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Level curvatures and conductances: A numerical study of the Thouless relation
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The Thouless conjecture states that the average conductance of a disordered metallic sample in the diffusive
regime can be related to the sensitivity of the sample’s spectrum to a change in the boundary conditions. Here
we present results of a direct numerical study of the conjecture for the Anderson model. They were obtained
by calculating the Landauer-Bu¨ttiker conductancegL for a sample connected to perfect leads and the distri-
bution of level curvatures for the same sample in an isolated ring geometry, when the ring is pierced by an
Aharonov-Bohm flux. In the diffusive regime (L@ l e) the average conductance^gL& is proportional to the
mean absolute curvature^ucu&, ^gL&5p^ucu&/D, provided the system sizeL is large enough, so that the contact
resistance can be neglected.l e is the elastic mean free path, andD is the mean level spacing. When approach-
ing the ballistic regime, the limitation of the conductance due to the contact resistance becomes essential and
expresses itself in a deviation from the above proportionality. However, in both regimes and for all system
sizes the same proportionality is recovered when the contact resistance is subtracted from the inverse conduc-
tance, showing that thecurvatures measure the conductance in the bulk. In the localized regime, the mean
logarithm of the absolute curvature and the mean logarithm of the Landauer-Bu¨ttiker conductance are propor-
tional. @S0163-1829~97!03813-7#
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I. INTRODUCTION

It has been shown by Thouless and Edwards in the 19
that the conductance of a disordered diffusive system ca
related to the dependence of the energy levels to a chan
the boundary conditions.1,2 A physical realization of this
change in the boundary conditions is made when the sam
is closed to a ring and pierced by a Aharonov-Bohm fl
f. In such a case the wave function must obey the condi
c(x1L)5c(x)eih whereh52pf/f0. Heref05h/e is the
flux quantum. Thouless found that the average conducta
is proportional to the width of the distribution of the curv
tures of the energy levels whenh is the perturbation param
eter. This relation is based on a similar structure of the Ku
expression for the conductance and of the curvature of
ergy levels when the boundary conditions are changed. In
diffusive regime, the average absolute curvature of the
ergy levels is proportional to the diffusion coefficient a
thus to the conductance. Although this conjecture was
rived under oversimplified assumptions, its basic idea
proved to be very powerful and has become a keyston
our understanding of localization.

Meanwhile, other measures of the conductance in te
of the response of the system’s energy spectrum to a ch
of the boundary conditions have been derived. These spe
measures of the conductance were all obtained for the d
sive regime. They all measure the diffusion constant in
bulk, and are in this sense equivalent to each other. Indee
has been shown that the Kubo conductance can be expre
as the average square of the first derivative of the ene
550163-1829/97/55~12!/7557~8!/$10.00
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levels with respect to flux.3–5 The average has to be take
over both flux and disorder. The relation between the
quantities and the curvature distribution was studied b
numerically and analytically.4,6,7

However, so far very little effort has been devoted
comparing spectral measures of the conductance to the
tomary conductance formulas based on transport consi
ations, like in particular the Landauer-Bu¨ttiker formula. Ex-
ceptions are Ref. 8, where small one-dimensional~1D!
systems were treated numerically, and Ref. 9 devoted to
study of random banded matrices. This is surprising, si
spectral measures of the conductance have been widely
in the mesoscopic community. Yet it is well known that th
conductance of a mesoscopic sample depends sensitive
the measurement geometry and on the way the leads
attached to the sample. On the other hand, the spectral m
sures of conductance are completely insensitive in this
spect, since the sample is closed to a ring and no leads
attached. The system is then in fact a different one. Its sp
trum is discrete when the system is finite, whereas the sys
attached to the leads always has a continuous spectrum

