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Coulomb energies in alloys
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With the help of ordeiN calculations on realistic models of random substitutional alloys, we have studied
the concentration, structure, and composition dependence of the part of the total energy that is stored in the
interatomic Coulomb interaction. An observation about the relation between the self-consistent charges asso-
ciated with a site and the long-range electrostatic potential at the site is used in the analysis.
[S0163-18297)01512-9

[. INTRODUCTION results of our calculations. In the last section we discuss our
conclusions in the light of the preceding development and

Recently, there have been a number of theoretical studiggdicate future applications.
of the part of the total energy of disordered alloys that is
stored in the interatomic Coulomb enerjy.We have cal- Il. BACKGROUND
culated the electronic states of realistic models of disordered
alloys within the local-density approximatitfh(LDA) using
an orderN method that is particularly well-adapted for cal- ~ The purpose of this section is to specify unambiguously
culations on transition metals, the locally self-consistenthe part of the total energy that we consider to be stored in
multiple-scattering methotl. An analysis of the results of the interatomic Coulomb interaction in the calculations to
these calculations makes it possible for us to comment upofellow. The following equations highlight the fact that the
the concentration, structure, and composition dependence &foulomb energy, the Coulomb potential at a site, and the
the Coulomb energies of alloys. An analysis of earlier calcucharge associated with a site take on a particularly simple
lations led to the discovery of a relation between the selfand unambiguous form when the muffin-tin approximation is
consistent charge associated with a site and the long-rangtsed for the charge density. This result is not new, but it is
electrostatic potential at the site, which we call th ~ not generally appreciated by those who have not carried out
relation!? The qV relation is used in the present study. a detailed calculation of these quantities.

Most of the calculations are on the copper-zinc alloy sys- According to the density-functional thedfyDFT, the to-
tem, which was chosen for several reasons. First, it is thé&al energy of a system of electrons and nuclei is a functional
classic example of a Hume-Rothery allbyand has been of the electron density(r). It is normally written in the form
discussed extensively in the materials science literature.

Since the constituents are both transition metals, experience Elp]=Tlpl+Enlp]l+Exdp], D
from ordmaly b_and-theor_y ca_llculatlons leads us to _expec\t,vhere Tlp] is the kinetic-energy functionak,Jp] is the
that the_ m_u_ffm-tln approximation that we use will not intro- exchange-correlation energy functional, and

duce significant errors. Finally, there is no experimental or

theoretical reason to believe that the size difference between

copper and zinc would cause the rms deviation of the atomic Enlpl= J p[ 3¢+ Vyldr+Vyy ()
positions from the sites of the ideal lattice to be significant.

We also include some calculations on copper-palladium alis the Hartree energy functional that contains all the contri-
loys for comparison. butions from the Coulomb interactions between the particles.

In the following section we write out the LDA equations  In this paper, calculations will be carried out on systems
for the total energy in a form that is useful for the following that contain an infinite number of atoms. A cell containhhg
discussion, and comment on possible sources of error. Iatoms in any desired arrangement is constructed, and then it
Sec. lll, we explain briefly the ordé¥-method, and show the is periodically reproduced to fill all space. At the present
results of our calculations on the total Coulomb energies iime, N can be as large as 1024. The charge density is writ-
fcc and bec alloys as a function of concentration. In Sec. IVten as a sum of nonoverlapping functions,
we discuss a number of theoretical questions, such as the

. . . N N
convergence and reliability of the calculations and the mean- R
ing of the parameters that have been introduced. We also p(r):;l pzl p'(r=a—Ryp), ©)
comment on the extrapolation of our results to obtain the
properties of ideal disordered alloys. In Sec. V, we comparavhere the positions of nuclei within the cells are given by the
the predictions of theories proposed in the literature with thevectorsa;, and the positions of the cells are determined by

A. The Coulomb energy
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the vectorsR, . From the definition of the model, the charge  In the calculations to be descriqu(r—a—Rp) has the
p(r—a—R ) is the same for all vectorR,, and the number muffin-tin form, which means that it is a spherically symmet-
of cells, Nc, will be allowed to increase Wlthout bound. The ric function p,,(r) within a muffin-tin sphere of radiuRy,
process for writingp(r) in this way starts with the construc- centered ag, +R, . Itis a constanp, outside that sphere, but
tion of polyhedral atomic volumeQ; centered at each of the it goes to zero at the boundary 6% as described above. It
atomic positionsa; +R, by passing planes perpendicular to should be clear that, even in the muffin-tin case,
lines connecting the atom with its neighbors. If the atomicp'(r—a,—R p) is not a spherically symmetric function. Using
positions form a regular lattice, these atomic volumes wouldhe fact that the charge densities have the muffin-tin form
have the same shape as the Wigner-Seitz cells for that latticand carrying out a considerable amount of manipulation
The functions that appear in the sum in E8). are obtained leads to

by definingp'(r —a,—R,) to be equal t(r) whenr is within

();, and it is zero whem is outside of(); .

3 . . . )
The functions that appear in the Hartree energy in(2y. UC_ijzzl Q'“ijQ'_;1 [2p0Q"yi+poQivil, (10
in addition to p(r), are the Coulomb potential due to the '
electrons where
p(r’) L1 1 f dr
r :Zf dr’, 4 = —_— —, 11
#0=2 = @ S R el T @
the potential due to the nuclei and
27, dr
V() =-— 5 Yi= f —. 12
N( ) Elpzl |r—a| Rp| ( ) i o, r
and the interaction energy of the bare nuclei The chargeQ are the integrals of the spherically symmetric

function p'(r)—pd’ (r), whered'(r) is the step function that
is one wherr is in ); and zero otherwise

Vyn=— 2 ZC

6
ij=1p=1 |a1]+Rp| ®)

i Rint i 2 am
with a; =g —a;. The prime on the summation sign indicates Q _47Tfo pmd1)r7dr=po = (Rp)3-2;. (13
that the sum does not include the terms for which the de-
nominator is zero. The factor 2 appears because dimensio
less atomic units in which the energy is measured in Ryd
bergs, distances in Bohr radii, and the charge in electroni
charges are used. Inserting these functions into the equati

H’he sum in Eq(11) would not converge by itself, but it was
pomted out by Ewaltf that the inclusion of the integral over

Il space yields a convergent quantity. Techniques for calcu-
f ting the Madelung constanig; on a computer are well

for the Hartree energy and making use of the invariance of €Y iloped . lomb i . b f q
the system under translation by a cell lattice ve®greads intc-)r € intra-atomic Coulomb interaction can be transforme
to
N Ui[pi]:2(477)2metpi (r)frpi (r’)r’2dr’r dr
Eulp]=No| 2, Uclp']+Uc|, ) ¢ o "M ot
=
o Rmt .
where U [p'] is the intra-atomic Coulomb energy for the _87Tzif mtp'mt(r)r dr—477p0QlRﬁ1t
atomic volume(); , 0
o _ _ . 87 i
U'c[p']=f POIFHM+VI(DIdr, (@) ~ 5 PemRut[200Q vt P57 (14
Q;
. . . It can be seen that, in the evaluation Bf[p], the terms
andU is the interatomic Coulomb energy included in the square brackets are canceled by the same
N (1)) terms in Eq.(10). The resulting expression for the Hartree
=> > f f P dr dr’ energy per cell is the one that is normally used in band
ij=1p |r—r —a;—Ry| theory calculations on systems with more than one atom in a
unit cell, and was first obtained by Asano and Yamastita.
) 2 ff Zip!(r) Further details of the derivation can be found in that paper.
i7=1p=1 Jo, |r— i — p| After the cancellation of the terms in the square brackets,
the only contribution to the interatomic Coulomb energy is
N E EC © the sum, which can be written

ij=1p=1 |a|]+Rp| N

Qiaiij:Uqc+i:21 (p5Qi—2pd)C',  (15)

M =

It should be noted that, even though is the energy per cell
and its magnitude is proportional b, it contains sums over
an infinite number of atoms. where

i,j=1
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N N
Ci:jgl a”QJ . (16) A:jzl aij (23)
The chargey' is the net charge in the atomic volurék, is a constant independentiofThen the interatomic Coulomb

