
PHYSICAL REVIEW B 15 MARCH 1997-IIVOLUME 55, NUMBER 12
Exact properties of the self-energy of mixed crystals

J. Monecke
Institute of Theoretical Physics, Freiberg University of Mining and Technology, Bernhard-von-Cotta-Strasse 4,

D-09596 Freiberg, Germany
~Received 12 September 1996!

Despite many attempts there exist few exact results in the physics of disordered media. One outstanding
example in classical physics is the Bergman spectral representation for the effective dielectric constant of a
macroscopically heterogeneous material. We show that the idea of Bergman to analyze analytic properties in a
complex material constant~here in a complex potential! plane can be applied to quantum-mechanical problems,
too, and prove for a standard one-band tight-binding Hamiltonian of a mixed crystal that the self-energy has a
spectral representation which is a simple generalization of Bergman’s original one. The first moments of the
corresponding spectral function are calculated and an expression for the self-energy of mixed crystals is
rederived which avoids the shortcoming of the coherent potential approximation result, that does not reproduce
the small and the large concentration limits near the energies of bound states of single impurities.
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I. INTRODUCTION

The problem of the determination of the energy eige
value spectrum of a mixed crystal is of outstanding theo
ical and technological interest, and has a long history~see,
e.g., Ref. 1!. One of the first results was the conjecture
Saxon and Hutner,2 obtained on the basis of the treatment
two impurities in a one-dimensional Kronig-Penney mod
that a common energy gap of two pure crystals~of the same
structure and lattice constant! survives in a mixed-crysta
buildup from these two constituents. The conjecture w
proved by Luttinger3 and arguments have been given4–6 that
it is also correct in the three-dimensional case, at least
special simple impurity potentials. Most works concentra
on a slight generalization of this simple model, and cons
ered a one-band tight-binding model with impurities d
scribed by short-ranged-like potentials in Wannier space
Well-known results are the averaget matrix and the
coherent-potential approximations~see, e.g., Ref. 1!, the lat-
ter generally being considered as the best possible single
approximation.

Long-range and, hence, overlapping impurity potenti
have been considered in detail by Klauder.7 However, for
such potentials no possibility has been found to exclude
called multiple occupancies.1 The best of Klauder’s approxi
mations, hisVth one, hence can be used only in the case
small impurity concentration.

It was recognized early,8 that all single-site approxima
tions violate the Saxon-Hutner conjecture, and that they
not result in band tails which are due to impurity cluste
such as have been studied intensively, e.g., by Lifshitz9 and
Halperin and Lax.10 Band tails are important for the study o
electron localization11 due to disorder: a small density o
states deep in the tail corresponds to a small number of l
impurity clusters far away from each other in the mean a
hence, favors localization. Later most works on mixed cr
tals concentrated on localization effects, not considering c
figuration averages of one-particle Green functions~see, e.g.,
Ref. 12!.
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It is interesting to note that most scientists engaged in
theory of mixed crystals ignored the substantial knowled
of related classical problems, and theories of effective ma
rial constants of macroscopically heterogeneous media,
ing back to the famous work of Rayleigh.13 The averaget
matrix and the coherent-potential approximations, e.g.,
fully equivalent to the Maxwell-Garnett14 ~or Bruggeman15!
approximations to the dielectric function of a composite d
rived in 1904~1935! ~see, e.g., Sec. VI!.

A fundamental progress in the physics of heterogene
materials was achieved by Bergman,16 who proved the exis-
tence of a spectral representation for the dielectric functi
analyzing analytic properties in a complex material const
plane. This spectral representation was proved to be on
the most powerful theoretical tools treating macroscopic h
erogeneous media, and is one of very few exact results in
physics of disordered media~see, e.g., Ref. 17!. It is the aim
of the present paper to apply the idea of Bergman to
quantum-mechanical problem of the determination of
self-energy of a mixed crystal model, and to derive an ana
gous spectral representation~in the complex potential plane
in this case!.

In Sec. II of the present paper the model Hamiltonian a
some standard definitions will be given in order to fix t
notations. In Sec. III an averaging procedure is defin
which involves only one given sample but is identical wi
the usual configuration averaging for so-called se
averaging samples. In Sec. IV spectral representations fo
averagedT matrix and the self-energy are derived. In Sec.
the first moments of the corresponding spectral functions
well as exact bounds for the position of poles and bran
cuts in the complex potential plane~assuming the validity of
the Saxon-Hutner conjecture for the model treated!, are
shown. In Sec. VI different known approximations to th
self-energy are discussed in terms of these results. In par
lar, it is shown that the coherent-potential approximati
does not reproduce the correct second moment, and it is
cussed in detail why this approximation is not valid in t
limits of small and large impurity concentrations at energ
near those of bound states of single impurities. In Sec. V
simple expression for the self-energy is rederived, which
7515 © 1997 The American Physical Society
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7516 55J. MONECKE
been shown18 to avoid these shortcomings. Conclusions a
presented in Sec. VIII.

