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Level curvatures and conductances: A numerical study of the Thouless relation
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The Thouless conjecture states that the average conductance of a disordered metallic sample in the diffusive
regime can be related to the sensitivity of the sample’s spectrum to a change in the boundary conditions. Here
we present results of a direct numerical study of the conjecture for the Anderson model. They were obtained
by calculating the Landauer-Biker conductanceg, for a sample connected to perfect leads and the distri-
bution of level curvatures for the same sample in an isolated ring geometry, when the ring is pierced by an
Aharonov-Bohm flux. In the diffusive regimeL§&1.) the average conductangg, ) is proportional to the
mean absolute curvatutéc|), (g, )= =(|c|)/A, provided the system sideis large enough, so that the contact
resistance can be neglectédis the elastic mean free path, aads the mean level spacing. When approach-
ing the ballistic regime, the limitation of the conductance due to the contact resistance becomes essential and
expresses itself in a deviation from the above proportionality. However, in both regimes and for all system
sizes the same proportionality is recovered when the contact resistance is subtracted from the inverse conduc-
tance, showing that theurvatures measure the conductance in the birkthe localized regime, the mean
logarithm of the absolute curvature and the mean logarithm of the LandatiieBiconductance are propor-
tional. [S0163-182@7)03813-7

[. INTRODUCTION levels with respect to flux-®> The average has to be taken
over both flux and disorder. The relation between these
It has been shown by Thouless and Edwards in the 1970guantities and the curvature distribution was studied both
that the conductance of a disordered diffusive system can heumerically and analyticall§®’
related to the dependence of the energy levels to a change in However, so far very little effort has been devoted to
the boundary conditions® A physical realization of this comparing spectral measures of the conductance to the cus-
change in the boundary conditions is made when the samplemary conductance formulas based on transport consider-
is closed to a ring and pierced by a Aharonov-Bohm fluxations, like in particular the Landauer-@iker formula. Ex-
¢. In such a case the wave function must obey the conditioeptions are Ref. 8, where small one-dimensiofHD)
P(x+L)=(x)e'7wheren=2md/ py. Heregpg=h/eisthe  systems were treated numerically, and Ref. 9 devoted to the
flux quantum. Thouless found that the average conductancgudy of random banded matrices. This is surprising, since
is proportional to the width of the distribution of the curva- spectral measures of the conductance have been widely used
tures of the energy levels whepis the perturbation param- in the mesoscopic community. Yet it is well known that the
eter. This relation is based on a similar structure of the Kub@onductance of a mesoscopic sample depends sensitively on
expression for the conductance and of the curvature of erthe measurement geometry and on the way the leads are
ergy levels when the boundary conditions are changed. In thattached to the sample. On the other hand, the spectral mea-
diffusive regime, the average absolute curvature of the ensures of conductance are completely insensitive in this re-
ergy levels is proportional to the diffusion coefficient and spect, since the sample is closed to a ring and no leads are
thus to the conductance. Although this conjecture was deattached. The system is then in fact a different one. Its spec-
rived under oversimplified assumptions, its basic idea hatrum is discrete when the system is finite, whereas the system
proved to be very powerful and has become a keystone iattached to the leads always has a continuous spectrum.
our understanding of localization. How can it then be possible that the width of the curva-
Meanwhile, other measures of the conductance in termture distribution measures the conductance obtained in a
of the response of the system’s energy spectrum to a chandgensport measurement? In this paper we find that the appro-
of the boundary conditions have been derived. These spectrpfiate conductance is obtained in a situation where the sys-
measures of the conductance were all obtained for the diffutem is connected to leads with the same transverse width and
sive regime. They all measure the diffusion constant in thevith maximal transmission coefficient. We refer to this situ-
bulk, and are in this sense equivalent to each other. Indeed, d@tion as “maximal coupling.” It is analogous to the “match-
has been shown that the Kubo conductance can be expressed wire” condition defined by Economou and Soukotiis
as the average square of the first derivative of the energgnd also used in Ref. 9. In this case the mean absolute cur-
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vature is proportional to the LandauertBker conductance. On the other hand, under the change in the boundary con-
This proportionality holds if the system is large enough andditions (x+L)= (x)e'”, the curvature of a given energy
the disorder strong enough such that the contact resistan¢evel ¢, at the origin (7=0) is given exactly by perturbation
can be neglected. In the ballistic regime, the contact resisexpansion iny:
tance is always important and destroys the proportionality.
However, after subtracting the contact resistance from the Pe,, h? 2h° |paﬁ|2
total inverse conductance, the remaining bulk conductance is @™ an? :m|_2+ m2L2 S e,—eg
proportional to the mean absolute curvature. The proportion- 7=0 « F
ality coefficient is the same in the diffusive and in the bal-In order to relate the width of the curvature distribution to
listic regime for all system sizes, as long as the samples hau@e diffusion coefficient, Thouless assumed first that the en-
similar geometry. This shows théte curvatures measure a ergy levelse, are not correlated with the matrix elements
bulk conductanceln the localized regime, it is the mean P.s- Replacing thedpaﬁ|2 by its average value, the distri-
logarithm of the absolute curvatures and the conductancesution of the curvatures is that of &/(—« 5). Second, as-
that are proportional to each other. suming that the energy levels themselves are not correlated,
In the next section we briefly review the different defini- the sum in Eq(4) gives rise to a Levy law for the distribu-

