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Exact properties of the self-energy of mixed crystals

J. Monecke
Institute of Theoretical Physics, Freiberg University of Mining and Technology, Bernhard-von-Cotta-Strasse 4,
D-09596 Freiberg, Germany
(Received 12 September 1996

Despite many attempts there exist few exact results in the physics of disordered media. One outstanding
example in classical physics is the Bergman spectral representation for the effective dielectric constant of a
macroscopically heterogeneous material. We show that the idea of Bergman to analyze analytic properties in a
complex material constasiere in a complex potentijgblane can be applied to quantum-mechanical problems,
too, and prove for a standard one-band tight-binding Hamiltonian of a mixed crystal that the self-energy has a
spectral representation which is a simple generalization of Bergman'’s original one. The first moments of the
corresponding spectral function are calculated and an expression for the self-energy of mixed crystals is
rederived which avoids the shortcoming of the coherent potential approximation result, that does not reproduce
the small and the large concentration limits near the energies of bound states of single impurities.
[S0163-18297)00211-1

I. INTRODUCTION It is interesting to note that most scientists engaged in the

theory of mixed crystals ignored the substantial knowledge

The problem of the determination of the energy eigen-Of related classical problems, and theories of effective mate-

value spectrum of a mixed crystal is of outstanding theoret!ial constants of macroscopically heterogeneous media, go-
ical and technological interest, and has a long histsge, N9 back to the famous work of Rayleigh.The average

e.g., Ref. 1. One of the first results was the conjecture of Matrix and the coherent-potential approximations, eé_?)" are

. . fully equivalent to the Maxwell-Garnéft (or Bruggema
Saan anq _Hut_ne?r,obtam;d on t.he b|a3|s qf the treatmengo;‘ approximations to the dielectric function of a composite de-
two impurities in a one-dimensional Kronig-Penney model,jyad in 1904(1935 (see, e.g., Sec. VI

that a common energy gap of two pure crystalsthe same A fundamental progress in the physics of heterogeneous
structure and lattice ConstamUrViveS in a mixed-CryStal materials was achieved by Berg nyho proved the exis-
buildup from these two constituents. The conjecture wasence of a spectral representation for the dielectric function,
proved by Luttinget and arguments have been gifehthat  analyzing analytic properties in a complex material constant
it is also correct in the three-dimensional case, at least foplane. This spectral representation was proved to be one of
special simple impurity potentials. Most works concentratecthe most powerful theoretical tools treating macroscopic het-
on a slight generalization of this simple model, and consid£rogeneous media, and is one of very few exact results in the
ered a one-band tight-binding model with impurities de-Physics of disordered mediaee, e.g., Ref. 171t is the aim
scribed by short-rangé-like potentials in Wannier space. of the present paper to apply the idea of Bergman to the
Well-known results are the average matrix and the quantum-mechanical problem of the determination of the

; L self-energy of a mixed crystal model, and to derive an analo-
coherent-potent_|al apprquaﬂoﬁsee, €.9., Ref.)llthellat— gous spectral representatign the complex potential plane
ter generally being considered as the best possible single-si

N this case
approximation. In Sec. Il of the present paper the model Hamiltonian and

Long-range and, hence, overlapping impurity potentialssome standard definitions will be given in order to fix the
have been considered in detail by Klaudedowever, for notations. In Sec. Ill an averaging procedure is defined
such potentials no possibility has been found to exclude squhich involves only one given sample but is identical with
called multiple occupanciesThe best of Klauder's approxi- the usual configuration averaging for so-called self-
mations, hisVth one, hence can be used only in the case ohveraging samples. In Sec. IV spectral representations for the
small impurity concentration. averaged’ matrix and the self-energy are derived. In Sec. V