— Qi+ o2, (17) energy is simplyU  plus a constanNAp3Q% We assume
q Poi - that this is the case in the calculations to be discussed. It
These charges, which satisfy the neutrality condition, might seem that the displacement of the atoms about their
ideal sites would complicate this picture because the atomic
N . . . .
2 i (18 size Qf copper qln‘fers from that of zinc or palladium. The
“ =5 experimental evidence indicates that this is not the case for
metallic alloys.
are the ones that will be defined as the Charge associated with Atomic size effects have been studied by X-ray and neu-
sitei. The functionU ¢, tron diffractionists for decades. The distortions due to size
N effects in homogeneous solid solution alloys are in the first
ul= 2 qaiq (19 cla_ss, according to the classification scheme of Krivodftaz,
if=a which means that they produce a displacement of the Bragg
. . . . peaks, a reduction in their intensity, and diffuse scattering.
is formally equwalen_t to the |nteraFom|c Co_ulomb energy perrpe Bragg peaks are not broadened. The displacement of the
cell of a series of point charges with magnitudes equal to thﬁnes is simply related to the change in lattice constant of the

. | .
net charge per atomic cef placed on the siteg +R,, alloy. A theory for the reduction in intensity of the Bragg

N Ng i peaks was developed by Krivoglaz, but there is experimental

uld= 2 L (20) evidence that a simpler theory is quite adequate for metallic
c . — = |a1 + R | ) 19 H i i -
ij=1p=1 |&j p alloys:™ In this theory, atomic displacements produce a re

duction of the intensity of the Bragg peak located at the
scattering angled by the factor exp—2(B+B’) sin?0/\?],
where B is the standard Debye-Waller factor aid is a
static Debye-Waller factor. The mean square displacement of
1 N the atoms about their ideal sites due to the temperature-
Uqczz E g'Vv', (21)  dependent excitation of phonons givgs £7Xu3,), whereas
=1 the static displacement of the atoms caused by the size dif-
where ference leads t@'=%7%u2). SinceB’ is independent of
temperature,B and B’ can be found individually from
N _ powder-diffraction patterns measured at several tempera-
Vi=> 29 (22 tures.
B For the case of an alloy with a very large size mismatch,
It is evident from these equations that, in the muffin-tin COPPer-gold, it was found experimentafiythat B' is equal

O, LY 4
approximation, the interatomic Coulomb potential can bel® B @t liquid-nitrogen temperatures arkél =3B at room

calculated as if the system is a lattice of point charges, eveffMpPerature. If copper and gold retained the sizes that they
though the charge densitig&r —a, — Ry) are not spherically have in pure metal$ Would. have'a value 20 times as large
symmetric. The reason for this is tha(t)—p, can be written as the one observed. The size mismatch between copper and

as a sum of nonoverlapping spherically symmetric chargeg,inc is quite small, and, even for copper and palladium, these

and the effect of the constant charge is taken care of by thexperimental observations indicate that static displacements

integral that appears in the definition of the Madelung conVill not %flfect the results of the calculations in this paper
preciably.

stants in Eq.(11). These equations are so useful that mos2P . , _
There are more sophisticated experimental studies of

treatments of the LDA equations start from them, even when N ; ,
the muffin-tin approximation is not used. atomic size effects that can be carried out with x rays gen-

erated by a synchrotron, such as themeasurements of the
first moment of the mean static displacements of neighboring
pairs of atoms in alloyé! It is an interesting challenge to
It might be thought that the muffin-tin approximation construct a structural model that will reproduce the results of
would introduce unacceptable errors into these calculationshese experiments, but that model must also be consistent
We argue that this is not the case because we are focusing oith the results of the much simpler experiments described
alloys of transition-metal alloys. A number of calculatibhs above.
have shown that the muffin-tin approximation is quite good
for transition metals. Reas'on.s for t_h|s arg_that iny a small Il CALCULATIONS
fraction of the total charge is in the interstitial region outside
the muffin-tin spheres, and that charge is uniformly distrib- The equations in the preceding section have been used to
uted in that region. calculate the electronic structure for models of substitutional
When the points; + R, form a Bravais lattice, such as the alloys by setting up cells witth andB atoms on the sites of
fcc or bec lattice, all the atomic volumé are equal td)  a bcc or fcc lattice. The total number of lattice site®isand
andC' in Eq. (16) is AQ, where the spatial distribution of the atoms is random in the sense

This result is obtained by treating the integral in Etjl) as
a constant and making use of the neutrality condition of Eq
(19). It may also be written

B. Possible errors
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that the probability of a\ atom being on a site is and the 0.0
probability of aB atom being on the site is-1c.?? These
cells are periodically reproduced to fill all space, but the
calculations cannot be done with conventional band theory
methods because the computer time required for such calcu-
lations is proportional tdN® and they are impractical for very
large N. Methods for calculating the electronic structure of
condensed matter have been developed recently which are
known as ordeN methods because the computer times scale
like N. Obviously, there must be some truncation of the fun-
damental equations to achieve this, but, in modern oker- -0.1
methods, the calculations are converged so that the trunca-

tion has no effect.

0.1

0.0

potential at site (Ry)

The orderN method used here is called the locally self- -0.2 : ' '
consistent multiple-scatterin.-SMS) method, and a com- 02 0.1 0.0 0.1 0.2
plete description of this is in the literatut®?* It is based on net charge on site (e charge)
the multiple-scattering equations of Rayleigthat are also
the basis for the Korringa, Kohn, Rostoker met&®t fol- FIG. 1. The Coulomb potentials evaluated at the sites of a 50%

lows that the method is well-adapted to treat transition metbcc Cu-Zn alloy plotted against the net charge on the site. The 512
als. When solving the multiple-scattering problem, the inter-data points marked with crosses are for the sites occupied by Cu
action of an atom with all neighbors in a local interaction atoms in a model containing 1024 atoms in the cell, and the plus
zone that includes four or more nearest-neighbor shells i§igns are for the Zn sites. The white diamond shapes are the 128
treated exactly. The Coulomb interactions with the remain#ata points for the sites occupied by Cu atoms in a model contain-
ing infinity of atoms are also treated exactly, but theing 256 atoms, and the square shapes are for the Zn sites.

multiple-scattering part is approximated. This process is re- i i ,
peated for each of th&l atoms in the cell, and the entire centered__cublc(bcc) crystal with a lattice constant of 5.5-
process s iterated until self-consistency is attained. bohr radii. The number of atom¥ in the cell for this calcu-

The calculations are speeded up by exploiting the analytittion is 1024, so there are 5&2,V' points corresponding to

properties of the single-particle Green’s function and the“OPPer sites and 512 corresponding to zinc sites. The atoms

variational properties of the LDA, but they would be rather Were distributed on the sites with the help of a random num-
time consuming without a massively parallel supercomputerP€r generator. The charges associated with the copper sites
The results of the self-consistent electronic structure calcula®™® On the positive side of the figure because copper gains

tion are expressed primarily in terms of the Green’s functiorf/€ctrons from zinc, and the charge is measured in electron

