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Influence of the electronic core polarization on the electric-field gradients in solids

J. Ehmann and M. Fa¨hnle
Max-Planck-Institut fu¨r Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 21 October 1996!

In conventional band-structure calculations it is normally assumed that closed electronic shells have a
spherically symmetric charge density. As a consequence of this approximation, these core states give no
contribution to the electric-field gradient~efg! at the nuclear site. In the present paper two equivalent methods
for the computation of the actual contribution of closed electron shells to the efg are presented. In the first
method the potential of the nuclear quadrupole moment is considered as a perturbation for the core electrons,
which causes a polarization of the core states, i.e., a deviation of the core-charge density from spherical
symmetry. In this case the core contribution to the efg can be calculated with the help of the Sternheimer
function g(r ). The second method considers the nonspherical parts of the effective crystal potential near the
nucleus under consideration as a perturbation for the core electrons. These two methods yield identical results
for the interaction energy of the nuclear quadrupole moment with the calculated efg. They are compared with
alternative treatments of energetically high-lying core states within the framework of the full-potential
linearized-augmented-plane-wave method~semicore calculations and use of local orbitals!. As test cases we
calculate the efg at the nearest-neighbor sites of a substitutional Ni~Fe! atom in Cu~Al ! and the efg at a regular
lattice site in hexagonal Mg. Additionally, results for the relaxed atomic positions, the efg, and the asymmetry
parameters around a substitutional Pd~V! atom in Cu~Al ! are presented.@S0163-1829~97!03612-6#
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I. INTRODUCTION

In crystals the electric-field gradients~efg’s! do not vanish
at nuclear sites with noncubic point symmetry. The inter
tion of the efg with the electric-quadrupole moment of t
nuclei leads to quadrupolar splittings of the nuclear ene
levels, which can be measured by different techniques@e.g.,
nuclear magnetic resonance~NMR!, nuclear quadrupole
resonance, Mo¨ssbauer spectroscopy, or perturbed angu
correlation; see, for instance, Refs. 1 and 2#. If the nuclear
quadrupole momentQ is known, the efg can be deduce
from experimentally observed transition frequencies betw
the nuclear energy levels. The efg is a ground-state prop
of the system and depends sensitively on the electro
charge distribution in the vicinity of the nucleus under co
sideration. Therefore, the experimental determination of
is an important and valuable tool for the investigation of t
chemical bonding and electronic structure of solids. Es
cially important is the investigation of efg’s near atomic d
fects in solids because they serve as ‘‘fingerprints’’ for t
identification of the type of defect produced, for instance,
quenching, cold working, or irradiation with fast particles3

For the case of ionic crystals the calculational method
Sternheimer~for an overview see Ref. 4! is widely accepted.
In this method the crystal is conceived as an assembly
point charges surrounding the atom under consideration
the polarization of the core states of this atom by the po
charges is accounted for by a Sternheimer factorg` if the
point charges are outside the considered core or by a S
heimer functiong(r ) otherwise. In metals and semicondu
tors, however, the actual charge distribution cannot be
scribed by point charges and has to be determined
accurate band-structure calculations within the framework
the density-functional theory of Hohenberg and Kohn5 and
the local-density approximation.6 In most of these calcula
550163-1829/97/55~12!/7478~14!/$10.00
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tions the charge density of the core electrons has been tre
for computational reasons as spherically symmetric. A
consequence, there is no core contribution to the efg. Ind
within the framework of such calculations, accurate or
least fair results for the efg could be obtained, for instan
for hexagonal metals,7,8 in dilute copper alloys,9 in
YaBa2Cu3Ox ,

10 and near atomic defects in Al or Cu.3,11

Blaha, Schwarz, and Dederichs7 went one step further and
tried to describe the polarization of the uppermost atom
core states. They argued that for these states the spatial
lap of the corresponding orbitals at neighboring atoms
very small, but still numerically significant so that they ma
be described as semicore states within the framework o
full-potential linearized-augmented-plane-wave meth
~FLAPW!. ~The polarization of the lower-lying core state
was neglected.! They found that the so-obtained core cont
bution to the efg is negligibly small for most metals. Th
starting point of our investigations was the suspicion that
basis set used for the FLAPW semicore calculation is pr
ably not flexible enough to describe the polarization of r
core states in an appropriate manner and that in reality
core contribution to the efg might be quite substantial, es
cially close to atomic defects. The alternative methods t
we developed are suited to describe the polarization of
real core states, i.e., of all core states that do not contribut
the chemical bonding. In some cases the uppermost
states of the corresponding free atom are spatially exten
beyond the Wigner-Seitz sphere in the crystal. To acco
for the considerable spatial overlap of these orbitals w
orbitals from neighboring atoms these extended core st
have to be treated as semicore states or valence states
crystal. Examples are the 3p states of Ti,12 the 4p states of
Mo,13,14and the 5p states of rare-earth atoms.15–17For these
special cases our calculational methods cannot be applie

In the following, two methods are developed to descr
7478 © 1997 The American Physical Society
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55 7479INFLUENCE OF THE ELECTRONIC CORE . . .
the core polarization. In the first method the potential of
nuclear quadrupole momentQ is treated as a perturbation o
the spherically symmetric core-charge density. This per
bation induces an additional quadrupole moment in
charge density of the core electrons and it can be dem
strated that the core contribution to the efg can be calcula
with the help of the Sternheimer functiong(r ). In the second
method the nonspherical core-charge density is calculate
considering the nonspherical parts of the effective poten
in the solid as a perturbation of the core states.

These two methods yield identical results for the inter
tion energy of the nuclear quadrupole moment with the
~Sec. II!. They clearly demonstrate that, in general, the c
contribution to the efg has to be considered in order to ob
a reliable efg.

All calculations in the present paper have been perform
with the FLAPW method using theWIEN95 code.18 Within
this code there are two methods to determine the influenc
the highest core states~e.g., 3s and 3p of copper! on the efg
~the polarization of lower-lying core states is neglecte!.
These are, on the one hand, semicore calculations19 ~see
above! and, on the other hand, the use of local orbitals.12,19,20

The reliability and accuracy of these two methods for a
scription of true core states can be checked by compar
with our calculations and will be discussed thoroughly.

The paper is organized as follows. In Sec. II the gene
theory involved in theab initio calculation of efg’s in solids
is outlined. In Sec. III the two methods for the determinati
of the core contribution to the efg are presented. Sec
IV A reports the results of calculations of the efg genera
by a substitutional nickel~Ni! atom in copper~Cu! with spe-
cial regard to the influence of the core electrons on the
The results for the core contribution to the efg will be co
pared with the results of FLAPW semicore calculations a
calculations using local orbitals. Additionally, we report t
results for the relaxed atomic positions and efg’s near a s
stitutional palladium~Pd! atom in Cu. Section IV B deals
with the efg near a substitutional iron~Fe! or vanadium~V!
atom in aluminum~Al ! and Sec. IV C with the efg in hex
agonal magnesium~Mg!. Section V gives a short discussio
and a summary.

