rise to phase transitions other than
roughening transition. Vertex interactions were introduced
reproduce the (231) reconstruction of the~110! face of fcc
noble metals like Au and Pt.9 This led to investigations on
equilibrium phase transitions on these surfaces as well a
surfaces of lighter metals like Ag, Rh, etc.10 A model of the
~100! surface of an fcc crystal exhibiting a (232) recon-
structed ground state11 has recently extended the list. Th
second class of models, with vertex weights alternating
the two sublattices, are known asstaggered six vertex mod
els. A staggering only involving the weights of vertices 5 an
6 corresponds to the imposition of a ‘‘staggered field,’’ i.e.
field coupled to the arrow directions that changes sign
tween neighboring arrows. This gives rise to an inve
roughening transition in part of the phase diagram.12 Alter-
nating the values for the energies of the vertices 1, 2 and
on the two sublattices leads to a model known as ‘‘the st
gered six vertex model’’~or staggered BCSOS model! in the
-
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758 55ENRICO CARLON, GIORGIO MAZZEO, AND HENK van BEIJEREN
literature. In a large part of its parameter space it can
mapped onto the Ashkin-Teller model.13 Using this transfor-
mation Knops investigated the phase structure of the s
gered BCSOS model in part of its phase diagram
renormalization-group methods,14 but until recently a large
region of the phase diagram has remained unexplored.

In this paper we present a complete account of our inv
tigations, over the full range of parameters, of the stagge
BCSOS model. A preliminary description has been giv
already in Ref. 15, here we present further details as we
a number of different results.

In the unexplored region of the phase diagram the mo
has a ground state which is twofold degenerate, therefo
has a symmetry of Ising type. The twofold degeneracy is
at a second-order transition line which approaches ano
line of KT roughening transitions. The interplay between t
two is particularly interesting, especially since a similar
terplay between a KT and a second-order transition has b
found for several different models, among which other mo
els for reconstructed surfaces,10,16but also the fully frustrated
XYmodel17–19and coupledXY-Ising models.20,21They have
received a great deal of attention in recent years and till n
their critical behavior is not fully understood. The stron
interplay between Ising and KT degrees of freedom may l
to several possible scenarios where, in a certain region o
phase diagram, either the two transitions occur close to e
other but remain separate, or they merge into a single ph
transition, which may perhaps belong to a new universa
class.

Apart from these more theoretical aspects the mode
likely to be relevant for the study of the equilibrium prope
ties of a certain class of crystal surfaces, e.g. the~001! sur-
face of ionic crystals of the CsCl structure. This too will b
discussed in some detail.

The paper is structured as follows. In Sec. II we give
description of the model. In Sec. III we present its full pha
diagram. In Sec. IV we review the techniques employed
our studies, i.e., the transfer-matrix method and finite-s
scaling, and discuss the correlation functions and free e
gies we calculated to derive our results. In Sec. V we disc
the critical exponents of the model and some possible
narios for the changes in the critical behavior along the
construction line. In Sec. VI we conclude with a brief di
cussion of related models.

II. THE STAGGERED SIX VERTEX MODEL

The partition function of the six vertex model is given b

Z5(
$C%

e2b( i51
6 ni ~C!e i, ~1!

where the sum runs over the set of all allowed vertex c
figurations$C% andni(C) denotes the number of vertices
type i in the configurationC (b51/kBT, with kB being the
Boltzmann’s constant andT being the temperature!. The
model has been solved exactly22,2,3 for any choice of values
of the energiese i ( i51 . . . 6). A relatively simple choice o
the vertex energies is given bye15e25e35e45e and
e55e650 which defines, fore.0, the so-calledF model.
The ground state is twofold degenerate and is compose
vertices 5 and 6 arranged alternatingly in a chessboard
e
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figuration. The low-temperature phase is usually called
‘‘antiferroelectric’’ phase, since along both horizontal an
vertical rows the arrows predominantly alternate in directio
From the exact solution it is known that this system und
goes an infinite order phase transition to a disorde
paraelectric state atbe5 ln2.

As already pointed out in the Introduction, the six vert
models are isomorphic to a class of solid-on-solid~SOS!
models called BCSOS models.4 Microscopic configurations
of an SOS model are given in terms of discrete heightshi of
surface atoms with respect to a reference plane. All lat
sites up to these heights are occupied and all sites ab
them are empty. In the BCSOS model the height variab
are placed on the dual lattice of the six vertex lattice. This
subdivided into an even and an odd sublattice, which
intertwined in a chessboard pattern and on which the sur
heights assume even, respectively, odd values only. The e
sites will be referred to as black (B) sites and the odd ones a
white (W) sites. In addition the height differences betwe
neighboring sites are restricted to the values61. The map-
ping of six vertex configurations to corresponding config
rations of a BCSOS model is very simple. The height diffe
ences between neighboring sites are put in a one-to-
correspondence with the arrow directions in the six ver
configuration. The convention is that the higher of the tw
surface sites is at the right side of the arrow. Given a c
figuration of vertices, the configuration of heights is fixe
uniquely once the height of a reference atom has been fi
~see Fig. 1!.

The vertex energies can be reinterpreted in terms of b
energies between the atoms. When periodic boundary co
tions are applied along the~say! horizontal direction of the
vertex lattice the number of vertices 5 and 6 per row is equ
therefore with no loss of generality one can always cho
e55e650, fixing the point of zero energy. The vertices
and 6 describe local configurations in which the height va
ables on either diagonal are equal~see Fig. 1!. Vertices 1, 2,
3, and 4 correspond to configurations where the height v
ables along either of the two diagonals are different, the
fore e1, e2, e3, ande4 can be viewed as energies needed
break a next-nearest-neighbor bond and produce a heigh
ference of two vertical lattice units between neighbori
sites of equal color.