G(Er,r'). The density of one-electron state¢E) is ob- charges. It can be seen thdtis a linear function of they',
which is theqV relation that was pointed out and discussed

tained from . ; o
at some length in Refs. 7, 8, and 12. This relation is not
1 simple electrostatics in that it does not exist for an arbitrary
n(E)=——lim Im f G(z,r,r)dr, (24)  set of charges on the sites, even if the potentials are calcu-
z—E lated exactly. The charges must be the result of a self-
and the charge density of the electron gas at any point qonsister_ﬂ LDA calculation. We obserye this in our calcula-_
the sample is tions during the approach to self-consistency. The system is

neutral at every step, but there is a width to the distribution
1 Er of the points about the line that becomes smaller as self-
p(r)=——1Im f G(zr,r)dz (25  consistency is attained. TheV relation for a 50% bcc
o copper-zinc alloy calculated with a cell that contains 256
The net charges on the sitqisare calculated using Eq&ld) atoms is also shown in Fig. 1. The agreement of the results
and(17), and the Coulomb potentiald at the sites are cal- from the two calculations shows that convergence is not a
culated from Eq(22). problem, a point that will be discussed in more detail in Sec.
The LSMS is similar in philosophy to a method proposed!V. ,
recently by Kohrf” The use of a local interaction zone is ~ The sums that define the potentisisdo not converge at
equivalent to the principle of near sightedness described iall rapidly. Since we have a table of all the charges in the
that paper. The primary differences are that the LSMS makesample described in the previous paragraph, we can study the
no explicit use of the penalty function introduced in thatconvergence by calculating the contribution\to from the
paper, but it does include the long-range Coulomb interacatoms within and on thaeth nearest-neighbor shell,
tions for all systems, not just the ionic crystals mentioned 2q/
there. i(n)—
vin) aijEsrn a—al’ (20
A. Results for a bce copper-zing alloy where the notation means that the only indigethat are
The Coulomb potentials are plotted as a function of thesummed over are those for whidﬂag—ai|srn, with r, the
net charges in Fig. 1 for a model of a 50% copper-zinc alloyradius of thenth nearest-neighbor shell. The potent&(n)
with the nuclei placed on the ideal lattice sites of a body-for the sitei equal to 513, which happens to contain a Cu
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coulomb potentials (Ry)

-0.15

g -0.20 L i i ! I
0 10 20 30 40 50 0.2 -0.1 0 0.1 0.2

number of nearest neighbor shells net charge on site (e charge)

FIG. 2. The data points marked with squares connected by a FIG. 3. The Coulomb potentials evaluated at the sites and the
solid line are the contributions to the Coulomb potential from charges on the sites of fcc Cu-Zn alloys with cells containing 500
charges included withim nearest-neighbor shellg'(n). The po-  atoms. The plus signs for positive charges are the data points for
tential shown is evaluated at site 513 in a 50% bcc Cu-Zn alloy thasites containing Cu atoms and those in the negative region are for
contains 1024 atoms in the cell. The straight dashed line shows thegn atoms in an alloy with a Cu concentration of 90%. The crosses
asymptotic value thav>(n) attains asn—«. The data points are for a 75% alloy, the diamonds for 50%, the squares for 25%,
marked with circles are the average of ¥¢n) over all sites that  and the circles for 10% Cu.
contain Cu atoms. The straight solid line is the average., of the

Coulomb potentials at the Cu sites in the alloy. Vi= = By (G — () ) — (@) ic7n (30)
- Zn Zn Zn» '

atom, is plotted for £n<52 in Fig. 2.(The reason that 52
shells are used in this plot is because the periodically reprofhat these equations are an accurate representation of the
duced central site is in the fifty-third nearest-neighbor shelfesults in Fig. 1 is demonstrated by the fact that, in a least-
for this 1024 atom modelThe behavior ov®'¥(n) is typi-  squares fit to the calculated data, the rms deviation is very
cal of all theV'(n), and it can be seen that convergence tosmall and there is no improvement to the fit when terms
the valueV>® calculated for an infinite number of sites can- quadratic in the fluctuation&y'—(q)c,) or ('—(q)z,) are
not be seen within a range of 52 nearest-neighbor shells. Tredded to the fitting functions. There is no requirement that
average of the/'(n) for all sitesi that contain a Cu atom, the slopesBc, and B,, must be the same, although it is clear
(V(n))cy, is compared with the average of the(V),, in  from Fig. 1 that the difference is small.
Fig. 2 as well. It can be seen that approximate convergence is
obtained fom equal to one. This demonstrates the reliability
of both calculations, and has other implications that will be
discussed in Sec. IV. The Coulomb potentials are plotted as a function of the
A consequence of the charge neutrality condition of Eqnet charges in Fig. 3 for copper-zinc alloys that have the
(19) is that the sum over all sites of the Coulomb potentialsface-centeredfcc) crystal structure and copper concentra-
is zero tions of 10%, 25%, 50%, 75%, and 90%. Five hundred atoms
N are randomly distributed on the ideal lattice positions, and
S vio 27) the lattice constant of 6.90-bohr radii is used for all concen-
“~ ' trations. The data fall on a series of straight lines that are
approximately parallel, as described in E80). The param-
Defining the average charge on the copper and zinc sites @Sersa, B, and,, have a weak concentration dependence
(@)cu and(d)z,, and the average potentials @¢)c, and  that is shown in Fig. 4. The midpoints of the lines are the

B. Results for fcc copper-zinc alloys

(V)zn, it follows from Egs.(18) and(27) that (Veur () ey @and (V)z,, (q)z, points appropriate for the
(1 -0 given concentration. The displacement of the lines relative to
c(@)cut (1=C)N(A)za=0, each other is determined by the charge neutrality conditions

. _ in Eqg. (28) and the parameter.

c(Vieut (1=€)(V)zn=0. (28 It can be seen that the lines for the extreme concentra-
Dividing the second of these equations by the first, it followstions, 10% or 90%, are broken up into segments and appear
that to be shorter than those for intermediate concentrations. This

is due to the finite number of atoms in our cells. For an
Mcrm — (e (V)zn=— (A zn. 29 infinite crystal, the spaces will be filled in and the lines will

The qV relation illustrated in Fig. 1 can thus be expressed®Ppear continuous. It will still be the case that the density of
algebraically by the equations points along the line is not uniform, however. The reasons
. ' for this and also for the concentration dependence, @,
V'=—Bcdd'—{q)cw) — a{q)cy, iCCu, and 3,, are discussed in Sec. IV.
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energies U and U, for Cu-Zn alloys (mRy)
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FIG. 4. The parameters that determine the relation between
charges and Coulomb potentials in Cu-Zn alloys. The models for FIG. 5. The contributions to the Coulomb enengy; anduc,
the fcc alloys have cells that contain 500 atoms and those for bctor Cu-Zn alloys. The models for the fcc alloys have cells that
alloys contain 432 atoms. The solid lines connect the values for th€ontain 500 atoms and those for bce alloys contain 432 atoms. The
fcc alloys, the circles indicating the values f6¢,, the squares for ~ solid lines connect the values for the fcc alloys, the circles indicat-
Bzn, and the diamonds for. The dashed lines connect the values Ing the values fouc; and the squares farc,. The dashed lines
for the bcc alloys, the crosses indicating the valuesdgy, the plus ~ connect the values for the bcc alloys, the crosses indicating the
signs for3,,, and the triangles fow. values foruc; and the plus signs fauc,.

C. Coulomb energies of copper-zinc alloys bohr radii. The Coulomb energias.; and uc, for these
alloys are also plotted in Fig. 5. This figure demonstrates that
the Coulomb energies in alloys depend surprisingly little on
structure. Of course, copper and zinc atoms are almost the
same size and their atomic volumes are about the same in a

The interatomic Coulomb energy per atam{=U &/N
obtained by inserting Eq30) into Eq.(21) is

ud=ucs+ucy, (31) bcc or fce alloy. The charge per site transferred from the zinc
to the copper sites,
where
A=(d)cu=(Dzn, (33
Uc1=a3{(q)cdzn. depends very little on concentration and is approximately the

same for the two structures. The binding energy of alloys is
typically of the order of hundreds of milli-Rydbergs and the

_ _c Nch i 5 difference in energy between two phases for a given alloy is
Uco= = Beu 2Ney 1520 (@' —(@cv) typically of the order of milli-Rydbergs. The energy is
about 2.5 mRy for both the fcc and bcc alloys, so the mag-
1—¢c Non ) nitude of these Coulomb energies is not insignificant. How-
—Bzn 2Ny ig;n (@' =(a)zn)"- (32)  ever, their importance is diminished by their insensitivity to
structure.