II. AB INITIO CALCULATION
OF ELECTRIC-FIELD GRADIENTS

The traceless symmetric tensor of the efg at a nucleu
the origin of our coordinate system is defined as

Vi j5
]2F

]xi]xj
U
0

2
1

3
d i jDFu0 , ~1!

where

F~r !5E r~r 8!

ur2r 8u
dr 8 ~2!

is the electrostatic potential andr~r ! the total ground-state
charge density of the system. The subscript 0 indicates
all derivatives have to be taken atr50. Inserting Eq.~2! into
Eq. ~1! yields
e
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Vi j5E r~r !S 3xixjr 5
2

d i j
r 3 Ddr . ~3!

Since the tensor of the efg,V5Vi j , is symmetric, it can be
diagonalized by a transformation to the principal axis s
tem. In this coordinate systemV is characterized by the com
ponent with the greatest modulusVzz and the asymmetry
parameter

h5
Vxx2Vyy

Vzz
, ~4!

where the principal components have been chosen in su
way thatuVzzu.uVyyu.uVxxu. According to Eq.~3!, Vzz can
also be written as

Vzz52A4p

5 E r~r !

r 3
Y20~ r̂ !dr , ~5!

with the spherical harmonicY20~r̂ !. Equations~3! and ~5!
show that the spherically symmetric part ofr~r ! does not
contribute to the efg.

In order to obtain the tensor of the efg reliably we have
determine the ground-state charge densityr~r ! with high ac-
curacy. The appropriate tool to do this is anab initio electron
theory using density-functional theory and the local-dens
approximation. Kohn and Sham6 showed that the correc
ground-state charge density of the system under consi
ation can be obtained by solving self-consistently sing
particle Schro¨dinger equations containing an effective pote
tial

@2¹21Feff~r !#C i~r !5e iC i~r ! ~6!

for all Ne electrons of the system.@All formulas in the
present paper are given in atomic~Rydberg! units.# The ef-
fective potentialFeff~r ! is given by

Feff~r !52 (
a51

NK 2Za

ur2Rau
1E 2n~r 8!

ur2r 8u
dr 81Fxc„n~r !….

~7!

The first term is the Coulomb potential of theNK nuclei with
nuclear numberZa at the positionsRa . The second and third
terms are the Hartree potential and the exchange-correla
potential, respectively. The electronic densityn~r ! of the sys-
tem can be obtained through

n~r !5(
i51

Ne

uC i~r !u2. ~8!

Equations~6!–~8! are called Kohn-Sham equations. At th
end of the self-consistency cycle the ground-state cha
density

r~r !5(
a

Zad~r2Ra!2n~r ! ~9!

is known and the efg tensor~3! can be calculated.
There are several methods for obtaining numerical so

tions of the Kohn-Sham equations@e.g., FLAPW,21,22 full-
potential linearized-muffin-tin-orbital~FLMTO! method,22

pseudopotential method,23 and projector augmented-wav
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7480 55J. EHMANN AND M. FÄHNLE
~PAW! method,24# which differ in the choice of the basi
functions for the expansion of the single-particle wave fu
tions Ci~r !. All these methods have in common that t
Kohn-Sham equations are solved using the full, nonspher
effective potential only for the valence electrons. In t
pseudopotential method it is assumed that the charge de
of the core electrons in a solid is the same as for a free at
This so-called frozen-core approximation leads to the f
that in a pseudopotential calculation the core-charge den
is spherically symmetric and that the Kohn-Sham equati
need to be solved only for the valence electrons. In
FLMTO or FLAPW method the wave functions of the tru
core electrons are obtained by numerical integration of
~6! using only the spherically symmetric part of the effecti
potential. As a consequence, the core-electron density ca
lated by means of Eq.~8! is spherically symmetric too. Con
sequently, if the efg’s are computed using the pseudopo
tial method ~with subsequent reconstruction of the tr
valence wave functions25!, the FLAPW, or the FLMTO
method there is no contribution to the efg of the core el
trons at the nucleus considered. However, due to the wei
ing of r~r ! with 1/r 3 in Eq. ~3!, the efg is very sensitive to th
nonspherical parts ofr~r ! close to the nucleus. Therefor
even small deviations of the core-charge density from sph
cal symmetry can cause a significant change of the efg
order to obtain reliable results for the efg fromab initio
calculations we have to determine the core polarization,
the deviation of the core-charge density from spherical sy
s
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metry, with high accuracy. In the following subsection fir
the FLAPW method, which is used throughout the pres
paper, will be discussed.

The FLAPW method

In the FLAPW method no shape approximations for t
effective potential are made. The unit cell~or the supercell!
of the solid is divided into nonoverlapping so-called muffi
tin ~MT! spheres with radiusRMT around the nuclei and the
remaining interstitial regionI .21 In the interstitial region the
wave functions of the valence electronsCi~r ! are expanded
into plane waves. Inside the MT spheres the basis functi
into which theCi~r ! are expanded are linear combinations
radial functions ul(r ,El) and their energy derivative
u̇l(r ,El) 5dul(r ,El)/dEl multiplied by spherical harmonics
Ylm~r̂ !. ul(r ,El) is the regular solution of the radial part o
the Kohn-Sham equation~6! in the spherically averaged ef
fective potential

F2
1

r 2
d

dr S r 2 d

dr D1
l ~ l11!

r 2
1Feff

sph~r !2El Gul~r ,El !50.

~10!

The linearization energyEl is usually set to a value near th
center of the band with angular momentuml .

The basis functions in the FLAPW method are thus pla
waves, which are augmented inside the MT spheres
wk1G~r !55
1

AV
ei ~k1G!r for rPI

(
a lm

@Aa lm
k1Gul

a~r a ,El
a!1Ba lm

k1Gu̇l
a~r a ,El

a!#Ylm~ r̂a! for rPSMTa

a .

~11!
re

ffi-
ce

ec-
po-
ed
nu-
In Eq. ~11! k is a vector of the first Brillouin zone,G is a
reciprocal lattice vector,V is the volume of the unit cell~or
the supercell!, SMT is the muffin-tin sphere, andra5r2Ra ,
whereRa is the position of theath nucleus. The coefficient
Aa lm
k1G andBa lm

k1G follow from the requirement that the valu
and slope ofwk1G(r ) match on the MT sphere boundarie
They are given by

Aa lm
k1G5

1

AV
4p i l~RMT

a !2ei ~k1G!Ra al
a~k1G!Ylm* ~k1Ĝ!,

~12!

Ba lm
k1G5

1

AV
4p i l~RMT

a !2ei ~k1G!Ra bl
a~k1G!Ylm* ~k1Ĝ!,

~13!

with

al
a~k1G!5uk1Gu j l8~ uk1GuRMT

a !u̇l
a~RMT

a ,El
a!