II. MODEL HAMILTONIAN
AND STANDARD DEFINITIONS

In this paper we restrict ourselves to the standard o
band tight-binding model1,19 of a mixed crystal given by the
Hamiltonian

H5(
l ,l 8

t l l 8bl 8
1bl

21VA(
l eA

bl
1bl

21VB(
l eB

bl
1bl

2 . ~1!

This model describes two kinds of atoms,A and B, with
differentd-like potentialsVA andVB in Wannier space, dis
tributed at random on sitesl . Their concentration will be
written as cA512c,cB5c. The hopping matrix element
t l l 8 are supposed to depend only on the distances betwee
sitesl and l 8, and not on the kind of atoms occupying the
In the following we use the equivalent expression

H5(
l ,l 8

t l l 8bl 8
1bl

21VA(
l
bl

1bl
21(

l
Vlbl

1bl
2

5H01(
l
Vlbl

1bl
2 , ~2!

with

Vl5~VB2VA!d l eB5Vd l eB .

The HamiltonianH0 describes an ordered lattice ofA atoms
which will be referred to as the unperturbed system. T
following formal solution of the eigenvalue problem give
by Eq. ~2! is the standard one, and is repeated here onl
order to fix the notations.

The eigenfunctions of Eq.~2! can be obtained from the
complete orthonormal set of functionsw(r2r l)5̂w l

5bl
1u0&5u l & as

C~r !5(
l
al~k!w~r2r l !, ~3!

with

al~k!5al
0~k!1(

l 8
Gll 8
0 Vl 8al 8~k!, ~4!

where

al
0~k!5

1

AN
eikr l ~5!

gives the eigenfunctions of the~periodically continued! un-
perturbed system.C(r ) as given by Eqs.~3! and ~4! is not
normalized, in general.Gll 8

0 is the unperturbed Green func
tion defined by

Gll 8
0

5^ l 8u
1

E2H0
u l &, ~6!

and obeys the equation
e

e-

the
.

e

in

(
l 8

@~E2VA!d l l 82t l l 8#Gl 8 l 9
0

5d l l 9 . ~7!

al(k) can be obtained likewise from the equations

al~k!5al
0~k!1(

l 8
Gll 8Vl 8al 8

0
~k! ~8!

or

al~k!5al
0~k!1 (

l 8,l 9
Gll 8
0 Tl 8 l 9al 9

0
~k! ~9!

introducing the Green function

Gll 85^ l 8u
1

E2H
u l & ~10!

with

(
l 8

@~E2VA2Vl !d l l 82t l l 8#Gl 8 l 95d l l 9 , ~11!

which can be expressed in terms ofGll 8
0 as

Gll 85Gll 8
0

1(
l 9

Gll 9
0 Vl 9Gl 9 l 8 ~12!

and theT matrix defined by

Tll 85Vld l l 81(
l 9

VlGll 9
0 Tl 9 l 8. ~13!

After the Fourier transformation

aq~k!5
1

AN(
l
al~k!e2 iqr l ~14!

we obtain, from Eqs.~4! with ~5! and from Eqs.~12! and
~13!,

aq~k!5dqk1G0~q,E!(
p
V~q2p!ap~k!, ~15!

G~q,p,E!5G0~q,E!dqp1G0~q,E!

3(
p8

V~q2p8!G~p8,p,E!, ~16!

and

T~q,p,E!5V~q2p!1(
p8

V~q2p8!G0~p8,E!T~p8,p,E!,

~17!

with

G0~q,E!5
1

E2e~q!2VA
, ~18!

e~q!5
1

N(
l ,l 8

t l l 8e
2 iq~r l2r l 8!. ~19!
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The exact eigenvalues of the Hamiltonian~2! are given by
the poles and branch cuts either ofG(q,p,E) or of
T(q,p,E), and can be obtained, in principle, solving one
the integral equations~16! or ~17!.

III. DEFINITION OF AVERAGE QUANTITIES
FOR ONE GIVEN SAMPLE

We now try to replace the Hamiltonian~2! of the given
mixed crystal by a Hamiltonian with identical~additional to
VA) on all lattice sites potentialsM ~called the self-energy!
in such a way, that the second Hamiltonian reproduces
exact eigenvalues of Eq.~2!. This is possible only, of course
if the self-energyM itself depends on the energyE.