It was recognized earRthat all single-site approxima- the first moments of the corresponding spectral functions, as
tions violate the Saxon-Hutner conjecture, and that they devell as exact bounds for the position of poles and branch
not result in band tails which are due to impurity clusters,cuts in the complex potential plartessuming the validity of
such as have been studied intensively, e.g., by LifSitd ~ the Saxon-Hutner conjecture for the model trepteate
Halperin and LaxX® Band tails are important for the study of shown. In Sec. VI different known approximations to the
electron localizatioht due to disorder: a small density of self-energy are discussed in terms of these results. In particu-
states deep in the tail corresponds to a small number of lardar, it is shown that the coherent-potential approximation
impurity clusters far away from each other in the mean anddoes not reproduce the correct second moment, and it is dis-
hence, favors localization. Later most works on mixed cryscussed in detail why this approximation is not valid in the
tals concentrated on localization effects, not considering conlimits of small and large impurity concentrations at energies
figuration averages of one-particle Green functisee, e.g., near those of bound states of single impurities. In Sec. VIl a
Ref. 12. simple expression for the self-energy is rederived, which has
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been showtf to avoid these shortcomings. Conclusions are

presented in Sec. VIII. > [(E=Va) &y —ty/1G)= 8- ()
I’
Il. MODEL HAMILTONIAN a,(k) can be obtained likewise from the equations
AND STANDARD DEFINITIONS
0
In this paper we restrict ourselves to the standard one- a|(k)=a?(k)+2 Gy Vi-a (k) ®
band tight-binding modéf® of a mixed crystal given by the !
Hamiltonian or
H=> t”,b,*,b(+v,% bbb +VB%; bby . (1) a|(k)=a?(k)+|2|” G Tymad(K) 9)

I’

This model describes two kinds of atom&,and B, with  introducing the Green function
different é-like potentialsV, andVg in Wannier space, dis-
tributed at random on sitels Their concentration will be Gy =(I'| 1 I (10)
written asc,=1—c,cg=c. The hopping matrix elements I E—H
t,,» are supposed to depend only on the distances between the
sitesl andl’, and not on the kind of atoms occupying them. with
In the following we use the equivalent expression
Z L(E=VaA=V) i — /]G pn=6yn, (13)
H=2 ty/b by +VaX, bb +> Vb b/ |
L ! ! which can be expressed in terms®f, as

=H,+ b 2
HO 2| V|b| bl ’ (2) G”/:Gﬁ,+ GﬁuV|uG|//|/ (12)
|”

With and theT matrix defined by
Vi=(Vg=Va) 9=V

0
. . . . 1= r+ nlymr.
The HamiltoniarH, describes an ordered lattice Afatoms T =Vidy ,2 VG (13

which will be referred to as the unperturbed system. The
following formal solution of the eigenvalue problem given  After the Fourier transformation
by Eq. (2) is the standard one, and is repeated here only in

order to fix the notations. 1 iar
The eigenfunctions of Eq2) can be obtained from the ag(k)= \/_NZ a(kje " (14
complete orthonormal set of functionso(r—r))= ¢
=b,"|0)=|l) as we obtain, from Eqs(4) with (5) and from Eqs.(12) and
(13,
V(=2 a(ke(r—r), 3)
| aq<k>=6qk+G°<q,E>§ V(a-p)agk), (15
with
G(q,p,E)=G"(q,E) 8qp+G°(q,E)
a(k)=al(k+ > Gy, Vian(k), (4) o
’ X2 V(q-p')G(p'.p.E), (16
where P
and
aO(k): ieikrl (5)
' N T(q,p,.E)=V(a—p)+ > V(q—p")G%p’ ,E)T(p’,p,E),
pl

gives the eigenfunctions of theriodically continuegdun- 17
perturbed system¥ (r) as given by Eqs(3) and(4) is not  \ith
normalized, in generaGﬁ, is the unperturbed Green func-

tion defined by

G%aq.,E)= (18

o 1 E—e(q)—Va’
GII’_<I |E_HO||>1 (6)

1 .
e(q)=5> e lanTn, (19
and obeys the equation NTT
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The exact eigenvalues of the Hamiltonié2) are given by

the poles and branch cuts either &(q,p,E) or of a(k=al(+M(kE) X Gjan (k). (28)
T(q,p,E), and can be obtained, in principle, solving one of "
the integral equationé€l6) or (17). In the case ok=0, definition(27) together with Eq(24) is
the strict analog of the definition of the effective dielectric
IIl. DEFINITION OF AVERAGE QUANTITIES constant of a composite mateffal

FOR ONE GIVEN SAMPLE

SEJ E(F)dv=if e(N)E(r)dV.
We now try to replace the Hamiltonia(®) of the given v \
mixed crystal by a Hamiltonian with identicgdditional to  \we now define an averaged Green function and an averaged
V) on all lattice sites potential®l (called the self-energy T matrix by
in such a way, that the second Hamiltonian reproduces the
exact eigenvalues of EQR). This is possible only, of course, — 1 —
if the self-energyM itself depends on the enerdy. Gy = ﬁZ Giii+i=G(=1") (29)
In contrast to standard treatmeffsthe definition ofM
given below does not involve an ensemble averaging oveand
many samples of mixed crystals. L#t(r) be an eigenstate