2 j l~ uk1GuRMT
a !u̇l

a8~RMT
a ,El

a!, ~14!
bl
a~k1G!5 j l~ uk1GuRMT

a !ul
a8~RMT

a ,El
a!

2uk1Gu j l8~ uk1GuRMT
a !ul

a~RMT
a ,El

a!.

~15!

Here the prime stands ford/dr and the j l are spherical
Bessel functions.

Finally, the wave functions of the valence electrons a
given by the expansion

C i
k~r !5(

G
CG
ikwk1G~r !, ~16!

where reciprocal lattice vectors withuk1Gu,Gc are consid-
ered.Gc is the plane-wave cutoff. Inserting Eq.~16! in Eq.
~6! yields an eigenvalue problem for the expansion coe
cientsCG

ik . Once they are known, the density of the valen
electronsnval~r ! can be calculated using Eq.~8!

As mentioned earlier, the wave functions of the core el
trons are computed in the spherically averaged effective
tential. It is assumed that they are completely localiz
within the MT spheres. Under these assumptions, the
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55 7481INFLUENCE OF THE ELECTRONIC CORE . . .
merical solution of the radial part of the Kohn-Sham equ
tion yields the core wave functions

C lm
core~ra!5ul

core~r a ,El
core!Ylm~ r̂a! ~17!

and with the help of Eq.~8! the spherically symmetric cor
densityncore~r a! of theath nucleus.

The total charge density reads

r~r !5(
a

Zad~r2Ra!2nval~r !2(
a

ncore~r a!. ~18!

At the end of the self-consistency cycle of the FLAP
method we can compute the efgVzz

sph coreby inserting Eq.~18!
into Eq. ~3!. The index ‘‘sph core’’ indicates that there i
due to the spherical symmetry of the core-charge density
contribution of the core electrons to the efg at the nucl
site.

In the FLAPW method there are two methods to aband
the spherical approximation for the core states in orde
account, at least approximately, for the polarization of
highest core states. As mentioned in the Introduction,
actual spatial overlap of these core orbitals between ne
boring atoms is small, but numerically significant, so th
may be treated as band states. The two methods are~i! semi-
core calculations and~ii ! local orbitals.

~i! In a FLAPW semicore calculation19,26 the highest core
states~e.g., 3s and 3p in Cu! are treated in exactly the sam
way as the valence electrons, but in a separate energy
dow. This is done by choosing as linearization energiesEl
the centers of the bands with angular momentuml of these
core states. Two separate calculations are then performe
the semicore and valence electrons. At the end of an itera
step the total charge density is given by

r~r !5(
a

Zad~r2Ra!2nval~r !2nsc~r !2(
a

ncore~r a!,

~19!

where ncore~r a! is now the density of the remaining cor
states of the nucleus in theath MT sphere. Sincensc~r ! is
calculated using the total nonspherical effective potential~as
for the valence electrons!, the contribution of the semicor
states to the total charge density is not spherically symme
around the nuclear sites; hence the semicore electrons
tribute to the efg.

~ii ! With the help of local orbitals19,20 the highest core
states can be treated together with the valence states in
energy window. Local orbitals are an extension of t
FLAPW basis set. They are given by

w lm
LO~r !5@Almul~r ,El

val!1Blmu̇l~r ,El
val!

1Clmul~r ,El
HC!#Ylm~ r̂ !, ~20!

where the radial functionsul are solutions of Eq.~10! and
El
val is the linearization energy of the valence states w

angular momentuml andEl
HL that of the highest core state

The coefficientsAlm , Blm , andClm are determined by the
requirement thatw lm

LO(r ) is normalized and has zero valu
and slope at the boundary of theMT sphere. The wave func
tions of the valence electrons and the highest core state
now expanded into the basis functions~11! and~20! and the
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Kohn-Sham equations are solved using the full nonspher
effective potential. As in the case of semicore calculatio
the charge density of the highest core states is no lon
spherically symmetric; hence the influence of these state
the efg at the nuclear site is taken into account. Local orbi
are superior to semicore calculations for several reason19

The most important is the fact that the highest core electr
are treated in the same energy window as the valence e
trons. Hence their wave functions are orthogonal to e
other and there can be hybridizations between core and
lence electrons.

We will discuss the accuracy of these two methods
semicore calculations and the use of local orbitals
concerning the computation of the core contribution to
efg in Sec. IV.

III. DETERMINATION OF THE CORE CONTRIBUTION
TO THE efg

As we have seen in the preceding section, the wave fu
tions of the true core electrons are calculated conside
only the spherically symmetric partFeff

sph(r ) of the effective
potential. Hence we may regard

H0c05E0c0, ~21!

with H052¹21Feff
sph(r ), as the unperturbed Schro¨dinger

equation for the core wave functionsc0. In a solid we have
to take into account two perturbations of the core electro
The first perturbation is the nonspherical part of the effect
potential, which we will callFns~r ! in the following. If the
nuclear spinI is larger than12, the second perturbationF

Q~r !
is caused by the electric-quadrupole moment of the nucle
Therefore we have to solve the perturbed problem

~22!

In the following we denote the first-order perturbation of t
core wave functions byFns~FQ! with cns~cQ!, with

~H02E0!c1
ns52~Fns2E1

ns!c0 ~23!

and

~H02E0!c1
Q52~FQ2E1

Q!c0, ~24!

as can be seen by insertingc5c01c1
ns1c 1

Q into Eq. ~22!
and usingE1

ns/Q5^c0uFns/Quc0&. It becomes clear from Eqs
~23! and ~24! that in first order of perturbation theory th
correctioncns is independent of the correctioncQ and vice
versa. Physically speaking, this means that for instance,
nuclear quadrupole moment induces a polarization of
core states that is rigidly corotated when changing the or
tation of the nuclear quadrupole moment. The energy of
system up to second order is given by

E5
^c01c1

ns1c1
QuHuc01c1

ns1c1
Q&

^c01c1
ns1c1

Quc01c1
ns1c1

Q&
. ~25!

It can be shown27 that the part of the second-order ener
correction that depends on the orientation of the nucl
quadrupole moment relative to the nonspherical parts of
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7482 55J. EHMANN AND M. FÄHNLE
effective potential and hence contributes to the quadrup
interaction energy is given by~the first-order terms do no
depend on this orientation!

E2
nsQ52^c0uFQuc1

ns&12^c0uFnsuc1
Q&12^c1

nsuH02E0uc1
Q&.