, , . o The details of the dependencewf; anduc, on concen-

The form of this equation fond has some interesting impli- ation is related to the concentration dependence ofathe
cations f<_)r the DFT-LDA theory, as was discussed in Re Bey, and By,. We have commented on the plots of those
12'_ The first termuc, depends only on the average chargessnctions for the fcc alloys shown in Fig. 4. We plot them for
while uc, depends on the mean-square deviations from the, o pec alloys in the same figure.
average charges. These two parts of the Coulomb energy are
plotted as a function of concentration in Fig. 5 for the fcc
alloys described above. Sinegl(c) must be zero foc=0
and 1, it is not surprising that these curves are roughly para-
bolic. These calculations on the copper-zinc alloy system illus-

LSMS calculations on models of bcc copper-zinc alloystrate the concentration and structure dependenaedgt),
with N equal to 432 and copper concentrations of 10%, 25%but it might be thought that they are specific to this system.
50%, 75%, and 90% have been described in Refs. 8 and 1Zor that reason, calculations on a system that is known to be
The lattice constant used in all of those calculations is thegualitatively very different, the copper palladium system,
same as the one used for the calculation done with 102Bave been carried out. In the neighborhood of the Fermi
atoms described above, 5.5-bohr radii. For the lattice conenergy, the electronic states for both copper and zinc, and
stants we have used, the Wigner Seitz radius for the fcany alloy of these two metals, are primaryp states. The
lattice is 2.697-bohr radii, and for the bcc lattice it is 2.708-electronic states for palladium, on the other hand, have sig-

D. Results for fcc copper-palladium alloys
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FIG. 6. The Coulomb potentials evaluated at the sites and the I
. . o FIG. 8. The contributions to the Coulomb enengy; anduc,
charges on the sites of fcc Cu-Pd alloys with cells containing 25(} : - ;
- . . or fcc Cu-Pd alloys with cells that contain 256 atoms. The circles
atoms. The plus signs for positive charges are the data points for .
. - r . . . Indicate the values fouc; and the squares farc,.
sites containing Cu atoms and those in the negative region are for
Pd atoms in an alloy with a Cu concentration of 90%. The crosses
are for a 75% alloy, the diamonds for 50%, the squares for 25%concentration dependence. Alg8y, and Bpq are less differ-
and the circles for 10% Cu. ent from each other thagB, and B5,, which is somewhat
surprising.
nificantd character, and it follows that the density of states The two contributions to the Coulomb energy,; and
at the Fermi energy for palladium atoms will be much largeruc. are shown if Fig. 8 for these alloys. They have the ex-
than that for either copper or zinc. pected approximately parabolic shape, but the maximum
The Coulomb potentials are plotted as a function of themagnitude is significantly greater. This is due to a larger
net charges in Fig. 6 for models of copper-palladium alloyscharge exchange between the copper and palladium sites.
with the fcc crystal structure having concentrations of 10%,The differences between the average charges on the Cu and
25%, 50%, 75%, and 90%. Two hundred and fifty-six atomsZn sites in the fcc and bce Cu-Zn alloys are plotted as a
are randomly distributed on the ideal lattice positions, andunction of concentration in Fig. 9, and compared with the
the lattice constant 7.1-bohr radii is used for all concentracorresponding\’s for the fcc Cu-Pd alloys.
tions. It can be seen that the lineg¥ relation is displayed
by this alloy as clearly as it is for the copper-zinc alloys. The

slopese, B¢, and Bpy are plotted in Fig. 7 as a function of 5
concentration. By comparing this figure with Fig. 4, it can be % 04 ‘ ‘ ‘
seen thatBg,, and Bpq are significantly smaller than the o
slopes for the Cu-Zn alloys, and they have significantly less @
2
£ o03- .
1.4 T T Q
(=]
g
@ 1.2+ = G %
[
2 4oL - g 02 , gm0 -
g 2
& o8- . 3
2 3
= o
g 0.6 7 g 0.1 ! L L
o = 0.00 0.25 0.50 0.75 1.00
3 04k T, — 5 o
© atomic fraction of Cu
:O-) 0 2 | -
’ FIG. 9. The differences between the average charges on the
0.0 i 1 L atoms of the two constituents in random alloys. The differences
000 025 050 075 1.00 between(q)c, and and{q)pq in fcc Cu-Pd alloys calculated with

atomic fraction of Cu cells that contain 256 atoms are indicated by circles. The differ-
ences betweef{q)c, and(q)z, in models of fcc Cu-Zn alloys cal-
FIG. 7. The parameters that determine the relation betweegulated with cells that contain 500 atoms are indicated by squares.
charges and Coulomb potentials in fcc Cu-Pd alloys calculated witfThe differences betweefy)c, and(q)z, in models of bcc Cu-Zn
cells that contain 256 atoms. The circles indicate the value8dpr  alloys calculated with cells that contain 432 atoms are indicated by
the squares foBpy, and the diamonds fas. diamonds.
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IV. THEORETICAL CONSIDERATIONS 0.44
. T T

A. The parameter « 0431

The first topic to be considered in this section is a deriva-
tion that explains the origin and the approximate magnitude
of the parametew introduced in Eq(29). For this part of the
discussion, it is convenient to write the net charge on a site

0.42 -

0.41 -

~
\
\
{
4

o for fcc and bee Cu-Zn alloys

asq(a) rather thary'. The averagéq(0)q(ay)) is defined by 0.40
N 0.39 | / 4
1 ] /
(a0a(a))=y 2 a@a@+a), (64 0L\ 7 -
\
and is called the charge-charge correlation function. Because 0.37 ‘o/ )
of the neutrality of the crystal, this correlation function sat- 0.36 w ! |
isfies the sum rule, 0.00 0.25 0.50 0.75 1.00
N atomic fraction of Cu
k§=:1 (a(0)q(a))=0. (39 FIG. 10. A comparison of the parametesswith 2.0k, for

Cu-Zn alloys. The circles are thés and the squares 2rQ/for fcc

It might be worth pointing out at this point that the averagesalloys calculated with 500 atoms in the cell, and the points are
that are written as sums over sites in this paper are equivalenbnnected by solid lines. The diamonds are dfeeand the crosses
to ensemble averages if the system is big enough_ Since w&0f 4 for fcc alloys calculated with 500 atoms in the cell, and the
are invoking charge neutrality, the canonical ensemble madeoints are connected by dashed lines.
up of all systems with a fixed number of Cu and Zn atoms
should be used. shellr,. This has already been illustrated in Fig. 2, because

Starting from the formula in Eq(26) for the Coulomb it is equivalent to the observation tha¥(n))c,~(V)c, and
shift at theith site due to charges within and on théh  (V(n))z,=~(V)z, for n>1. It follows that
nearest-neighbor shell, a formula for the average of these
potentials can be written

2 (a@)e=~(Dew 2 (a(@))z0= ~(Dazn,
2 . k=T1 a=ry
V(m)ar S Ad(@)eu (39)

a
“ and the average shiftd/)¢, and{V), are given by
, 2(9(a)zn
V(N))ge=>' ——, 36 2(g)c 2(q)7
Mma=3" =5, (%9 Vem = =72, (V== =12 40
The primes on the summation signs mean that the sum is o o
only over sites such tha&,<r,, the radius of thenth This derivation leads to the prediction that the parameter
nearest-neighbor shell, and the restricted averages introduceds equal to 2/;. The values ofx are plotted in Fig. 10 for
in this formula are defined by the fcc and bcc Cu-Zn alloys. It can be seen that they are
rather close to 24 for the fcc alloys. The true values far
Neu are consistently smaller thanr2/for the bcc alloys, which
<Q(ak)>(:u:m CEC q(a+ay), means that the correlation length is larger tharfor these
ul u

alloys. The values ofx are plotted in Fig. 11 for the Cu-Pd
alloys. The difference between the calculated values and the

37) approximation is greater for this more highly charged alloy.
It should be emphasized that E@0) is basically a conse-

, ) , quence of the overall charge neutrality of the crystal and the
The sites summed over in the calculation(@fa,))c, are not  correlation length of the charges. The only sense in which

necessarily occupied by Cu atoms, the notation is meant ighis equation could be interpreted as describing the screening
indicate that the site is occupied by a Cu atom. These qf the central charge by charges on the first-nearest-neighbor
restricted averages are similar to the charge-charge correlgpg| is by focusing on a mathematical abstraction, the aver-
tion function of Eq.(34), and also obey sum rules that are theage copper or zinc site. The screening of any actual site in

Nzn

(a(@d)zn= g ig;n q(a+ay).

analog of Eq(35), the alloy is illustrated by the functiod’ in Fig. 2.
N N
2 (A@)e=0, 2 (A(a))x=0. (39 B. The slopes