In contrast to standard treatments,20 the definition ofM
given below does not involve an ensemble averaging o
many samples of mixed crystals. LetC(r ) be an eigenstate
of Eq. ~2!, and let

uk~r !5e2 ikrC~r ! ~20!

and

ūk~r !5
1

N(
i
uk~r1r i !5ūk~r1r l !, ~21!

wherek is a real vector within the first Brillouin zone of th
unperturbed lattice. Then

C̄k~r !5eikr ūk~r ! ~22!

defines a set of averaged wave-functions which are of Blo
type.

ExpandingC̄k(r ) as

C̄k~r !5(
l
āl~k!w~r2r l !, ~23!

we obtain

āl~k!5
1

N(
i
al1 i~k!e2 ikr i, ~24!

which are given from Eq.~4! by

āl~k!5al
0~k!1(

l 8
Gll 8
0 1

N(
i
Vl 81 ial 81 i~k!e2 ikr i.

~25!

āl(k) andC̄k(r ) have the properties

~ i! āl1 i~k!5āl~k!eikr i,

~ ii ! C̄k~r1r i !5eikr iC̄k~r !,

~ iii ! C̄k~r !5
1

N(
i
e2 ikr iC~r1r i !. ~26!

The definition of the self-energy as

M ~k,E!āl~k!5
1

N(
i
Vl1 ial1 i~k!e2 ikr i ~27!

results in
f

e

er

h-

āl~k!5al
0~k!1M ~k,E!(

l 8
Gll 8
0 āl 8~k!. ~28!

In the case ofk50, definition~27! together with Eq.~24! is
the strict analog of the definition of the effective dielectr
constant of a composite material16

«
1

VE EW ~rW !dV5
1

VE «~rW !EW ~rW !dV.

We now define an averaged Green function and an avera
T matrix by

Ḡll 85
1

N(
i
Gl1 i ,l 81 i5Ḡ~ l2 l 8! ~29!

and

T̄ll 85
1

N(
i
Tl1 i ,l 81 i5T̄~ l2 l 8!. ~30!

After Fourier transformation, we obtain

āq~k!5ak~k!dqk5akdqk , ~31!

ak5
1

12M ~k,E!G0~k,E!
, ~32!

Ḡ~q,p,E!5G~q,q,E!dqp5G~q,E!dqp , ~33!

G~k,E!5
G0~k,E!

12M ~k,E!G0~k,E!
, ~34!

T̄~q,p,E!5T~q,q,E!dqp5T~q,E!dqp , ~35!

M ~k,E!@11G0~k,E!T~k,E!#5T~k,E!, ~36!

and

T~k,E!5
1

AN(
l
Vlal~k!e2 ikr l. ~37!

Equations~28!, ~33!, and ~34! are identical with the corre-
sponding ones of a crystal with only one kind of ato
VA1M on all sites, which proves that definition~27! re-
places the mixed crystal by a one-atomic one. Because
poles of Ḡll 8 by definition ~29! are identical to those o
Gll 8, the so-defined one-atomic crystal has the same eig
value spectrum as the original mixed one.

IV. SPECTRAL REPRESENTATION OF THE AVERAGED
T MATRIX AND THE SELF-ENERGY

Following Bergman and Stroud,17 we define a scalar prod
uct between arbitrary quantitiesa l and b l given on theB
sites as

~a,b!5
1

N(
l eB

a l*b l5
1

N(
l

a l
astd l eBb l . ~38!

Defining furtheral0 with l eB as

al05ale
2 ikr l ~39!
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we can write Eq.~37! as

T~k,E!5V~1,a0!AN.

Within this scalar product,a0 obeys the operator equatio
@from Eq. ~4!#

a05
1

AN
1VGa0 , ~40!

with G given by

G l l 85e2 ikr l 8Gll 8
0 eikr ld l eBd l 8eB . ~41!

It is easily seen thatG is a self-adjoint operator for all ener
gies outside the unperturbed band of theA crystal, where
ImGll 8

0 (E)50. Equation~40! has the formal solution

a05
1/AN
12VG

, ~42!

and we obtain

T~k,E!5S 1, 1

s2G
1D , ~43!

with s51/V.
With the complete orthonormal set of eigenfunctionsw l

i

of G l l 8 ~for E outside the unperturbed band!

(
l 8

G l l 8w l 8
i

5siw l
i , ~44!

we obtain

T~k,E!5(
i

~1,w i !S w i ,
1

s2G
1D5(

i

u~1,w i !u2

s2si
5(

i

f i
s2si

~45!

with k- and E-dependentsi ’s, which are real outside the
unperturbed band. The residuaf i depend onk andE, too.

Thesi-values may be continuous, in general, and we h
to write finally the spectral representation as

T~k,E!5E ds8
f ~s8!

s2s8
, ~46!

with

s5
1

V
5

1

VB2VA
.