~26!
The first term on the right-hand side of Eq.~26! is the
orientation-dependent part of the interaction ene
^c01c1

nsuFQuc01c1
ns& of the nuclear quadrupole mome

with the ‘‘external’’ efg that would arise if there were n
polarization of the core states by the nuclear quadrupole
ment. In reality, however, there is such a core polarizati
which interacts with the external efg of the crystal, and
orientation-dependent part of the corresponding interac
energy^c01c 1

QuFnsuc 01c 1
Q& is given by the second term

The third term describes the orientation-dependent par
the polarization energy that is required to distort the ori
nally spherically symmetric core-charge density byFns and
FQ. This is hard to see directly from the matrix element a
appears, but it becomes obvious when taking into acco
that the terms of the total energyE as given by Eq.~25! must
describe either the energy required to generate the pola
tions uc1

ns& and uc 1
Q& or the interaction energies related to t

existence of these polarizations. Because the latter contr
tions are accounted for by the first and second terms,
third term on the right-hand side of Eq.~26! has to describe
~the orientation-dependent! part of the polarization energy.

Multiplying Eq. ~23! by cQ, Eq. ~24! by cns, and integrat-
ing overdr gives us

^c0uFQuc1
ns&5^c0uFnsuc1

Q&52^c1
nsuH02E0uc1

Q&
~27!

if we demand that̂c0uc1
ns&5^c0uc 1

Q&50 @sincec1
ns and c 1

Q

are solutions of the inhomogeneous differential equati
~23! and ~24! it is always possible to orthogonalize them o
c0#. With the help of Eq.~27! we can simplifyE2

nsQ to

E2
nsQ52^c0uFQuc1

ns&52^c0uFnsuc1
Q&. ~28!

This shows that the two orientation-dependent contributi
to the interaction energy are of equal size and that eithe
the two contributions is exactly canceled by the polarizat
energy of the core charge. The important result is that
obtain the correct quadrupole interaction energy by con
ering eitherFns or FQ as a perturbation of the core electro
~see also Refs. 1 and 28!. It should be recalled that the tota
core polarization is of course given by the sum ofuc1

ns& and
uc 1

Q&. Nevertheless, because of the cancellation of the t
term of Eq.~26! with either the first or the second term w
must account for only one of the two perturbationsFns and
FQ when evaluating the electric-field gradient for the calc
lation of the quadrupolar interaction energy.

A. Treating FQ as a perturbation „Sternheimer approach…

In this subsection we will consider the potential of t
nuclear quadrupole moment

FQ~r !5
C2

r 3
Y20~ r̂ !, ~29!
ar
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with the abbreviationC252QA4p/5, as a perturbation o
the core electrons. The problem is to find the solution of
inhomogeneous differential equation~24!. The unperturbed
core wave functions can be written as

cnlm
0 5

unl
0 ~r !

r
Ylm~ r̂ !, ~30!

wheren is the principal quantum number andl ,m the quan-
tum numbers of the angular momentum. Thec nlm

0 are degen-
erate with respect to the magnetic quantum numberm since
the energyEnl

0 does not depend onm. Nevertheless, we can
apply nondegenerate perturbation theory because the m
elements ofFQ in the degenerate subspace

^cnlm
0 uFQucnlm8

0 &5C2G~ l2l ,m0m8!E
0

` @unl
0 ~r !#2

r 3
dr

~31!

are zero form8Þm. The reason for this is that the Gau
coefficientsG( l 8Ll ,m8Mm), defined by

G~ l 8Ll ,m8Mm!5E Yl 8m8
* ~ r̂ !YLM~ r̂ !Ylm~ r̂ !dO, ~32!

vanish form8ÞM1m. @Note that if the perturbation is
proportional toYLM~r̂ ! with MÞ0, the matrix of the pertur-
bation potential in a degenerate subspace is not diagona
that in this case nondegenerate perturbation theory canno
applied.#

Inserting Eq.~30! into Eq. ~24! yields, for the right-hand
side,

2~FQ2E1
Q!cnlm

0 52(
l 8

C2S unl0 ~r !

r 4
2
unl
0 ~r !

r

3E @unl
0 ~r !#2

r 3
dr d l l 8DG~ l 82l ,m0m!

3Yl 8m~ r̂ !, ~33!

where we used the relation

Y20~ r̂ !Ylm~ r̂ !5(
l 8

G~ l 82l ,m0m!Yl 8m~ r̂ !. ~34!

Making for c 1
Q the ansatz

cnlm
Q 5C2(

l 8
G~ l 82l ,m0m!

u1~nl,l 8!

r
Yl 8m~ r̂ !, ~35!

we see that the angular-dependent parts of the left-hand
right-hand sides of Eq.~24! @the latter is given in Eq.~33!#
have the same form. Comparing the differentl 8 terms in the
sum, we arrive at the inhomogeneous radial differen
equation

S 2
d2

dr2
1Feff

sph~r !1
l 8~ l 811!

r 2
2Enl

0 Du1~nl,l 8!

5S E @unl
0 ~r !#2

r 3
dr d l l 82

1

r 3Dunl0 ~r ! ~36!



n

or

f

n

tia

t

lu

r

s
ri
n

tion
ex-
efg
-
ric
id-

em
ause
eus

ad-
lar

ore

m,

m-
ly

y

can

c.

-

ot

55 7483INFLUENCE OF THE ELECTRONIC CORE . . .
for u1(nl,l 8), which can be solved numerically. For a give
angular momentum of the unperturbed wave functionl only
certain values ofl 8 are allowed, due to the selection rules f
Gaunt coefficients. These are given byl 85l , l62. ~For l50
only l 852 is allowed: the triangle rule.! This means that an
unperturbeds state gets under the influence ofFQ an admix-
ture ofd character, an unperturbedp state gets admixtures o
p and f character, and so on.

The first-order change of the core-electron density

n1~r !52 ReS (
nlm

cnlm
0* cnlm

Q D ~37!

can be written as29

n1~r !5
5

4p
C2

1

r 2
U~r !Y20~ r̂ !, ~38!

with

U~r !5(
n,l

(
l 8

4

25
A20p~2l11!~2l 811!

3G~2l l 8,000!unl
0 u1~nl,l 8!. ~39!

Equation~38! shows that perturbations proportional toY20~r̂ !
can only induceL52,M50 components in the core-electro
density.

With the help of Poisson’s equation, the induced poten
can be computed, giving us

F ind~r !52C2F 1r 3 E0rU~r 8!r 82dr8

1r 2E
r

` U~r 8!

r 83
dr8GY20~ r̂ !. ~40!

By comparing Eq.~40! with Eq. ~29!, we may interpret
Find~r ! as the potential of an induced quadrupole momen

F ind~r !52
Qind~r !

r 3
A4p

5
Y20~ r̂ !, ~41!

with

Qind~r !52QF E
0

r

U~r 8!r 82dr81r 5E
r

` U~r 8!

r 83
dr8G .

~42!

The total quadrupole moment of the system nucleus p
core electrons is therefore given by

Qtot~r !5Q1Qind~r !5Q@12g~r !#, ~43!

where we introduced the Sternheimer function

g~r !522F E
0

r

U~r 8!r 82dr81r 5E
r

` U~r 8!

r 83
dr8G . ~44!

The limit of g(r ) for r→` is the well-known Sternheime
factorg` .