- 1 —
of Bq. (2), and let Ty= NZ Tisip+i=TU=17). (30
u(r)=e K (r) (20)
and After Fourier transformation, we obtain
B 1 B ag(k) = ay(K) 8qk= axdqk. (31
U= 2 UdrFr)=udr+n), (21) L
. . . . . ak:l_M kEGOkE ' (32)
wherek is a real vector within the first Brillouin zone of the (k,E)G™(k,E)
unperturbed lattice. Then —
_ o G(d,p,E)=G(d,9,E) 54p=G(q,E) 64p, (33
Wi (r)=e*uy(r) (22) .
G (k,E
?y?‘:;es a set of averaged wave-functions which are of Bloch- G(k,E)= 1= M(k,(E)GZ’(k,E) , (39
Expanding®,(r) as s
pandingd(r) T(A.p.E)=T(Q.0.E)50y=T(Q.E)3gp. (39
V(=2 alk)e(r—r), (23 M(k,E)[1+G°(kE)T(kE)]=T(kE), (36
we obtain and
_ 1 . _ i —ik
a|(k)=NEi a;i(k)e i, (24) T(k,E)= NZ Via(k)e ™. (37)
which are given from Eq(4) by Equations(28), (33), and (34) are identical with the corre-

sponding ones of a crystal with only one kind of atom
— 1 . Va+M on all sites, which proves that definitioi27) re-
_ A0 0 — ki A h ’ :
a(k)=a (k)+; GH'NZ Virsiay (ke places the mixed crystal by a one-atomic one. Because the
(25)  poles of G, by definition (29) are identical to those of
_ — . G/, the so-defined one-atomic crystal has the same eigen-
a(k) andW(r) have the properties value spectrum as the original mixed one.

() aik)=ake,
IV. SPECTRAL REPRESENTATION OF THE AVERAGED

(i) ‘E((r+ri):eikri\Fl<(r)a T MATRIX AND THE SELF-ENERGY
1 Following Bergman and Stroudwe define a scalar prod-
(i) W(r)= Nz e K (r+r)). (26) gi(;tesbztsween arbitrary quantitieg, and B, given on theB
I

The definition of the self-energy as 1 1
(.B)= N2y @ B=N2 ei*0eBi.  (39)

le

1 .
a (k)= —ikr; - .
M(k,E)ay(k)= NZ Visiay (ke ™ (20 Defining furthera,, with | B as

results in = ale—ikr| (39)
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we can write Eq(37) as Poles of theT matrix in the energy plane correspond to
poles in thes=1/V plane vias,=s;(k,E). At poles ofT, Eq.
T(k,E)=V(10)VN. (47) results in
Within this scalar producta, obeys the operator equation M (k,E)G°(k,E)=1 (48)
[from Eq. (4)]
or
! +VI (40 1 M (k,E)
a0=— ao, 3 _
N NEk: E—Va—e(k) (49)
with I" given by in strict analogy to the Koster-Slater equation
I=e" 1G], 15,568 . (41) 1 Vv
. . . - =2 = =1
It is easily seen thaf is a self-adjoint operator for all ener- N Ek: E—Va—e(k) (50

gies outside the unperturbed band of #hecrystal, where

ImGﬂ,(E)zO. Equation(40) has the formal solution for the case of one impurity witld-like potentialV.

The spectral representatio@) and(47) are obtained for

14N E outside the unperturbed band of tie crystal. Both
ag= , (42) T(k,E) andM(k,E) for E inside this band have to be ob-
1-vr tained by analytic continuation tE+ie [T(k,E) and
and we obtain M(k,E) are analytic functions in the compléx-plane be-
sides of poles and banch cuts on the real Jaxis
Equation(47) corresponds to Bergman’s spectral repre-
T(k,E)=(1,ﬁ1), (43 sentation of the dielectric constant of heterogeneous media.
However, in the electrostatic problem the nominator corre-
with s=1/V. ~ sponding to that of Eq(47) is identical to one because the
With the complete orthonormal set of eigenfunctiapls wave number k is zero in the static case and
of I (for E outside the unperturbed band G°k=0,E)=0 due to the boundary conditions chosen on
the surfaces of a finite sample. As in the case of Bergman’s
2 F“,(P:, _ 5i<Pi7 (44) spectral representation of the dielectric constant, the spectral
X

respresentations Eq&6) and (47) represent exact separa-
tions between structure and material-dependent properties of