Therefore, for energies outside the unperturbed band the
eragedT matrix as a function defined in the complexs plane
is analytic beside single poles and branch cuts on the
axis. From Eq.~36! we obtain

M ~k,E!5

E ds8
f ~s8!

s2s8

11G0~k,E!E ds8
f ~s8!

s2s8

~47!

as a spectral representation of the self-energy of one g
sample.
e

v-

al

en

Poles of theT matrix in the energy plane correspond
poles in thes51/V plane viasi5si(k,E). At poles ofT, Eq.
~47! results in

M ~k,E!G0~k,E!51 ~48!

or

1

N(
k

M ~k,E!

E2VA2«~k!
51, ~49!

in strict analogy to the Koster-Slater equation19

1

N
•(

k

V

E2VA2«~k!
51 ~50!

for the case of one impurity withd-like potentialV.
The spectral representations~46! and~47! are obtained for

E outside the unperturbed band of theA crystal. Both
T(k,E) andM (k,E) for E inside this band have to be ob
tained by analytic continuation toE1 i« @T(k,E) and
M (k,E) are analytic functions in the complexE-plane be-
sides of poles and banch cuts on the real axis#.

Equation ~47! corresponds to Bergman’s spectral rep
sentation of the dielectric constant of heterogeneous me
However, in the electrostatic problem the nominator cor
sponding to that of Eq.~47! is identical to one because th
wave number k is zero in the static case an
G0(k50,E)50 due to the boundary conditions chosen
the surfaces of a finite sample. As in the case of Bergma
spectral representation of the dielectric constant, the spe
respresentations Eqs.~46! and ~47! represent exact separa
tions between structure and material-dependent propertie
mixed crystals:f i ,si @or f (s)] depend only on the specia
structure of the mixed crystal~i.e., on the knowledge of
which sites l are occupied by the perturbing potentia!,
whereas the magnitudeV5VB2VA of the perturbing poten-
tial enters only the quantitys. Different from the case for the
dielectric constant,f i ,si @or f (s)] depend, however, on the
choice of the unperturbed system as discussed in Secs. V
VII.

T(k,E) as given by Eq.~45! is a rational function.
M (k,E) as given by Eq.~47! then is rational, too, and con
sequently has a similar spectral representation

M ~k,E!5(
i

gi
s2 s̃i

, resp. 5E g~s8!ds8

s2s8
. ~51!

In the electrostatic case treated by Bergman,16 the poles of
the spectral representation correspond to electrostatic r
nances, corresponding to energy eigenvalues in the quan
mechanical case. Hence the spectral representation for
T matrix ~46! and the spectral representation for the se
energy~47! are analogs to Bergman’s result. The poles,
the branch cuts of Eq.~51!, are connected to but not identica
with the spectrum of the energy eigenvalues.

V. EXACT PROPERTIES OF THE SPECTRAL FUNCTIONS
f „s… AND g„s…

The knowledge of analytical properties ofT(k,E) and
M (k,E) in the complex 1/V-plane is interesting, and would
e.g., allow a test of approximate results, but it could not
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used in order to obtain quantitative approximations if no
ditional exact results for the spectral functionf (s) and
g(s) in ~46! and ~51! would be known. Fromf i5u(1,w i)u2,
we first obtain

~ i! 0< f i<1 or 0< f ~s!<1. ~52!

From Eq.~46!, for larges ~smallV5VB2VA), we obtain

T~k,E!5
1

sE ds8F11
s8

s
1•••G f ~s8!. ~53!

The terms of this series expansion can be calculated exa
up to the first order inV, and up to all orders in the specia
case of a homogeneous isotropic distribution of theB sites in
an infinite crystal~such a distribution is self-averaging an
yields the same results as an ensemble average!. So it is
possible to obtain the first momentm05( i f i @or
5* f (s)ds], and the next ones mn5( isi

nf i @or
5*snf (s)ds] for this special distribution, exactly: From Eq
~37!, with Eqs.~8! and ~5!,

al5
1

AN Feikr l1(
l 8

Gll 8
0 Vl 8e

ikr l 81•••G , ~54!

we obtain

T~k,E!5
1

N(
l
Vl1

1

N(
l ,l 8

VlGll 8
0 Vl 8e

2 ik~r l2r l8 !1•••

5cV1
1

N(
l
VlVlG

0~E!

1
1

N(
lÞ l 8

VlGll 8
0 Vl 8e

2 ik~r l2r l 8!1•••

5cV1cV2G0~E!1
1

N(
lÞ l 8

VlGll 8
0 Vl 8e

2 ik~r l2r l 8!