An external point charge~external to the system nucleu
plus core electrons, e.g., a valence electron or a neighbo
nucleus! then interacts with the local quadrupole mome
l

s

ng
t

Qtot(r )5Q[12g(r )]. From a mean-field-like viewpoint the
influence of the core electrons on the quadrupolar interac
energy can therefore be accounted for by weighting the
ternal charges in the formula for the computation of the
~3! with the factor@12g(r )#. If r~r ! is the total charge den
sity of the system, calculated with spherically symmet
core states, the ‘‘effective’’ efg at the nucleus under cons
eration is thus given by

Vi j5E @12g~r !#r~r !S 3xixjr 5
2

d i j
r 3 Ddr . ~45!

In Eq. ~45! we can use the total charge density of the syst
instead of the charge density of the external charges bec
the spherically symmetric core-charge density of the nucl
considered does not contribute toVi j . In this context ‘‘effec-
tive’’ means that we obtain, usingVi j from Eq. ~45!, the
correct quadrupolar interaction energy with the nuclear qu
rupole momentQ and consequently the correct quadrupo
splitting of the nuclear levels, which is proportional toQVzz.

These considerations show that in this method the c
contribution to the efg at the nucleus is given by

Vi j
core52E g~r !r~r !S 3xixjr 5

2
d i j
r 3 Ddr , ~46!

wherer~r ! is again the total charge density of the syste
calculated with spherically symmetric core states, andg(r ) is
the Sternheimer function, calculated in the spherically sy
metric part of the effective potential. The total efg is final
given by

Vi j5Vi j
sph core1Vi j

core, ~47!

whereVi j
sph coreis the result of a calculation with sphericall

symmetric core-charge density.

B. Treating Fns as a perturbation „effective-potential method…

This second but equivalent method~see above! considers
the nonspherical part of the effective potential

Fns~r !5 (
LÞ0,M

FLM
ns ~r !YLM~ r̂ !, ~48!

as a perturbation of the core electrons. In principle, we
calculate the perturbation of the core wave functionsc1

ns by
solving Eq. ~23!. However, the method described in Se
III A can only be applied ifFns has only components with
M50. This is due to the fact that in them-degenerate sub
space of the unperturbed statesc nlm

0 the matrix of the per-
turbation

^cnlm
0 uFnsucnlm8

0 &5 (
LÞ0,M

G~ lLl ,mMm8!

3E
0

`

FLM
ns ~r !@unl

0 ~r !#2 dr ~49!

is not diagonal forMÞ0 since the Gaunt coefficients do n
vanish if the relationm5M1m8 is satisfied.
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7484 55J. EHMANN AND M. FÄHNLE
In the following we will present an alternative approa
to find the core wave functions in the full nonspherical
fective potential. Instead of the first-order perturbation eq
tion ~23! we solve

S 2¹21Feff
sph~r !1 (

LÞ0,M
FLM

ns ~r !YLM~ r̂ ! Dc i~r !5Ec i~r !.

~50!

This can be done by expanding theci~r ! ~i51,...,NCE,
whereNCE is the number of core electrons! in a suitable
chosen set of basis functions. In our approach the expan
is given by

c i~r !5(
lm

Clm

ul
0~r !

r
Ylm~ r̂ !

1(
lma

Dlm
a r l exp~2ar2!Ylm~ r̂ !. ~51!

c nlm
0 5u l

0(r )/rYlm~r̂ ! are the unperturbed core wave fun
tions, which means the firstNCE/2 solutions of Eq.~50! if we
consider only the spherically averaged effective potent
The second part of the basis set, which is necessary sinc
perturbation of the core wave functions cannot be descri
by the c nlm

0 alone, is given by Gaussians. In this part w
considered values ofl up to 4. For the width of these Gaus
siansa we choose ten different values between zero and
MT sphere radius. The convergence of the results with
spect to the number and choice of thea can be monitored by
comparing them with the results of the previous method
cases withM50, where we have to solve an inhomogeneo
differential equation and where no additional basis functio
are needed. We find that using ten different values gives
a very good approximation, the same perturbed wave fu
tions and hence the same core contributions to the efg.

Inserting Eq.~51! into Eq. ~50!, we obtain an eigenvalue
problem for the coefficientsClm and D lm

a , which can be
solved numerically. The nonspherical core-electron den
is finally given by

ncore~r !5(
i

uc i~r !u2 ~52!

and the core contribution to the efg can be calculated w
the help of

Vi j52E ncore~r !S 3xixjr 5
2

d i j
r 3 Ddr . ~53!

In principle, it is possible to include the calculation of th
nonspherical core-charge density in the self-consiste
cycle of the FLAPW method. This can be done by comp
ing the contribution of the core-charge density to the n
spherical components of the effective potential in each ite
tion by means of Poisson’s equation. However, in gene
this contribution is small compared to the one of the vale
electrons. Therefore, the reaction of the valence electron
the nonspherical core contribution to the effective poten
is negligible, as we have shown by several test calculatio
and it suffices to compute the nonspherical core-charge
sity once at the end of the self-consistency cycle.
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IV. RESULTS

A. efg near a substitutional Ni or Pd atom in Cu

In order to test the accuracy of the different methods
determine the core contribution to the efg~e.g., FLAPW
semicore calculations or calculations with local orbitals, a
the effective-potential approach! we have calculated the ef
at the nearest-neighbor~NN! site of substitutional Be, Ni, Pd
and Pt atoms in Cu using a supercell containing 15 Cu ato
and one substitutional atom. As a representative exampl
demonstrate the effects we discuss the results for the sy
Ni in Cu because it gives a rather large core contribution
the efg. Furthermore, the experimental value for the efg
the NN site is accurately known from nuclear quadrup
double-resonance measurements on dilute CuNi alloys.30 It is
given by uVzz

exptu54231019 V/m2.
Using the FLAPW method and treating the 1s-3p elec-

trons of Cu and Ni as spherically symmetric core states,
obtained at the NN Cu atomVzz5236.131019 V/m2. In this
calculation we have used eightk points according to Chad
and Cohen,31 Gaussian broadening,32 a plane-wave cutoff of
Gc54.0 a.u.21, and the experimental lattice consta
a056.82 a.u. and we took into account the relaxation of
Cu atoms surrounding the Ni atom.

Applying the effective-potential method at the end of t
FLAPW self-consistency cycle leads to a core contribut
to the efg ofVzz

core528.931019 V/m2. This gives us the
theoretical valueVzz5244.931019 V/m2, in reasonable
agreement with the experimental value.~For a detailed com-
parison between theory and experiment we have to use m
k points as well as larger supercells in order to avoid ‘‘finit
size’’ effects.! The core contribution to the efg can be d
composed into the contributions of the different core sta
Table I shows that the main contribution comes from thep
electrons. The contribution of the 2p electrons is small and
that of s electrons can be neglected.