In the ordinary BCSOS model the distinction betweenB
andW atoms has been introduced only for convenience
description, but the two sublattices are equivalent and
treated exactly on the same footing. Knops14 extended the
model to a two-component system where theB andW atoms
are physically different. While energy zero is still attribute
to all vertices 5 and 6, Knops assigned two different en
gies, e and e8, to broken bonds betweenW-W and B-B
atoms, respectively. In terms of the six vertex representa
also the vertex lattice is divided into two alternating subl
tices I and II on which the vertices assume different energ
as follows:

H on sublattice I: e15e25e;e35e45e8;e55e650

on sublattice II: e15e25e8;e35e45e;e55e650.
~2!



th
m

ee

d

-
ag

in
e
t
hi
e
th
p
f

s
s
d
e

l b
e
he
o
nt
n
to
to
u

lle
ne

g
nt
o

te

gh
t

ic
dis-

n
-

up
i-

om

Den

At
uc-
tice,
it

t
er
t

ler
ss
e

ing
n to
ite
ia-
in
of

tem

at at

55 759TRANSFER-MATRIX STUDY OF THE STAGGERED . . .
This choice defines the staggered six vertex model. In
BCSOS representation the model is described by the Ha
tonian:

H5
e

2(̂i j &
uhi

W2hj
Wu1

e8

2 (̂
kl&

uhk
B2hl

Bu, ~3!

subject to the constraint that the height difference betw
neighboringB andW sites is61. The first sum in Eq.~3!
runs over all pairs of neighboringW sites on the surface an
the second sum over the correspondingB pairs. Throughout
this article we will also use the parameterd, defined by the
relation e85e12d. As mentioned already in the Introduc
tion the model defined here will be referred to as the st
gered six vertex~or BCSOS! model. Obviously when
e5e8 (d50) one recovers the usualF model.

For negative values of the vertex energiese and e8, the
system may model ionic crystals of bcc structure as, for
stance, CsCl.23 The constraint of minimal height differenc
between neighboring surface sites reflects the effects of
strong attraction between oppositely charged ions, w
neighboring pairs of the same color, having equal charg
repel each other. It is further assumed that on top of
Coulombic repulsion other interactions, as for instance s
exchange, generate a slight difference in the energies
broken bonds betweenB-B andW-W pairs (eÞe8). In the
staggered BCSOS model the interaction range is limited
next-nearest neighbors and to have a more realistic repre
tation of ionic crystals one needs to extend the interaction
further neighbors. Yet we expect the phase structure
scribed here for the staggered BCSOS model may be
countered in real ionic crystals.

III. THE PHASE DIAGRAM

We have investigated the phase diagram of our mode
means of transfer-matrix and finite-size scaling techniqu
which will be the subject of Sec. IV. Here we present t
main results. Since the model shows a trivial symmetry up
exchange ofe and e8, corresponding to the replaceme
(d,e)↔(2d,e12d), we can restrict ourselves to the regio
d>0. The phase diagram naturally divides into three sec
of globally different behavior, though smoothly connected
each other. These are described in the three following s
sections.

A. The range e>0;e8>0

For positive values ofe ande8 Knops14 investigated the
phase diagram through a mapping onto the Ashkin-Te
model;13 the phase diagram of the latter had been obtai
before by renormalization-group methods.24 On thebe axis
the ~001! surface in the corresponding BCSOS model is in
flat phase forbe. ln2, whereas the intervalbe< ln2 repre-
sents the temperature region in which the surface is rou
The infinite order transition occurring at the KT poi
be5 ln2, bd50 corresponds to the roughening transition
this surface.

Roughening is a phase transition which can be charac
ized by the vanishing of the free energy of astep, separating
two surface regions of different average height. The rou
ening transition results into a proliferation of steps leading
e
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a delocalization of the surface position and to a logarithm
divergence of the mean square height difference at large
tances:

G~Ri j !5^~hi2hj !
2&;2aV

2K~T!lnRi j

for Ri j→` and T>TR ~4!

with aV being the vertical lattice spacing;K(T) is a
temperature-dependent prefactor,Ri j is the distance betwee
the lattice sitesi and j , andTR is the roughening tempera
ture. BelowTR , G(R) saturates for largeR at a temperature-
dependent constant value. Renormalization-gro
calculations25 show that atTR the prefactor assumes the un
versal value

K~TR!5
1

p2 . ~5!

In the particular case of the exactly solvedF model,K(T) is
known for every temperature aboveTR ,

26 that is

K~T!5
1

p arccosD
, ~6!

whereD512e2be/2. In fact Eqs.~4! and ~6! are valid not
only in the high-temperature phase of theF model, but also
for d50, be,0, which defines the so-called invertedF
model:2,12 all along the negativebe axis the surface is in a
rough state.

For dÞ0 Knops found two critical lines originating from
the KT point and running into the regionsd.0 andd,0.
The lines represent phase transitions of the Ising type fr
an ordered low-temperature phase to a disordered flat~DOF!
phase, similar to the phase introduced by Rommelse and
Nijs.27

The ground state of the model is twofold degenerate.
higher temperatures the more weakly bound sublattice fl
tuates above and below the more strongly bound sublat
which remains almost localized at a given level. In the lim
d→` the model can be mappedexactly onto the two-
dimensional Ising model, which is critical atbe
5 ln(11A2); the strong sublattice is ‘‘frozen’’ to heigh
~say! zero, the only freedom left for the heights of the oth
sublattice is to take the values61 just below or above tha
of the strong sublattice~see Fig. 2!. According to the
renormalization-group results obtained for the Ashkin-Tel
model24 the phase transition remains in the universality cla
of the two-dimensional Ising model all along the critical lin
down tod50.

Starting from the low-temperature phase and increas
the temperature, the system undergoes an Ising transitio
the DOF phase, while roughening is pushed up to infin
temperature.14 We reinvestigated this part of the phase d
gram with the transfer-matrix methods to be described
Sec. IV and obtained results in full agreement with those
Knops.