How can it then be possible that the width of the curv
ture distribution measures the conductance obtained i
transport measurement? In this paper we find that the ap
priate conductance is obtained in a situation where the
tem is connected to leads with the same transverse width
with maximal transmission coefficient. We refer to this sit
ation as ‘‘maximal coupling.’’ It is analogous to the ‘‘match
ing wire’’ condition defined by Economou and Soukoulis17

and also used in Ref. 9. In this case the mean absolute
7557 © 1997 The American Physical Society
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7558 55BRAUN, HOFSTETTER, MacKINNON, and MONTAMBAUX
vature is proportional to the Landauer-Bu¨ttiker conductance.
This proportionality holds if the system is large enough a
the disorder strong enough such that the contact resist
can be neglected. In the ballistic regime, the contact re
tance is always important and destroys the proportiona
However, after subtracting the contact resistance from
total inverse conductance, the remaining bulk conductanc
proportional to the mean absolute curvature. The proport
ality coefficient is the same in the diffusive and in the b
listic regime for all system sizes, as long as the samples h
similar geometry. This shows thatthe curvatures measure
bulk conductance. In the localized regime, it is the mea
logarithm of the absolute curvatures and the conductan
that are proportional to each other.

In the next section we briefly review the different defin
tions of the conductance. In Sec. III we discuss our num
cal method and in Sec. IV we present the results of exten
numerical simulations, in which we calculated the level c
vatures from a perturbative formula and the conductan
with the Landauer-Bu¨ttiker formula. The conductances ex
tend over seven orders of magnitude and allow us to st
the diffusive as well as the ballistic and localized regim
We conclude in Sec. V.

II. KUBO, LANDAUER, AND THOULESS
CONDUCTANCES

A. Kubo and Thouless conductances

Let us first recall the main line of the Thouless derivatio
On the one hand, the dc Kubo conductivity can be writ
as10

s5
pe2\

m2V (
a,b

upabu2d~EF2«a!d~EF2«b!, ~1!

where«a are single-energy levels andpab5^au p̂ub& are the
matrix elements of the momentum operator.V5Ld is the
volume andEF the Fermi energy. Strictly speaking, this e
pression is zero for a finite system.11 To get a finites, the
d functions must have a finite width larger than the interle
spacing. Under this condition and assuming that the ma
elementspab are decorrelated from the«a ,

12 the average
conductivity is given by

^GK&5^s&Ld225
pe2\L2d22

m2 ^upabu2&r0
2 . ~2!

^•••& represents an average over the disorder.r0 is the av-
erage density of states per unit volume at the Fermi ene
The dimensionless conductance^gK& can be written as13

^gK&[
^GK&
e2/h

52p
Ec

D
, ~3!

whereD51/(r0L
d) is the mean level spacing, and the Tho

less energyEc is given byEc5\D/L2, D being the diffusion
coefficient.2 The second equality in formula~3! is nothing
but the Einstein relations5e2Dr0. All these quantities are
defined for a given Fermi energy and will in general depe
on EF .
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On the other hand, under the change in the boundary c
ditions c(x1L)5c(x)eih, the curvature of a given energ
level«a at the origin (h50) is given exactly by perturbation
expansion inh:

ca5S ]2«a

]h2 D
h50

5
\2

mL2
1

2\2

m2L2 (
bÞa

upabu2

«a2«b
. ~4!

In order to relate the width of the curvature distribution
the diffusion coefficient, Thouless assumed first that the
ergy levels«a are not correlated with the matrix elemen
pab . Replacing thenupabu2 by its average value, the distri
bution of the curvatures is that of 1/(«a2«b). Second, as-
suming that the energy levels themselves are not correla
the sum in Eq.~4! gives rise to a Levy law for the distribu
tion of the curvatures in the limit of infinitely many levels1

It has the Cauchy formP(c)5(g0 /p)/(g0
21c2) with a

width g0 given by

g05
2p\2

m2L2
^upabu2&

D
. ~5!