In Sec. III A we have already seen that within the fram
work of a first-order perturbation approach aL52, M50
perturbation can only induce aL52,M50 component in the
core-charge density. Similarly, it can be shown that pert
bations proportional toYLM induce to first order onlyL com-
ponents in the core-charge density. Because for the efg
the L52 components are relevant, only perturbations w
L52 must be considered to determine the core contribu
to the efg. The principal axis system of the total efg tenso
well as ofVi j

sph coreandVi j
core at the NN site of the Ni atom is

given by x̂5~0,0,21!, ŷ5~21/&,1/&,0!, and ẑ5~1/&,1/
&,0!. In this coordinate system only the twoL52 compo-
nentsF20

ns andF22
ns of the effective potential are allowed b

TABLE I. Decomposition of the core contribution to the efg
the NN site of a substitutional Ni atom in Cu.

State Vzz
core in 1019 V/m2

1s 20.2
2s 0.0
2p 21.6
3s 0.1
3p 27.2
1s-3p 28.9
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55 7485INFLUENCE OF THE ELECTRONIC CORE . . .
symmetry at the NN site of the Ni atom and the princip
component of the core contribution to the efg,Vzz

core, is, ac-
cording to Eq.~5!, determined by theL52,M50 component
of the core-charge density induced byF20

nsY20 ~see above!.
For the determination ofVzz

core we therefore have to conside
only the perturbationF20

nsY20 and consequently we can ca
culate the perturbation of the core wave functionsc1

ns by
solving Eq.~23! with the method described in Sec. III A~we
have only to replaceFQ by F20

nsY20! since the matrix repre
sentation ofF20

nsY20 in anm-degenerate subspace is diagon
In Sec. III A we have shown that a perturbation, which
proportional toY20~r̂ !, adds wave functions withl 852 to an
unperturbeds state and withl 85 l ,l62 to unperturbed state
of angular momentumlÞ0. An unperturbeds (p) state gets
under the influence ofF20

nsY20 an admixture ofd ~p and f !
character. According to Sternheimer, admixtures that h
the same angular momentuml as the unperturbed state a
called radial excitations~for example, in the case of ap→p
excitation!, whereas those withl 85 l62 are called angula
excitations. The contribution of the 3p electrons to the efg
can be further decomposed into these radial and angula
citations~Table II!. It turns out that the contribution of an
gular excitations (p→ f ) is very small.

The contribution of the 3s and 3p electrons of Cu to the
efg at the NN site of a substitutional Ni atom can, in pri
ciple, also be calculated with a FLAPW semicore calculat
or with the help of local orbitals~see Sec. II A!, whereas the
contributions of the states 1s-2p that add up to21.831019

V/m2 ~Table I! cannot be obtained by these methods. T
calculation in which the Cu 3p states are treated using loc
orbitals ~the remaining core states 1s-3s are still treated as
spherically symmetric states! gives us a contribution of the
3p electrons to the efg ofV zz

3p526.731019 V/m2, in satis-
fying agreement with the result of the effective-potent
method~27.231019 V/m2!.

Treating the 3s and 3p electrons by means of a semico
calculation, we obtainV zz

3p520.431019 V/m2, which is
much too small compared to the results of the effecti
potential method and the local-orbital calculation. We w
now discuss the reason for the failure of the semicore ca
lation.

If we choose the principal axis system of the efg as
coordinate system,V zz

3p is dominated by the radial excitatio
of the 3p electrons under the influence of theL52, M50
component of the effective potential,F20

nsY20. Figure 1
shows the radial part of the 3p radial excitation, induced by
F20

nsY20 and calculated by solving Eq.~23! with the method
described in Sec. III A. In a semicore calculation the ba
functions with p character inside the MT sphere of th
nucleus considered are given by

TABLE II. Decomposition of the 3p contribution to the efg at
the NN site of a substitutional Ni atom in Cu into contributio
from radial and angular excitations.

3p excitation Vzz
core in 1019 V/m2

Radial 27.4
Angular 10.2
l

l.

e

x-

n

e

l

-
l
u-

r

s

w3p
k1G~r !5(

m
@A1m

k1Gu1~r ,E1
sc!1B1m

k1Gu̇1~r ,E1
sc!#Y1m~ r̂ !

~54!

@see Eq.~11!#. The functionu1~r ,E1
sc! and its energy deriva-

tive u̇1~r ,E1
sc! are also shown in Fig. 1. It is evident that

the region close to the nucleus~which is most important for
the computation of the efg! the radial excitation of the 3p
state can, in principle, be described byu̇1~r ,E1

sc!. But we
have to remember that the coefficientsA1m

k1G andB1m
k1G in

Eq. ~54! are determined by the augmentation. Since the va
and slope ofu1~r ,E1

sc! are very small at the MT spher
boundary, the coefficientsB1m

k1G are, according to Eqs.~13!
and~15!, very small too. Thel51 part of the 3p wave func-
tion ~in the following reasoning we will only consider theG
point k50! inside the MT sphere can be written as

C3p~r !5(
G

CG
3pw3p

G ~r !

5(
m

@am
3pu1~r ,E1

sc!1bm
3pu̇1~r ,E1

sc!#Y1m~ r̂ !,

~55!

with

am
3p5(

G
CG
3pA1m

G , bm
3p5(

G
CG
3pB1m

G . ~56!

Although the coefficientsB1m
G are small, it may be possible

thatam
3p andbm

3p are of comparable magnitude. However, w
have to keep in mind that the 3p electrons of Cu are almos
completely confined within the MT sphere and that theref
the value and slope ofC3p~r ! must be very small at the MT
sphere boundary. Sinceu̇1~r ,E1

sc! is large near this boundary
the coefficientbm

3p has to be very small in order to avoid a
energetically unfavorable large delocalization of the 3p elec-
trons. In contrast to this, the coefficientbm

3p should take a
significant value in order to account for the radial excitati
of the 3p wave function. However, the accurate account
the radial excitation is energetically much less importa

FIG. 1. Radial excitation (p→p) of the 3p state, induced by
F20
nsY20 and multiplied by 5000. Also shown are the 3p-like aug-

mentation functionu1~r ,E1
sc! and its energy derivative. The radiu

of the MT sphere is 2.3 a.u.
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7486 55J. EHMANN AND M. FÄHNLE
than the accurate description of the correct localization. F
thermore, the coefficientsCG

3p are determined by the varia
tion principle in such a way thatC3p~r ! is small in the inter-
estitial region. Under these circumstances, it is impossi
due to the limited variational freedom, that a superposition
the basis functions according to Eq.~55! yields a good de-
scription of the radial excitation in the whole MT sphere.