B. The rangee<0;e8>0

Whene becomes negative the ground state of the sys
changes drastically~irrespective of the sign ofe8). Breaking
bonds between white atoms now lowers the energy, so th
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zero temperature one finds the black sublattice unbro
~provided d.0), while atoms of the white sublattice ar
found alternatingly above and below the black sublattice~see
Fig. 3!. This surface configuration is commonly referred
as a c(232) reconstructed surface. In the equivalent
vertex representation the ground state is formed by colu
of vertical arrows running alternately all upwards and
downwards, and by rows of horizontal arrows running alt
nately all right and all left. Such an arrangement of direc
paths is known as theManhattan lattice, due to its resem-
blance to the one-way street pattern of Manhattan. As
energy is invariant under the reversal of all arrows,
ground state is twofold degenerate, just as in the c
e.0. Indeed in the limitd→` the model can be mappe
exactlyonto an antiferromagnetic Ising model leading to t
value be52 ln(11A2) for the critical temperature. Thi
constitutes a horizontal asymptote, as in the casee.0, for a
second-order transition line, whose existence can be ded
again from the mapping of the staggered six vertex mo
onto the Ashkin-Teller model.28 It separates a low-
temperaturec(232) reconstructed phase from a hig
temperature DOF phase, where the reconstruction orde
lost but the surface is still globally flat: it is the same DO

FIG. 2. Side view of the surface fore.0 in one of its ground
states~a! and in the Ising limitbd→` at a finite value of tempera
ture ~b!. In the ground state atoms form uninterrupted rows also
the @010# direction ~orthogonal to the page!. The structure of the
DOF phase resembles that of~b!, with broken bonds betweenB
atoms always less frequent than betweenW atoms~their energies
aree8,e respectively, withe8.e.0). In the figure,e ande8 denote
bonds the breakage of which would cost these amounts of ene

FIG. 3. Side view of one of the ground states of the model
e,0. Notice thatW atoms alternate in height with respect to theB
sublattice also in the@010# direction ~orthogonal to the page!.
n
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phase found fore.0; no singularities are met in crossing th
bd axis. Our transfer-matrix calculations confirm the exi
ence of this critical line and show it exhibits Ising-type cri
cal behavior throughout sectorB.

C. The rangee<0;e8<0

For e8,0 the mapping of the staggered six vertex mod
to the Ashkin-Teller model leads to negative Boltzma
weights in the latter. It loses its physical relevance and c
not be used any more to make predictions on the phase
havior of the staggered six vertex model. In spite of th
Kohmoto et al.28 have made some conjectures, which ha
proven to be correct, on the physical situation beyond
‘‘horizon’’ e12d50.

Our transfer-matrix analysis shows the existence of th
phases: a low-temperaturec(232) reconstructed phase an
a DOF phase, which are present already in sectorB, and a
rough phase, which is found only in the present sector. T
critical lines separate these phases, as shown in Fig. 4
first one is just the continuation of the second-order l
beyond the horizon. It still separates thec(232) region
from the DOF region and asymptotically approaches the a
bd50. We have strong indications that, within at least
major part of the sectore8,0, this line does not belong to
the Ising universality class. We will present the evidence
this in Sec. V. The other critical line is a line of KT point
separating the rough region~or critical fan, as predicted al-
ready by Kohmotoet al.28! from the DOF region.

The point where the KT line meets the vertical axis can
determined from the exact solution of theF model as the
point where the prefactor of the logarithmic term in th
mean-square height difference is four times as large as
universal value assumed at the ordinary roughening temp
ture of theF model

K~T!54K~TR!5
4

p2 , ~7!

n

y.

r

FIG. 4. The phase diagram of the staggered BCSOS model.
show here only the sectorC, and part of the sectorB in the inset.
Open circles denote the deconstruction line and open square
roughening line. The estimate for the roughening condition, p
vided by Eq.~9!, is shown as a dashed line. It is almost indisti
guishable from the correct curve~squares! for be&21.3.
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55 761TRANSFER-MATRIX STUDY OF THE STAGGERED . . .
from which one obtains, inverting Eq.~6!:

be5
1

2
ln~22A2!'20.2674. ~8!

The factor four in Eq.~7! stems from the fact that fordÞ0
the roughening transition is driven by steps of a height
two vertical lattice units~as in Ref. 12!, due to the inequiva-
lence between the two atomic sublattices.

A simple estimate of the roughening transition tempe
ture based on a random-walk approximation~see Ref. 15!
yields

e22bd1ebe51. ~9!

This line has been drawn in Fig. 4. Indeed, for large a
negativebe it is seen to run very close to the KT line, whic
we could determine with great accuracy by the methods
scribed in the next section.

A most remarkable feature of our phase diagram is
apparent merging of the second-order and the KT line int
single line~see Fig. 4!. Their horizontal distanced as a func-
tion of be can be well described by a curve of the for
d(be)5Cea(be), with a.12.15 This exponential fit suggest
that although the two lines are coming rapidly closer toget
asbe is decreasing, they do never actually merge. Other
of the formd(be)5Cube2be0ua, which would be expected
to work in the case of a merging of the lines ate5e0, could
not be stabilized against changes in the fitting range.

The apparent noncrossing of the two critical lines at fi
looks very surprising. At low temperatures a domain w
between two different Ising phases mainly consists of di
onal sequences of vertices 5 and 6, as depicted in Fig. 5
energy per unit length approximately equals2e/A2. On the
other hand a step consists mainly of long horizontal a
vertical chains of overturned arrows and has an approxim
energy per unit length of 2d. To a first approximation step
do not couple with the Ising order, since the reconstruc
phase remains the same at both sides of the step~see Fig. 6!.
Hence one would expect the KT line~characterized by van
ishing step free energy! and the Ising line~vanishing Ising
domain-wall free energy! to cross neare12A2d50. We
think that the actual noncrossing of the two lines can
explained as follows. When temperature is raised, more
more closed steps will be formed on the surface as one
proaches the roughening temperatureTR . On these steps th
direction of the arrows is reversed. In this way the Isi
order parameter becomes more and more diluted, which
eventually, strongly reduce the free energy of a domain w
If in the end the closed steps become so prolific that t
cover on average half of the surface, without becoming
infinite length, the Ising order disappears without roughen
of the surface.

For 2d&0.4ueu the thermal behavior implied by our phas
diagram is quite intricate and remarkable. At low tempe
tures the surface is in ac(232) reconstructed flat phase
then on raising the temperature there is a second-order
sition to a DOF phase, rapidly followed by a KT transition
a rough phase. Next there is a reentrant KT transition to
DOF phase. This is an inverted roughening transition sim
to the one described in Ref. 12. Finally, as temperature
proaches infinity, the system asymptotically approache
f
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rough phase again. Instead for 2d*0.4ueu the system goes
through a single phase transition from the ordered to a D
phase and remains flat for all finite temperatures.