1•••, ~55!

with

G0~E!5Gll
0 ~E!5

1

N(
k
G0~k,E!.

Comparing Eqs.~53! and ~55!, we obtain

~ ii ! m05(
i
f i5c or m05E f ~s!ds5c. ~56!

Gll 8
0 e2 ik(r l2r l 8) in the last line of Eq.~55! depends only on

the distances betweenl andl 8. The double summation has t
be carried out only overB sites (Vl50 otherwise!. In the
case of an infinite sample with a homogeneous distribu
of theB sites, the double sum over these sites is simply eq
to ~a weighted! double sum over all sites, all distance
l2 l 8 with l ,l 8eB occur with the same probability asl2 l 8
without the restriction to theB sublattice,

(
lÞ l 8,l ,l 8eB

5c2(
lÞ l 8

for N→`. ~57!
-

tly

n
al

Therefore, we can write

1

N(
lÞ l 8

VlGll 8Vl 8e
ik~r l2r l 8!5c2V2

1

N(
lÞ l 8

Gll 8e
2 ik~r l2r l8 !

5c2V2@G0~k,E!2G0~E!#,

and obtain

T~k,E!5cV1c~12c!V2G0~E!1c2V2G0~k,E!. ~58!

Comparing Eqs.~58! with Eqs.~53! and ~56!, we obtain

~ iii ! m15(
i
si f i5c~12c!G0~E!1c2G0~k,E!

or ~59!

m15E s f~s!ds5c~12c!G0~E!1c2G0~k,E!

for isotropic and homogeneous distributions.
In the famous work of Yonezawa and Matsubara,20 sums

of the kind ( l1eB( l2eB•••( l neBe
2 i( j pj r j have been calcu-

lated for all n in the case of isotropic and homogeneo
distributions of theB sites. Using these results all momen
mn can be calculated exactly. We obtain, e.g.,

~ iv! m25c3@G0~k,E!#21~c23c212c3!@G0~E!#2

12c~c2c2!G0~k,E!G0~E!

1c~c2c2!
1

N(
q

@G0~q,E!#2. ~60!

The resulting series~53! cannot be summed up, howeve
and exact expressions forT(k,E) and M (k,E) cannot be
obtained.

For c→0 this summation can be performed and rep
duces the result of Koster and Slater,19

T~k,E!5c•V1cV2G0~E!1cV3@G0~E!#21•••

5
cV

12VG0~E!
, ~61!

corresponding toT51/N( i eBt i5ct, wheret is the t matrix
of one impurity. As opposed to the Bergman spectral rep
sentation of the dielectric function, all momentsm i for
i>1 depend viaG0(E) andG0(k,E) on the choice of the
unperturbed system~potentialVA).

Defining the moments of the self-energy in analogy
those of theT matrix asnn5*sng(s)ds, from Eqs. ~47!,
~56!, ~59! and ~60! we obtain

~ i! n05c,

~ ii ! n15c~12c!G0~E!,

~ iii ! n25~c23c212c3!@G0~E!#2

1c2~12c!
1

N(
q

@G0~q,E!#2. ~62!



to

n
s

-
th

th

en

d
d

r

re

n

he

n

nt-

en

ies
lec-

t-

1

7520 55J. MONECKE
Further, at least in the case ofd-like potentials, the poles
s5si , or the branch cuts of the averagedT matrix, are re-
stricted for a given energyE outside the unperturbed band
special sections of the real axis:

Equation~44! has solutions for energies outside the u
perturbed band~for a givenV) only where the homogeneou
counterpart

al~k!5(
l 8

Gll 8
0 Vl 8al 8~k! ~63!

to the inhomogeneous equation~4! has solutions, i.e., at en
ergy eigenvalues. This statement is equivalent to the fact
the T matrix can have poles~or branch cuts! for a givenV
only at eigenenergies. On the other hand, we know from
Saxon-Hutner conjecture2 ~for a discussion see Ref. 1! that
the energy eigenvalues of a mixed crystal withd-like poten-
tials are restricted to the energy regions where both
members~theA andB crystals! have eigenvalues.

Hence, for a givenE above the unperturbed energy ban
E.E05VA1(W/2), W being the width of the unperturbe
energy band~for simplicity assumed here to be symmetric!,
the possible potential valuesV corresponding to poles o
branch cuts are restricted byVmin5E2E0<V<Vmax
5E2Eu , with Eu5VA2(W/2), and forE.E0 we obtain

smax5
1

E2E0
>si>smin5

1

E2Eu
~64!

as restrictions for possible poles and branch cuts on the
axis. ForE,Eu5VA2(W/2) we obtain

smax5
1

E2Eu
>si>smin5

1

E2E0
~65!

in the same manner.