For the angular excitation of the 3p state under the influ-
ence ofF20

nsY20 the situation is similar. Figure 2 shows th
radial part of the angular excitation of the 3p Cu state at the
NN site of a substitutional Ni atom induced byF20

nsY20 and
again calculated by solving Eq.~23!. Also shown are the
augmentation functionsu3~r ,E3

sc! and u̇3~r ,E3
sc! with f char-

acter. It can be seen that the angular excitation of thep
state can only poorly be described by these augmenta
functions. Therefore, the contribution of angular excitatio
to the efg is not correctly reproduced by semicore calcu
tions. These considerations show that we may not expec
obtain accurate values for the contribution of the highest c
electrons~e.g., the 3s and 3p electrons of Cu! to the efg
using a FLAPW semicore calculation since neither the
portant radial nor the angular excitation is described c
rectly.

The situation is completely different if the 3p state of Cu
is treated with the help of local orbitals together with t
valence electrons in one energy window. In this case
basis functions withp character inside the MT sphere a
given by the local orbital

w1m
LO~r !5@A1mu1~r ,E1

val!1B1mu̇1~r ,E1
val!

1C1mu1~r ,E1
3p!#Y1m~ r̂ ! ~57!

and

wk1G~r !5(
m

@A1m
k1Gu1~r ,E1

val!1B1m
k1Gu̇1~r ,E1

val!#Y1m~ r̂ !,

~58!

where the augmentation functionu1~r ,E1
val! and its energy

derivative are calculated for an energy in the valence-b

FIG. 2. Angular excitation (p→ f ) of the 3p state, induced by
F20
nsY20 and multiplied by 5000. Also shown are the augmentat

function u3~r ,E3
sc! and its energy derivative withf character. The

radius of the MT sphere is 2.3 a.u.
r-

e,
f

on
s
-
to
re

-
r-

e

d

region andu1(r ,E 1
3p) for the energy of the center of th

small 3p band. These three augmentation functions
shown in Fig. 3 together with the radial excitation (p→p) of
the 3p state induced byF20

nsY20. It is evident that now the
radial excitation of the 3p state can be described by the tw
functions u1~r ,E1

val! and u̇1~r ,E1
val!, at least in the region

close to the nucleus~see Fig. 3!. The part of the 3p wave
function with p character is now given by~again fork50!

C3p~r !5(
m

Cm
LOw1m

LO~r !1(
m

@am
3pu1~r ,E1

val!

1bm
3pu̇1~r ,E1

val!#Y1m~ r̂ !. ~59!

The coefficientsam
3p and bm

3p are adjusted by the variatio
principle in such a way that, on the one hand, the value
slope ofC3p~r ! are small but not zero at the MT radiu
~accounting for the small overlap of neighboring 3p wave
functions! and that, on the other hand, the radial excitation
reproduced accurately. In contrast to the FLAPW semic
calculation there are now two functionsu1(r ,E1

val) and
u̇1(r ,E1

val) that contribute with comparable weight to th
wave function at the MT sphere boundary and are both a
to describe the radial excitation in the region close to
nucleus. Consequently, in a FLAPW calculation with loc
orbitals the variational freedom is increased compared t
semicore calculation and the contribution of the radial ex
tation of the 3p state to the efg is reproduced.

Figures 1–3 also show that the radial and angular exc
tions of the unperturbed 3p wave function are very smal
~remember that they have been multiplied by 5000!. There-
fore, the orthogonality of the core wave functions on t
valence wave functions, which is, for true core states, exa
fulfilled if these are treated as spherically symmetric state20

is to a very good approximation maintained.
For the angular excitation of the 3p state the situation tha

arises when using local orbitals is analogous to the case
semicore calculation. It is not accurately reproduced in
FLAPW calculation using local orbitals.

FIG. 3. Radial excitation of the 3p state~induced byF20
nsY20 and

multiplied by 5000!, augmentation functionsu1~r ,E1
val! and

u̇1~r ,E1
val!, and local orbital for the NN Cu atom of a substitution

Ni atom. The radius of the MT sphere is 2.3 a.u.
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55 7487INFLUENCE OF THE ELECTRONIC CORE . . .
Figure 4 shows the 20 component of the charge densit
the 3p electrons multiplied withr 2 and calculated with the
effective-potential method as well as with local orbitals. Th
component determines the contribution of the 3p electrons to
the efg @see Eq.~53!#. We have already seen that angu
excitations are not correctly described by a FLAPW calcu
tion with local orbitals. Additionally, Fig. 2 shows that in th
region close to the nucleus the augmentation functions wif
character are very small; hence, in this region the contri
tion of angular excitations tor 2n 20

3p(r ) in a FLAPW semi-
core or local orbital calculation is negligibly small. Ther
fore, we may assume that for a comparison of the loc
orbital result for n 20

3p(r ) with the result of the effective-
potential method it is reasonable to consider in the
method only radial excitations. This assumption is justifi
by the reasonable agreement of the two curves in Fig
especially in the important region close to the nucleus. T
together with the fact that the contribution of angular exci
tions is, in general, very small~Table II!, results in the good
agreement of the two values ofV zz

3p stated before.
In contrast, in the region near the boundary of the M

sphere there is a large discrepancy between the two re
for r 2n 20

3p(r ) shown in Fig. 4. This is due to the fact that th
3p state is treated completely different in the two metho
In the effective-potential method the 3p state is treated as a
atomic state with no solid-state boundary conditions to
satisfied, whereas in a calculation using local orbitals i
treated as a band state. The calculation with local orbi
shows that the asphericity of the 3p charge density is larges
at the MT sphere boundary due to the overlap of thep
wave functions of neighboring atoms.

In the following we will address the question whether
not it is, concerning the computation of the efg, a good
proximation to treat the 3p electrons of Cu as atomic state
The density of the 3p electrons is almost completely con
fined within the MT sphere, as can be seen in Fig. 5. Nev
theless, there is a small amount outside the MT sph
which gives a direct contribution to chemical binding.
order to separate the contribution ton 20

3p(r ) arising from the
overlap of neighboring 3p wave functions from the contri

FIG. 4. l52, m50 component of the 3p core-electron density
multiplied by r 2, of a NN Cu atom of substitutional Ni. The ful
curve is calculated using local orbitals for the 3p state and the
dashed curve using the effective-potential method~considering only
radial excitations!.
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bution arising from the asphericity of the effective potent
inside the MT sphere we performed a calculation in a M
potential, i.e., a calculation in which only the spherica
symmetric part of the effective potential inside the M
sphere is considered and the potential in the interstitial
gion is set to zero. Figure 6 shows again the 20 componen
the 3p charge density, multiplied byr 2. The full line is the
result of the FLAPW calculation in which the 3p states are
treated using local orbitals and where the full nonspher
effective potential has been taken into account. This curv
the same as that plotted in Fig. 4. As already mentioned,
calculation givesV zz

3p526.731019 V/m2. At the end of the
self-consistency cycle we made an additional last iteration
which only the spherically symmetric part of the effectiv
potential inside the MT sphere was considered~the MT po-
tential!. This results in the dashed curve shown in Fig. 6.
a calculation using a MT potential the nonspherical parts
the 3p charge density can only be caused by the overlap
the 3p wave functions of neighboring atoms, i.e., by th
contribution of the 3p states to chemical binding. This ove
lap leads to an increase ofn 20

3p(r ) near the MT sphere bound

FIG. 5. l50,m50 component of the 3p core-electron density of
a NN Cu atom of substitutional Ni.RMT52.3 a.u. is the radius of
the MT sphere.