Wwe obtain mixed crystals:f;,s; [or f(s)] depend only on the special
1 (1,02 £ structure of the mixed crystdii.e., on the knowledge of

T(k,E)=>, (1,%)(%,—1):2 =y which sites| are occupied by the perturbing potenyjal
i s—I T STS " STSi whereas the magnitudé=Vg—V, of the perturbing poten-

(49 tial enters only the quantity. Different from the case for the
with k- and E-dependents;’s, which are real outside the dielectric constantf;,s; [or f(s)] depend, however, on the

unperturbed band. The residéiadepend ork andE, too. choice of the unperturbed system as discussed in Secs. V and
Thes;-values may be continuous, in general, and we have/!!- . . . .
to write finally the spectral representation as T(k,E) as given by Eq.(45 is a rational function.
M(k,E) as given by Eq(47) then is rational, too, and con-
f(s") sequently has a similar spectral representation
T(k,E) = ds’ ﬁ' (46)
gi g(s')ds’
with M(k,E)—zl S_—ns-i, resp. = f ? (51)
1 1 In the electrostatic case treated by Bergrifathe poles of
S= VA Vg—V,' the spectral representation correspond to electrostatic reso-

_ ) nances, corresponding to energy eigenvalues in the quantum-
Therefore, for energies outside the unperturbed band the aysechanical case. Hence the spectral representation for the
eragedr matrix as a function defined in the complexplane 1 matrix (46) and the spectral representation for the self-
is _analytlc beside single pples and branch cuts on the re%'nergy(47) are analogs to Bergman’s result. The poles, or
axis. From Eq(36) we obtain the branch cuts of Eq51), are connected to but not identical

j f(s") with the spectrum of the energy eigenvalues.
ds’ —
S”S (47 V. EXACT PROPERTIES OF THE SPECTRAL FUNCTIONS
f(s") f(s) AND g(s)

M(k,E)=
1+G°(k,E)st's S

The knowledge of analytical properties dfk,E) and
as a spectral representation of the self-energy of one giveM (k,E) in the complex IV-plane is interesting, and would,
sample. e.g., allow a test of approximate results, but it could not be
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used in order to obtain quantitative approximations if no ad-Therefore, we can write
ditional exact results for the spectral functidifs) and

g(s) in (46) and (51) would be known. Fronf;=|(1,¢;)|% 1 iK(r =) _ 2y j2 L ik(r—r10)
we first obtain N%:, ViGy Vi et =ctV NZ‘, Gyre T

(iy 0<fi<1 or O0<f(s)<1. (52 =c?V{Go%k,E)—GE)],
From Eq.(46), for larges (smallV=Vg—V,), we obtain and obtain

!

S T(k,E)=cV+c(1-c)V?GYE) +c?V?GO(k,E). (58)
S

T(k,E)=§J ds’ f(s'). (53
Comparing Eqgs(58) with Egs.(53) and(56), we obtain

The terms of this series expansion can be calculated exactly

up to the first order i/, and up to all orders in the special (iii)

case of a homogeneous isotropic distribution ofBh&tes in

an infinite crystal(such a distribution is self-averaging and

yields the same results as an ensemble aver&e it is  or (59)

possible to obtain the first momenjuy,=2;f; [or

=[f(s)ds], and the next ones u,=3;s'f; [or

= [s"f(s)ds] for this special distribution, exactly: From Eq. :U’l:f sf(s)ds=c(1-¢)G(E)+c*Go(k,E)

(37), with Egs.(8) and(5),

pi=2, sifi=c(1—c)G%E)+c?GO(k,E)

for isotropic and homogeneous distributions.
‘ , In the famous work of Yonezawa and Matsub&taums
e'k"+2 Gy Vet |, (54 of the kind 3 5% 5 % g€ "' have been calcu-
! lated for alln in the case of isotropic and homogeneous
we obtain distributions of theB sites. Using these results all moments
Mn can be calculated exactly. We obtain, e.g.,

a =

Bl

1 1 ‘
T(k,E)=NEI Vﬁg% ViGp, Ve kO g (V) pp=c3GOk,E)]%+ (c—3c2+2¢3)[GO(E)]?