Comparison between Eqs.~2! and ~5! gives the relation be-
tween the dimensionless average conductance^gK&
5^GK&h/e2 and the width of the distribution of curvature
known as the Thouless relation,2 ^gK&5p(g0 /D). However,
it is now known that the energy levels are strongly correla
in a metal so that the curvature distribution does not have
Cauchy form. Instead, it is given by

Pb~c!5
Nb

~gb
21c2!~b12!/2 . ~6!

Here,b51 if there is time-reversal symmetry andb52 if
time-reversal symmetry is broken.Nb is a normalization co-
efficient. This form was guessed by Zakrzewski a
Delande14 to fit numerical calculations on various mode
exhibiting chaotic spectra. It has been proven analytically
von Oppen15 for random matrices of the form
H(l)5H1lK whereH andK are random matrices belong
ing to the same symmetry class@b51 for the Gaussian or-
thogonal ensemble~GOE!, b52 for the Gaussian unitary
ensemble~GUE!#. l is the perturbation parameter. Rece
numerical calculations have shown that this distribution
also characteristic of metallic spectra when the perturba
parameter is anAB flux f.6 In particular, in the limit where
f→0, the distribution is still the GOE distribution@b51 in
Eq. ~6!#.6 This has been proven analytically by Fyodorov a
Sommers who also found that there are no corrections
orderD/Ec .

7

The normalized distribution in zero field is thus

P1~c!5
1

2

g1
2

~g1
21c2!3/2

. ~7!

Fyodorov and Sommers have shown that the width of t
distribution can be related to the diffusion coefficient.7 They
find that the width g1 of this distribution for a three-
dimensional ring is given byg152Ec . Using now Eq.~3!,
relating Ec to the Kubo conductance, one deduc
g15D^gK&/p. To characterize this width it is convenient t
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55 7559LEVEL CURVATURES AND CONDUCTANCES: A . . .
introduce the average absolute curvature^ucu&5g1, so that
the Thouless conductance defined as

^gT&[p
^ucu&

D
~8!

equals the Kubo conductance: ^gT&5^gK&.
It has to be noted that, first, all conductances conside

so far are average conductances, the average extending
disorder realizations. Second, the equation^gT&5^gK& holds
so far only for the diffusive regime, sinceg152Ec was de-
rived in Ref. 7 for the diffusive regime. We will see that th
equation has to be modified in the ballistic and localiz
regimes.

B. Landauer-Büttiker conductances

Another way to express the conductance has been in
duced by Landauer. He related this quantity to the scatte
properties of the disordered system, when it isconnectedto
incoherentreservoirs throughideal leads. This approach ide-
ally suits transport through finite mesoscopic systems
shows the importance of the measurement geometry. For
dimension, Landauer derived the dimensionless conducta
g̃L :

16

g̃L[
G̃L

e2/h
5

T

12T
. ~9!

This conductance is the ratioG̃L5I /(mA2mB) wheremA
andmB are the chemical potentials of ideal leads attached
the barrier.T is the transmission coefficient through the d
ordered region.g̃L diverges for an ideal, clean sample. O
the other hand, Economou and Soukoulis, trying to der
this formula from linear response theory~Kubo formula!,
found17

gL5
GL

e2/h
5T ~10!

instead. In this case,GL5I /(m12m2), wherem1 andm2 are
the chemical potentials of the reservoirs.11 Equation~9! de-
scribes a four-terminal measurement in one dimension,
is, a measurement with separate current and voltage prob18

gL5T describes a two-probe measurement, where only
leads are attached to the sample and serve as curren
voltage probes at the same time. The remaining finite re
tance at zero disorder (gL51) is a ‘‘contact resistance’
which has its origin in the coupling of the sample to t
incoherent reservoirs.11,19 This resistance cannot be avoide
in a two-probe measurement. One may therefore think of
total resistanceGL

21 in such a 1D two-probe geometry a
being the sum of the contact resistanceh/e2 and a ‘‘bulk
resistance’’G̃L

21 The latter vanishes when the disorder go
to zero and is identical with the original Landauer contrib
tion:

GL
215G̃L

211
h

e2
. ~11!