VI. SPECTRAL MOMENTS OF SINGLE-SITE THEORIES

Most self-energies of so-called single-site approximatio
~see, e.g., Ref. 1! are given by

S5M1VA5V̄1
^t&

11^t&GV̄

0
~E!

, ~66!

with

G
V̄

0
~E!5

1

N(
k

1

E2«~k!2V̄
, ~67!

and the averaged single-sitet matrix

^t&5
~12c!~VA2V̄!

12~VA2V̄!G
V̄

0
~E!

1
c~VB2V̄!

12~VB2V̄!G
V̄

0
~E!

. ~68!

Equation~66! together with Eq.~68! results in
-

at

e

d

,

al

s

( 2V̄

12S ( 2V̄DGV̄

0
~E!

5~12c!
~VA2V̄!

12~VA2V̄!G
V̄

0
~E!

1c
~VB2V̄!

12~VB2V̄!G
V̄

0
~E!

. ~69!

Different self-energy expressions differ by the choice of t
potentialV̄ which is chosen as

~ i! V̄5VA :averaget-matrix approximationA, ~70!

~ ii ! V̄5VB :averaget-matrix approximationB, ~71!

~ iii ! V̄5~12c!VA1cVB :symmetrized

averaget-matrix approximation, ~72!

~ iv! V̄5S5M1VA :coherent-potential approximation.
~73!

V̄5` results in the virtual-crystal approximatio
S5(12c)VA1cVB . The only exception is the Klauder-V
~Ref. 7! self-energy, an approximation to the cohere
potential expression given by

M5
c~VB2VA!

12~VB2VA!GM1VA
0 ~E!

. ~74!

This can be considered a small-c expansionM;0 of the
coherent-potential approximation, obtained from Eqs.~69!
and ~72! to be given by

M5
c~VB2VA!

12~VB2VA2M !GM1VA
0 ~E!

, ~75!

maintaining, however, the self-consistency in the Gre
functionGM1VA

0 (E). Replacing this function in Eq.~74! by

GVA
0 (E), the Koster-Slater resultM5^t& with ^t&5ct and

t5
V

12VGVA
0 ~E!

~76!

@see Eq.~61!# is obtained.
The different single-site expressions for the self-energ

are the strict analogs to different expressions for the die
tric constant of heterogeneous media. Introducing likeV̄ a
mean dielectric constant«̄ in the case of a medium consis
ing of two materials with different«A and«B , most known
expressions for the effective dielectric constant« are given
by

«2 «̄

2«̄1«
5~12c!

«A2 «̄

2«̄1«A
1c

«B2 «̄

2«̄1«B
. ~77!

Choosing for«̄ either«A or «B we obtain the two different
Maxwell-Garnett14 expressions in analogy to the averaget
matrix approximationsA andB.

«̄5(12c)«A1c«B gives the result obtained in Refs. 2
and 22 by other methods. The self-consistent choice«̄5«
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results in the Bruggeman expression,15 and the small-c ex-
pansion leading to the Koster-Slater self-energy~61! here
results in the expression given by Landau23 and Böttcher.24

Choosing«̄5`, we obtain one of the Wiener expressions25

«5(12c)«11c«2 , the analog of the virtual-crystal ap
proximation.

Expanding expressions~73!–~72! in powers of V
5VB2VA ~or V̄), in the first three cases we obtain

~ i! M5cV1c~12c!V2GVA
0 ~E!, ~78!

~ ii ! M5cV1c~12c!V2GVB
0 ~E!, ~79!

~ iii ! M5cV1c~12c!V2G
V̄

0
~E!

with V̄5~12c!VA1cVB . ~80!

If G0(E) would be an analytic function ofE, the differences
GVB
0 (E)2GVA

0 (E) @or G
V̄

0
(E)2GVA

0 (E)# for small V would

be proportional toV. Therefore, all three expressions wou
yield the first two moments ofM (k,E), as given by Eq.~62!.

In the case of the coherent-potential approximation,
obtain

~ iv! M5cV1cV@V2M #GVA1M
0 ~E!. ~81!

The coherent-potential approximation would result in t
correct second moment only if for smallV M(k,E) would
be given byM (k,E)5cV @and ifG0(E) would be analytic#,
which is not the case for energies in the vicinity of those
bound states of one impurity@given by 15VG0(E)] due to a
peak in ImM (k,E).8,18

In the case of the Klauder-V approximation, we obtain

~v! M5cV1cV2G0~E2VA2M !, ~82!

which results in a wrong second moment, too. The fact t
G0(E) is not analytic will be considered in Sec. VII.