1 +2c¢(c—c?)Gok,E)GO(E)
=cV+ NE V,V,G%(E) 1

' N 0 2
te(e-eg [Ca BT (60)

1 .
+N2 VG Ve kg

ot The resulting serie$53) cannot be summed up, however,

and exact expressions fdr(k,E) and M(k,E) cannot be
obtained.

1 :
= 20 _ 0\, e k(=1
CVHCVIG(B)+ Nz VIG, Ve For c—0 this summation can be performed and repro-

! duces the result of Koster and Slat@r,
T (55
with T(k,E)=c-V+cV2G%E)+cV[GYE)]?+- - -
1 cv (61)
GY%E)=GY(E)= NE GO(k,E). 1-VGYE)’
X
) _ corresponding ta = 1/NZ, gt;=ct, wheret is thet matrix
Comparing Eqgs(53) and(55), we obtain of one impurity. As opposed to the Bergman spectral repre-
sentation of the dielectric function, all moments for
(i) =2 f,=c or Mo:J f(sids=c. (56 =1 depend viaG°(E) and G°(k,E) on the choice of the
i unperturbed systerfpotentialV,).
; Defini h f th If- i |
G\,e k=11 in the last line of Eq(55) depends only on efining the moments of the sel-energy in analogy to

. s those of theT matrix asv,=[s"g(s)ds, from Egs.(47),
the distances betwedrandl’. The double summation has to (56), (59) and (60) we obtain

be carried out only oveB sites (/,=0 otherwisg. In the

case of an infinite sample with a homogeneous distribution (i) wo=c,

of the B sites, the double sum over these sites is simply equal

to (a weighted double sum over all sites, all distances (i) v=c(1—c)G(E),

[—1" with I,1"eB occur with the same probability ds-1’

without the restriction to th®& sublattice, (i) vp=(c—3c?+2c%)[GYE)]?

> =c2>  for N>, (57) +02(1—c)%§q‘, [G%aq,E)]% (62

1#17,1,1" eB I#1’
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Further, at least in the case oflike potentials, the poles —

s=s;, or the branch cuts of the averag&dmatrix, are re- > -V (VA—V_)
stricted for a given energly outside the unperturbed band to =(1-c¢) —
special sections of the real axis: 1— ( D —V)G%(E) 1-(Va—V)G(E)
Equation(44) has solutions for energies outside the un-
perturbed bandfor a givenV) only where the homogeneous Y _—)
counterpart c . (69
1-(Vg—V)G(E)
a|(k)=2 Gﬁ,V|/a|/(k) (63) Differe_ntﬂalf-gnergy expressions differ by the choice of the
I’ potentialVV which is chosen as
to the inhomogeneous equatié) has solutions, i.e., at en- (i) V=V, :averagd-matrix approximationA, (70)
ergy eigenvalues. This statement is equivalent to the fact that  __
the T matrix can have polefr branch cutsfor a givenv (i) V=Vg: averagd-matrix approximationB, (71
only at eigenenergies. On the other hand, we know from the _
Saxon-Hutner conjectutdfor a discussion see Ref) that  (ii) V=(1—c)Va+cVg:symmetrized
the energy eigenvalues of a mixed crystal witfike poten- : o
averaged-matrix approximation, (72

tials are restricted to the energy regions where both end
membergthe A andB crystalg have eigenvalues. . — . L

Hence, for a giverkt above the unperturbed energy band,('v) V=X =M +V,_:coherent-potential approximation.
E>Eo=Va+ (W/2), W being the width of the unperturbed __ (73
energy bandfor simplicity assumed here to be symmelyic V=« results in the Vvirtual-crystal approximation
the possible potential valueg¢ corresponding to poles or 3 =(1-c)V,+cVg. The only exception is the Klaudaf-
branch cuts are restricted bW, .=E—Eq=V=V.a (Ref. 7 self-energy, an approximation to the coherent-
=E—-E,, with E,=V,4—(W/2), and forE>E_, we obtain potential expression given by

c(Vg—Va)

1 1 M = .
1-(Vg=Va)Gpsv,(E)

Smax™ E—E, ESiZSmin:E_—EU (64)

(74)

This can be considered a smallexpansionM ~0 of the

as restrictions for possible poles and branch cuts on the re%bherent-potential approximation, obtained from E€f9)
axis. ForE<E,=V,—(W/2) we obtain and (72) to be given by

1 1 M= c(Vg—Va)
= >s=>g == = ,
Sma— g =S Smn T ETE €9 1-(Vg=Va—M)Gy,y,(E)

(79

maintaining, however, the self-consistency in the Green
function Gf\’HVA(E). Replacing this function in Eq.74) by

G?,A(E), the Koster-Slater resull =(t) with (t)=ct and

in the same manner.