Fisher and Lee generalized Eq.~10! to the multichannel
case:20
d
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gL5gK5(
i51

M

Ti5trtt1. ~12!

Ti is the total transmission probability in thei th channel,t
the transmission matrix, andM the number of channels
When the disorder in the sample goes to zero,gL is limited
by the number of open channels. Today there is a gen
agreement that Eq.~12! describes a two-probe measureme
in a multichannel geometry. In our numerical simulations
will focus on this situation and use Eq.~12! for the numerical
evaluation of the conductance.

Comparing Eqs.~8! and~12!, one gets a relation betwee
the average Landauer-Bu¨ttiker conductance and the width o
the curvature distribution:

^gL&5p
^ucu&

D
. ~13!

In the two-probe multichannel geometry we will consid
in the following one might again decompose the total res
tance into a sum of a contact resistance plus a bulk re
tance, the latter being entirely due to the motion in the b
of the sample. In straight generalization of Eq.~11!, it is then
natural to define the bulk conductanceG̃L5(e2/h)g̃L by

GL
215G̃L

211Rc , ~14!

whereRc5h/(Me2) is the ‘‘contact resistance’’ for the mul
tichannel system.11,21We have then

g̃L5
(Ti

12(Ti /M
. ~15!

In the diffusive regime, the effective number of conducti
channels, Meff5(Ti , is much smaller than M :
Meff5Mle/L where l e is the elastic mean free path.23 Con-
sequently,gL and g̃L are almost identical in the diffusive
regime, the relative deviations being of orderl e /L. However,
in the ballistic regime they behave very differently:g̃L→`
andgL→M in the limit of zero disorder.

For more than one channelg̃L has not the simple and
general interpretation of the conductance measured in a f
probe measurement. Indeed, in the multichannel case
only the number of leads but also the way~e.g., under what
angles! they are attached influences the measured cond
tance, such that a general four-probe formula might not e
exist.22 Similarly ^ucu& cannot correspond to any particula
four-probe conductance, since it is an intrinsic property
the disordered region. We will show that for a finite syste
^ucu& is proportional tô g̃L&:

^g̃L&5p
^ucu&

D
. ~16!

III. NUMERICAL METHOD

The starting point of our analysis is the Anderson tig
binding HamiltonianH of a disordered system on a squa
lattice ofLx3Ly3Lz sites. For the curvature calculation th
system is closed to a ring and pierced by an Aharonov-Bo
flux f:
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H5(
i
ei u i &^ i u1u(̂

i j &
u i &^ j u1u

3 (̂
i j &

i x5Lx, j x51

~eihu i &^ j u1H.c.!. ~17!

The ei are distributed uniformly and independently in a
interval between2w/2 andw/2. Here^ i j & denote next near
est neighbors,u is the hopping matrix element which we s
equal to one in the following, andw is the disorder param
eter. The last sum in Eq.~17! is over the set of sites on th
two boundaries limiting the open sample in thex direction.
Hopping between these boundary sites arises when the
tem is closed to a ring and includes a phase factoreih. For
f50 or entire multiples of the flux quantum, one recove
periodic boundary conditions.

For the calculation ofgL , the system is open and couple
to perfect leads. The last sum in Eq.~17! is then missing.
This is the only difference between the two Hamiltonians.
particular, for the numerical implementation the same r
dom number generator was used for the diagonal matrix
ements in both situations.

