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Coulomb energies in alloys
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With the help of order-N calculations on realistic models of random substitutional alloys, we have studied
the concentration, structure, and composition dependence of the part of the total energy that is stored in the
interatomic Coulomb interaction. An observation about the relation between the self-consistent charges asso-
ciated with a site and the long-range electrostatic potential at the site is used in the analysis.
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I. INTRODUCTION

Recently, there have been a number of theoretical stu
of the part of the total energy of disordered alloys that
stored in the interatomic Coulomb energy.1–9 We have cal-
culated the electronic states of realistic models of disorde
alloys within the local-density approximation10 ~LDA ! using
an order-N method that is particularly well-adapted for ca
culations on transition metals, the locally self-consist
multiple-scattering method.11 An analysis of the results o
these calculations makes it possible for us to comment u
the concentration, structure, and composition dependenc
the Coulomb energies of alloys. An analysis of earlier cal
lations led to the discovery of a relation between the s
consistent charge associated with a site and the long-ra
electrostatic potential at the site, which we call theqV
relation.12 TheqV relation is used in the present study.

Most of the calculations are on the copper-zinc alloy s
tem, which was chosen for several reasons. First, it is
classic example of a Hume-Rothery alloy,13 and has been
discussed extensively in the materials science literat
Since the constituents are both transition metals, experie
from ordinary band-theory calculations leads us to exp
that the muffin-tin approximation that we use will not intr
duce significant errors. Finally, there is no experimental
theoretical reason to believe that the size difference betw
copper and zinc would cause the rms deviation of the ato
positions from the sites of the ideal lattice to be significa
We also include some calculations on copper-palladium
loys for comparison.

In the following section we write out the LDA equation
for the total energy in a form that is useful for the followin
discussion, and comment on possible sources of error
Sec. III, we explain briefly the order-N method, and show the
results of our calculations on the total Coulomb energies
fcc and bcc alloys as a function of concentration. In Sec.
we discuss a number of theoretical questions, such as
convergence and reliability of the calculations and the me
ing of the parameters that have been introduced. We
comment on the extrapolation of our results to obtain
properties of ideal disordered alloys. In Sec. V, we comp
the predictions of theories proposed in the literature with
550163-1829/97/55~12!/7492~16!/$10.00
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results of our calculations. In the last section we discuss
conclusions in the light of the preceding development a
indicate future applications.

II. BACKGROUND

A. The Coulomb energy

The purpose of this section is to specify unambiguou
the part of the total energy that we consider to be stored
the interatomic Coulomb interaction in the calculations
follow. The following equations highlight the fact that th
Coulomb energy, the Coulomb potential at a site, and
charge associated with a site take on a particularly sim
and unambiguous form when the muffin-tin approximation
used for the charge density. This result is not new, but i
not generally appreciated by those who have not carried
a detailed calculation of these quantities.

According to the density-functional theory14 DFT, the to-
tal energy of a system of electrons and nuclei is a functio
of the electron densityr~r !. It is normally written in the form

E@r#5T@r#1EH@r#1Exc@r#, ~1!

where T@r# is the kinetic-energy functional,Exc@r# is the
exchange-correlation energy functional, and

EH@r#5E r@ 1
2f1VN#dr1VNN ~2!

is the Hartree energy functional that contains all the con
butions from the Coulomb interactions between the partic

In this paper, calculations will be carried out on syste
that contain an infinite number of atoms. A cell containingN
atoms in any desired arrangement is constructed, and th
is periodically reproduced to fill all space. At the prese
time,N can be as large as 1024. The charge density is w
ten as a sum of nonoverlapping functions,

r~r !5(
i51

N

(
p51

Nc

r i~r2ai2Rp!, ~3!

where the positions of nuclei within the cells are given by t
vectorsai , and the positions of the cells are determined
7492 © 1997 The American Physical Society



e

e
-
e
to
i
ul
tic

e

es
de
io
yd
n
t
o

e

l
r

t-

t
t
e,
g
rm
ion

ic
t

s
r
lcu-
l

ed

ame
e
nd
in a
.
er.
ts,
is

55 7493COULOMB ENERGIES IN ALLOYS
the vectorsRp . From the definition of the model, the charg
ri~r2ai2Rp! is the same for all vectorsRp , and the number
of cells,Nc , will be allowed to increase without bound. Th
process for writingr~r ! in this way starts with the construc
tion of polyhedral atomic volumesVi centered at each of th
atomic positionsai1Rp by passing planes perpendicular
lines connecting the atom with its neighbors. If the atom
positions form a regular lattice, these atomic volumes wo
have the same shape as the Wigner-Seitz cells for that lat
The functions that appear in the sum in Eq.~3! are obtained
by definingri~r2ai2Rp! to be equal tor~r ! whenr is within
Vi , and it is zero whenr is outside ofVi .

The functions that appear in the Hartree energy in Eq.~2!,
in addition to r~r !, are the Coulomb potential due to th
electrons

f~r !52E r~r 8!

ur2r 8u
dr 8, ~4!

the potential due to the nuclei

VN~r !52(
i51

N

(
p51

Nc 2Zi
ur2ai2Rpu

, ~5!

and the interaction energy of the bare nuclei

VNN52 (
i , j51

N

(
p51

Nc

8
ZiZj

uai j1Rpu
, ~6!

with ai j5ai2aj . The prime on the summation sign indicat
that the sum does not include the terms for which the
nominator is zero. The factor 2 appears because dimens
less atomic units in which the energy is measured in R
bergs, distances in Bohr radii, and the charge in electro
charges are used. Inserting these functions into the equa
for the Hartree energy and making use of the invariance
the system under translation by a cell lattice vectorRp leads
to

EH@r#5NcS (
i51

N

UC
i @r i #1UCD , ~7!

whereU C
i [r i ] is the intra-atomic Coulomb energy for th

atomic volumeVi ,

UC
i @r i #5E

V i

r i~r !@ 1
2f i~r !1VN

i ~r !#dr , ~8!

andUC is the interatomic Coulomb energy

UC5 (
i , j51

N

(
p51

Nc

8E
V i

E
V j

r i~r !r j~r 8!

ur2r 82ai j2Rpu
dr dr 8

22 (
i , j51

N

(
p51

Nc

8E
V j

Zir
j~r !

ur2ai j2Rpu
dr

1 (
i , j51

N

(
p51

Nc

8
ZiZj

uai j1Rpu
. ~9!

It should be noted that, even thoughUC is the energy per cel
and its magnitude is proportional toN, it contains sums ove
an infinite number of atoms.
c
d
e.

-
n-
-
ic
ion
f

In the calculations to be described,ri~r2ai2Rp! has the
muffin-tin form, which means that it is a spherically symme
ric function rmt

i (r ) within a muffin-tin sphere of radiusRmt
i

centered atai1Rp . It is a constantr0 outside that sphere, bu
it goes to zero at the boundary ofVi as described above. I
should be clear that, even in the muffin-tin cas
ri~r2ai2Rp! is not a spherically symmetric function. Usin
the fact that the charge densities have the muffin-tin fo
and carrying out a considerable amount of manipulat
leads to

UC5 (
i , j51

N

Qia i j Q
j2(

i51

N

@2r0Q
ig i1r0

2V ig i #, ~10!

where

a i j5 (
p51

`

8
1

uai j1Rpu
2

1

VC
E dr

r
, ~11!

and

g i5E
V i

dr

r
. ~12!

The chargesQi are the integrals of the spherically symmetr
function ri~r !2r0s

i~r !, wheresi~r ! is the step function tha
is one whenr is in Vi and zero otherwise

Qi54pE
0

Rmt
i

rmt
i ~r !r 2dr2r0

4p

3
~Rmt

i !32Zi . ~13!

The sum in Eq.~11! would not converge by itself, but it wa
pointed out by Ewald15 that the inclusion of the integral ove
all space yields a convergent quantity. Techniques for ca
lating the Madelung constantsai j on a computer are wel
developed.

The intra-atomic Coulomb interaction can be transform
into

UC
i @r i #52~4p!2E

0

Rmt
rmt
i ~r !E

0

r

rmt
i ~r 8!r 82dr8r dr

28pZiE
0

Rmt
rmt
i ~r !r dr24pr0Q

iRmt
2

2
8p

5
r0
2Vmt

i Rmt
2 1@2r0Q

ig i1r0
2V ig i #. ~14!