VI. SPECTRAL MOMENTS OF SINGLE-SITE THEORIES

Most self-energies of so-called single-site approximations (= \ (76)
(see, e.g., Ref.)lare given by 1_VGSA(E)
o (1) [see Eq(61)] is obtained.
S=M+Vr=V+ 5 , (66) The different single-site expressions for the self-energies
1+(t)G{E) are the strict analogs to different expressions for the dielec-
_ tric constant of heterogeneous media. Introducing ¥ka
with mean dielectric constant in the case of a medium consist-
ing of two materials with different, andeg, most known
o 12 1 expressions for the effective dielectric constanare given
GUBE) =322 ————— (67) by
v NE E—g(k)—V
€ _8_ SA_S_ 85_8—
and the averaged single-sitenatrix ——=(l-¢)——+c——. (77
2¢e+e¢ 2et+ep 2e+tep
(1—c)(V —V_) (Vv —V_) Choosing fore eithere, or ez we obtain the two different
(ty= . . (68 Maxwell-Garnett* expressions in analogy to the average
1-(Va=V)G(E) 1-(Vg—V)GE) matrix approximationg\ andB.

&e=(1-C)ep+Cep gives the result obtained in Refs. 21
Equation(66) together with Eq(68) results in and 22 by other methods. The self-consistent cheiees
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results in the Bruggeman expressidrand the smalt ex-  which coincide for smallc with x; and x, as long asa;
pansion leading to the Koster-Slater self-enet@§) here  #a,. If, however,a;=a,=a, this means if we have degen-
results in the expression given by Lan&4eand Bdtcher®®  erate solutions foc=0, we obtainx,=a+2c and x,=a,
Choosinge =, we obtain one of the Wiener expressibhs which are not correct in the smaildimit.

e=(1—-c)e;+ce,, the analog of the virtual-crystal ap-  The result of the coherent-potential approximation is

proximation. given by
Expanding _expressiong73)—(72) in powers of V )
=Vg—V, (or V), in the first three cases we obtain _ _ c(Vg—Va
| o S=M+Va=Vp+ 1= (Va-S)GUE-S) - (84)
(i) M=cVHe(l-c)ViGy,(B), (78 Choosing, e.g.Va=—D/2Vz=D/2, and the Hubbafd

Green functionlbandwidthW=2)

(i) M=cV+c(1-c)V?GY (E), (79
Re@(E)=2[E—sgnE)VEZ-1], (85)
0
(il) M=cV+c(1-c)V?G(E) we obtain a third-order equation f& .58 The three solu-
with V_=(1—C)VA+CVB. (80) tions forc=0 are given by
If G°(E) would be an analytic function d&, the differences s—|_ b D 1+D2——DE 6

GY (E)—GY (E) [or Gy(E)—GY (E)] for smallV would 2" 2" 2(D-2E) |

be proportional to/. Therefore, all three expressions would The degeneracy of the first two solutions is due to the fact
yield the first two moments dff (k,E), as given by Eq(62).  that we have had to squa@°(E) in order to obtain the
In the case of the coherent-potential approximation, wehird-order equation foE, and is of no relevance. But the
obtain energy of a single impurity of strengis=D/2 is given by
_ , 1=DGY[E+ (D/2)] which results irE= (D/2)+ (1/4D). At
(iv) M=cV+cV[V-M]Gy, . u(E). (81 this energy the third solution far=0 becomes degenerate

_ L ) with the first two. Hence, the solution of the coherent poten-
The coherent-potential approximation would result in they; equation would be correct linearly i only if Eq. (84)

correct second moment only if f%r small M(k,E) would jqeif would be correct up ta?. This, however, is not the
be given byM (k,E) =cV [and if G'(E) would be analyti,  oqe pecause some of the graphs?~c3, etc. are ne-
which is not the case for energies in the vicinity of those Ofglected in single-site theoridsee, e.g., Refs. 1 and RThe

bound states of one impurifgiven by 1=VG*(E)] duetoa  game s true in the case of the Klaudérapproximation.