A. Curvatures

In the diffusive regime, the curvatures can be evalua
by replacing differentials by small flux differences who
values are varied for control in a suitable way.6 This proce-
dure has the numerical advantage that only eigenvalues
the eigenvectors, are needed. However, it is very difficul
control in the ballistic and in the localized regime. W
adopted therefore a routine based on an exact perturb
formula corresponding to Eq.~4!. In fact, treatingh in Eq.
~17! as a perturbation up to second order, one finds for
curvatures at zero flux

ca

2
5 (̂

i j &
i x5Lx , j x51

^eau i &^ j uea&1 (
bÞa

1

eb2ea

3S (̂
i j &

i x5Lx , j x51

^ebu i &^ j uea&2^ebu j &^ i uea&D 2

, ~18!

whereea and uea& denote the eigenvalues and eigenvect
of the Hamiltonian at zero flux, respectively. Higher-ord
terms vanish sinceh50. In the two directions perpendicula
to the transport direction, periodic boundary conditions w
used. Formula~18! is exact as long asebÞea . Thus, for a
finite system, where level repulsion is always present at
ficiently small energy scales,25 Eq. ~18! remains valid also in
the localized and ballistic regimes. Besides rounding err
which can be neglected here the only remaining errors in
calculation of^ucau& are statistical errors that can be co
trolled by increasing the number of disorder realizations.
used up to 1000 disorder realizations for system sizes
63636 sites and still about hundred for 10310310 sites.
Relatively, the remaining statistical errors in the diffusi
and ballistic regimes were of the order of 1022, which we
checked by varying the number of disorder realizations.
Eq. ~18! indicates, all eigenvalues and eigenvectors a
needed for the calculation of a single curvature. Realizati
ys-
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where our Lanczos routine failed to find all eigenvalues a
eigenvectors were therefore discarded.

B. Conductances

The conductancegL was calculated from Eq.~12! by the
Green’s function recursion technique.24 The Green’s func-
tion connecting the two ends of a strip can be calcula
recursively using the equations

GN,N
~N! 5@Z2HN2u†GN21,N21

~N21! u#21, ~19!

G1,N
~N!5G1,N21

~N21!uGN,N
~N! , ~20!

whereGN,N
(N) represents the submatrix of the Green’s functi

between sites on theNth slice of a strip of lengthN, G1,N
(N) is

the corresponding submatrix between sites on the 1st
Nth slices, andHN represents the Hamiltonian of theNth
slice alone. The system can be embedded in semi-infi
leads by choosing the initial values of the two Green’s fun
tions to represent the end of a semi-infinite wire and by a
ing a final slice for which the Hamiltonian of the slice
replaced by the self-energy matrix for another semi-infin
wire. Having the Green’s functions one can derive the tra
mission matrixt ~Ref. 24! and then the conductancegL .

IV. RESULTS

A. Energy dependence

Without averaging over energy, both^gT& and ^gL& are
energy dependent:̂gT(E)& and ^gL(E)&. The variation of
^gL(E)& is smooth and is due to the energy dependence
the density of states~DOS! and of the number of channels
M . The energy dependence of^gT(E)& arises from the varia-
tion with energy of botĥ ucu& and D(E), where the latter
quantity is the mean level spacing at a given energy~aver-
aged over disorder only!. In order to get the conductance at
given energy, we therefore rescaled the curvatures with
energy-dependentD: c̃a5ca /D(ea). The disorder-averaged
DOS 1/D(E) was obtained by the standard method of fitti
the spectral staircase~integrated DOS! to a polynomial.

After averaging over 1000 disorder realizations~in the
case of systems with 63636 sites!, the fluctuations of
^uc̃au&5^ucau&/D(ea) as a function of energy turned out t
be still much more pronounced than those of^gL(E)&. This
is not too surprising, as it is well known that in the diffusiv
regime the conductance distribution~which is a universal
Gaussian distribution26,27 with a width of the order of the
conductance quantum! and the curvature distribution~see
Sec. I! are very different. Thus, when using just one disord
realization, the fluctuations of the functionuc̃a(ea)u will be
much larger than those ofg(E), due to the long 1/ca