It can be seen that, in the evaluation ofEH@r#, the terms
included in the square brackets are canceled by the s
terms in Eq.~10!. The resulting expression for the Hartre
energy per cell is the one that is normally used in ba
theory calculations on systems with more than one atom
unit cell, and was first obtained by Asano and Yamashita16

Further details of the derivation can be found in that pap
After the cancellation of the terms in the square bracke

the only contribution to the interatomic Coulomb energy
the sum, which can be written

(
i , j51

N

Qia i j Q
j5UC

q1(
i51

N

~r0
2V i22r0q

i !Ci , ~15!

where
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Ci5(
j51

N

a i jV j . ~16!

The chargeqi is the net charge in the atomic volumeVi ,

qi5Qi1r0V i . ~17!

These charges, which satisfy the neutrality condition,

(
i51

N

qi50, ~18!

are the ones that will be defined as the charge associated
site i . The functionU C

q ,

UC
q5 (

i , j51

N

qia i j q
j , ~19!

is formally equivalent to the interatomic Coulomb energy p
cell of a series of point charges with magnitudes equal to
net charge per atomic cellqi placed on the sitesai1Rp ,

UC
q5 (

i , j51

N

(
p51

Nc

8
qiqj

uai j1Rpu
. ~20!

This result is obtained by treating the integral in Eq.~11! as
a constant and making use of the neutrality condition of
~18!. It may also be written

UC
q5

1

2 (
i51

N

qiVi , ~21!

where

Vi5(
j51

N

2a i j q
j . ~22!

It is evident from these equations that, in the muffin-
approximation, the interatomic Coulomb potential can
calculated as if the system is a lattice of point charges, e
though the charge densitiesri~r2ai2 Rp! are not spherically
symmetric. The reason for this is thatr~r !2r0 can be written
as a sum of nonoverlapping spherically symmetric charg
and the effect of the constant charge is taken care of by
integral that appears in the definition of the Madelung c
stants in Eq.~11!. These equations are so useful that m
treatments of the LDA equations start from them, even wh
the muffin-tin approximation is not used.

B. Possible errors

It might be thought that the muffin-tin approximatio
would introduce unacceptable errors into these calculatio
We argue that this is not the case because we are focusin
alloys of transition-metal alloys. A number of calculations17

have shown that the muffin-tin approximation is quite go
for transition metals. Reasons for this are that only a sm
fraction of the total charge is in the interstitial region outsi
the muffin-tin spheres, and that charge is uniformly distr
uted in that region.

When the pointsai1Rp form a Bravais lattice, such as th
fcc or bcc lattice, all the atomic volumesVi are equal toV
andCi in Eq. ~16! is AV, where
ith

r
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A5(
j51

N

a i j ~23!

is a constant independent ofi . Then the interatomic Coulomb
energy is simplyU C

q plus a constantNAr 0
2V2. We assume

that this is the case in the calculations to be discussed
might seem that the displacement of the atoms about t
ideal sites would complicate this picture because the ato
size of copper differs from that of zinc or palladium. Th
experimental evidence indicates that this is not the case
metallic alloys.

Atomic size effects have been studied by x-ray and n
tron diffractionists for decades. The distortions due to s
effects in homogeneous solid solution alloys are in the fi
class, according to the classification scheme of Krivogla18

which means that they produce a displacement of the Br
peaks, a reduction in their intensity, and diffuse scatteri
The Bragg peaks are not broadened. The displacement o
lines is simply related to the change in lattice constant of
alloy. A theory for the reduction in intensity of the Brag
peaks was developed by Krivoglaz, but there is experime
evidence that a simpler theory is quite adequate for meta
alloys.19 In this theory, atomic displacements produce a
duction of the intensity of the Bragg peak located at t
scattering angleu by the factor exp@22(B1B8) sin 2u/l2#,
whereB is the standard Debye-Waller factor andB8 is a
static Debye-Waller factor. The mean square displacemen
the atoms about their ideal sites due to the temperat
dependent excitation of phonons givesB58

3p
2^u th

2 &, whereas
the static displacement of the atoms caused by the size
ference leads toB858

3p
2^ust

2&. SinceB8 is independent of
temperature,B and B8 can be found individually from
powder-diffraction patterns measured at several temp
tures.

For the case of an alloy with a very large size mismat
copper-gold, it was found experimentally20 that B8 is equal
to B at liquid-nitrogen temperatures andB85 1

3B at room
temperature. If copper and gold retained the sizes that t
have in pure metals,B8 would have a value 20 times as larg
as the one observed. The size mismatch between coppe
zinc is quite small, and, even for copper and palladium, th
experimental observations indicate that static displacem
will not affect the results of the calculations in this pap
appreciably.

There are more sophisticated experimental studies
atomic size effects that can be carried out with x rays g
erated by a synchrotron, such as the 3l measurements of the
first moment of the mean static displacements of neighbo
pairs of atoms in alloys.21 It is an interesting challenge to
construct a structural model that will reproduce the results
these experiments, but that model must also be consis
with the results of the much simpler experiments describ
above.

III. CALCULATIONS

The equations in the preceding section have been use
calculate the electronic structure for models of substitutio
alloys by setting up cells withA andB atoms on the sites o
a bcc or fcc lattice. The total number of lattice sites isN, and
the spatial distribution of the atoms is random in the se
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55 7495COULOMB ENERGIES IN ALLOYS
that the probability of anA atom being on a site isc and the
probability of aB atom being on the site is 12c.22 These
cells are periodically reproduced to fill all space, but t
calculations cannot be done with conventional band the
methods because the computer time required for such ca
lations is proportional toN3 and they are impractical for ver
largeN. Methods for calculating the electronic structure
condensed matter have been developed recently which
known as order-N methods because the computer times sc
like N. Obviously, there must be some truncation of the fu
damental equations to achieve this, but, in modern ordeN
methods, the calculations are converged so that the tru
tion has no effect.

The order-N method used here is called the locally se
consistent multiple-scattering~LSMS! method, and a com
plete description of this is in the literature.23,24 It is based on
the multiple-scattering equations of Rayleigh25 that are also
the basis for the Korringa, Kohn, Rostoker method.26 It fol-
lows that the method is well-adapted to treat transition m
als. When solving the multiple-scattering problem, the int
action of an atom with all neighbors in a local interacti
zone that includes four or more nearest-neighbor shell
treated exactly. The Coulomb interactions with the rema
ing infinity of atoms are also treated exactly, but t
multiple-scattering part is approximated. This process is
peated for each of theN atoms in the cell, and the entir
process is iterated until self-consistency is attained.

The calculations are speeded up by exploiting the anal
properties of the single-particle Green’s function and
variational properties of the LDA, but they would be rath
time consuming without a massively parallel supercompu
The results of the self-consistent electronic structure calc
tion are expressed primarily in terms of the Green’s funct
G~E,r ,r 8!. The density of one-electron statesn(E) is ob-
tained from

n~E!52
1

p
lim
z→E

Im E G~z,r ,r !dr , ~24!

and the charge density of the electron gas at any pointr in
the sample is

r~r !52
1

p
Im E

2`

EF
G~z,r ,r !dz. ~25!

The net charges on the sitesqi are calculated using Eqs.~13!
and ~17!, and the Coulomb potentialsVi at the sites are cal
culated from Eq.~22!.

The LSMS is similar in philosophy to a method propos
recently by Kohn.27 The use of a local interaction zone
equivalent to the principle of near sightedness describe
that paper. The primary differences are that the LSMS ma
no explicit use of the penalty function introduced in th
paper, but it does include the long-range Coulomb inter
tions for all systems, not just the ionic crystals mention
there.