tions of the conductance. In Sec. Il we discuss our numerition of the curvatures in the limit of infinitely many levéls.
cal method and in Sec. IV we present the results of extensivg has the Cauchy formP(c)=(y,/m)/(y3+c?) with a

numerical simulations, in which we calculated the level cur-yigth v, given by
vatures from a perturbative formula and the conductances

4

with the Landauer-Bitiker formula. The conductances ex- 2mh2 <|pa5|2>
tend over seven orders of magnitude and allow us to study VoS 22T A 5)
the diffusive as well as the ballistic and localized regimes.
We conclude in Sec. V. Comparison between Eq&) and (5) gives the relation be-
tween the dimensionless average conductan@s)
Il. KUBO, LANDAUER, AND THOULESS =<GK>h/€‘2 and the width of the distribution of curvatures,
CONDUCTANCES known as the Thouless relatigy )= m(yo/A). However,
it is now known that the energy levels are strongly correlated
A. Kubo and Thouless conductances in a metal so that the curvature distribution does not have the

Let us first recall the main line of the Thouless derivation.Cauchy form. Instead, it is given by
Osr110the one hand, the dc Kubo conductivity can be written N
a B

i PO e ©
o= 7;1TV > |pa5|25(EF—sa) S(Eg—ep), (1) Here, =1 if there is time-reversal symmetry amgk=2 if
a.p time-reversal symmetry is brokeN,; is a normalization co-
efficient. This form was guessed by Zakrzewski and
Delandé* to fit numerical calculations on various models
exhibiting chaotic spectra. It has been proven analytically by
von Oppef® for random matrices of the form
H(\)=H+AK whereH andK are random matrices belong-
ing to the same symmetry clag8=1 for the Gaussian or-
*hogonal ensembléGOE), B=2 for the Gaussian unitary
ensemble(GUE)]. A is the perturbation parameter. Recent
numerical calculations have shown that this distribution is
also characteristic of metallic spectra when the perturbation
@) parameter is alB flux ¢.° In particular, in the limit where
¢—0, the distribution is still the GOE distributidnp83=1 in
Eq.(6)].° This has been proven analytically by Fyodorov and

(---) represents an average over the disorgdgris the av-  Sommers who also found that there are no corrections of
erage density of states per unit volume at the Fermi energysrderA/E, .’

wheree , are single-energy levels amﬁ=(a|b|ﬁ) are the
matrix elements of the momentum operatur=LY is the
volume andEr the Fermi energy. Strictly speaking, this ex-
pression is zero for a finite systethTo get a finiteo, the

6 functions must have a finite width larger than the interlevel
spacing. Under this condition and assuming that the matri
elementsp,; are decorrelated from the, ,'? the average
conductivity is given by