We will now consider the slope8that were introduced in
Our LSMS data was used to calculate the restricted averagésy. (30). Introducing parametergthat are the reciprocals of
for the alloy samples described in this paper, and the evithe 8's makes it possible to rewrite EG30) in the form
dence is that they are approximately zero when the magni- _ _
tudea, is greater than the radius of the first nearest-neighbor (9" —{Dcw=—rcd V' =(V)cw),
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FIG. 11. A comparison of the parameterswith 2.0k , for fcc FIG. 12. The slopegcy=1/Bc, and yzn=1/Bz, for fcc and bee
Cu-Pd a”OyS calculated with 256 atoms in the cell. The circles arq:u_Zn a”oys_ The circles represent the values m and the
the o’s and the squares are 2.9/ squares fory,,, for the fcc alloys. The line made up of short dashes
_ _ connects the data points for the approximate values obtained from
(9= (D) zn) =~ Yz V' = (V) 7). (41  Eg.(42) with the constants written below that equation. The crosses

represent the values fox, and the plus signs foy,, for the bcc
Clearly they's describe the rate at which the charge will be alloys. The line made up of short dashes connects the data points
induced on a site by the Coulomb potential at that site. It idor the approximate values obtained from E4Q).
reasonable to expect that this rate will be related to the den-
sity of states at the Fermi energy for the atom. The fact thatot simply related to the Coulomb shift. A rigid displace-
the slopes of theV lines are characteristic of an alloy at a ment of a potential is reflected in a shift of the core levels.
given concentration, as seen in Figs. 4 and 7, suggests th@he displacement of theSlLcore levels of copper and zinc
the 's should be related to the average densities of states &tom there average values on the sites of a 50% bcc alloy is
the Fermi energy at that concentratidpc, and{p)z,. The  plotted in Fig. 13 versus the Coulomb potential at the site.
densities of states at the Fermi energy for all the atoms in oubDrawing lines through the data points, it can be calculated
samples, as well as their averages, can been obtained readihat a shift of the Coulomb potential leads to a shift of the
from our LSMS calculations. potential that is roughly 0.2474 times as large for the zinc
The simplest relationship that thgs can have with the atoms and 0.2856 times as large for the copper atoms. This is
average density of states is linear, so we attempted to fdue to screening by the outer electrons, and is not surprising.
them to the functions It is more important to note that there is considerably more
scatter in the data points about the straight line than there is
Yei=acutbelpP)cus  Yzn=aztbz(p)zn- (42 in the qV plots. This fact, plus the fact that the slopgs,

Our best fits for the fcc alloys described in Sec. 1l B lead to
the values,ac,=0.231 58, b,=0.092 73, a,,=0.238 32, 0.040 T | |
andb,,=0.128 85. Our best fits for the bcc alloys described
in Refs. 8 and 12 lead t@.,=0.207 22,b-,=0.089 39,
a7,=0.232 91, andb,,=0.114 98. The values foy calcu-
lated from our LSMS data are plotted in Fig. 12, and com-
pared with values calculated from E@2). It can be seen
that the agreement for the fcc alloys is excellent and for the
bcc alloys it is quite good. The worst agreement is for the
bcc alloy with 10% Cu(When we saw this, we repeated the
calculation for another 10% alloy generated in the same way.
The slopeyc, changed from 0.536 51 to 0.536 65, whig,
changed from 0.580 49 to 0.590 81, amounts that are incon-
sequentia). It should be emphasized that ths andb’s are

ge (Ry)

shift of core levels from avera

. : - -0.030 : . ’ ' '

independent of concentration, so that the concentration de- .0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
pendence of the’s, and hence the slopes of the lines in Figs. Coulomb shift at site (Ry)

1, 3, and 6 are due to the concentration dependence of the

average densities of statgec, and(p)z, . FIG. 13. The shifts of the 3 core levels from their average

The relation betweery and the density of states should values versus the Coulomb potential at the sites in an fcc Cu-Zn
not lead to the conclusion that thegV relation is simply  alloy with a concentration of 50% calculated with a sample that
caused by the charge flowing onto a site due to a displacegbntains 500 atoms. The crosses are for the Cu atoms and the plus
potential. In the first place, the displacement of a potential isigns are for the Zn atoms.
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and vy, are more nearly the same than would be expectedhis proposition seems self-evident, but, when modeling the
from a potential shift argument, indicates that such an argualloy with supercells, the question is, how large dbekave
ment cannot explain thgV relation. to be? The theoretical proposition that the divergence in the
The preceding derivations allow us to make reasonabl@roperties must take place somewhere between the micro-
predictions for the dependence of the parameters iN&J). scopic and macroscopic limit has been argued persuasively
on the concentration and the atomic species. This is far fronby Anderson, who also supplied a number of examples from
a complete theory, since the only way that we can get théis research interestS A simple example of a property that
constants that appear in E@2) is from the LSMS calcula- demonstrates this qualitative difference is the finite residual
tions. As pointed out in Ref. 12, a more complete analysigesistivity of a disordered alloy, which is the electrical resis-
must be based on the DFT-LDA equations in Sec. Il, makingivity of an alloy in the limit as the temperature approaches
use of the concept of fragments introduced by H&ftishe  zero. An ordered intermetallic compound will have a resis-
analysis is quite complicated because of the long-range ndivity at T=0 that is zero or infinity. A less simple example is
ture of the Coulomb potentials and the global adjustment ofAnderson localizatiori* A correct calculation of the residual
the Fermi energy that is necessary for charge neutrality. resistivity using supercells containing thousands of atoms
would still lead to zero or infinity, and there can clearly be
C. Extrapolation to macroscopic samples no localization in a periodically reproduced system. How-
. ever, using a proper formulation of the theory, calculations
It should be emphasized that all the work that we havg,;, supe?celléJ ng larger than the ones in tr)llis paper have

QOnehon tﬂ's pr_oblem ||Tdbr:}.seddon the ffundamen;[]al assunl;n roduced some remarkably good predictions for both of
tion that there Is a well-defined state of matter that can beyaqe nropertie® Anderson argues, quite correctly, that

called a %lsordereddalrlloy V;/]'th c;]onc_:enltratlons .Of th? ConEt'tu'many properties of the infinite system cannot be seen in the
entsc and 1-c, and that the physical properties of such an o its of calculations on finite clusters. At the same time,

alloy do not vary from sample to sample. The ideal alloy canye oncjusion drawn in the work that we just alluded to and
be modeled theoretically by distributing atoms randomly O om our own experience is that, using a combination of

andinfinitebsetf Og I_atticz points.with prI:)bzbiIitiesanlq I, .physical insight and calculations on large clusters, one can
and can be fabricated experimentally by annealing certaiyyiain correct extrapolations to the properties of the disor-
metallic alloys at high temperature and then rapidly quenchy, aq alloy

ing them. . . . . As an example of the application of this proposition to

The short-range order in an alloy is usually described inc 1omp effects, extrapolating the calculations in this paper
terms of the Warren-Cowley short-range-ordé8RO o545 to the conclusion that the disordered alloy will have a
parameteré; continuous distribution of magnitudes of the chargésin

the calculations that we have done on samples of different

— =——— Pimn{AlB}, (43) sizes, we have yet to find two charges with the same magni-

2¢(1-c) tude in the same sample. It follows from th¥ relation that
whereP,,.{A|B} is the probability for finding ai atom on thieir is also a continuous distribution of Coulomb potentials
the specified nearest-neighbor shell if it is known that theré” - We will demonstrate that the convergence of our calcu-
is aB atom at the origin. For historical reasons, the nearestlations is sufficient so that we can have confidence in our
neighbor shells are specified by Miller indices. If there is aéXtrapolations to macroscopic ideal alloys.