A. Results for a bcc copper-zinc alloy

The Coulomb potentials are plotted as a function of
net charges in Fig. 1 for a model of a 50% copper-zinc al
with the nuclei placed on the ideal lattice sites of a bod
ry
u-
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centered cubic~bcc! crystal with a lattice constant of 5.5
bohr radii. The number of atomsN in the cell for this calcu-
lation is 1024, so there are 512qi ,Vi points corresponding to
copper sites and 512 corresponding to zinc sites. The at
were distributed on the sites with the help of a random nu
ber generator. The charges associated with the copper
are on the positive side of the figure because copper g
electrons from zinc, and the charge is measured in elec
charges. It can be seen thatVi is a linear function of theqi ,
which is theqV relation that was pointed out and discuss
at some length in Refs. 7, 8, and 12. This relation is
simple electrostatics in that it does not exist for an arbitr
set of charges on the sites, even if the potentials are ca
lated exactly. The charges must be the result of a s
consistent LDA calculation. We observe this in our calcu
tions during the approach to self-consistency. The system
neutral at every step, but there is a width to the distribut
of the points about the line that becomes smaller as s
consistency is attained. TheqV relation for a 50% bcc
copper-zinc alloy calculated with a cell that contains 2
atoms is also shown in Fig. 1. The agreement of the res
from the two calculations shows that convergence is no
problem, a point that will be discussed in more detail in S
IV.

The sums that define the potentialsVi do not converge at
all rapidly. Since we have a table of all the charges in
sample described in the previous paragraph, we can stud
convergence by calculating the contribution toVi from the
atoms within and on thenth nearest-neighbor shell,

Vi~n!5 (
ai j<r n

2qj

uaj2ai u
, ~26!

where the notation means that the only indicesj that are
summed over are those for whichuaj2ai u<r n , with r n the
radius of thenth nearest-neighbor shell. The potentialVi(n)
for the sitei equal to 513, which happens to contain a C

FIG. 1. The Coulomb potentials evaluated at the sites of a 5
bcc Cu-Zn alloy plotted against the net charge on the site. The
data points marked with crosses are for the sites occupied by
atoms in a model containing 1024 atoms in the cell, and the p
signs are for the Zn sites. The white diamond shapes are the
data points for the sites occupied by Cu atoms in a model cont
ing 256 atoms, and the square shapes are for the Zn sites.



pr
e

t
n-
T
,

e
ity
be

q
al

s

w

e

f the
st-
ery
ms

hat
ar

the
the
a-
ms
nd
n-
are

ce
he

to
ons

tra-
pear
his
an
ill
of
ns

y
m

th
t

the
00
for
for

ses
%,

7496 55J. S. FAULKNER, YANG WANG, AND G. M. STOCKS
atom, is plotted for 1,n,52 in Fig. 2.~The reason that 52
shells are used in this plot is because the periodically re
duced central site is in the fifty-third nearest-neighbor sh
for this 1024 atom model.! The behavior ofV513(n) is typi-
cal of all theVi(n), and it can be seen that convergence
the valueV513 calculated for an infinite number of sites ca
not be seen within a range of 52 nearest-neighbor shells.
average of theVi(n) for all sites i that contain a Cu atom
^V(n)&Cu, is compared with the average of theVi ,^V&Cu, in
Fig. 2 as well. It can be seen that approximate convergenc
obtained forn equal to one. This demonstrates the reliabil
of both calculations, and has other implications that will
discussed in Sec. IV.

A consequence of the charge neutrality condition of E
~18! is that the sum over all sites of the Coulomb potenti
is zero

(
i51

N

Vi50. ~27!

Defining the average charge on the copper and zinc site
^q&Cu and ^q&Zn , and the average potentials as^V&Cu and
^V&Zn , it follows from Eqs.~18! and ~27! that

c^q&Cu1~12c!^q&Zn50,

c^V&Cu1~12c!^V&Zn50. ~28!

Dividing the second of these equations by the first, it follo
that

^V&Cu52a^q&Cu, ^V&Zn52a^q&Zn . ~29!

The qV relation illustrated in Fig. 1 can thus be express
algebraically by the equations

Vi52bCu~q
i2^q&Cu!2a^q&Cu, i,Cu,

FIG. 2. The data points marked with squares connected b
solid line are the contributions to the Coulomb potential fro
charges included withinn nearest-neighbor shellsVi(n). The po-
tential shown is evaluated at site 513 in a 50% bcc Cu-Zn alloy
contains 1024 atoms in the cell. The straight dashed line shows
asymptotic value thatV513(n) attains asn→`. The data points
marked with circles are the average of theVi(n) over all sitesi that
contain Cu atoms. The straight solid line is the average^V&Cu of the
Coulomb potentials at the Cu sites in the alloy.
o-
ll

o

he

is

.
s

as

s

d

Vi52bZn~q
i2^q&Zn!2a^q&Zn , i,Zn. ~30!

That these equations are an accurate representation o
results in Fig. 1 is demonstrated by the fact that, in a lea
squares fit to the calculated data, the rms deviation is v
small and there is no improvement to the fit when ter
quadratic in the fluctuations~qi2^q&Cu! or ~qi2^q&Zn! are
added to the fitting functions. There is no requirement t
the slopesbCu andbZn must be the same, although it is cle
from Fig. 1 that the difference is small.

B. Results for fcc copper-zinc alloys

The Coulomb potentials are plotted as a function of
net charges in Fig. 3 for copper-zinc alloys that have
face-centered~fcc! crystal structure and copper concentr
tions of 10%, 25%, 50%, 75%, and 90%. Five hundred ato
are randomly distributed on the ideal lattice positions, a
the lattice constant of 6.90-bohr radii is used for all conce
trations. The data fall on a series of straight lines that
approximately parallel, as described in Eq.~30!. The param-
etersa, bCu, andbZn have a weak concentration dependen
that is shown in Fig. 4. The midpoints of the lines are t
^V&Cu, ^q&Cu and ^V&Zn , ^q&Zn points appropriate for the
given concentration. The displacement of the lines relative
each other is determined by the charge neutrality conditi
in Eq. ~28! and the parametera.

It can be seen that the lines for the extreme concen
tions, 10% or 90%, are broken up into segments and ap
to be shorter than those for intermediate concentrations. T
is due to the finite number of atoms in our cells. For
infinite crystal, the spaces will be filled in and the lines w
appear continuous. It will still be the case that the density
points along the line is not uniform, however. The reaso
for this and also for the concentration dependence ofa, bCu,
andbZn are discussed in Sec. IV.

a

at
he

FIG. 3. The Coulomb potentials evaluated at the sites and
charges on the sites of fcc Cu-Zn alloys with cells containing 5
atoms. The plus signs for positive charges are the data points
sites containing Cu atoms and those in the negative region are
Zn atoms in an alloy with a Cu concentration of 90%. The cros
are for a 75% alloy, the diamonds for 50%, the squares for 25
and the circles for 10% Cu.
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55 7497COULOMB ENERGIES IN ALLOYS
C. Coulomb energies of copper-zinc alloys

The interatomic Coulomb energy per atomuC
q5U C

q /N
obtained by inserting Eq.~30! into Eq. ~21! is

uC
q5uC11uC2 , ~31!

where

uC15a 1
2 ^q&Cû q&Zn ,

uC252bCu

c

2NCu
(
i,Cu

NCu

~qi2^q&Cu!
2

2bZn

12c

2NZn
(
i,Zn

NZn

~qi2^q&Zn!
2. ~32!

The form of this equation foruC
q has some interesting impli

cations for the DFT-LDA theory, as was discussed in R
12. The first termuC1 depends only on the average charg
while uC2 depends on the mean-square deviations from
average charges. These two parts of the Coulomb energ
plotted as a function of concentration in Fig. 5 for the f
alloys described above. SinceuC

q (c) must be zero forc50
and 1, it is not surprising that these curves are roughly p
bolic.