7762 2d-2
(G) =)L 2= (P2}

The dimensionless conductan@) can be written &s The normalized distribution in zero field is thus
_ <GK> Ec ! ’)’i
<gK>=m—2wK, 3 Pl(c)_EW' @

whereA = 1/(poL%) is the mean level spacing, and the Thou- Fyodorov and Sommers have shown that the width of this
less energ. is given byE.=#%D/L2, D being the diffusion  distribution can be related to the diffusion coefficiérithey
coefficient’ The second equality in formulé) is nothing  find that the widthy, of this distribution for a three-
but the Einstein relatiom=e?Dp,. All these quantities are dimensional ring is given by, =2E.. Using now Eq.(3),
defined for a given Fermi energy and will in general dependelating E. to the Kubo conductance, one deduces
on Eg. v1=A(gx)/ . To characterize this width it is convenient to
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introduce the average absolute curvat(jig)=vy,, so that M
the Thouless conductance defined as ngngiZl T,=trtt*. 12
(gﬁzr@ ® T is the total transmission probability in théh channelt
A the transmission matrix, anl the number of channels.

equals the Kubo conductanofg)=(gy). When the disorder in the sample goes to zgpisllimited
It has to be noted that, first, all conductances considereBy the number of open channels. Today there is a general

so far are average conductances, the average extending odréeément that Eq12) describes a two-probe measurement
disorder realizations. Second, the equatigr)=(gx) holds ina multlchann_el geometry. In our numerical S|mulat|qns we
so far only for the diffusive regime, sincg, = 2E, was de- will focus on this situation and use E(.2) for the numerical

’ c

rived in Ref. 7 for the diffusive regime. We will see that the evaguation .Of tkée C%ndu%taf;e' lation b
equation has to be modified in the ballistic and localized omparing Eqgs( )qn_( ), one gets a relation etween
the average Landauer-Biker conductance and the width of

regimes. L
g the curvature distribution:
B. Landauer-Blttiker conductances <|C|>
Another way to express the conductance has been intro- (gu=m A (13
duced by Landauer. He related this quantity to the scattering
properties of the disordered system, when itdénnectedo In the two-probe multichannel geometry we will consider

incoherentreservoirs througideal leads This approach ide- in the following one might again decompose the total resis-

ally suits transport through finite mesoscopic systems antance into a sum of a contact resistance plus a bulk resis-
shows the importance of the measurement geometry. For onance, the latter being entirely due to the motion in the bulk

dimension, Landauer derived the dimensionless conductancg the sample. In straight generalization of Etjl), it is then

g, natural to define the bulk conductanGe = (e%/h)g, by

~_ G T G =G '+R, (14)
9= Zh T 1T ®

whereR.=h/(Me?) is the “contact resistance” for the mul-
This conductance is the ratiG, =1/(us—ug) Where u,  tichannel system* We have then
and ug are the chemical potentials of ideal leads attached to
the barrier.T is the transmission coefficient through the dis- T= 2T,
ordered regiong, diverges for an ideal, clean sample. On L1-STMC
the other hand, Economou and Soukoulis, trying to deriv
this formula from linear response theofitubo formula,

(15

qn the diffusive regime, the effective number of conducting

found’ channels, M4=2XT;, is much smaller than M:
M=MIJ/L wherel, is the elastic mean free pathCon-

G, sequently,g, andg, are almost identical in the diffusive
ngﬁzT (100  regime, the relative deviations being of ordigfL. However,

in the ballistic regime they behave very differently;— o
instead. In this cas&, =1/(u,— u,), whereu, andu, are  andg —M in the limit of zero disorder.
the chemical potentials of the reservditsEquation(9) de- For more than one channel has not the simple and
scribes a four-terminal measurement in one dimension, thgteneral interpretation of the conductance measured in a four-
is, a measurement with separate current and voltage ptdbesprobe measurement. Indeed, in the multichannel case not
g, =T describes a two-probe measurement, where only tw@nly the number of leads but also the wag., under what
leads are attached to the sample and serve as current addgles they are attached influences the measured conduc-
voltage probes at the same time. The remaining finite resigance, such that a general four-probe formula might not even
tance at zero disorderg(=1) is a “contact resistance” exist?* Similarly (|c|) cannot correspond to any particular
which has its origin in the coupling of the sample to thefour-probe conductance, since it is an intrinsic property of
incoherent reservoirs:*® This resistance cannot be avoided the disordered region. We will show that for a finite system
in a two-probe measurement. One may therefore think of thélc|) is proportional to(g, ):
total resistanceﬁ[1 in such a 1D two-probe geometry as
being the sum of the contact resistartv@? and a “bulk (’QL):w@. (16)

resistance”’Gu[1 The latter vanishes when the disorder goes A
to zero and is identical with the original Landauer contribu-
tion: Ill. NUMERICAL METHOD