It is generally believed that the coherent-potential a
proximation as the result of a self-consistent theory is
best possible single-site approximation. Connected with
fact that it does not reproduce the second moment at sp
energies, it shows still another even more important sh
coming: for energies near those of bound states of sin
impurities, the coherent-potential approximation does not
produce the correct small and large concentration limits. T
is due to the fact that a linearized~in a small parameter,c in
our case! solution of a nonlinear equation differs from th
exact solution of the corresponding linearized equation
general. The operations ‘‘linearization’’ and ‘‘solution’’ d
not commute. Let us consider the easiest possible exam
The nonlinear inc equation (x2a12c)(x2a22c)50 has
the solutionsx15a11c andx25a21c. The linearized equa
tion x22x(a11a212c)1a1a21c(a11a2)50 has the so-
lutions

x1/28 5
a11a212c

2

6S ~a11a212c!2

4
2a1a22c~a11a2! D 1/2, ~83!
e

f

t

-
e
e
ial
t-
le
-
is

n

le:

which coincide for smallc with x1 and x2 as long asa1
Þa2. If, however,a15a25a, this means if we have degen
erate solutions forc50, we obtainx185a12c and x285a,
which are not correct in the small-c limit.

The result of the coherent-potential approximation
given by

S5M1VA5VA1
c~VB2VA!

12~VB2S!G0~E2S!
. ~84!

Choosing, e.g.,VA52D/2,VB5D/2, and the Hubbard26

Green function~bandwidthW52)

ReG0~E!52@E2sgn~E!AE221# , ~85!

we obtain a third-order equation forS.8,18 The three solu-
tions for c50 are given by

S5S 2
D

2
,2

D

2
,
11D22DE

2~D22E! D . ~86!

The degeneracy of the first two solutions is due to the f
that we have had to squareG0(E) in order to obtain the
third-order equation forS, and is of no relevance. But th
energy of a single impurity of strengthVB5D/2 is given by
15DG0@E1(D/2)# which results inE5(D/2)1(1/4D). At
this energy the third solution forc50 becomes degenerat
with the first two. Hence, the solution of the coherent pote
tial equation would be correct linearly inc only if Eq. ~84!
itself would be correct up toc2. This, however, is not the
case because some of the graphs;c2,;c3, etc. are ne-
glected in single-site theories~see, e.g., Refs. 1 and 20!. The
same is true in the case of the Klauder-V approximation.
ExchangingVA with VB the same arguments can be repea
for the case of small 12c. The physical consequence of th
shortcoming is that the densities of states of both the co
ent potential and the Klauder-V approximations near the en
ergies of bound states of single impurities do not becomd
like for small c ~or small 1-c) and that the widths of the
impurity bands are too large, as discussed in Refs. 18 and

VII. AN IMPROVED EXPRESSION
FOR THE SELF-ENERGY OF MIXED CRYSTALS

The three different averaget-matrix approximations cited
in Sec. VI result in correct second spectral moments
G0(E) is an analytic function of energy. However, they d
not fulfill the Saxon-Hutner conjecture:G

V̄

0
(E) and, hence,

M (k,E) have nonvanishing imaginary parts only for

2
W

2
1V̄<E<

W

2
1V̄, ~87!

whereW is the unperturbed bandwidths~assumed to be sym
metric!, and not in the entire regions

2
W

2
1VA<E<

W

2
1VA

and ~88!

2
W

2
1VB<E<

W

2
1VB ,
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where possible large clusters of onlyA (B) atoms obviously
contribute to the density of states with small but finite pro
ability.

Until now we treated the crystal in which all lattice site
are occupied byA atoms~potentialsVA) as the unperturbed
one. As a result the second moment of the self-energy in
~62! depends onG0(E)5GVA

0 (E). Repeating the whole

analysis, choosing theB crystal with all lattice sites ocupied
by B-atoms as the unperturbed one, the second momen
the self-energy would be different from that given by E
~62!:

ñ15c~12c!GVB
0 ~E!Þn15c~12c!GVA

0 ~E!. ~89!

As opposed to Bergman’s spectral representation of the
electric constant, the second moments of theT matrix and of
the self-energy depend not only on the concentration bu
the choice of the unperturbed system (A or B crystal!, too.
BecauseG0(E) is not an analytic function ofE the differ-
enceGVB

0 2GVA
0 cannot be expanded in a power series

V5VB2VA and, hence, the difference between the two s
ond moments cannot be compensated for by higher-o
ones. The same is true for the third moment and all hig
moments. Because an exact expression for the self-en
has to be independent of the special choice of the un
turbed system we have to conclude, that series expansio
powers ofV5VB2VA like Eq. ~53! cannot converge. In dif-
ference to the case of the classical dielectric constant it is
possible to construct an approximate theory which is cor
in the limit of small VB2VA5V for all c ~reproducing a
unique second moments of theT matrix or the self-energy!.
The physical reason behind this difficulty is that each hig
moment contains one higher degree in the concentratioc.
For its exact calculation at least one more impurity has to
taken into account. However, adding one more impurity t
given impurity configuration gives rise to the formation
additional ~molecular! energy eigenstates, which obvious
results in a nonanalytic behavior.