LSMS calculations on models of bcc copper-zinc allo
with N equal to 432 and copper concentrations of 10%, 25
50%, 75%, and 90% have been described in Refs. 8 and
The lattice constant used in all of those calculations is
same as the one used for the calculation done with 1
atoms described above, 5.5-bohr radii. For the lattice c
stants we have used, the Wigner Seitz radius for the
lattice is 2.697-bohr radii, and for the bcc lattice it is 2.70

FIG. 4. The parameters that determine the relation betw
charges and Coulomb potentials in Cu-Zn alloys. The models
the fcc alloys have cells that contain 500 atoms and those for
alloys contain 432 atoms. The solid lines connect the values for
fcc alloys, the circles indicating the values forbCu, the squares for
bZn , and the diamonds fora. The dashed lines connect the valu
for the bcc alloys, the crosses indicating the values forbCu, the plus
signs forbZn , and the triangles fora.
f.
,
e
are

a-

,
2.
e
4
n-
c
-

bohr radii. The Coulomb energiesuC1 and uC2 for these
alloys are also plotted in Fig. 5. This figure demonstrates
the Coulomb energies in alloys depend surprisingly little
structure. Of course, copper and zinc atoms are almost
same size and their atomic volumes are about the same
bcc or fcc alloy. The charge per site transferred from the z
to the copper sites,

D5^q&Cu2^q&Zn , ~33!

depends very little on concentration and is approximately
same for the two structures. The binding energy of alloys
typically of the order of hundreds of milli-Rydbergs and th
difference in energy between two phases for a given allo
typically of the order of milli-Rydbergs. The energyuC

q is
about 2.5 mRy for both the fcc and bcc alloys, so the m
nitude of these Coulomb energies is not insignificant. Ho
ever, their importance is diminished by their insensitivity
structure.

The details of the dependence ofuC1 anduC2 on concen-
tration is related to the concentration dependence of thea,
bCu, and bZn . We have commented on the plots of tho
functions for the fcc alloys shown in Fig. 4. We plot them f
the bcc alloys in the same figure.

D. Results for fcc copper-palladium alloys

These calculations on the copper-zinc alloy system ill
trate the concentration and structure dependence ofuC

q (c),
but it might be thought that they are specific to this syste
For that reason, calculations on a system that is known to
qualitatively very different, the copper palladium syste
have been carried out. In the neighborhood of the Fe
energy, the electronic states for both copper and zinc,
any alloy of these two metals, are primarilys-p states. The
electronic states for palladium, on the other hand, have

n
r
cc
e

FIG. 5. The contributions to the Coulomb energyuC1 anduC2
for Cu-Zn alloys. The models for the fcc alloys have cells th
contain 500 atoms and those for bcc alloys contain 432 atoms.
solid lines connect the values for the fcc alloys, the circles indic
ing the values foruC1 and the squares foruC2. The dashed lines
connect the values for the bcc alloys, the crosses indicating
values foruC1 and the plus signs foruC2.
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nificant d character, and it follows that the density of stat
at the Fermi energy for palladium atoms will be much larg
than that for either copper or zinc.

The Coulomb potentials are plotted as a function of
net charges in Fig. 6 for models of copper-palladium allo
with the fcc crystal structure having concentrations of 10
25%, 50%, 75%, and 90%. Two hundred and fifty-six ato
are randomly distributed on the ideal lattice positions, a
the lattice constant 7.1-bohr radii is used for all concen
tions. It can be seen that the linearqV relation is displayed
by this alloy as clearly as it is for the copper-zinc alloys. T
slopesa, bCu andbPd are plotted in Fig. 7 as a function o
concentration. By comparing this figure with Fig. 4, it can
seen thatbCu, and bPd are significantly smaller than th
slopes for the Cu-Zn alloys, and they have significantly l

FIG. 6. The Coulomb potentials evaluated at the sites and
charges on the sites of fcc Cu-Pd alloys with cells containing
atoms. The plus signs for positive charges are the data points
sites containing Cu atoms and those in the negative region ar
Pd atoms in an alloy with a Cu concentration of 90%. The cros
are for a 75% alloy, the diamonds for 50%, the squares for 2
and the circles for 10% Cu.

FIG. 7. The parameters that determine the relation betw
charges and Coulomb potentials in fcc Cu-Pd alloys calculated
cells that contain 256 atoms. The circles indicate the values forbCu,
the squares forbPd, and the diamonds fora.
s
r

e
s
,
s
d
-
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concentration dependence. Also,bCu andbPd are less differ-
ent from each other thanbCu andbZn , which is somewhat
surprising.

The two contributions to the Coulomb energyuC1 and
uC2 are shown if Fig. 8 for these alloys. They have the e
pected approximately parabolic shape, but the maxim
magnitude is significantly greater. This is due to a larg
charge exchange between the copper and palladium s
The differences between the average charges on the Cu
Zn sites in the fcc and bcc Cu-Zn alloys are plotted a
function of concentration in Fig. 9, and compared with t
correspondingD’s for the fcc Cu-Pd alloys.

e
6
or
for
s
,

n
th

FIG. 8. The contributions to the Coulomb energyuC1 anduC2
for fcc Cu-Pd alloys with cells that contain 256 atoms. The circ
indicate the values foruC1 and the squares foruC2.

FIG. 9. The differences between the average charges on
atoms of the two constituents in random alloys. The differen
between^q&Cu and and^q&Pd in fcc Cu-Pd alloys calculated with
cells that contain 256 atoms are indicated by circles. The dif
ences between̂q&Cu and ^q&Zn in models of fcc Cu-Zn alloys cal-
culated with cells that contain 500 atoms are indicated by squa
The differences between̂q&Cu and ^q&Zn in models of bcc Cu-Zn
alloys calculated with cells that contain 432 atoms are indicated
diamonds.
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IV. THEORETICAL CONSIDERATIONS

A. The parameter a

The first topic to be considered in this section is a deri
tion that explains the origin and the approximate magnitu
of the parametera introduced in Eq.~29!. For this part of the
discussion, it is convenient to write the net charge on a
asq~ai! rather thanq

i . The averagêq(0)q~ak!& is defined by

^q~0!q~ak!&5
1

N (
i51

N

q~ai !q~ai1ak!, ~34!

and is called the charge-charge correlation function. Beca
of the neutrality of the crystal, this correlation function sa
isfies the sum rule,

(
k51

N

^q~0!q~ak!&50. ~35!

It might be worth pointing out at this point that the averag
that are written as sums over sites in this paper are equiva
to ensemble averages if the system is big enough. Since
are invoking charge neutrality, the canonical ensemble m
up of all systems with a fixed number of Cu and Zn ato
should be used.

Starting from the formula in Eq.~26! for the Coulomb
shift at the i th site due to charges within and on thenth
nearest-neighbor shell, a formula for the average of th
potentials can be written

^V~n!&Cu5(
k

8
2^q~ak!&Cu

ak
,

^V~n!&Zn5(
k

8
2^q~ak!&Zn

ak
. ~36!

The primes on the summation signs mean that the sum
only over sites such thatak,r n , the radius of thenth
nearest-neighbor shell, and the restricted averages introd
in this formula are defined by

^q~ak!&Cu5
1

NCu
(
i,Cu

NCu

q~ai1ak!,

^q~ak!&Zn5
1

NZn
(
i,Zn

NZn

q~ai1ak!. ~37!

The sites summed over in the calculation of^q~ak!&Cu are not
necessarily occupied by Cu atoms, the notation is mean
indicate that the siteai is occupied by a Cu atom. Thes
restricted averages are similar to the charge-charge cor
tion function of Eq.~34!, and also obey sum rules that are t
analog of Eq.~35!,

(
k51

N

^q~ak!&Cu50, (
k51

N

^q~ak!&Zn50. ~38!

Our LSMS data was used to calculate the restricted aver
for the alloy samples described in this paper, and the
dence is that they are approximately zero when the ma
tudeak is greater than the radius of the first nearest-neigh
-
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shell r 1. This has already been illustrated in Fig. 2, becau
it is equivalent to the observation that^V(n)&Cu'^V&Cu and
^V(n)&Zn'^V&Zn for n.1. It follows that

(
ak>r1

^q~ak!&Cu52^q&Cu, (
ak>r1

^q~ak!&Zn52^q&Zn ,

~39!

and the average shiftŝV&Cu and ^V&Zn are given by

^V&Cu52
2^q&Cu
r 1

, ^V&Zn52
2^q&Zn
r 1

. ~40!

This derivation leads to the prediction that the parame
a is equal to 2/r 1. The values ofa are plotted in Fig. 10 for
the fcc and bcc Cu-Zn alloys. It can be seen that they
rather close to 2/r 1 for the fcc alloys. The true values fora
are consistently smaller than 2/r 1 for the bcc alloys, which
means that the correlation length is larger thanr 1 for these
alloys. The values ofa are plotted in Fig. 11 for the Cu-Pd
alloys. The difference between the calculated values and
approximation is greater for this more highly charged allo
It should be emphasized that Eq.~40! is basically a conse-
quence of the overall charge neutrality of the crystal and
correlation length of the charges. The only sense in wh
this equation could be interpreted as describing the scree
of the central charge by charges on the first-nearest-neig
shell is by focusing on a mathematical abstraction, the av
age copper or zinc site. The screening of any actual sit
the alloy is illustrated by the functionVi in Fig. 2.