= The starting point of our analysis is the Anderson tight-
GL =G+ & (1D binding HamiltonianH of a disordered system on a square
lattice of L, X L,XL, sites. For the curvature calculation the
Fishe% and Lee generalized E(LO) to the multichannel system is closed to a ring and pierced by an Aharonov-Bohm
case’ flux ¢:
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where our Lanczos routine failed to find all eigenvalues and

HZEi eili il +U<i2j> li)(j[+u eigenvectors were therefore discarded.
B. Conductances
X E (e"i)j|+H.c). (17) The conductancg, was calculated from Eq12) by the
ix=|fi<lvl>x=l Green’s function recursion technigtfeThe Green’s func-

o . ] . tion connecting the two ends of a strip can be calculated
The ei are dIStrIbuted UnIfOI’m|y and Independently In an recursive|y using the equations

interval between-w/2 andw/2. Here(ij ) denote next near-

est neighborsy is the hopping matrix element which we set G =[Z—Hy—u'G{' R ul ™t (19
equal to one in the following, and is the disorder param- ’ '
eter. The last sum in Eq17) is over the set of sites on the G =GN HuGY, (20)

two boundaries limiting the open sample in thelirection.
Hopping between these boundary sites arises when the swhereG(N“f)N represents the submatrix of the Green’s function
tem is closed to a ring and includes a phase faetdr For  between sites on thith slice of a strip of lengtN, G‘lN,\} is
¢=0 or entire multiples of the flux quantum, one recoversthe corresponding submatrix between sites on the 1st and
periodic boundary conditions. Nth slices, andHy represents the Hamiltonian of théth

For the calculation 0§, , the system is open and coupled slice alone. The system can be embedded in semi-infinite
to perfect leads. The last sum in EQ7) is then missing. leads by choosing the initial values of the two Green’s func-
This is the only difference between the two Hamiltonians. Intions to represent the end of a semi-infinite wire and by add-
particular, for the numerical implementation the same raning a final slice for which the Hamiltonian of the slice is
dom number generator was used for the diagonal matrix ekeplaced by the self-energy matrix for another semi-infinite
ements in both situations. wire. Having the Green'’s functions one can derive the trans-

mission matrixt (Ref. 24 and then the conductancg .
A. Curvatures

In the diffusive regime, the curvatures can be evaluated IV. RESULTS
by replacing differentials by small flux differences whose
values are varied for control in a suitable whayhis proce-
dure has the numerical advantage that only eigenvalues, not Without averaging over energy, botlgr) and(g,) are
the eigenvectors, are needed. However, it is very difficult tenergy dependentgr(E)) and(g.(E)). The variation of
control in the ballistic and in the localized regime. We (9L(E)) is smooth and is due to the energy dependence of
adopted therefore a routine based on an exact perturbatige density of state€DOS) and of the number of channels,
formula corresponding to Ed4). In fact, treatingn in Eq. M. The energy dependence(@(E)) arises from the varia-
(17) as a perturbation up to second order, one finds for th&on with energy of bot|c|) and A(E), where the latter

curvatures at zero flux quantity is the mean level spacing at a given endaper-
aged over disorder onlyln order to get the conductance at a

Co _ 2 o 4 E 1 given energy, we th@refore rescaled the curvatures with an
2 . (eali)ilea) fFo €5~ €, energy-dependent: c,=c,/A(e,). The disorder-averaged
ix=Lx.ix=1 DOS 1A(E) was obtained by the standard method of fitting
9 the spectral staircagintegrated DOBto a polynomial.