IV. TRANSFER-MATRIX AND FINITE-SIZE
SCALING METHODS

Transfer-matrix techniques are frequently used in stud
of the critical properties of two-dimensional systems wi
short-range interactions. The construction of the transfer m
trix ~TM! follows a standard procedure and the interes
reader is referred to the existing literature3 for details.

We use two different transfer matrices, one oriented p
allel to the axes of the vertex lattice and another one til
over 45° with respect to these axes. We refer to the forme
verticalTM and to the latter asdiagonalTM ~Fig. 7 shows a
configuration of the diagonal TM!. We consider a lattice of

FIG. 5. A domain wall separating two different Ising phases f
e,0, ~a! in side view and~b! seen from above in the vertex lattice

FIG. 6. Side view of a~double height! step as an excitation of
the Manhattan ground state.
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762 55ENRICO CARLON, GIORGIO MAZZEO, AND HENK van BEIJEREN
width N and heightM , with periodic boundary conditions in
the horizontal direction. For the vertical TM the subdivisio
of the lattice into a white and a black sublattice, combin
with the periodic boundary conditions, restrictsN to even
values. For the diagonal TM the horizontal and vertical a
are chosen along the diagonals of the vertex lattice andN can
be odd as well as even. The elementTi j of the matrix is
defined as the Boltzmann weight of a row ofN vertices
generated by arrow configurations labeled by the indicei
and j . One hasTi j50 if this row of vertices does not satisf
the ice rule. For the vertical TM, ifi and j are identical there
are in fact two possible configurations of rows of vertices:
this case the transfer-matrix simply sums their Boltzma
weights.

There are 2N different arrow configurations for the vert
cal TM, whereas for the diagonal TM this number is 22N.
The largest values ofN we could treat numerically were
N522 for the vertical andN512 for the diagonal TM. Ac-
tually, due to the rotation of the lattice over 45° the lat
should be compared to 12A2'17 for the vertical TM.

In the limitM→` the partition function per row become

lim
M→`

~ZN3M !1/M5l0~N! ~10!

with l0(N) the largest eigenvalue ofT, from which the free
energy per row follows as

b f ~N!52 lnl0~N!. ~11!

To each state i we associate a polarizationPi
5Ni↑2Ni↓ , with Ni↑ andNi↓ the total numbers of up an
down29 arrows in the statei . By virtue of the periodic bound-
ary conditions in the horizontal direction the transfer mat
can be reduced to blocks of fixed polarization, sinceTi j50 if
PiÞPj ~see, for instance, Ref. 3!. The so-called central block
is the one corresponding to zero polarization and describ

FIG. 7. Part of a ground-state configuration of anN3` system
with N odd. Due to partial frustration, the system produces a
main wall made of a sequence of vertices 5 and 6~denoted by
circles!.
d

s

n

r

a

flat surface. The subcentral blocks~with polarization62!
describe surfaces with one step.

The difference between the free energies of a surface w
a step and of a flat surface gives the step free energy, wh
per unit of length, on anN3` strip can be expressed as

b f S~N!52@ lnl1~N!2 lnl0~N!#, ~12!

wherel0(N) and l1(N) are the largest eigenvalue of th
central and the subcentral block, respectively.30 The study of
this quantity will allow us to determine the roughening tem
perature.

The deconstruction transition can be studied by consid
ing two correlation lengths, which are both defined with
the central block. We define the inverse correlation len
jD

21 as

jD
21~N!52@ lnl2~N!2 lnl0~N!#, ~13!

wherel2(N) is the second largest eigenvalue of the cen
block. The other correlation length can be calculated fr
the diagonal TM as the inverse of the domain-wall free e
ergy per unit lengthfW

21(N), where fW(N) is given by

f W~N!5 f ~N!2
f ~N11!1 f ~N21!

2
~14!

with N odd. Indeed in the diagonal TM anN3` strip, with
N odd, is partially frustrated since it cannot accommod
the Manhattan ground state without creating a domain w
~see Fig. 7!. fW

21(N) can be interpreted as the correlatio
length connected to the correlation function between two d
order variables.31

Conformal invariance32 predicts that, at a critical point
the correlation lengths scale asN, so the deconstruction tran
sition can be located at the crossing point of the curves r
resenting the scaled quantitiesN/jD andNb fW as functions
of the temperature for different sizes. In reality, as shown
Figs. 8~a! and 8~b!, no perfect crossing is found. Instea
pairs of curves obtained for sizesN andN12 intersect each
other in a sequence of points,@bdD(N),beD(N)#, respec-
tively @bdW(N),beW(N)#, which converges to the infinite
system critical point (bdD ,beD), respectively (bdW ,beW).
An extrapolation procedure requiring several iterations33 is
then used to estimatebdD or bdW . Of course the two inde-
pendent estimates of the critical point have to coinci
which provides a good check on the internal consistency
accuracy of our procedures.

To locate the roughening temperature one has to empl
different method. The scalingf S(N);1/N holds not only at
the KT transition but also inside the rough region, where
surface is in a critical state. There the curvesNfS(N), plotted
as functions of temperature for different values ofN, coa-
lesce in the limitN→` and the point where they detac
from each other can be identified as the KT point~see Fig.
9!. For an accurate location ofTR one has to use the univer
sal properties of the KT transition which give rise to th
scaling prediction12,34

Nb f S~N!5
p

4
1

1

A1B lnN
, ~15!

-
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which holds exactly atT5TR , with A andB nonuniversal
constants. The constantp/4 is characteristic for steps with
height of two vertical lattice spacings. The free energy
such a step corresponds to the line tension between a vo
antivortex pair with vorticity 2 in the dual representation12

The KT transition temperature is determined by requir
that a three-point fit of the form Nb f S(N)5A0
11/(A1B lnN) yields A05p/4. For the extrapolation we
used iterated fits in the spirit of Ref. 35. We performed t
procedure along different lines across the phase diagr
scanning lines withbd fixed, lines withbe fixed, and ther-
mal trajectories.35

V. CRITICAL EXPONENTS AND CENTRAL CHARGE

As we noted in the previous section, the critical line se
rating the flat from the rough region can be well charact
ized as a KT line. As we will see, the critical properties
the second-order line are less well determined, especiall
the regione8,0. We will calculate critical exponents an
central charge pertaining to the deconstruction transition

FIG. 8. The scaled correlation lengthsNjD
21(N) ~a! and

Nb fW(N) ~b! used to analyze the deconstruction transition
means of the vertical, respectively, the diagonal transfer matrix.
curves for different system sizes intersect in a sequence of po
which for increasingN extrapolate to the deconstruction transitio
temperature. The figures refer to a scan along the thermal traje
~Ref. 28! characterized bye/d526.0. The extrapolated values fo
~a! and ~b! ~dashed lines! coincide within error bars~not shown!.
f
ex-
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-
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ing finite-size scaling methods. The two exponentsa andn
are related to the behavior of the singular part of the surf
free energyf sing;t22a and of the domain-wall free energ
fW;tn ~Ref. 36! ~where t5(T2TD)/TD , TD the decon-
struction temperature!. They satisfy the finite-size scalin
predictions

1

N

]2f ~N!