B. The slopesb

We will now consider the slopesb that were introduced in
Eq. ~30!. Introducing parametersg that are the reciprocals o
theb’s makes it possible to rewrite Eq.~30! in the form

~qi2^q&Cu!52gCu~V
i2^V&Cu!,

FIG. 10. A comparison of the parametersa with 2.0/r 1 for
Cu-Zn alloys. The circles are thea’s and the squares 2.0/r 1 for fcc
alloys calculated with 500 atoms in the cell, and the points
connected by solid lines. The diamonds are thea’s and the crosses
2.0/r 1 for fcc alloys calculated with 500 atoms in the cell, and t
points are connected by dashed lines.
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~qi2^q&Zn!52gZn~V
i2^V&Zn!. ~41!

Clearly theg’s describe the rate at which the charge will
induced on a site by the Coulomb potential at that site. I
reasonable to expect that this rate will be related to the d
sity of states at the Fermi energy for the atom. The fact t
the slopes of theqV lines are characteristic of an alloy at
given concentration, as seen in Figs. 4 and 7, suggests
theg’s should be related to the average densities of state
the Fermi energy at that concentration,^r&Cu and ^r&Zn . The
densities of states at the Fermi energy for all the atoms in
samples, as well as their averages, can been obtained re
from our LSMS calculations.

The simplest relationship that theg’s can have with the
average density of states is linear, so we attempted to
them to the functions

gCu5aCu1bCû r&Cu, gZn5aZn1bZn^r&Zn . ~42!

Our best fits for the fcc alloys described in Sec. III B lead
the values,aCu50.231 58, bCu50.092 73, aZn50.238 32,
andbZn50.128 85. Our best fits for the bcc alloys describ
in Refs. 8 and 12 lead toaCu50.207 22,bCu50.089 39,
aZn50.232 91, andbZn50.114 98. The values forg calcu-
lated from our LSMS data are plotted in Fig. 12, and co
pared with values calculated from Eq.~42!. It can be seen
that the agreement for the fcc alloys is excellent and for
bcc alloys it is quite good. The worst agreement is for
bcc alloy with 10% Cu.~When we saw this, we repeated th
calculation for another 10% alloy generated in the same w
The slopegCu changed from 0.536 51 to 0.536 65, whilegZn
changed from 0.580 49 to 0.590 81, amounts that are inc
sequential.! It should be emphasized that thea’s andb’s are
independent of concentration, so that the concentration
pendence of theg’s, and hence the slopes of the lines in Fig
1, 3, and 6 are due to the concentration dependence o
average densities of states^r&Cu and ^r&Zn .

The relation betweeng and the density of states shou
not lead to the conclusion that theqV relation is simply
caused by the charge flowing onto a site due to a displa
potential. In the first place, the displacement of a potentia

FIG. 11. A comparison of the parametersa with 2.0/r 1 for fcc
Cu-Pd alloys calculated with 256 atoms in the cell. The circles
thea’s and the squares are 2.0/r 1.
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not simply related to the Coulomb shift. A rigid displac
ment of a potential is reflected in a shift of the core leve
The displacement of the 1S core levels of copper and zin
from there average values on the sites of a 50% bcc allo
plotted in Fig. 13 versus the Coulomb potential at the s
Drawing lines through the data points, it can be calcula
that a shift of the Coulomb potential leads to a shift of t
potential that is roughly 0.2474 times as large for the z
atoms and 0.2856 times as large for the copper atoms. Th
due to screening by the outer electrons, and is not surpris
It is more important to note that there is considerably m
scatter in the data points about the straight line than ther
in the qV plots. This fact, plus the fact that the slopesgCu

e
FIG. 12. The slopesgCu51/bCu andgZn51/bZn for fcc and bcc

Cu-Zn alloys. The circles represent the values forgCu and the
squares forgZn for the fcc alloys. The line made up of short dash
connects the data points for the approximate values obtained
Eq. ~42! with the constants written below that equation. The cros
represent the values forgCu and the plus signs forgZn for the bcc
alloys. The line made up of short dashes connects the data p
for the approximate values obtained from Eq.~42!.

FIG. 13. The shifts of the 1S core levels from their average
values versus the Coulomb potential at the sites in an fcc Cu
alloy with a concentration of 50% calculated with a sample t
contains 500 atoms. The crosses are for the Cu atoms and the
signs are for the Zn atoms.
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and gZn are more nearly the same than would be expec
from a potential shift argument, indicates that such an ar
ment cannot explain theqV relation.

The preceding derivations allow us to make reasona
predictions for the dependence of the parameters in Eq.~30!
on the concentration and the atomic species. This is far f
a complete theory, since the only way that we can get
constants that appear in Eq.~42! is from the LSMS calcula-
tions. As pointed out in Ref. 12, a more complete analy
must be based on the DFT-LDA equations in Sec. II, mak
use of the concept of fragments introduced by Harris.28 The
analysis is quite complicated because of the long-range
ture of the Coulomb potentials and the global adjustmen
the Fermi energy that is necessary for charge neutrality.

C. Extrapolation to macroscopic samples

It should be emphasized that all the work that we ha
done on this problem is based on the fundamental assu
tion that there is a well-defined state of matter that can
called a disordered alloy with concentrations of the const
entsc and 12c, and that the physical properties of such
alloy do not vary from sample to sample. The ideal alloy c
be modeled theoretically by distributing atoms randomly
an infinite set of lattice points with probabilitiesc and 12c,
and can be fabricated experimentally by annealing cer
metallic alloys at high temperature and then rapidly quen
ing them.

The short-range order in an alloy is usually described
terms of the Warren-Cowley short-range-order~SRO!
parameters,29

a1mn512
1

2c~12c!
Plmn$AuB%, ~43!

wherePlmn$AuB% is the probability for finding anA atom on
the specified nearest-neighbor shell if it is known that th
is aB atom at the origin. For historical reasons, the near
neighbor shells are specified by Miller indices. If there is
tendency for unlike atoms to be neighbors, short-range
dering,

2S 1

2c~12c!
21D,a lmn,0, ~44!

while

0,a lmn,1, ~45!

for the opposite case of short-range clustering. In the id
disordered alloy, all of the SRO parameters are zero.

An intermetallic compound can be fabricated by anne
ing certain alloys that have a specific concentration fo
long period of time at a temperature just below the order
temperature. It is a long-range-ordered structure with a r
tively small number of atoms in the unit cell and symme
that is described by one of the tabulated space groups.
possible to model a disordered alloy with periodic bound
conditions as an intermetallic compound in the limit as
number of atoms in the unit cellN approaches infinity, as ha
been done in the calculations described in this paper.

Many characteristics of a disordered alloy are qual
tively different from those of an intermetallic compoun
d
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This proposition seems self-evident, but, when modeling
alloy with supercells, the question is, how large doesN have
to be? The theoretical proposition that the divergence in
properties must take place somewhere between the m
scopic and macroscopic limit has been argued persuasi
by Anderson, who also supplied a number of examples fr
his research interests.30 A simple example of a property tha
demonstrates this qualitative difference is the finite resid
resistivity of a disordered alloy, which is the electrical res
tivity of an alloy in the limit as the temperature approach
zero. An ordered intermetallic compound will have a res
tivity at T50 that is zero or infinity. A less simple example
Anderson localization.31 A correct calculation of the residua
resistivity using supercells containing thousands of ato
would still lead to zero or infinity, and there can clearly b
no localization in a periodically reproduced system. Ho
ever, using a proper formulation of the theory, calculatio
with supercells no larger than the ones in this paper h
produced some remarkably good predictions for both
these properties.32 Anderson argues, quite correctly, th
many properties of the infinite system cannot be seen in
results of calculations on finite clusters. At the same tim
the conclusion drawn in the work that we just alluded to a
from our own experience is that, using a combination
physical insight and calculations on large clusters, one
obtain correct extrapolations to the properties of the dis
dered alloy.