X eliNile N—(eaiMile ' 18 After averaging over 1000 disorder realizatiofis the

Z) (ealiilea) ~ {egli){ilea) 18 case of systems with %6X6 siteg, the fluctuations of
([Cal)={(|cal)/A(€,) as a function of energy turned out to
wheree, and|e,) denote the eigenvalues and eigenvectorde still much more pronounced than thoseg(gf(E)). This
of the Hamiltonian at zero flux, respectively. Higher-orderis not too surprising, as it is well known that in the diffusive
terms vanish sincg=0. In the two directions perpendicular regime the conductance distributidwhich is a universal
to the transport direction, periodic boundary conditions wereGaussian distributicfi?” with a width of the order of the
used. Formuld18) is exact as long asz# €, . Thus, for a conductance quantymand the curvature distributiofsee
finite system, where level repulsion is always present at sufSec. ) are very different. Thus, when using just one disorder
ficiently small energy scal€s,Eq. (18) remains valid also in  realization, the fluctuations of the functida,(e,)| will be
the localized and ballistic regimes. Besides rounding errorgnuch larger than those @f(E), due to the long 1 tails of
which can be neglected here the only remaining errors in théhe curvature distribution. For a finite number of realizations
calculation of{|c,|) are statistical errors that can be con- this difference will still persist, and only when averaging
trolled by increasing the number of disorder realizations. Weover infinitely many disorder realizations should the energy
used up to 1000 disorder realizations for system sizes aflependence ofg, ) follow that of (|c,|). Having in mind
6X6Xx6 sites and still about hundred for 200X 10 sites. that even 1000 disorder realizations did not suffice to reduce
Relatively, the remaining statistical errors in the diffusive the fluctuations ofg+(E)) to a level comparable to those of
and ballistic regimes were of the order of ) which we (g, (E)), it seems very difficult to check the Thouless con-
checked by varying the number of disorder realizations. Agecture in the stronger sense for a given energy with the
Eqg. (18) indicates, all eigenvalues and eigenvectors arecurrent computing power available. We therefore averaged
needed for the calculation of a single curvature. Realizationg, and gt not only over the realizations but over a band

A. Energy dependence

iy=Ly.jx=1
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FIG. 1. The curvature distribution in the bal-

- listic regime. The solid line is the prediction of

o . . . . .

A e | Eq. (7) known to be valid in the diffusive regime.
Deviations at small curvature are visikgee in-
sed. 6X6X6 sites,w=1.0, 4000 disorder real-
izations.
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of energyAE comprising typically about the central half of cally for both the ballistic and the localized regimes. Figure 1
the spectrum as well. We checked that increasing the size ahowsP(c) for a system in the ballistic regime §66x 6

the system or the number of realizations allows one to desites,w=1.0, 4000 disorder realizationand the prediction
creaseAE to obtain the same results. This suggests that oupf Eq. (7), wherey; was determined ag;=(|c|) (no fitting
results are independent afE. In the following,(---) will  parameter Equation(7) works well for large curvatures and
stand for the combined disorder and energy average. Cakhows that in the ballistic reginf(c) has 1¢3 tails as in the
was taken in order to average both curvatures and condugifysive regime. For small curvatures deviations from Eg.

tances over exactly the same energy interval. (7) in the form of nonuniversal features appear and the dis-
tribution develops two maxima. A relative minimum appears
B. Curvature distribution at zero curvature. These deviations become even more pro-

In the diffusive regime, the distribution of the curvatures nounced for smaller disorder. Altogether we conclude that
is well described by E(7) ' Thus,(|c|) is a good measure of (Ic]) c_an_stlll_ serve as a measure f_or the_ width of the curva-
the width of the curvatﬁré distrfbution ture distribution, even in the ballistic regime.

X AR i ) L In the localized regime at least two different numerical

Outstldke the dlfflstwe rdeglme the;]tcurvzijture ﬁ'sk;;'brunonworks favor a log-normal curvature distributiéh?® Analyti-
yvast_:?o IT%W? S% avr\,/ art]h onfe mig I wlort1 er whe e)_ cal evidence for a log-normal distribution at least for small
is still well defined. We therefore calculatét{(c) numeri- curvatures in 1D is given in Ref. 30. On the other hand, one

might suspect that Thouless’ original result of a Cauchy dis-

P(c)

P(inicl)

. ‘ ‘
-25.0 ~20.0 -15.0 -10.0 -5.0 0.0 5.0
Inlcl

FIG. 2. The curvature distribution in the localized regime with a
fit to a Cauchy distribution(dashed ling This plot shows that FIG. 3. Distribution of Inc| in the localized regime with a fit to
P(c) decays faster than d7 for large curvatures. 86X6, a Gaussian distributiofcorresponding to a log-normal distribution
w=>50, 4000 disorder realizations. for |c|). Same parameters as in Fig. 2.
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FIG. 4. The overall disorder dependence ({f,|) (top) and FIG. 5. The overall disorder dependence (¢¢,|) (top) and
(g.) (bottom for different system sizes: diamondsx6Xx6; (g.) (bottom for different system sizeésame symbols as in Fig.