]t2
;Na/n ~16!

and

N
] fW~N!

]t
;N1/n, ~17!

respectively, valid at the critical pointT5TD . Two other
critical indices we will calculate are

x5
1

2p
lim
N→`

N

jD~N!
U
T5TD

, ~18!

x85
1

2p
lim
N→`

Nb fW~N!U
T5TD

, ~19!

which represent the exponent of the spin-spin correlat
function37 and that of the correlation function between d
order variables,31 respectively. The numerical errors on th
values assumed by these quantities are obtained as foll
We first evaluate the error on the determination of the criti
temperatureDTD from the quality of the extrapolation to
N→` of our finite-size data.33 Subsequently, we extract th
values of the exponents, again by iterated fits, at three
ferent temperatures:TD2DTD , TD, and TD1DTD . This
procedure allows us to determine the maximum poss
variation on the values ofa/n, n, x, andx8, thus assigning
them an error bar. Notice these errors are typically sma
the critical temperature is determined accurately enough

Finally, from conformal invariance32,38 it follows that the
leading finite-size correction to the free energy per site of

FIG. 9. The scaled step free energyNb f S(N) for different sys-
tem sizes along a vertical scan across the phase diag
(bd50.14). Coalescence of curves is an indication that the sur
is in a rough state. Both the roughening transition and the inve
roughening transition are visible: they can be roughly localized
the regions where the curves approach the valuep/4.
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infinite system with periodic boundary conditions,f̃ ` , is de-
termined by the central charge~or conformal anomaly! c as

f ~N!

N
' f̃ `1

pc

6N2. ~20!

In fact we analyzed the central charge using the finite-s
approximation

c~N,N12!5
3

2p

N2~N12!2

~N11! S f ~N!

N
2
f ~N12!

N12 D ~21!

which converges toc in the limit N→`.
With the techniques described above we find that the

construction line fore,0 belongs no doubt to the Ising un
versality class in sectorB of our phase diagram. Good con
vergence with increasing size is obtained for the criti
exponents as well as for the central charge, the value
which are

a50, n51, x5x85
1

8
, c5

1

2
. ~22!

In the regione8,0 the situation is less clear. The conve
gence of the data with increasing system size is worse,
values of some of the critical exponents seem to vary al
the critical line and the central charge cannot be determi
with any great accuracy. Yet our results seem to clearly r
out the possibility that the critical line remains in the Isin
universality class. We present the results for the various
ponents and for the central charge below and then draw s
more general conclusions.

A. The exponentx

In part of sectorC of the phase diagram we find difficu
ties in convergence for the quantities extracted from the c
relation lengthjD(N). Figure 10~a! shows the behavior o
the exponentx obtained from Eq.~18!, only along part of the
deconstruction line. The extrapolation procedure to infin
size is in fact far from trivial close to the horizo
e12d50, where we find nonmonotonic behavior with in
creasing size forN/jD(N) and even for the sequenc
bdD(N). In order to give an estimate of the exponentx
nonetheless, we looked at the quantityx(N)
[N/@2pj̃D(N)#, where j̃D(N) is the correlation length
evaluated now at the intersection poin
@bdD(N),beD(N)#.

Figure 10~b! shows some plots ofx(N) vs N along the
deconstruction line. The curves 1, 2, and 3 refer to criti
points in sectorB located on the deconstruction line
bd50.88,bd50.60, andbd50.45. They show a good con
vergence to the Ising exponentx51/8. The other curves
~4–10!, refer to the valuesbd50.37, 0.31, 0.28, 0.25
0.23, 0.21, 0.20, 0.19 in sectorC of the phase diagram. A
the system size increases the curves~4–7! show a reentran
behavior towards the valuex51/8. At values ofbd&0.20
we find monotonic convergence again as function of sys
size, but to values which vary continuously as shown in F
10~a!. The behavior of this set of curves suggests that al
any thermal scan in sectorC of the phase diagram the qua
tity x(N) will show an asymptotic decrease after a ma
e
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mum. The position of the maximum gradually shifts
higher values of size until it exceeds the largest value ac
sible to our calculations and eventally disappears from sig
As already mentioned, no accurate fit can be performed
curves 4, 5, 6, and 7 of Fig. 10~a!, though a rough estimate
provides values ofx below 1/8. When a fitted value can b
extracted again~at smaller values ofbd) and drawn in Fig.
10~a!, one should thus be cautioned against the possibility
missing a maximum and a decreasing part. This would p
vide values ofx possibly below 1/8 and more in accordan
with those ofx8 given in the following subsection. Howeve
another difficulty may arise: in the vicinity of the roughenin
transition the correlation lengthjD may also be strongly in-
fluenced by steplike excitations.39 A better quantity to look at
is represented by the exponentx8.