As an example of the application of this proposition
Coulomb effects, extrapolating the calculations in this pa
leads to the conclusion that the disordered alloy will hav
continuous distribution of magnitudes of the chargesqi . In
the calculations that we have done on samples of differ
sizes, we have yet to find two charges with the same ma
tude in the same sample. It follows from theqV relation that
their is also a continuous distribution of Coulomb potenti
Vi . We will demonstrate that the convergence of our cal
lations is sufficient so that we can have confidence in
extrapolations to macroscopic ideal alloys.

D. Convergence of the calculations

In the early days of alloy theory, Lifshitz argued on intu
tive grounds that one can calculate the properties of a di
dered alloy from one sufficiently large sample,33 and referred
to this property of a large sample as self-averaging. It can
seen most easily in exact calculations of the electron or p
non density of states of finite one-dimensional models
disordered alloys.34 Calculations on simplified three
dimensional models show the same effect.35 Practical tests
for the self-averaging property of samples used in calcu
tions are that the quantities computed~a! change little as the
sizes of the samples are increased, and~b! are essentially the
same for different samples of the same size constructed
cording to a specified prescription. We applied the tests
scribed above to ascertain if the models that we used in
calculations are self-averaging.

We carried out calculations on models of the 50% b
Cu-Zn alloy with 256, 432, and 1024 atoms. The mod
have the same lattice spacing, and the atoms were place
the sites with equal probabilities using a random num
generator. The total energies per atom for the 256, 432,
1024 atom samples are23414.461 44,23414.461 14, and
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23414.461 09 Ry. The Coulomb potentials are plotted a
function of the net charges in Fig. 1 for two of these samp
and it is evident from that drawing that the slopes chan
very little. We calculated the slopesbCu and bZn for these
samples, and have plotted them in Fig. 14 as a function
the number of atoms in the sample. It can be seen that t
is only a 1% difference between the slopes calculated w
the smallest and the largest sample. All of this data indica
that the properties that we are focusing on can be obta
reliably from samples with as few as 256 atoms in them.

We carried out calculations on pairs of samples with 4
atoms of the 50% bcc Cu-Zn alloy and samples with 5
atoms of the 50% fcc alloy. Different seeds were used in
random number generator, so there is no relation between
positions of the atoms in the pairs of samples. As with all
our alloy samples, part of the calculation is to obtain t
Warren-Cowley SRO parameters defined in Eq.~43! for the
first 12 nearest-neighbor shells. A statistical analysis of al
these parameters is shown in Fig. 15. It can be seen that
cluster around zero, with two of the 48 parameters being
large as 0.05. These maximum values are for the fourth s
in one sample and the sixth in another sample. Experim
tally, an alloy is considered to be disordered when it h
SRO parameters for the first shell as large as 0.20.36 It is
mathematically possible to calculate the probability for t
SRO parameters being unacceptably large for a give sam
We have not done this, but, in all of the samples that we h
generated to date, we have not had to reject one becaus
SRO parameters were larger than 0.05.

We list in Table I a set of calculated parameters for t
four samples described in the previous paragraph. The
ferences in the parameters for these samples that have
pletely different arrangements of atoms are very small.
feel that this table provides further evidence that our sam
are self-averaging.

E. The magnitudes of the charges

As stated in Sec. IV C, the extrapolation of these calcu
tions leads to the conclusion that the distribution of mag

FIG. 14. The slopesbCu ~circles! andbZn ~squares! of the lines
on which the data points fall in Fig. 1. The slopes are calculated
models of a 50% bcc Cu-Zn alloy with cells that contain 256, 4
and 1024 atoms.
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tudes of the charges in a disordered alloy is continuous. T
is not to say, however, that the distribution of the charge
uniform. The probabilityPCu(c,q) for a copper atom in a fcc
disordered Cu-Zn alloy with the concentrationc50.50 to
have a charge betweenq and q10.005 electron charges i
shown in Fig. 16. It is calculated with the charges from t
model of the 50% alloy that was described in Sec. III
which contains 250 Cu and 250 Zn atoms. It can be seen
the distribution of charges about the average value is
uniform. It is easier to study the distribution of charges if o
does not concentrate on alloys with just one concentratio

The probabilityPCu(q) for a copper atom in a fcc disor
dered alloy to have a charge betweenq andq10.005 elec-
tron charges is calculated from the data on such alloys
Sec. III B and plotted in Fig. 17. It does not depend on t
concentrationc since the charges from all five concentr
tions, ranging from 10% to 90%, are lumped together in
calculation to approximate the integral of thePCu(c,q) over
c. This is justified because the same lattice constant was u
for all concentrations. The functionPCu(q) has thirteen well-
defined peaks. The conditional probabilityPCu( f 1 ,q), which
is the probability that a Cu atom in a fcc disordered Cu-
alloy that has a fractionf 1 of Cu atoms on the first-neares
neighbor shell will have a charge betweenq andq10.005, is
also shown in Fig. 17 for the casef 151/2. The number of Zn
atoms in the nearest-neighbor shell, introduced in Eq.~43!, is
nZn5n1(12 f 1), wheren1 is the number of atoms in tha
shell. For a fcc crystal,n1512. SincePCu(q) is a superposi-
tion of the thirteen functionsPCu( f 1 ,q) that correspond to
the integer values fornZn from 0 to 12, it is obvious that
this is the origin of the structure inPCu(q). We feel that
our statistical sample is large enough so that the general
tures ofPCu(q) are reliable, although the relative heights
the peaks in different regions of charge may be changed
more data.

Clearly the ability to predict the value of the chargeq of
a given Cu atom is improved significantly by the knowled
of the environment of the atom as described by the fract
f 1, but there is still a considerable uncertainty that is giv

r
,

FIG. 15. A stacked histogram that shows the distribution of
Warren-Cowley short-range-order coefficients corresponding to
first 12 nearest-neighbor shells for four 50% Cu-Zn alloys. The
samples contain 500 atoms and the bcc samples contain 432 a
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TABLE I. The total energy per atom and parameters defined in Eqs.~33!, ~31!, ~29!, and~30! for four 50% Cu-Zn alloys. The two fcc
samples contain 500 atoms and the two bcc samples contain 432 atoms.

Total energy D uC
q a bCu bZn

fcc A 23414.460 52 0.198 13 22.501 26 0.407 61 1.665 16 1.605 99
fcc B 23414.460 53 0.198 61 22.602 80 0.410 14 1.664 84 1.606 40
bccA 23414.460 90 0.197 21 22.457 86 0.363 59 1.832 18 1.820 54
bccB 23414.461 14 0.200 59 22.511 87 0.389 92 1.826 98 1.797 45
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by the width ofPCu( f 1 ,q). The most reasonable conjectu
is thatPCu( f 1 ,q) has a structure due to the differences in t
occupation of the second, third, and succeeding nea
neighbor shells that can be described by the fractionsf 2, f 3,
etc. It would be interesting to obtainPCu( f 1 ,q) to enough
precision to see this effect, and also to calcul
PCu( f 1 , f 2 ,q), PCu( f 1 , f 2 , f 3 ,q), etc. Even with all of the
computer time expended so far, there are still not eno
charges to provide reliable statistics for that purpose, but
effect can be seen more easily by consideringPCu(q) for bcc
disordered alloys calculated with the data published in R
8 and 12 and discussed in Sec. IV C.

The function PCu(q) shown in Fig. 18 represents th
probability for a Cu atom in a bcc Cu-Zn alloy to have
charge betweenq and q10.005 electron charges, and w
calculated by lumping together the charges for the five c
centrations ranging from 10% to 90%. The function is c
tainly irregular, but it is difficult to count precisely the nin
peaks that would correspond to the integer values ofnZn
from zero to the number of atoms in the nearest-neigh
shell. The conditional probabilityPCu( f 1 ,q) is also shown in
Fig. 18 for f 151/2, and, as with the fcc alloys, knowledge
the fractionf 1 will improve the prediction of the charge on
given Cu atom. It appears that there are seven peak
PCu( f 1 ,q), which correspond to the possible occupations
the second-nearest-neighbor shell in the bcc structure.
easy to imaginePCu( f 1 ,q) as being the superposition o
seven conditional probabilitiesPCu( f 1 , f 2 ,q) that would cor-

FIG. 16. The solid line with the points marked with cross
showsPCu(c,q), the probability that a Cu atom in a fcc Cu-Zn allo
with a concentrationc50.50 will have a charge betweenq and
q10.005 electron charges. The vertical line shows the aver
charge for the Cu atoms.
st-

e
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e
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respond to specific occupations of the first- and seco
nearest-neighbor shells, but it can be seen from Fig. 18
the PCu( f 1 , f 2 ,q) would also have finite widths due to th
effects of still more distant neighbors.