3 tails of
the curvature distribution. For a finite number of realizatio
this difference will still persist, and only when averagin
over infinitely many disorder realizations should the ene
dependence of̂gL& follow that of ^uc̃au&. Having in mind
that even 1000 disorder realizations did not suffice to red
the fluctuations of̂gT(E)& to a level comparable to those o
^gL(E)&, it seems very difficult to check the Thouless co
jecture in the stronger sense for a given energy with
current computing power available. We therefore avera
gL and gT not only over the realizations but over a ban
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FIG. 1. The curvature distribution in the ba
listic regime. The solid line is the prediction o
Eq. ~7! known to be valid in the diffusive regime
Deviations at small curvature are visible~see in-
set!. 63636 sites,w51.0, 4000 disorder real-
izations.
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of energyDE comprising typically about the central half o
the spectrum as well. We checked that increasing the siz
the system or the number of realizations allows one to
creaseDE to obtain the same results. This suggests that
results are independent ofDE. In the following, ^•••& will
stand for the combined disorder and energy average. C
was taken in order to average both curvatures and con
tances over exactly the same energy interval.

B. Curvature distribution

In the diffusive regime, the distribution of the curvatur
is well described by Eq.~7!. Thus,^ucu& is a good measure o
the width of the curvature distribution.

Outside the diffusive regime the curvature distributi
was not known so far, and one might wonder whether^ucu&
is still well defined. We therefore calculatedP(c) numeri-

FIG. 2. The curvature distribution in the localized regime with
fit to a Cauchy distribution~dashed line!. This plot shows that
P(c) decays faster than 1/c2 for large curvatures. 63636,
w550, 4000 disorder realizations.
of
-
ur

re
c-

cally for both the ballistic and the localized regimes. Figure
showsP(c) for a system in the ballistic regime (63636
sites,w51.0, 4000 disorder realizations! and the prediction
of Eq. ~7!, whereg1 was determined asg15^ucu& ~no fitting
parameter!. Equation~7! works well for large curvatures an
shows that in the ballistic regimeP(c) has 1/c3 tails as in the
diffusive regime. For small curvatures deviations from E
~7! in the form of nonuniversal features appear and the d
tribution develops two maxima. A relative minimum appea
at zero curvature. These deviations become even more
nounced for smaller disorder. Altogether we conclude t
^ucu& can still serve as a measure for the width of the cur
ture distribution, even in the ballistic regime.

In the localized regime at least two different numeric
works favor a log-normal curvature distribution.28,29Analyti-
cal evidence for a log-normal distribution at least for sm
curvatures in 1D is given in Ref. 30. On the other hand, o
might suspect that Thouless’ original result of a Cauchy d

FIG. 3. Distribution of lnucu in the localized regime with a fit to
a Gaussian distribution~corresponding to a log-normal distributio
for ucu). Same parameters as in Fig. 2.
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tribution due to uncorrelated eigenvalues might apply to
localized regime. Such a distribution would of course sp
the use of̂ ucu& as a measure of the Thouless conductan
We therefore reexamined this question numerically.
shown in Fig. 2, a Cauchy distribution can be ruled out: F
large curvatures, the distribution falls off faster than 1/c2.
This can probably be explained by the fact that the eigen
ues and the eigenvectors are strongly correlated for la
disorder in contrast to what was assumed by Thouless in
derivation of his formula. On the other hand, Fig. 3 sho
that a log-normal distribution does not fit perfectly eithe
Rather large deviations are visible for large curvatures.
will address this question in more detail in a future wo
Nevertheless, we can conclude from Fig. 2 that both^ucu&
and ^ lnucu& are well-defined quantities in the localize
regime.31

C. Disorder dependence

Before discussing the disorder regimes separately, we
play in Fig. 4 an overall plot of the disorder dependence
^uc̃au& and ^gL&. Several points can be observed imme
ately: First of all, ^uc̃au& diverges for small disorder like
1/w2. This is a well-known fact which can be derived fro
perturbation theory ~first Born approximation.32! Also,
^uc̃au& has the right scaling behavior of a conductance. In 3
in the ballistic and diffusive regimes,^uc̃au& increases pro-
portionally to the system sizeL within the parameter rang
provided (L56–10!. In the localized regime it decays wit
the system size. In 3D there is a critical valuewc.16.5
where^uc̃au& becomes independent of the system size, t
indicating the position of the metal-insulator transitio
~MIT !. Within the error bars it coincides with the wel
known value found by MacKinnon and Kramer, who exa
ined the scaling behavior of the transmission through dis
dered samples.33 We also checked that in 2D̂uc̃au& is
independent ofL in the diffusive and ballistic regimes.