However, theT matrix and the self-energyS are exactly
known for arbitraryV5VB2VA in the limits c→0 and
c→1. This allows us to construct an interpolation formu
for the self-energy, which is correct for allV in the limits
c→0 and c→1: With S5VA1M and
M5T/@11G0(k,E)T#, from Eq. ~61! we obtain

S5VA1
c~VB2VA!

12~VB2VA!GVA
0 ~E!

. ~90!

Choosing the unperturbed system to be aB crystal~all lattice
sites occupied byB atoms!, we likewise obtain

S5VB2
~12c!~VB2VA!

11~VB2VA!GVB
0 ~E!

, ~91!

which is correct in the limit ofc→1. Therefore, the limiting
valuesSuc50 , (dS/dc)uc50 , Suc51, and (dS/dc)uc51 are
exactly known for allV5VB2VA .

The second~and higher! derivatives ofS in both limits
c→0 and c→1 could, in principle, be obtained from th
exact knowledge of all higher momentsm i (n i) for i>2 in
the case of isotropic and homogeneous impurity distributi
-
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VB (VA) in theA (B) crystal, calculated from the results o
Yonezawa and Matsubara.20 These calculations would corre
spond to the solution of the eigenvalue problem for two~and
more! impurities at arbitrary distances, which is possib
within the choosen simple model ofd-like potentials. How-
ever, the necessary summation of the infinite series@leading
to Eq. ~61! in first order inc# cannot be performed in the
second order and in higher orders inc @or in (12c) in the
case of aB crystal#.

Due to the lack of knowledge about (d2S/dc2)uc50 ,
(d2S/dc2)uc51, and the higher derivatives, there is only th
possibility to obtain an approximateS(c), using a Pade´-
interpolation formula

S~c!5
a81b8c1g8c2

11dc
5a1bc1

g

11dc
, ~92!

wherea,b,g and d are chosen in such a way thatSuc50 ,
(dS/dc)uc50 , Suc51 and (dS/dc)uc51 are reproduced ex
actly. The result is given by

a5Suc502g, b5gd1
dS

dc U
c50

,

g5
11d

d2 FSuc512Suc502
dS

dc U
c50

G , ~93!

d5

dS

dc U
c50

2
dS

dc U
c51

Suc512Suc502
dS

dc U
c51

22.

This is identical with what was obtained in Ref. 18, where
was shown that Eq.~92! with Eq. ~93! fullfills the Saxon-
Hutner conjecture and has correct analytic properties a
function of complexE.

As an interpolation between two single-site theories, E
~92! with Eq. ~93! does not correctly describe molecul
eigenstates due to impurity molecules~see, e.g., Ref. 28!
and, hence, cannot result in a correct description of b
tails. The general behavior of the density of states, howe
was proved18 to be quite satisfactory: as opposed to t
coherent-potential approximation a reasonable band tailin
obtained and in the limitsc→0 and c→1 the density of
states shows the expected peak structure at energies
those of bound states of single impurities.

VIII. CONCLUSIONS

We have proved that the self-energy of the stand
model of a mixed crystal has a spectral representation in
complexs51/(VB2VA) plane which is a simple generaliza
tion of that obtained by Bergman for the dielectric consta
of a classical heterogeneous material. The first three
ments of the corresponding spectral function have been
culated, and exact bounds for the positions of poles
branch cuts of the averagedT matrix in the s plane have
been obtained. The results are used to test the qualit
approximate expressions for the self-energy. In particula
was proved that the coherent potential and the KlaudeV
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approximations fail to reproduce the second moment.
As opposed to the Bergman spectral representation of

dielectric function, the moments of the spectral function d
pend on the choice of the unperturbed system in a non
lytic way. This fact prevents the construction of a self-ene
which is correct for all concentrations in the limit of sma
perturbing potentials. However, it is possible to obtain
expression for the self-energy which, for arbitrary perturb
potentials, reproduces the exactly known limitsc→0 and
c→1 and interpolates between them in a reasonable w
The basic assumption used is that all potentials are s
ys

. A
he
-
a-
y

n
g

y.
rt

ranged and do not overlap. In this sense the whole anal
has model character only. This, however, is a general
solved problem in all disorder theories: as far as we know
of now there exists no technique to exclude possible mult
occupancies in theories with overlapping potentials.
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