tendency for unlike atoms to be neighbors, short-range or-
dering, D. Convergence of the calculations

aqmn=1

In the early days of alloy theory, Lifshitz argued on intui-
_( 1 _1) <ar <0 (44) tive grounds that one can calculate the properties of a disor-
2c(1-c) Imn =" dered alloy from one sufficiently large sampfend referred
to this property of a large sample as self-averaging. It can be
seen most easily in exact calculations of the electron or pho-
non density of states of finite one-dimensional models of
O0<amn<1, 49 disordered alloy$? Calculations on simplified three-
for the opposite case of short-range clustering. In the ideafimensional models show the same eff€cBractical tests
disordered alloy, all of the SRO parameters are zero. for the self-averaging property of samples used in calcula-
An intermetallic compound can be fabricated by annealtions are that the quantities computgil change little as the
ing certain alloys that have a specific concentration for asizes of the samples are increased, ddire essentially the
long period of time at a temperature just below the orderingsame for different samples of the same size constructed ac-
temperature. It is a long-range-ordered structure with a relaeording to a specified prescription. We applied the tests de-
tively small number of atoms in the unit cell and symmetryscribed above to ascertain if the models that we used in our
that is described by one of the tabulated space groups. It isalculations are self-averaging.
possible to model a disordered alloy with periodic boundary We carried out calculations on models of the 50% bcc
conditions as an intermetallic compound in the limit as theCu-Zn alloy with 256, 432, and 1024 atoms. The models
number of atoms in the unit céll approaches infinity, as has have the same lattice spacing, and the atoms were placed on
been done in the calculations described in this paper. the sites with equal probabilities using a random number
Many characteristics of a disordered alloy are qualita-generator. The total energies per atom for the 256, 432, and
tively different from those of an intermetallic compound. 1024 atom samples are3414.461 44,-3414.461 14, and

while
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FIG. 14. The slopeg., (circles and B,, (squaresof the lines FIG. 15. A stacked histogram that shows the distribution of the

on which the data points fall in Fig. 1. The slopes are calculated foMVarren-Cowley short-range-order coefficients corresponding to the

models of a 50% bcc Cu-Zn alloy with cells that contain 256, 432 first 12 nearest-neighbor shells for four 50% Cu-Zn alloys. The fcc
and 1024 atoms. samples contain 500 atoms and the bcc samples contain 432 atoms.

—3414.461 09 Ry. The Coulomb potentials are plotted as fudes of the charges in a disordered alloy is continuous. That

f“”Ct.'OT‘ of the net charges in Fig. 1 for two of these samplesi,s not to say, however, that the distribution of the charges is
and it is evident from that drawing that the slopes change

very little. We calculated the slope&, and 3y, for these uniform. The probability?(c,q) for a copper atom in a fcc

samples. and have plotted them in Fid. 14 as a function o?Iisordered Cu-Zn alloy with the concentratian=0.50 to
pies, P 9. have a charge betweeanand q+0.005 electron charges is

the number of atoms in the sample. It can be seen that therS own in Fig. 16. It is calculated with the charges from the

) o A .
is only a 1% difference between the slopes calculated Wltf}nodel of the 50% alloy that was described in Sec. Ili B,

the smallest and the largest sample. All of this data indicates hich contains 250 Cu and 250 Zn atoms. It can be seen that

trgﬁ;é?; ff g%pig:ﬁzléza\fvmeaasr(?e]:/?/C;sSIgSgGOgt;rirs] it;]etrc])grt:meﬁe distribution of charges about the average value is not
. 2uniform. It is easier to study the distribution of charges if one

We carried out calculations on pairs of samples with 43 o )
. does not concentrate on alloys with just one concentration.
atoms of the 50% bcc Cu-Zn alloy and samples with 500 . ; .
The probabilityP(q) for a copper atom in a fcc disor-

atoms of the 50% fcc alloy. Different seeds were used in the
random number generator, so there is no relation between tt?eered alloy to have a charge betwagrandq-+0.005 elec-

ositions of the atoms in the pairs of samples. As with all o " charges is calculated from the data on such alloys in
P P MpIes. . Sec. Il B and plotted in Fig. 17. It does not depend on the
our alloy samples, part of the calculation is to obtain the

Warren-Cowley SRO parameters defined in E8) for the concentrationc since the charges from all five concentra-

: . 0 o .
first 12 nearest-neighbor shells. A statistical analysis of all Opons, ranging from 1.0/0 t0 90 /° are lumped together in the
calculation to approximate the integral of tRe (c,q) over

these parameters is shown in Fig. 15. It can be seen that thecy L ;
. . . This is justified because the same lattice constant was used
cluster around zero, with two of the 48 parameters being a;

. r all concentrations. The functidd(q) has thirteen well-
!arge as 0.05. These maximum values are for the fourth Shefrefined peaks. The conditional probabil®y (f,,q), which
in one sample and the sixth in another sample. Experimen-

tally, an alloy is considered to be disordered when it has> the probability that a Cu atom in a fcc disordered Cu-Zn

SRO parameters for the first shell as large as 820.is alloy that has a fractiori; of Cu atoms on the first-nearest-

. . o neighbor shell will have a charge betwegandq+0.005, is
mathematically posslble to calculate the probabll!ty for theaISO shown in Fig. 17 for the cage=1/2. The number of Zn
SRO parameters being unacceptably large for a give sample . X . . :

. ; atoms in the nearest-neighbor shell, introduced in(&§), is
We have not done this, but, in all of the samples that we have . )
@—nl(l—fl), wheren; is the number of atoms in that

generated to date, we have not had to reject one because t L : : .
SRO parameters were larger than 0.05. shell. For a fcc crystaihn;=12. SinceP(q) is a superposi-

We list in Tabk | a set of calculated parameters for thetlon of the thirteen function®q,(f,,q) that correspond to

. . . -the integer values fon,, from 0 to 12, it is obvious that
four samples described in the previous paragraph. The dif; .” . - )
X this is the origin of the structure iR, (q). We feel that
ferences in the parameters for these samples that have com- - :
, our statistical sample is large enough so that the general fea-
pletely different arrangements of atoms are very small. W

feel that this table provides further evidence that our sample%tsnu;eseogssc?gqéi;;?err?tl'?:l?énasltg?lé%grth: r:1eal1atlk\)/§ Qﬁggnht:dog
are self-averaging. P 9 ge may ged by

more data.
Clearly the ability to predict the value of the chargef
a given Cu atom is improved significantly by the knowledge
As stated in Sec. IV C, the extrapolation of these calculaof the environment of the atom as described by the fraction
tions leads to the conclusion that the distribution of magni-f,, but there is still a considerable uncertainty that is given

E. The magnitudes of the charges
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TABLE |. The total energy per atom and parameters defined in 88s. (31), (29), and(30) for four 50% Cu-Zn alloys. The two fcc
samples contain 500 atoms and the two bcc samples contain 432 atoms.

Total energy A ud a Beu Bz
fcc A —3414.460 52 0.198 13 —2.501 26 0.407 61 1.665 16 1.605 99
fcc B —3414.460 53 0.198 61 —2.602 80 0.410 14 1.664 84 1.606 40
bcc A —3414.460 90 0.197 21 —2.457 86 0.363 59 1.83218 1.820 54
bccB —3414.461 14 0.200 59 —2.511 87 0.389 92 1.826 98 1.797 45