B. The exponentx8

The quantity Nb fW(N), converges monotonically a
function of the system sizeN all along the deconstruction

FIG. 10. ~a! The exponentx calculated along the deconstructio
line, in the range of values ofbd where the convergence is mono
tonic. ~b! Nonmonotonic behavior ofx(N) as a function ofN:
curves 1, 2, and 3 refer to critical points in sectorB of the phase
diagram ~and tend to the value 1/2), while all the other curv
~4–10! refer to points in sectorC ~see text!. For ~4–10!, due to the
limitation in the maximum system size available~larger than that
shown here! it is almost impossible to obtain a good extrapolati
for N→`.
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55 765TRANSFER-MATRIX STUDY OF THE STAGGERED . . .
line. For 0.25&bd&0.40 the convergence is slow, but it
still possible to give an estimate of the exponentx8 using Eq.
~19!. However the error bars are fairly large. We notice
change in the direction of convergence:Nb fW(N)/2p con-
verges tox8 from above in sectorB of the phase diagram bu
from below in sectorC. Around the linee850 finite-size
effects are very small. For 0.3&bd&0.4 the exponent is stil
compatible, within error bars, with the Ising value of 1/8,
shown in Fig. 11, but forbd&0.3 the exponent shifts to
wards values well below this.

C. The exponentsa and n

Figure 12 shows the exponentsa and n calculated with
the diagonal transfer-matrix along the deconstruction li
with the aid of standard extrapolation methods based on
scaling relations~16,17!.40 It is almost impossible to obtain
these exponents using the vertical transfer matrix, due
difficulties in convergence with increasing size. These pr
lems are much less severe with the diagonal transfer ma
~see also the Appendix!, even though the maximum availab
system size is smaller. The values thus obtained are not c

FIG. 11. The exponentx8 calculated along the deconstructio
line. The horizontal dashed lines represent the Ising value 1/8
the four-state Potts exponent 2/25. Error bars smaller than the s
bol size are not shown.

FIG. 12. The critical exponentsa and n calculated along the
deconstruction line. The dashed line represents their value in
four-state Potts model.
,
he

to
-
ix

m-

patible with Ising exponents whene8,0. They do satisfy the
hyperscaling relation 2n522a within error bars.

D. The central charge

In general the central chargec vanishes in noncritical
phases~here the flat reconstructed phase and the DOF ph!
and assumes finite values at critical points or inside criti
regions~like the rough phase!. As in the determination of the
exponentsa andn, c is calculated with the diagonal TM, a
this leads to better convergence and smaller finite-size eff
than calculations with the vertical TM. Figure 13~a! shows
finite-size approximations ofc along vertical lines in the
phase diagram based on Eq.~21!. The left part of Fig. 13~a!
refers to a scan withbd50.55, which crosses the decon
struction line in a point of sectorB, where we find exponents
in the Ising universality class. In this case the central cha
at the transition shows good convergence towards the I
value (c51/2). The right part of Fig. 13~a! refers to a scan
which crosses the deconstruction line in a point of sectoC
with bd50.25. Figure 13~b! shows two other plots of centra
charges along vertical lines withbd50.22 ~left! and
bd50.20 ~right!. In this part of the phase diagram the ce
tral charge increases markably beyond the Ising va
c51/2. Due to strong finite-size effects, slow convergen
and nearness of the KT line we cannot give a reasona
estimate for its actual value.

Figure 13~c! shows the central charge calculated along
thermal trajectorye110d50, starting from the rough region
~at smallbd) towards the reconstructed phase at largerbd.
According to our numerical results the linee110d50
crosses the roughening and the deconstruction line in
points very close in temperature. In the infinite system lim
the central charge should be 1 in the rough region, d
abruptly from 1 to 0 at the KT point, remain 0 in the DO
region, assume a nonzero value at the single point where
trajectory crosses the deconstruction line and remain 0
yond that. In finite systems this behavior is smeared out, a
the case also in the other plots in Fig. 13. Hence, since
KT point and the deconstruction transition are extrem
close on this trajectory, one expects to see an apparent
vergence ofc to the sum of the KT value 1 and that of th
deconstruction transition. For a deconstruction of the Is
type this would yieldc53/2. From conformal invariance32 it
follows that for unitary models with central charge smal
than unityc can only assume the values

c512
6

M ~M11!
with M53,4, . . . . ~23!

The Ising valuec51/2 is the lowest possible value, obtaine
with M53. Higher values ofM correspond to phase trans
tions in different universality classes. From Fig. 13~c! it is
apparent thatc converges to a value larger than 3/2, whi
we estimate aroundc51.7–1.8.

E. Deconstruction of non-Ising type?

The results presented above strongly suggest that the
construction transition is not in the Ising universality cla
in, at least, part of the regione8,0. One cannot entirely
exclude the possibility that the observed deviations of criti
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766 55ENRICO CARLON, GIORGIO MAZZEO, AND HENK van BEIJEREN
exponents and central charge from their Ising values are
to strong crossover effects, induced by the vicinity of the K
line,39 rather than being a genuine feature of the deconst
tion transition; in view of our numerical results however, w
believe this is quite unlikely.

FIG. 13. Finite-size approximationsc(N,N12) of the central
charge from Eq.~22! ~numbers denote the system sizeN) across
different phases in the phase diagram calculated along ver
scans at@~a!, left# bd50.55, @~a!, right# bd50.25, @~b!, left#
bd50.22,@~b!, right# bd50.20 and~c! along the thermal trajectory
e/d5210.0. The inset in~c! is just an enlargement of the sam
graph emphasizing the convergence of the central charge to va
larger than 1.5.
ue

c-

Of course, the next intriguing question is: what, if n
Ising, is the universality class of this reconstruction line? T
answer to this question is not easy and our numerical res
are not conclusive.

In general the exponents vary along the deconstruc
line, although some vary less than others. The exponex
shows generally worse convergence than the exponenx8
and extrapolation of the values ofx in part of the phase
diagram turned out impossible due to the nonmonotonic
havior of the finite-size data as a function of the system s
N.

The exponentx8 varies along the deconstruction line a
well, but it remains roughly constant in a limited regio
around the value ofbd'0.2, with small error bars thanks t
rapid convergence of the finite-size data. At smaller value
bd its value increases as well as its error bars. This may
due to the vicinity of the KT line or to the finite-size effec
caused by the increasing length of straight step segment
general finite-size effects increase at smaller values ofbd
~see also the Appendix!; in this part of the phase diagram th
most important excitations consist of closed loops of
versed arrows which may become very elongated as the
ergy per unit of length for a straight segment is proportio
to 2d. One should expect that finite-size effects are parti
larly strong when the typical size of a loop becomes of
same order of magnitude as the width of the strip,N. Slow
convergence also is present in a region to the left of the
e850, as can be seen from the large error bars aro
bd'0.3 in Fig. 11. This is due to a poor determination of t
value of the deconstruction temperatureTD .