peak in ImM (k,E) 5 L i ExchangingV with Vg the same arguments can be repeated
In the case of the Klauder-approximation, we obtain ¢4 the case of small £ c. The physical consequence of this
shortcoming is that the densities of states of both the coher-
(V) M=cV+eVPGUE-Va—M), (82 ent potentizgl and the Klaudéf-approximations near the en-
which results in a wrong second moment, too. The fact tha€rgies of bound states of single impurities do not bec@me
GP(E) is not analytic will be considered in Sec. VII. like for small ¢ (or small 1€) and that the widths of the
It is generally believed that the coherent-potential apimpurity bands are too large, as discussed in Refs. 18 and 27.
proximation as the result of a self-consistent theory is the
best possible single-site approximation. Connected with the VII. AN IMPROVED EXPRESSION
fact that it does not reproduce the second moment at special FOR THE SELF-ENERGY OF MIXED CRYSTALS

energies, it shows still another even more important short- The three different averadematrix approximations cited
coming: for energies near those of bound states of single g P

impurities, the coherent-potential approximation does not rego (SEe)Cis\z/aln r:sgllt tilc? ffjﬁ;iecfrt] gfe 2?12? Spﬁgt\:vﬂvgomzmz(;f
produce the correct small and large concentration limits. This y 9y » they

is due to the fact that a linearizéih a small parameteg, in ~ not fulfill the Saxon-Hutner CO”JeCtur@%(E) and, hence,
our casg solution of a nonlinear equation differs from the M(k,E) have nonvanishing imaginary parts only for
exact solution of the corresponding linearized equation, in

general. The operations “linearization” and ‘“solution” do _ V—V+V_sEsV—V+V_ (87)
not commute. Let us consider the easiest possible example: 2 '

The nonlinear inc equation ¢—a;—c)(x—a,—c)=0 has
the solutionsx; =a; + ¢ andx,=a,+ c. The linearized equa-
tion x?—x(a;+a,+2c)+a,a,+c(a;+a,)=0 has the so-
lutions

whereW is the unperturbed bandwidtl@ssumed to be sym-
metric), and not in the entire regions

w w
_?+VASE$E+VA
., ataxt+2c
Xip=— 5 and (88
(a;+a,+2c)? 12 w w
| = —aa—c(aita)| . (83 — 5 +Ve=E<7+Vg,
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where possible large clusters of oly(B) atoms obviously Vg (V,) in the A (B) crystal, calculated from the results of
contribute to the density of states with small but finite prob-Yonezawa and Matsubaf4These calculations would corre-
ability. spond to the solution of the eigenvalue problem for tand
Until now we treated the crystal in which all lattice sites more impurities at arbitrary distances, which is possible
are occupied byA atoms(potentialsV,) as the unperturbed within the choosen simple model éflike potentials. How-
one. As a result the second moment of the self-energy in Ecever, the necessary summation of the infinite sdtieeding
(62) depends onG°(E)=G), (E). Repeating the whole to Eqg. (61 in first order inc] cannot be performed in the

analysis, choosing thB crystal with all lattice sites ocupied Second order and in higher ordersdrfor in (1—c) in the
by B-atoms as the unperturbed one, the second moment &Ase of a crystal.

the self-energy would be different from that given by Eq. Due to the lack of knowledge abouti{s/dc?)|c—o,
(62): (d23/dc?)|.-1, and the higher derivatives, there is only the

possibility to obtain an approximat®(c), using a Pade
?1:c(1—c)G§’,B(E)¢ u1=c(1—c)G?,A(E). (89) interpolation formula

As opposed to Bergman’s spectral representation of the di- a'+B'ct+y'c?

electric constant, the second moments of Thaatrix and of 2O)=—15 CatBetiis (92
the self-energy depend not only on the concentration but on

the choice of the unperturbed systes ¢r B crysta), too. wherea,,y and & are chosen in such a way th&{._o,
BecauseG°(E) is not an analytic function oE the differ-  (d2/dC)[c—o, 2|c—1 and dZ/dc)[c—, are reproduced ex-
enceGy_—Gy,_cannot be expanded in a power series inactly. The resuitis given by