by the width of P (f;,q). The most reasonable conjecture respond to specific occupations of the first- and second-
is thatP.(f,,q) has a structure due to the differences in thenearest-neighbor shells, but it can be seen from Fig. 18 that
occupation of the second, third, and succeeding nearesthe Pc(f1,f,,q) would also have finite widths due to the
neighbor shells that can be described by the fractigng;,  effects of still more distant neighbors.
etc. It would be interesting to obtaifc(f;,q) to enough The calculations shown here are certainly accurate
precision to see this effect, and also to calculateehough to prove that the conditional probabiliti®g,(f,q)
Peu(f1,f2,Q), Pedf1,faifs,q), etc. Even with all of the andPcy(f1,f>,0), have finite widths. With the interpretation
computer time expended so far, there are still not enougRf the origin of these widths and also with the numerical
charges to provide reliable statistics for that purpose, but th@émonstrations in Sec. Il of the long-range nature of the
effect can be seen more easily by considefrg(q) for bee Coulom_b interaction in alloys, it is d|ff|cg[t to arrive at any
disordered alloys calculated with the data published in Refsconclusion other than that the conditional probabilities
8 and 12 and discussed in Sec. IV C. Pcu(f1,f2,....q) will have a finite width when the fractional
The function Pc(q) shown in Fig. 18 represents the occgpz_ati_on; of any finite number of nn shells is specified in
probability for a Cu atom in a bcc Cu-Zn alloy to have a the infinite ideal alloy. _ o
charge betweeny and q+0.005 electron charges, and was Another piece of evidence fOIt the continuous distribution
calculated by lumping together the charges for the five con9f charges in disordered alloys is the/ relation illustrated
centrations ranging from 10% to 90%. The function is cer-in Figs. 1, 3, and 6 This relation indicates very subtle and
tainly irregular, but it is difficult to count precisely the nine long-range correlations between all the charges in the crystal,
peaks that would correspond to the integer valuesigf e}nd is intrinsically incompatible with any discrete distribu-
from zero to the number of atoms in the nearest-neighbofion of charges.
shell. The conditional probabilit-(f,,q) is also shown in
Fig. 18 forf,=1/2, and, as with the fcc alloys, knowledge of
the fractionf, will improve the prediction of the charge ona  Many of the recent studies of Coulomb energies in alloys
given Cu atom. It appears that there are seven peaks iefer to a model that was first proposed by Magri, Wei, and
Pcu(f1,9), which correspond to the possible occupations of
the second-nearest-neighbor shell in the bcc structure. It is

V. COMPARISONS WITH OTHER THEORIES

. ; . " 0.08
easy to imagineP(f;,q) as being the superposition of % ' '
seven conditional probabilitieBq (f;,f,,q) that would cor- s
o
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net charge on the site (dimensionless)
0.00 ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20 FIG. 17. The solid line with the points marked with crosses

net charge on the site (e charge) showsP¢,(q), the probability that a Cu atom in a fcc Cu-Zn alloy
will have a charge between and g+0.005 electron charges. The
FIG. 16. The solid line with the points marked with crosses circles connected with dashed lines shows the conditional probabil-
showsP¢(c,q), the probability that a Cu atom in a fcc Cu-Zn alloy ity Pcy(f1,q), which is the probability that a Cu atom in a fcc
with a concentratiorc=0.50 will have a charge betweanand  Cu-Zn alloy that has a fractiofi,; of Cu atoms on the nearest-
q+0.005 electron charges. The vertical line shows the averagaeighbor shell will have a charge betwegrmndqg+0.005 electron
charge for the Cu atoms. charges. The data shown are fqr=1/2.
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0.08 . . , (a(0)g(a))=4\%c(1-c)[Wi+W,], a~=0,
(9(0)q(a))=4N%c(1—c)[—2W,+K,], a=ry,

(a(0)a(a))=4N*c(1-c)K,, a=r,, n>1, (48

wherer, is the radius of thenth nearest-neighbor shell and
K, is the number of atoms that are common to nearest-
neighbor shells centered on the central atom and on an atom
of the nth nearest-neighbor shell. These parameters have
been discussed more fully in Ref. 2. The sum rule in B§)

is satisfied by these correlation functions as a consequence of
the relation

0.06

0.04

0.02

probability of finding the charge

©

> WK =W,2—W,, (49)
n=1

0.00
0.00 0.05 0.10 0.156 0.20

net charge on the site (dimensionless) whereW,, is the number of atoms in theth nearest-neighbor
shell. For fcc crystalsK,, is zero forn>4, while for bcc
FIG. 18. The solid line with the points marked with crossescCrystalsK, is zero forn>5. These are very specific predic-
showsPc,(q), the probability that a Cu atom in a bcc Cu-Zn alloy tions for the correlation functions, and they lead to equally
will have a charge between and q+0.005 electron charges. The specific predictions about the interatomic Coulomb energy
circles connected with dashed lines shows the conditional probabil ¢.
ity Pcy(c1,9), which is the probability that a Cu atom in a bcc Writing g in Eq. (20) as a;=g+a and carrying out the
Cu-Zn alloy that has a fractiof; of Cu atoms on the nearest- summations leads to the following form fu‘qC:
neighbor shell will have a charge betwegrandq-+0.005 electron
charges. The data shown are fqr=1/2.
’ : ug=2" 2> %, (50
Zunger(MWZ) in Ref. 1. In the MWZ model, the charge on SR
a site containing a copper or zinc atom is given by where in this case the prime means tha#0. Inserting the
, A correlation functions of Eq(35) into the expression in Eq.
q'=2\nz,; iCCu, g'=—2\ng,; iCZn, (46) (50) leads to a formula for the interatomic Coulomb energy
from the MWZ model that can be split into two parts in a

wherenz, andng, are the number of zinc or copper atoms in fashion that is analogous to E@1),

the first-nearest-neighbor shell. It is further assumedxhsat
independent of the concentration of the alloy, and that it can uMWZ_ \MWZ | MwZz (51)
. (3 1 2 .
be calculated from the charges in ordered compounds con- o _
taining a relatively small number of atoms in a unit cell. This The approximation taic; may be written
is equivalent to the assumption that the conditional probabil- )
ity functions defined in the previous sectid?g (f,,q) and MWZ _ A_ _
. . S . uy o= c(1l—oc), (52
Pz.(f1,09), ared functions. This assumption is not consistent rq
with extrapolations from our calculations. In principle, none
of the conditional probabilitiesP¢(f1,9), Pcy(f1,f2,0),
etc., can be replaced b§ functions, although it may be a 1
; iR i MWZ _  \MWZ N
useful approximation in certain circumstances. U, “=uUy “Wa > = WK, (53
In the MWZ model, the average charge on the Cu site is 1 Tn

() cu=2AWy(1-c) with (q)z,=—2\W,C on the Zn site, Thjs formula is algebraically identical with the one described
where W; is the number of atoms in the first-nearest-jy Ref, 2, although its derivation and interpretation are some-
neighbor shell. It follows that the difference betwe@)cy  what different. Interatomic Coulomb energies derived from
and(d)zn. A, is independent of concentration in this model these same assumptions have been used in an extensive study
of the short- and long-range order in models of binary alloys
A=2\W;. (47) in which this is the only interaction, see Ref. 6. For a suitable
value ofX\, the predictions of the MWZ model fard will be

with A given by Eq.(33), and the approximation toc, is

The differenceA is plotted in Fig. 9 as a function of the

concentration for the fcc and bec Cu-zn alloys and the feualitatively correct, but it is useful to understand the fea-
Cu-Pd alloys. It is very nearly constant for the Cu-Zn alloys,Urés of these predictions that are representative of real alloys

but it changes quite a bit with concentration for the Cu-pg2nd those that are peculiarities of the model.
Using Eqgs.(28) and(33) it can be shown that the expres-

alloys. . . ; .
The relations in Eq(46) combined with a rule for the SION forucy in Eq. (32) is equivalent to
spatial distribution of the atoms in the crystal determines all Uer=LaA2c(1-c). (54)

the charge-charge correlation functions for the crystal. For
ideally random alloys, the MWZ model leads to the correla-Comparing this with Eq(52) it is seen thau}"* would be
tions the same asi, if it is assumed that the difference in the
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FIG. 19. Ratios of the two contributions to the Coulomb energy £ 20. Ratios of the two contributions to the Coulomb energy
Uca/uc for bee Cu-Zn alloys calculated with 432 atoms inthe cell. |, /., for fec alloys. The circles are the values for Cu-Zn alloys
The dashed line is the prediction of the MWZ model. calculated with 500 atoms in the cell, and the squares are for Cu-Pd

. alloys calculated with 256 atoms in the cell. The dashed line is the
average charges of the two atoms,is independent of con- prediction of the MWZ model.