The calculations shown here are certainly accur
enough to prove that the conditional probabilities,PCu( f 1 ,q)
andPCu( f 1 , f 2 ,q), have finite widths. With the interpretatio
of the origin of these widths and also with the numeric
demonstrations in Sec. III of the long-range nature of
Coulomb interaction in alloys, it is difficult to arrive at an
conclusion other than that the conditional probabiliti
PCu( f 1 , f 2 ,...,q) will have a finite width when the fractiona
occupations of any finite number of nn shells is specified
the infinite ideal alloy.

Another piece of evidence for the continuous distributi
of charges in disordered alloys is theqV relation illustrated
in Figs. 1, 3, and 6. This relation indicates very subtle a
long-range correlations between all the charges in the cry
and is intrinsically incompatible with any discrete distrib
tion of charges.

V. COMPARISONS WITH OTHER THEORIES

Many of the recent studies of Coulomb energies in allo
refer to a model that was first proposed by Magri, Wei, a

e

FIG. 17. The solid line with the points marked with cross
showsPCu(q), the probability that a Cu atom in a fcc Cu-Zn allo
will have a charge betweenq andq10.005 electron charges. Th
circles connected with dashed lines shows the conditional proba
ity PCu( f 1 ,q), which is the probability that a Cu atom in a fc
Cu-Zn alloy that has a fractionf 1 of Cu atoms on the neares
neighbor shell will have a charge betweenq andq10.005 electron
charges. The data shown are forf 151/2.
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Zunger~MWZ! in Ref. 1. In the MWZ model, the charge o
a site containing a copper or zinc atom is given by

qi52lnZn ; i,Cu, qi522lnCu; i,Zn, ~46!

wherenZn andnCu are the number of zinc or copper atoms
the first-nearest-neighbor shell. It is further assumed thatl is
independent of the concentration of the alloy, and that it
be calculated from the charges in ordered compounds
taining a relatively small number of atoms in a unit cell. Th
is equivalent to the assumption that the conditional proba
ity functions defined in the previous section,PCu( f 1 ,q) and
PZn( f 1 ,q), ared functions. This assumption is not consiste
with extrapolations from our calculations. In principle, no
of the conditional probabilities,PCu( f 1 ,q), PCu( f 1 , f 2 ,q),
etc., can be replaced byd functions, although it may be a
useful approximation in certain circumstances.

In the MWZ model, the average charge on the Cu site
^q&Cu52lW1(12c) with ^q&Zn522lW1c on the Zn site,
where W1 is the number of atoms in the first-neare
neighbor shell. It follows that the difference between^q&Cu
and ^q&Zn , D, is independent of concentration in this mod

D52lW1 . ~47!

The differenceD is plotted in Fig. 9 as a function of th
concentration for the fcc and bcc Cu-Zn alloys and the
Cu-Pd alloys. It is very nearly constant for the Cu-Zn allo
but it changes quite a bit with concentration for the Cu-
alloys.

The relations in Eq.~46! combined with a rule for the
spatial distribution of the atoms in the crystal determines
the charge-charge correlation functions for the crystal.
ideally random alloys, the MWZ model leads to the corre
tions

FIG. 18. The solid line with the points marked with cross
showsPCu(q), the probability that a Cu atom in a bcc Cu-Zn allo
will have a charge betweenq andq10.005 electron charges. Th
circles connected with dashed lines shows the conditional prob
ity PCu(c1 ,q), which is the probability that a Cu atom in a bc
Cu-Zn alloy that has a fractionf 1 of Cu atoms on the neares
neighbor shell will have a charge betweenq andq10.005 electron
charges. The data shown are forf 151/2.
n
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^q~0!q~ak!&54l2c~12c!@W1
21W1#, ak50,

^q~0!q~ak!&54l2c~12c!@22W11K1#, ak5r 1 ,

^q~0!q~ak!&54l2c~12c!Kn , ak5r n , n.1, ~48!

wherer n is the radius of thenth nearest-neighbor shell an
Kn is the number of atoms that are common to neare
neighbor shells centered on the central atom and on an a
of the nth nearest-neighbor shell. These parameters h
been discussed more fully in Ref. 2. The sum rule in Eq.~35!
is satisfied by these correlation functions as a consequenc
the relation

(
n51

`

WnKn5W1
22W1 , ~49!

whereWn is the number of atoms in thenth nearest-neighbo
shell. For fcc crystals,Kn is zero forn.4, while for bcc
crystalsKn is zero forn.5. These are very specific predic
tions for the correlation functions, and they lead to equa
specific predictions about the interatomic Coulomb ene
uC
q .
Writing aj in Eq. ~20! asaj5ai1ak and carrying out the

summations leads to the following form forU C
q :

UC
q5 (

k51

N

8 (
p

^q~0!q~ak!&
uak1Rpu

, ~50!

where in this case the prime means thatakÞ0. Inserting the
correlation functions of Eq.~35! into the expression in Eq
~50! leads to a formula for the interatomic Coulomb ener
from the MWZ model that can be split into two parts in
fashion that is analogous to Eq.~31!,

uC
MWZ5u1

MWZ1u2
MWZ . ~51!

The approximation touC1 may be written

u1
MWZ52

D2

r 1
c~12c!, ~52!

with D given by Eq.~33!, and the approximation touC2 is

u2
MWZ5u1

MWZS 12
1

W1
2 (

n

r 1
r n

WnKnD . ~53!

This formula is algebraically identical with the one describ
in Ref. 2, although its derivation and interpretation are som
what different. Interatomic Coulomb energies derived fro
these same assumptions have been used in an extensive
of the short- and long-range order in models of binary allo
in which this is the only interaction, see Ref. 6. For a suita
value ofl, the predictions of the MWZ model foruC

q will be
qualitatively correct, but it is useful to understand the fe
tures of these predictions that are representative of real al
and those that are peculiarities of the model.

Using Eqs.~28! and~33! it can be shown that the expres
sion foruC1 in Eq. ~32! is equivalent to

uC15
1
2aD2c~12c!. ~54!

Comparing this with Eq.~52! it is seen thatu1
MWZ would be

the same asuC1 if it is assumed that the difference in th

il-
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average charges of the two atoms,D, is independent of con
centration and thata is exactly 2/r 1. It predicts thatuC1 is
precisely a parabolic function ofc with its minimum at
c50.5. As expected from the variation ofD with c illustrated
in Fig. 9 and the variation ofa with c from Figs. 10 and 11,
uC1 is slightly asymmetric for the Cu-Zn alloys shown
Fig. 5 and quite asymmetric for the Cu-Pd alloys shown
Fig. 8.

The second term,u2
MWZ , is different in magnitude and in

physical origin from theuC2 in Eq. ~32!. This is illustrated
graphically by the prediction of the MWZ model that th
ratio of the energiesuC2/uC1 is a constant that is independe
of the concentration of the alloy. An even more striking a
pect of this prediction is that the ratio is independent of
constituents of the alloy. The ratiou2

MWZ/u1
MWZ is the quan-

tity in the parentheses in Eq.~53!, and it is 0.383 13 for all
random alloys that have the bcc structure and 0.314 72 fo
those with the fcc structure. The ratiosuC2/uC1 from the
LDA calculations for the bcc Cu-Zn alloys are plotte
against the concentration in Fig. 19, and it is obvious t
they change a great deal with concentration. As for the r
being independent of the alloy constituents,uC2/uC1 is plot-
ted in Fig. 20 for the fcc Cu-Zn and Cu-Pd alloys, and it c
be seen that they are quite different.