circles, 8<8x8; and triangles, 1810x 10. The straight lines of  4). (g (w)) diverges in the same manner gs,(w)|) for small
{[€.(w)]) in the logarithmic plot correspond to avd? divergence  w. Solid lines are guides to the eye only.

for smallw. Solid lines are guides to the eye only. For clarity the

([So(w)]) curves were shifted by an arbitrary factor 1. Ballistic and diffusive regimes

Figure 4 shows thalg, ) obeys the same scaling behavior
tribution due to uncorrelated eigenvalues might apply to theys ([€.]). However, the disorder dependence (gf) and
localized regime. Such a distribution would of course spoil<|’5a|> is rather different. Even in the diffusive regime,
the use of(|c[) as a measure of the Thouless conductance(q, ) follows (|C,|} only over a small disorder interval close
We therefore reexamined this question numerically. Asio the metal-insulator transition. The interval's width in-
shown in Fig. 2, a Cauchy distribution can be ruled out: Forcreases with the system size, but for all system sizes the
large curvatures, the distribution falls off faster thae?1/ discrepancy becomes very pronounced in the ballistic re-

This can probably be explained by the fact that the eigenVEﬂgime, Where(gL> converges to a constant value, whereas
ues and the eigenvectors are strongly correlated for Iargg’ga|> keeps diverging.

disorder in contrast to what was assumed by Thouless in the Following our discussion of Sec. Il this result is not sur-
derivation of his formula. On the other hand, Fig. 3 showsprising. In the ballistic regimeD formally diverges, as does
that a log-normal distribution does not fit perfectly either.<|ga|>_ Any limitation of the conductance due to the coupling
Rather Iarge deviations are visible for |arge curvatures. WQ)f the Samp|e to the environment must then result in a de-
will address this question in more detajl in a future work. viation from the conjectured proportionality betweg®,,|)
Nevertheless, we can conclude from Fig. 2 that b@tl)  and(g, ). Clearly, the discrepancy in the lower disorder limit
and <|g|lc|> are well-defined quantities in the localized of the diffusive regime is already caused by the crossover to
regime. constan g, ) due to the boundary resistance.

In order to improve the agreement@€,|) with the con-
ductance, the latter has to be defined such that it does not
incorporate the contact resistance. We therefore also com-

Before discussing the disorder regimes separately, we digared the disorder dependence (@_ ) with the one of
play in Fig. 4 an overall plot of the disorder dependence of|C,|). As explained in Sec. 1l{g,) does not contain the
(|S4l) and {g,). Several points can be observed immedi-contribution of the boundary resistance and should be a mea-
ately: First of all,{[c,|) diverges for small disorder like sure of the bulk conductance. It will therefore also diverge
1/w?. This is a well-known fact which can be derived from when the disorder vanishes. Whereas it is not clear from the
perturbation theory (first Born approximatiod?) Also, beginning that this divergence will be of the same kind as the
([S.|) has the right scaling behavior of a conductance. In 3Done of([c,|), Fig. 5 shows tha{g, ) diverges for smallv
in the ballistic and diffusive regimeg|C,|) increases pro- indeed with the same power &g,|). Both curves follow
portionally to the system size within the parameter range each other from the diffusive regime until far into the ballis-
provided L=6-10. In the localized regime it decays with tic regime.
the system size. In 3D there is a critical valug=16.5 In Fig. 6 we have plottedg, ) as function of([c,|). The
where(|C,|) becomes independent of the system size, thuIT is given in this plot by the point where
indicating the position of the metal-insulator transition 4m%(|C,|)=4.1. The points from all sample sizes considered
(MIT). Within the error bars it coincides with the well- in 3D now fall on one straight line with slope 1 and this in
known value found by MacKinnon and Kramer, who exam-the diffusive as well as in the ballistic regimeA fit to a
ined the scaling behavior of the transmission through disorkinear law gives
dered sample® We also checked that in 2Q[C,|) is
independent of. in the diffusive and ballistic regimes. (9.)=(0.99+0.04 m(|c,|)—0.029-0.008, (21

C. Disorder dependence
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FIG. 6. The conductanc@ ) plotted against|C,|) for different FIG. 7. (Inc|) (top) and(Ing, ) (bottom as a function of disorder

system size{same symbols as in Fig.)4The diffusive regime for three different system sizes in the localized regitseme sym-

starts with the critical mean curvaturer®(|C,|)=4.1. In this re-  bols as in Fig. %

gime and the ballistic regime the dependence is very well fitted by

the same linear law(g.)=(0.99+0.04)m(|c,|)—0.029-0.008 35 functions of disorder and system size. Figure 7 shows the