The exponentsa andn, as calculated from Eqs.~16!,~17!,
vary along the deconstruction line in sectorC. However, the
hyperscaling relation 2n522a is always satisfied within
error bars. In general, as shown in Fig. 12,a tends to have
larger error bars thann. In the regionbd'0.2, the conver-
gence is rapid in the sense that a two-parameter fit is s
cient to extracta andn from Eqs.~16! and~17!. At smaller
values ofbd one, in general, needs to consider corrections
scaling using a three-parameter fit.

Unfortunately our numerical results do not allow an i
equivocal identification of the critical behavior of the deco
struction transition in the regione8,0. We notice however
that the exponentx8 remains constant in a region aroun
bd'0.2, where the error bars are smallest. In this reg
also a and n converge rapidly with increasing size, com
pared to other parts of the deconstruction line in sectorC.
One possible candidate for the observed exponents in
region could be that of the four-state Potts model, for wh
a5n52/3, compatible with our calculated values ofa and
n.

Conformally invariant models are classified according
the value of their central charge, which can assume o
discrete values depending on some integerM , as given in
Eq. ~23!. At fixed values ofM conformal invariance32 pre-
dicts also the possible values for the exponents of correla
functions at the critical point. For the four-state Potts mod
the predicted exponents are of the typex,x852p2/q2 with
p and q integers, as pointed out in Ref. 41. Forp51 and
q54 one indeed obtains the well-known magnetic expon
1/8, instead forp51, q55 one obtains the value 2/25. Bot
values are shown as horizontal dashed lines in Fig. 11;
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exponentx852/25 seems to fit the measured values of
exponent very well forbd'0.2. For the two-dimensiona
Ising model conformal invariance predicts the expone
x51/8 ~magnetic! andx51 ~thermal! only. Thus a measured
exponent of valuex8'2/25 is a quite clear sign of non-Isin
critical behavior.

Further, the central charge clearly shifts away from
Ising valuec51/2. For the four-state Potts model we shou
expect a central charge equal to 1@M→` in Eq. ~23!#. The
central charge markably increases in the regione8,0. How-
ever, as for the critical exponents, this increase g
smoothly from the Ising value,c51/2, towards higher val-
ues. The central charge calculated along the l
e110d50, where the deconstruction and roughening l
are almost coinciding in temperature, extrapolates
c51.721.8, well above the Ising plus KT valu
c51/21153/2. As pointed out above, this is another ind
cation of non-Ising behavior of the deconstruction transiti
though not quite compatible with that of the four-state Po
model, which would imply a central charge equal
c511152.

Finally, also the possibility of having a line with continu
ously varying exponents, as the behavior of especially
exponentx in the sectorC suggests@Fig. 10~a!#, should be
considered. In this case the central charge would equal u
as in the four-state Potts model.

Anyhow, as discussed in Secs. V A and V B, the conv
gence ofx is much poorer than that ofx8. The slow shift of
x8 away from the Ising value asbd decreases in sectorC
~Fig. 11! is known to be a common feature of finite-siz
scaling in the vicinity of points where a change of univers
ity class occurs. Moreover, asbd becomes very small, the
nearness of the KT line is seen to influence the converge
of the exponents of the deconstruction line. In conclusion
seems quite plausible to have in practice only a window
bd values where constant critical exponents are found.
enlarge this window one would have to consider larger s
tem sizes.

Bastiaansen and Knops11 recently studied a six verte
model with an extended range of interactions. They a
found a phase diagram with a second-order line approac
a KT line. The exponents of the second-order line clea
deviate from their Ising values and the authors sugge
they might be explained as tricritical Ising exponents. A
plied to the staggered BCSOS model this would mean a
construction line of Ising type with a tricritical point, con
tinuing beyond this point as a first order line, which is t
phase behavior of the annealed diluted Ising~or
Blume-Capel42! model. The exponents at the tricritical poi
would bea58/9, n55/9, and the central chargec57/10.
For the exponent x8 conformal invariance predict
x853/40. Around bd'0.2 the extrapolated value ofx8
would also be compatible with this value, buta andn are far
away from their tricritical values. At smaller values ofbd
we do find exponents which approach those of the tricriti
Ising model, but this happens in a region where the val
we obtain forx8 clearly shift away from 3/40 and where i
general finite-size effects are quite strong. These same fi
size effects also make it impossible to tell whether at su
ciently smallbd the deconstruction line becomes first ord
or not.
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The point along the deconstruction line where the cha
of universality class occurs is not sharply determined by
numerical results. We do not observe an abrupt jump of
exponents at a given point, rather a continuous shift. A r
sonable candidate for the point separating the two regi
~i.e., Ising and non-Ising!, could be the point where the de
construction line crosses the linee85e12d50. Crossing
this line, we find changes in the type of convergence of
exponentsx andx8 ~Secs. V A and V B!, although without
an abrupt change in their values. We recall that in the surf
representation of the model, in one region the coupling c
stants between the atoms in the two sublattices are b
negative (e,0, e8,0); in the other~where the deconstruc
tion transition is of Ising type! one of the two coupling con-
stants is positive (e8.0). In terms of the vertex lattice, in
the regione8.0, vertices 5 and 6 are the excited vertic
with the lower energy above the ground-state value;
e8,0, vertices 5 and 6 get the higher excitation energy.

All these considerations suggest that the properties of
system may change between the two regionse8.0 and
e8,0 and make it more plausible that the shifts in the e
ponents are not just due to crossover, but also result fro
real change of universality class of the deconstruct
transition.43

VI. DISCUSSION AND CONCLUSION

In this article we studied the critical properties of the sta
gered BCSOS model. Using transfer-matrix techniques
found two critical lines describing the deconstruction and
roughening of the (001) surface of a two-component b
crystal.