centration and that is exactly 2f,. It predicts thatuc, is
precisely a parabolic function of with its minimum at are discussing. Their prediction for the slopgs, and y;,
c=0.5. As expected from the variation Afwith c illustrated  are quantitatively not very accurate. More importantly, they
in Fig. 9 and the variation o& with ¢ from Figs. 10 and 11, predict thaty.,=y~, and the slopes should be independent of
Ucp Is slightly asymmetric for the Cu-Zn alloys shown in concentration. It can be seen from Fig. 12 that this is not the
Fig. 5 and quite asymmetric for the Cu-Pd alloys shown incase.
Fig. 8. Another aspect of this paper that is relevant to the present
The second termy¥¥2  is different in magnitude and in discussion is that they propose to replace the MWZ model
physical origin from theuc, in Eq. (32). This is illustrated  with a model in which the numbers of atoms in the nearest-
graphically by the prediction of the MWZ model that the neighbor shellsc, and nz, in Eq. (46) are replaced with
ratio of the energiesc,/uc; is a constant that is independent effective numbers that include constaris Xs,..., times the
of the concentration of the alloy. An even more striking as-number of copper or zinc atoms in the second, third, etc.,
pect of this prediction is that the ratio is independent of thenearest-neighbor shells. Of course, one now must fit to the
constituents of the alloy. The ratig)"V#/u}"* is the quan- results of a reliable LDA calculation of the LSMS type to
tity in the parentheses in E¢53), and it is 0.383 13 for all find not only the\ but also the constants that multiply the
random alloys that have the bcc structure and 0.314 72 for ahumbers of atoms in the more distant shells. The numbers
those with the fcc structure. The ratios,/uc; from the  that they publish for fcc copper-zinc alloys will not work, for
LDA calculations for the bcc Cu-Zn alloys are plotted example, for fcc copper-palladium alloys. However, as more
against the concentration in Fig. 19, and it is obvious thanhearest-neighbor shells are taken into account, the differ-
they change a great deal with concentration. As for the rati@nces between the picture presented by this model becomes
being independent of the alloy constituents,/uc, is plot-  less different from the one described in this paper. The num-
ted in Fig. 20 for the fcc Cu-Zn and Cu-Pd alloys, and it canber of possible charges increases from 12 to 72 to 1728 for
be seen that they are quite different. fcc and from 8 to 48 to 576 for bcc as the number of nearest-
Very recently, a paper has been publisHetiat revisits neighbor shells increases from one to two to three. This is
the MWZ model in light of the LSMS calculations in Refs. 7 rapidly approaching the infinity of possible charges that we
and 12 that we published earlier. They show a calculation obelieve should be assumed. In addition, the number of
theqV relation that would be obtained for our alloy models nearest-neighbor shells in their model is approaching the
that are modified by replacing the actual charges on the sitasumber that we have in our local interaction zones, which is
by the charges that would be predicted to be on the sites bfpur for fcc and five for bce. Of course, we include the Cou-
Eq. (46), the value ofx being taken from a fit to the center of lomb interactions with an infinity of atoms.
the peaks in the conditional probabilitidd. (f,,q) and The theories for the interatomic Coulomb energy de-
Pz.(f1,9). These results, shown in their Fig. 2, illustrate thescribed in Refs. 3—5 are based on the coherent-potential ap-
point made above that ouyV relation is fundamentally in- proximation (CPA),*® which is an excellent theory for the
compatible with a model that predicts that the charges omlectronic states of substitutional disordered alloys when
lattice sites can take on only a small number of values. In thgood potential functions for the constituents of the alloy are
MWZ model there are only nine possible charges on a copprovided. The CPA does not contain a prescription for cal-
per or zinc site in a bcc alloy, and twelve in fcc. They alsoculating charge self-consistent potentials, and the method
derive a formula from the MWZ model that relates the aver-used until recentf}? assumes that the Coulomb potentials at
age potential for a given charge to that charge, and show thée sitesv' are zero. In its usual form, the CPA provides the
this would be a straight line. This is not tilgd/ relation we  average charges, e.dq)c, and{(q),,, but no information
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about the fluctuations of charge about this average. Thelication of this result is that, if one has the five basic pa-
modified CPA theorieMCPA) of Refs. 3—-5 are based on rametersy, (0)cy, (d)zn, Bcy» @andBz,, the contribution that
the assumption thdty)c, and{q),, can be found by assum- a given charge on a sitg makes toU ¢ is known, without

ing the average Coulomb shift%(n))c, and(V(n)),, are  any specific information about the other charges in the sys-
zero forn>1. This is roughly correct, as can be seen fromtem. This is really a surprising and counter-intuitive result. It
Fig. 2. The value fora that comes from the screening as- can have practical applications, because there are useful ap-
sumption of the MCPA is 2.0f, which we have shown in proximate methods, such as the embedded-cluster méthod,
FIgS 10 and 11 is reliable to within about 10%. It is thUSthat provide exacﬂy that information.

possible that one can calculate improved valuegdg, and At the present time, an ordé-calculation like the one
() zn from the MCPA, although it cannot predict the actual gescribed here seems to be the only reliable method for ob-
charge on any particular site in a real alloy as explained inaining the interatomic Coulomb energy for a disordered al-
Sec. IVA. The energyic, is written in terms of{q)c, and |y, or for obtaining the five basic parameters listed above.
(9)zn I Eq. (32), and it can be calculated from any Version s is not as bad as it sounds, because a relatively small

of the CPA. The CPA results are not as restricted as the ONes, - ulation.N=256. should be adequate. With a massively
from the MWZ model because there is no assumption shat parallel supercomputer and a well-developed program, that

IS '.?g:F}gg?fﬁ;totfhzo&%ggagﬁlg's but Not U, Was rec calculation is not difficult. Potentials obtained by a straight-
C1 C2 = . . . .

ognized, and a proposal was made in Ref. 5 to use thfaorwf';\rd averaging of the self-_con5|stent atomic pot_entlals

d prop obtained in the LSMS calculations have been used in CPA

Connolly-Williams (CW) method® to estimate the correc- : . .
tions. In the CW method, information about the electroniccaICUIat'O”S' The average charges on the sites obtained from

structure for ordered intermetallic compounds containing gMis CPA calculation are identical to the average charges

estimate the properties of the disordered a”oy_ This approa&lult, and |t indicates that the theories are not incompatible.
had only limited success. Another possible way of approaching these calculations is

Some of these same authors have made another propodae LSGF-CPA method of Abrikosoet al. in Ref. 41. One
that appears more promising, and have used it in calculatiorgould imagine using the LSMS for the things that it does best
on Cu-Zn alloys'! They combined the idea of the LSMS and the CPA for the things that it does best, such as investi-
with the CPA to develop a charge self-consistent CPA thatgating Fermi-surface effects in alloys.
among other advantages, includgs, automatically. A later The connection between the slope and the nearest-
application of this locally self-consistent Green’s-function neighbor radius and the relations between fhag and 3,
method(LSGP to Pd-Rh alloys provides more evidence thatwith the average densities of states at the Fermi energy,
it is a useful approacf? The LSGF goes beyond the older which were pointed out in Sec. IV, are interesting, but they
CPA’s in that it correctly takes into account the fact thatdo not constitute a theory. It is to be hoped that the insights
every atom has a different charge, and it treats the Coulomimto this problem that have been gained from the LSMS cal-
energy as accurately as the LSMS. It still contains the essemulations can be used to develop a more analytical approach
tial feature of the CPA in that it leads to a Green’s functionto the Coulomb energies, and indeed other aspects of alloy
for the disordered alloy that has the same form as theheory. This would not only make it possible to obtain the
Green’s function for a periodic solid, but with a very com- desired results with less computation, but would give more
plicated effective scatterer on each site. physical insight into the results.

In the pioneering work on alloy theory by MdH, Finally, the argument based on experimental evidence that
Friedel™ Gautier, DuCastell&> and Pettifor® the inter- atomic size effects will not affect the results of the calcula-
atomic Coulomb energy is simply ignored, and this is alsations described in this paper appreciably, given in Sec. Il B,
true of much of the work done using the CPAThe results  should not be construed to indicate that the authors consider
shown in Fig. 5 can be used as a justification for that posisize effects to be uninteresting. One of our goals is to use the
tion. Not only are the Coulomb energies for the copper-zind. SMS in Car-Parinell®’ type calculations to study the effect
alloys small, but they are remarkably insensitive to the crysof atomic size on the total energies of metallic alloys.
tal structure. They are larger for Cu-Pd alloys, but are prob-
ably still not very dependent on structure for the relatively
small number of crystal structures that one encounters in
metallic alloys.
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