FIG. 4. The overall disorder dependence of^uc̃au& ~top! and
^gL& ~bottom! for different system sizes: diamonds, 63636;
circles, 83838; and triangles, 10310310. The straight lines of
^uc̃a(w)u& in the logarithmic plot correspond to a 1/w2 divergence
for smallw. Solid lines are guides to the eye only. For clarity t
^uc̃a(w)u& curves were shifted by an arbitrary factor 4p2.
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1. Ballistic and diffusive regimes

Figure 4 shows that̂gL& obeys the same scaling behavi
as ^uc̃au&. However, the disorder dependence of^gL& and
^uc̃au& is rather different. Even in the diffusive regime
^gL& follows ^uc̃au& only over a small disorder interval clos
to the metal-insulator transition. The interval’s width in
creases with the system size, but for all system sizes
discrepancy becomes very pronounced in the ballistic
gime, where^gL& converges to a constant value, where
^uc̃au& keeps diverging.

Following our discussion of Sec. II this result is not su
prising. In the ballistic regime,D formally diverges, as does
^uc̃au&. Any limitation of the conductance due to the couplin
of the sample to the environment must then result in a
viation from the conjectured proportionality between^uc̃au&
and^gL&. Clearly, the discrepancy in the lower disorder lim
of the diffusive regime is already caused by the crossove
constant̂ gL& due to the boundary resistance.

In order to improve the agreement of^uc̃au& with the con-
ductance, the latter has to be defined such that it does
incorporate the contact resistance. We therefore also c
pared the disorder dependence of^g̃L& with the one of
^uc̃au&. As explained in Sec. II,̂ g̃L& does not contain the
contribution of the boundary resistance and should be a m
sure of the bulk conductance. It will therefore also diver
when the disorder vanishes. Whereas it is not clear from
beginning that this divergence will be of the same kind as
one of ^uc̃au&, Fig. 5 shows that̂ g̃L& diverges for smallw
indeed with the same power as^uc̃au&. Both curves follow
each other from the diffusive regime until far into the balli
tic regime.

In Fig. 6 we have plotted̂g̃L& as function of̂ uc̃au&. The
MIT is given in this plot by the point where
4p2^uc̃au&.4.1. The points from all sample sizes consider
in 3D now fall on one straight line with slope 1 and this
the diffusive as well as in the ballistic regime.34 A fit to a
linear law gives

^g̃L&5~0.9960.04!p^uc̃au&20.02960.008, ~21!

FIG. 5. The overall disorder dependence of^uc̃au& ~top! and
^g̃L& ~bottom! for different system sizes~same symbols as in Fig
4!. ^g̃L(w)& diverges in the same manner as^uca(w)u& for small
w. Solid lines are guides to the eye only.
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in remarkable agreement with Eq.~16!.35 The error bars were
obtained as standard deviations from the three system s
considered. The conclusion is therefore that^uc̃au& measures
the bulk conductancêg̃L& in both the diffusive and ballistic
regimes.

In a recent paper, Casatiet al. also study the relation be
tween Landauer conductance and curvature distributions
band random matrices and they find the relation

^gL&5~7.560.4!Kav, ~22!

where they define Kav as the geometric average
exp̂ ln(ucu/D)&.9 For a distribution of curvatures like Eq.~7!,
the geometric average is related to the arithmetic aver
by36

Kav5expK lnucu
D L 5

1

2 K ucu
D L .

Using the relation~13! we get the following result:

^gL&52pKav.