(solid ling). result: First of all both quantities are proportional to the sys-
tem size and, second, proportional to each other. Plotting

: : 35
in remarkable agreement with Ed.6).>> The error bars were: Ing,) versus(In|c|) (see Fig. 8 yields a straight line that is
obtained as standard deviations from the three system sizggq; approximated by the linear law

considered. The conclusion is therefore t{{at,|) measures
the bulk conductancég, ) in both the diffusive and ballistic
regimes. (Ing.)=1.7%In|c|)—2.5. (23
In a recent paper, Casadt al. also study the relation be-
tween Landauer conductance and curvature distributions foA

band random matrices and they find the relation gain, the validity of this equation extends over several or-

ders of magnitude of the conductance. However, the prefac-
(9.)=(7.5£0.9K,,, (22) tor seems to decregse slightly but systematical]y with the

system size. A law like Eq23) was also reported in Ref. 9

where they define K, as the geometric average with a similar prefacto1.73 for banded random matrices.
exp(In(|cl/A)).° For a distribution of curvatures like EG7),  Nevertheless, Ref. 9 also reports a prefactor 2.0 for an
the geometric average is related to the arithmetic averag&nderson model. We do not have any explanation for this

by36 difference besides the fact that in contrast to our box-
distributed disorder the disorder was Gaussian distributed in

K =exp< InH> _ E<H> Ref. 9. The found behavior ia priori surprising. Assuming
av A 2\ A that in the localized regime the flux dependence of each en-

Using the relation(13) we get the following result:

<gL> =27y

This factor 27 has to be compared with the the numerical
result[Eq. (22)] found by these authors. 300 |

40.0

2. Localized regime

Figure 6 shows that the power betwegdn,|) and(g,)
changes at the MIT. We obtain approximatefyg, )
«([C,)*2 However, in the localized regim¢[c,|) and
(g.) might not be the right quantities to look at. At least
from the conductance it is known that in this regime the
function with the right scaling behavior iélng,),*’ not
(gL). Since the favored log-normal distribution of curvatures
is due to the same reason as the log-normal distribution of 00
the conductances, namely, the exponentially decaying wave ‘ " _dnlcl>
functions with normally distributed localization length, one
might suspect that a similar statement holds for the curva- FIG. 8. (Ing,) as a function ofIn|c|) in the localized regime for
tures as well. We therefore also examinguy, ) and(In|c|)  three different system sizésame symbols as in Fig).4

20.0

—<In g >

100 -




7564 BRAUN, HOFSTETTER, MacKINNON, and MONTAMBAUX 55

ergy level is purely sinusoid® one deduces that its{g,) to the number of open channels, wheré@s,|) di-
(i%(@))o<({c?), wherei ,(¢)=—de,/d¢ and the overbar in- verges in the same limit. However, for all system sizes a

dicates a flux average. Sin¢&®(¢)) can be related to the Proportionality between a properly defined bulk conductance

Kubo conductance, one would expect a quadratic relatiofdL) and([C,|) could be established that holds in the same
<gL>oc<C2>_39 form in the diffusive and ballistic regimes. This shows that in

these regimes level curvatures measure a conductance that is
entirely due to the dynamics in the bulk of the sample and
V. CONCLUSION therefore not influenced by details of the measurement setup,

We have examined numerically the relation between Iev\?lge the number of leads and the way they are attached. In the

curvatures and conductances for disordered systems. calized regime, we found a proportionality between
showed that in the diffusive regime a proportionality be-< nlcf) and(Ing,).
tween the dimensionless mean absolute curvatiag) and

the average Landauer-Biker conductancég, ) holds if the

system is large enough so that the influence of the boundary We would like to thank M. Bttiker for useful discussions
resistance can be neglected. In the ballistic regime, theand correspondence. D.B. is grateful to A. MacKinnon and
boundary resistance can never be neglected and leads toEaHofstetter for hospitality during his stay in London, where
strong violation of the proportionality. In the limit of zero this work was initiated. This work was partially supported by
disorder it completely dominates the total resistance and limthe French Academy of Science.
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