V=Vg—V, and, hence, the difference between the two sec- ds
ond moments cannot be compensated for by higher-order a=3|ceo— v, B=vyé+—— ,
ones. The same is true for the third moment and all higher def._g

moments. Because an exact expression for the self-energy

has to be independent of the special choice of the unper- 1+5 dx
turbed system we have to conclude, that series expansions in Y= 2fe=17Ze=0~ dc RN (93
powers ofV=Vgz—V, like Eq. (53) cannot converge. In dif- =0
ference to the case of the classical dielectric constant it is not ds ds
possible to construct an approximate theory which is correct de ~dc
in the limit of small Vg—V, =V for all ¢ (reproducing a S— Cle—o Cleza P
unigue second moments of tAematrix or the self-energy dx '
The physical reason behind this difficulty is that each higher o172 =0 ¢ .
o=

moment contains one higher degree in the concentration
For its exact calculation at least one more impurity has to b&his is identical with what was obtained in Ref. 18, where it
taken into account. However, adding one more impurity to avas shown that Eq(92) with Eg. (93) fullfills the Saxon-
given impurity configuration gives rise to the formation of Hutner conjecture and has correct analytic properties as a
additional (moleculaj energy eigenstates, which obviously function of complexE.
results in a nonanalytic behavior. As an interpolation between two single-site theories, Eq.
However, theT matrix and the self-energ¥ are exactly (92) with Eq. (93) does not correctly describe molecular
known for arbitrary V=Vg—V, in the limits c—0 and eigenstates due to impurity moleculésee, e.g., Ref. 28
c—1. This allows us to construct an interpolation formulaand, hence, cannot result in a correct description of band
for the self-energy, which is correct for 8l in the limits  tails. The general behavior of the density of states, however,

c—0 and c—1: With 3S=Vp+M and was proved® to be quite satisfactory: as opposed to the
M=T/[1+G°k,E)T], from Eq.(61) we obtain coherent-potential approximation a reasonable band tailing is
obtained and in the limit€—0 andc—1 the density of
SVt c(Vg—Va) (90) states shows the expected peak structure at energies near
A 1—(VB—VA)GQ/A(E)' those of bound states of single impurities.
Choosing the unperturbed system to I erystal(all lattice VIIl. CONCLUSIONS

sites occupied by8 atomg, we likewise obtain
We have proved that the self-energy of the standard
(1=c)(Vg—Va) model of a mixed crystal has a spectral representation in the
2=Vg— AR (92) ~ h Atk nt
1+(Vg—Va)Gy (E) complexs=1/(Vg—V,) plane which is a simple generaliza
B tion of that obtained by Bergman for the dielectric constant
which is correct in the limit ot— 1. Therefore, the limiting of a classical heterogeneous material. The first three mo-
values|._o, (d2/dc)|c—g, 2|c=1, and @X/dc)|.—, are  ments of the corresponding spectral function have been cal-
exactly known for allV=Vg—V,. culated, and exact bounds for the positions of poles and
The secondand higher derivatives of2 in both limits  branch cuts of the averagéld matrix in thes plane have
c—0 andc—1 could, in principle, be obtained from the been obtained. The results are used to test the quality of
exact knowledge of all higher momenis (v;) for i=2 in  approximate expressions for the self-energy. In particular, it
the case of isotropic and homogeneous impurity distributionsvas proved that the coherent potential and the Klader-
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approximations fail to reproduce the second moment. ranged and do not overlap. In this sense the whole analysis
As opposed to the Bergman spectral representation of theas model character only. This, however, is a general un-
dielectric function, the moments of the spectral function desolved problem in all disorder theories: as far as we know, as
pend on the choice of the unperturbed system in a nonana&f now there exists no technique to exclude possible multiple
lytic way. This fact prevents the construction of a self-energyoccupancies in theories with overlapping potentials.
which is correct for all concentrations in the limit of small
perturbing potentials. However, it is possible to obtain an
expression for the self-energy which, for arbitrary perturbing
potentials, reproduces the exactly known limits-0 and The author would like to express his gratitude to Dr. J.
c—1 and interpolates between them in a reasonable wayortus from the Freiberg University of Mining and Technol-
The basic assumption used is that all potentials are shorigy for valuable discussions.
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