This factor 2p has to be compared with the the numeric
result @Eq. ~22!# found by these authors.

2. Localized regime

Figure 6 shows that the power between^uc̃au& and ^g̃L&
changes at the MIT. We obtain approximatelŷgL&
}^uc̃au&1.2. However, in the localized regimêuc̃au& and
^g̃L& might not be the right quantities to look at. At lea
from the conductance it is known that in this regime t
function with the right scaling behavior iŝlngL&,

37 not
^gL&. Since the favored log-normal distribution of curvatur
is due to the same reason as the log-normal distribution
the conductances, namely, the exponentially decaying w
functions with normally distributed localization length, on
might suspect that a similar statement holds for the cur
tures as well. We therefore also examined^ lngL& and ^ lnucu&

FIG. 6. The conductancêg̃ & plotted against̂uc̃au& for different
system sizes~same symbols as in Fig. 4!. The diffusive regime
starts with the critical mean curvature 4p2^uc̃au&.4.1. In this re-
gime and the ballistic regime the dependence is very well fitted
the same linear law^g̃L&5(0.9960.04)p^uc̃au&20.02960.008
~solid line!.
es
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as functions of disorder and system size. Figure 7 shows
result: First of all both quantities are proportional to the s
tem size and, second, proportional to each other. Plot
^ lngL& versus^ lnucu& ~see Fig. 8! yields a straight line that is
best approximated by the linear law

^ lngL&.1.7̂ lnucu&22.5. ~23!

Again, the validity of this equation extends over several
ders of magnitude of the conductance. However, the pre
tor seems to decrease slightly but systematically with
system size. A law like Eq.~23! was also reported in Ref. 9
with a similar prefactor~1.73! for banded random matrices
Nevertheless, Ref. 9 also reports a prefactor 2.0 for
Anderson model. We do not have any explanation for t
difference besides the fact that in contrast to our b
distributed disorder the disorder was Gaussian distribute
Ref. 9. The found behavior isa priori surprising. Assuming
that in the localized regime the flux dependence of each

y

FIG. 7. ^ lnucu& ~top! and^ lngL& ~bottom! as a function of disorder
for three different system sizes in the localized regime~same sym-
bols as in Fig. 4!.

FIG. 8. ^ lngL& as a function of̂ lnucu& in the localized regime for
three different system sizes~same symbols as in Fig. 4!.
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ergy level is purely sinusoidal38 one deduces tha
^ i 2(w)&}^c2&, wherei a(w)52]ea /]w and the overbar in-
dicates a flux average. Since^ i 2(w)& can be related to the
Kubo conductance, one would expect a quadratic rela
^gL&}^c2&.39

V. CONCLUSION

We have examined numerically the relation between le
curvatures and conductances for disordered systems.
showed that in the diffusive regime a proportionality b
tween the dimensionless mean absolute curvature^uc̃au& and
the average Landauer-Bu¨ttiker conductancêgL& holds if the
system is large enough so that the influence of the boun
resistance can be neglected. In the ballistic regime,
boundary resistance can never be neglected and leads
strong violation of the proportionality. In the limit of zer
disorder it completely dominates the total resistance and
d
r

-
.

ry
e

le

. B
n

l
e

-

ry
e
o a

-

its ^gL& to the number of open channels, whereas^uc̃au& di-
verges in the same limit. However, for all system sizes
proportionality between a properly defined bulk conductan
^g̃L& and ^uc̃au& could be established that holds in the sam
form in the diffusive and ballistic regimes. This shows that
these regimes level curvatures measure a conductance t
entirely due to the dynamics in the bulk of the sample a
therefore not influenced by details of the measurement se
like the number of leads and the way they are attached. In
localized regime, we found a proportionality betwe
^ lnucu& and ^ lngL&.
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