The two lines approach each other in part of the ph
diagram, apparently without merging. According to our r
sults the deconstruction line in part of the phase diagr
changes its universality class from Ising to non-Ising,
though further investigations are needed to make this p
more convincing. On the basis of the exponents we find,
conclude that a possible universality class matching th
exponents reasonably well, in the region where the best c
vergence is found, is that of the four-state Potts model. A
other possible scenario is that proposed by Bastiaansen
Knops.11 In their six vertex model with interactions extende
to further neighbors it is too hard to distinguish between
single critical line and two lines approaching each other,
remaining separate. They find critical exponents for the
construction transition clearly deviating from the Ising va
ues and conjecture that the observed criticality could be
plained as tricritical Ising behavior. The idea of a dilute
Ising model is particularly attractive in our case where, as
have seen, the deconstruction transition is, to all likeline
the consequence of the dilution of the Ising order in t
system caused by the formation of a large number of clo
steps of finite length. Unfortunately we find little numeric
evidence for this scenario. Finally, also the possibility
having a line with continuously varying exponents cannot
completely excluded. Other models of reconstructed surfa
have been studied by several authors. Den Nijs16 introduced
a model that describes (110) missing-row reconstructed
faces of some fcc metals~Au,Pt, . . . !. He found a decon-
struction and a roughening line merging into a single criti
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768 55ENRICO CARLON, GIORGIO MAZZEO, AND HENK van BEIJEREN
line, with Ising and KT behavior simply superimposed. Fro
his data, as presented in the literature, it is not possible
really distinguish between actual merging or mere rapid
proach of the lines. A clear distinction to our model is that
Den Nijs’ model the deconstruction transition remains Is
type throughout. Another class of models for the same m
surfaces has been developed and extensively studied b
Trieste group.10,44 Again a deconstruction line and a K
roughening line are seen to approach each other. Depen
on the microscopic details of the model, the deconstruc
line keeps its Ising character either all along, or up to
tricritical point where it changes to a first-order line.

As mentioned in the Introduction there are several ot
two-dimensional models with KT and Ising degrees of fre
dom. One that has received a lot of attention, starting fr
the beginning of the last decade,45 is the fully frustrated
XY model, which describes certain two-dimension
Josephson-junction arrays. The study of its critical behav
has led to several different conjectures about its universa
class and critical exponents. Several papers17,18 report non-
Ising exponents and it has been suggested that the m
would belong to a novel type of universality class. To o
knowledge, whether this type of universality class would

FIG. 14. Free energy along the lineebe1e22bd51 @Eq. ~9!#
calculated~a! with the vertical transfer matrix and~b! with the
diagonal transfer matrix for different system sizes. Notice the
ferent scaling behavior especially at the pointe22bd51: in ~a! the
curves for increasingN tend to the infinite system size value~zero!
like ln2/N, in ~b! theyare zero. It is apparent that finite-size effec
are generally smaller in~b!.
to
-

al
the

ing
n
a

r
-

l
r
ty

del
r
r

would not coincide with that of some known models has n
been established yet. In the most recent study concerning
fully frustratedXYmodel, Olsson19 presents evidence of two
separate transitions, a KT and an Ising one where the for
occurs at somewhat lower temperature than the lat
TKT,TIS . This would be in agreement with our results sin
theXYmodel can be mapped onto a solid-on-solid model
a duality transformation,46 which maps the low-temperatur
phase of one model onto the high-temperature phase of
other and vice versa. Olsson’s work suggests that the n
Ising exponents observed by other groups are due to the
ure of some finite-size scaling hypothesis used in previ
works. In the staggered BCSOS model instead, we find c
evidence of non-Ising exponents. Unfortunately there ex
no exact mapping between this model and the fully frustra
XYmodel, therefore they may well be in different universa
ity classes. Yet, we hope that some of the ideas develope
this paper to study the staggered BCSOS model, will be g
eralized to other models so as to reach a deeper unders
ing of their critical properties.
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APPENDIX: FINITE-SIZE EFFECTS

We show here how the diagonal and the vertical trans
matrix have different finite-size effects in part of the pha
diagram. Consider first the phase pointd50, e→2`. Ver-
tices 5 and 6 are absent and the partition function can
calculated easily. Consider lattices of sizeN3M with cylin-
drical geometry, that is theN vertices along a horizontal row
are connected to each other through periodic boundary c

-

FIG. 15. Whend!e, finite-size effects may show up in the form
of closed loops of reversed arrows winding around the cylinder
the diagonal transfer matrix~b! however they are less frequent tha
in the vertical transfer matrix~a! since they require at least on
couple of vertices 5 and 6~circles! for closing up the lace.
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ditions. In the vertical transfer matrix there are in tot
2N1M configurations, and the free energy per site is given

2b f̃5
N1M

NM
ln2 ~A1!

~the symbolf̃ is used to distinguish the free energy per s
from f , the free energy per row!. In the thermodynamic limit
N,M→` the free energy per site vanishes.

However in transfer-matrix calculations one takes t
limit M→` keepingN finite; this gives a free energy pe
site equal to

2b f̃5
1

N
ln2. ~A2!

With the diagonal transfer matrix the total number of co
figurations available is 22N, since once the arrows on a row
are fixed the whole configuration is fixed. Repeating t
same calculation as done above one finds a free energy
site:

2b f̃50 ~A3!
l
y

e

e

-

e
per

independent of the value ofN. The conclusion is that the fre
energy shows finite-size corrections of the order 1/N in the
vertical transfer matrix, while there are no finite-size effe
for the diagonal transfer matrix. In Fig. 14 we plot the fr
energy calculated along the lineebe1e22bd51 with the ver-
tical and diagonal transfer matrices. The endp
e22bd51 corresponds to the free energy which we ca
lated in Eqs.~A1! and~A3!. As can be seen from the figur
there is a wide area to the left of this point where the f
energies calculated from the vertical transfer-matrix sh
large finite-size effects, while the convergence is much fa
for the diagonal transfer-matrix. In both cases the con
gence is faster fore22bd,1/2, that is in the region of th
phase diagram where only a second-order line is pre
Obviously, for small values ofd the boundary effects ar
very strong, due to closed loops of reversed arrows win
around the cylinder, i.e., the ribbon which constitutes
system with periodic boundary conditions in the horizon
direction~see Fig. 15!. These closed loops are more frequ
in the vertical transfer matrix, since one can reverse the
rows along a horizontal line with a cost in energy of 2dN.
Closed loops in the diagonal transfer matrix require at lea
vertex 5 and a vertex 6, and therefore occur less freque
er,
a

c-

in

dia-
ing

th

cal
lt

d
se
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