Very recently, a paper has been published37 that revisits
the MWZ model in light of the LSMS calculations in Refs.
and 12 that we published earlier. They show a calculation
theqV relation that would be obtained for our alloy mode
that are modified by replacing the actual charges on the s
by the charges that would be predicted to be on the site
Eq. ~46!, the value ofl being taken from a fit to the center o
the peaks in the conditional probabilitiesPCu( f 1 ,q) and
PZn( f 1 ,q). These results, shown in their Fig. 2, illustrate t
point made above that ourqV relation is fundamentally in-
compatible with a model that predicts that the charges
lattice sites can take on only a small number of values. In
MWZ model there are only nine possible charges on a c
per or zinc site in a bcc alloy, and twelve in fcc. They al
derive a formula from the MWZ model that relates the av
age potential for a given charge to that charge, and show
this would be a straight line. This is not theqV relation we

FIG. 19. Ratios of the two contributions to the Coulomb ene
uC1/uC2 for bcc Cu-Zn alloys calculated with 432 atoms in the ce
The dashed line is the prediction of the MWZ model.
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are discussing. Their prediction for the slopesgCu and gZn
are quantitatively not very accurate. More importantly, th
predict thatgCu5gZn and the slopes should be independent
concentration. It can be seen from Fig. 12 that this is not
case.

Another aspect of this paper that is relevant to the pres
discussion is that they propose to replace the MWZ mo
with a model in which the numbers of atoms in the neare
neighbor shellsnCu and nZn in Eq. ~46! are replaced with
effective numbers that include constantsx2, x3,..., times the
number of copper or zinc atoms in the second, third, e
nearest-neighbor shells. Of course, one now must fit to
results of a reliable LDA calculation of the LSMS type
find not only thel but also the constants that multiply th
numbers of atoms in the more distant shells. The numb
that they publish for fcc copper-zinc alloys will not work, fo
example, for fcc copper-palladium alloys. However, as m
nearest-neighbor shells are taken into account, the dif
ences between the picture presented by this model beco
less different from the one described in this paper. The nu
ber of possible charges increases from 12 to 72 to 1728
fcc and from 8 to 48 to 576 for bcc as the number of neare
neighbor shells increases from one to two to three. This
rapidly approaching the infinity of possible charges that
believe should be assumed. In addition, the number
nearest-neighbor shells in their model is approaching
number that we have in our local interaction zones, which
four for fcc and five for bcc. Of course, we include the Co
lomb interactions with an infinity of atoms.

The theories for the interatomic Coulomb energy d
scribed in Refs. 3–5 are based on the coherent-potentia
proximation ~CPA!,38 which is an excellent theory for the
electronic states of substitutional disordered alloys wh
good potential functions for the constituents of the alloy a
provided. The CPA does not contain a prescription for c
culating charge self-consistent potentials, and the met
used until recently39 assumes that the Coulomb potentials
the sitesVi are zero. In its usual form, the CPA provides t
average charges, e.g.,^q&Cu and ^q&Zn , but no information

y FIG. 20. Ratios of the two contributions to the Coulomb ener
uC1/uC2 for fcc alloys. The circles are the values for Cu-Zn allo
calculated with 500 atoms in the cell, and the squares are for Cu
alloys calculated with 256 atoms in the cell. The dashed line is
prediction of the MWZ model.
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about the fluctuations of charge about this average.
modified CPA theories~MCPA! of Refs. 3–5 are based o
the assumption that^q&Cu and^q&Zn can be found by assum
ing the average Coulomb shifts^V(n)&Cu and ^V(n)&Zn are
zero forn.1. This is roughly correct, as can be seen fro
Fig. 2. The value fora that comes from the screening a
sumption of the MCPA is 2.0/r 1, which we have shown in
Figs. 10 and 11 is reliable to within about 10%. It is th
possible that one can calculate improved values of^q&Cu and
^q&Zn from the MCPA, although it cannot predict the actu
charge on any particular site in a real alloy as explained
Sec. IV A. The energyuC1 is written in terms of̂ q&Cu and
^q&Zn in Eq. ~32!, and it can be calculated from any versio
of the CPA. The CPA results are not as restricted as the o
from the MWZ model because there is no assumption thaD
is independent of concentration.

The fact that the MCPA givesuC1 but notuC2 was rec-
ognized, and a proposal was made in Ref. 5 to use
Connolly-Williams ~CW! method40 to estimate the correc
tions. In the CW method, information about the electro
structure for ordered intermetallic compounds containin
relatively small number of atoms in a unit cell is used
estimate the properties of the disordered alloy. This appro
had only limited success.

Some of these same authors have made another pro
that appears more promising, and have used it in calculat
on Cu-Zn alloys.41 They combined the idea of the LSM
with the CPA to develop a charge self-consistent CPA th
among other advantages, includesuC2 automatically. A later
application of this locally self-consistent Green’s-functi
method~LSGF! to Pd-Rh alloys provides more evidence th
it is a useful approach.42 The LSGF goes beyond the olde
CPA’s in that it correctly takes into account the fact th
every atom has a different charge, and it treats the Coulo
energy as accurately as the LSMS. It still contains the es
tial feature of the CPA in that it leads to a Green’s functi
for the disordered alloy that has the same form as
Green’s function for a periodic solid, but with a very com
plicated effective scatterer on each site.

In the pioneering work on alloy theory by Mott,43

Friedel,44 Gautier, DuCastelle,45 and Pettifor,46 the inter-
atomic Coulomb energy is simply ignored, and this is a
true of much of the work done using the CPA.47 The results
shown in Fig. 5 can be used as a justification for that po
tion. Not only are the Coulomb energies for the copper-z
alloys small, but they are remarkably insensitive to the cr
tal structure. They are larger for Cu-Pd alloys, but are pr
ably still not very dependent on structure for the relative
small number of crystal structures that one encounters
metallic alloys.

VI. DISCUSSION

In Ref. 12, an analysis of the fundamental DFT-LD
equations was used to argue for the occurrence of theqV
relation. It was pointed out that a consequence of this r
tion is the expression forU C

q in Eq. ~32! that is local in the
sense that it can be written as a sum of single-site terms
far as can be seen, this expression is exact if the cha
come from a self-consistent DFT-LDA calculation. An im
e
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plication of this result is that, if one has the five basic p
rametersa, ^q&Cu, ^q&Zn , bCu, andbZn , the contribution that
a given charge on a siteqi makes toU C

q is known, without
any specific information about the other charges in the s
tem. This is really a surprising and counter-intuitive result
can have practical applications, because there are usefu
proximate methods, such as the embedded-cluster meth48

that provide exactly that information.
At the present time, an order-N calculation like the one

described here seems to be the only reliable method for
taining the interatomic Coulomb energy for a disordered
loy, or for obtaining the five basic parameters listed abo
This is not as bad as it sounds, because a relatively s
calculation,N5256, should be adequate. With a massive
parallel supercomputer and a well-developed program,
calculation is not difficult. Potentials obtained by a straig
forward averaging of the self-consistent atomic potenti
obtained in the LSMS calculations have been used in C
calculations. The average charges on the sites obtained
this CPA calculation are identical to the average char
from the LSMS. There is no trivial explanation for this re
sult, and it indicates that the theories are not incompati
Another possible way of approaching these calculations
the LSGF-CPA method of Abrikosovet al. in Ref. 41. One
could imagine using the LSMS for the things that it does b
and the CPA for the things that it does best, such as inve
gating Fermi-surface effects in alloys.

The connection between the slopea and the nearest
neighbor radius and the relations between thebCu and bZn
with the average densities of states at the Fermi ene
which were pointed out in Sec. IV, are interesting, but th
do not constitute a theory. It is to be hoped that the insig
into this problem that have been gained from the LSMS c
culations can be used to develop a more analytical appro
to the Coulomb energies, and indeed other aspects of a
theory. This would not only make it possible to obtain t
desired results with less computation, but would give m
physical insight into the results.

Finally, the argument based on experimental evidence
atomic size effects will not affect the results of the calcu
tions described in this paper appreciably, given in Sec. II
should not be construed to indicate that the authors cons
size effects to be uninteresting. One of our goals is to use
LSMS in Car-Parinello49 type calculations to study the effec
of atomic size on the total energies of metallic alloys.
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