FIG. 6. 20 component of the 3p electron densityr 2n 20
3p(r ) of a

NN Cu atom of substitutional Ni, calculated using local orbita
The full curve is obtained if the full effective potential is used; t
dashed curve is the result of a calculation in a MT potential. T
MT radius is 2.3 a.u.
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7488 55J. EHMANN AND M. FÄHNLE
ary. In the region close to the nucleus, however, the value
n 20
3p(r ) from the MT potential calculation are very sma

compared to the values calculated in the full effective pot
tial. Consequently, the calculation in the MT potential give
similar to the semicore calculation, a very small value for
3p contribution to the efg,V zz

3p520.231019 V/m2. V zz
3p is

thus almost completely determined by the polarization of
3p state under the influence of the nonspherical part of
effective potential. From these considerations we may c
clude that for the determination of the contribution of thep
electrons to the efg in Cu it is a good approximation to tr
them as atomic states.

The question of which of the two methods yields the m
accurate results is difficult to answer. Local orbitals certai
have the advantage that they can also be applied to sys
with extended core states~see the Introduction!. The
effective-potential method is not applicable for these s
tems. Points in favor of the effective-potential method a
that ~i! the flexibility of the basis set may be superior com
pared to a local orbital calculation for the case of a ve
small overlap of neighboring core states, where the core c
tribution to the efg arises nearly exclusively from the a
pherical effective potential;~ii ! the contribution of all core
electrons to the efg can be determined; and~iii ! both radial
and angular excitations can be considered. Furthermor
can be applied in combination with the pseudopoten
method after the reconstruction of the true valence w
functions from the pseudovalence wave functions25 too.

The calculations for the substitutional Ni atom in Cu r
ported so far have been performed with a small super
containing 16 atoms. This supercell size allows only the
termination of the efg at the NN sites of the Ni atom beca
the next NN already lies on the boundary of the superc
Additionally, the calculated efg at the NN site may be infl
enced by the small supercell size~the finite-size effect!.
Hence, for a direct comparison with experiment we have
use a larger supercell. As an example we calculated the e
near a substitutional Pd atom in Cu using a 64-atom su
cell. In this supercell the atoms of the fourth shell around
impurity lie on the supercell boundary, so that we can de
mine the relaxed atomic positions and efg’s for the first th
shells. The relaxed atomic positions are in units ofa0 given
by ~0.5080,0.5080,0! for the first, ~1.0012,0,0! for the sec-
ond, and~0.4996,0.4996,1.0020! for the third shell. Table III
shows the calculated transition frequencies

TABLE III. Quadrupolar transition frequencies of the63Cu nu-
clei near a substitutional Pd atom, calculated with the FLAP
method using ten Chadi-Cohenk points, GC53.4 a.u.21, and a
relaxed 64-atom supercell. The core contribution (1s-3p) to the efg
has been calculated with the effective-potential method. 0 in
cates thath vanishes by symmetry.

Theory Experiment
Shell nq ~kHz! h Vzz

core/Vzz
sph core nq ~kHz! h

1 3160 0.3 20.07 3145 0.2
2 520 0 20.08 534
3 390 0.6 10.27 241
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3
~60!

and the asymmetry parameter for the Cu atoms~nuclear spin
I5 3

2! up to shell 3 together with experimental values fornq
obtained with the nuclear quadrupole double resona
~NQDOR! technique33 and for h obtained by means o
NMR.34 For the nuclear quadrupole moment of the Cu is
tope 63Cu we usedQ52220310231 m2.35 Table III shows
that theory and experiment agree excellently for the first t
shells. Again the core contribution to the efg is considera
and improves the agreement with experiment significan
The third shell, however, is influenced by finite-size effec
which lead to a discrepancy between theory and experim
Calculations with a 16-atom supercell for the same sys
showed that already this supercell size gives reasonable
ues for the relaxed atomic positions of the NN atoms of
substitutional Pd atom and for the efg at the NN nuclear s
~see also Ref. 3!.

B. efg near a substitutional Fe or V atom in Al

We have performed calculations of the efg near Fe o
substitutional atoms in Al. Because the core contribution
the efg is much larger for Fe than for V, we confine ou
selves mainly to the discussion of the first case. As in
case of a substitutional Ni atom in Cu, the calculations of
efg at the NN site of a substitutional Fe atom in Al have be
performed with a 16-atom supercell and the FLAP
method. The experimental value for the efg and the asym
try parameter at the NN site isuVzz

exptu54231019 V/m2 and
h50.6.36

A FLAPW calculation~40 k points according to Chad
and Cohen, Gaussian broadening,Gc53.4 a.u.21, the experi-
mental lattice constanta057.65 a.u., and relaxation of the A
atoms surrounding the Fe atom are taken into account!, in
which the 1s-2p electrons of Al and the 1s-3p electrons of
Fe are treated as spherically symmetric core states, gives
the efg at the NN site of the Fe atom,Vzz5238.431019

V/m2 and an asymmetry of 0.87.
At the end of the self-consistency cycle we obtain by t

effective-potential method a rather large core contribution
the efg ofVzz

core5211.631019 V/m2. The total theoretical
results for the efg,Vzz5250.031019 V/m2, and for the
asymmetry parameterh50.7 are, despite the small superce
used, in good agreement with the experimental values.
decomposition of the core contribution to the efg into t
contributions of the different core states is shown in Ta
IV. The main contribution comes from the 2p electrons.
Similar to the case of Cu, the contribution ofs electrons can
be neglected. The contribution of the 2p electrons to the efg

i-

TABLE IV. Decomposition of the core contribution to the efg
the NN site of a substitutional Fe atom in Al.

State Vzz
core in 1019 V/m2

1s 0.8
2s 1.0
2p 213.5
1s-2p 211.6
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55 7489INFLUENCE OF THE ELECTRONIC CORE . . .
can be decomposed into the radial and angular excitati
The radial excitation contributes214.831019 V/m2; the an-
gular excitation gives only a very small contribution
1.331019 V/m2.

We have also calculated the core contribution to the
using the Sternheimer function approach described in S
III A. At the end of the self-consistency cycle of the abov
mentioned FLAPW calculation, in which the 1s-2p elec-
trons of Al are treated as spherically symmetric states,
Sternheimer function can be computed with the help of
~44! using the spherically symmetric part of the effecti
potential in Eq.~36!. For the Al atom next to the substitu
tional Fe atomg(r ) is shown in Fig. 7. In the region outsid
the 1s-2p charge densityg(r ) takes the constant valu
g`522.93. Figure 7 shows that this is the case forr.RMT ,
i.e., outside the MT sphere. In order to compute the c
contribution to the efg, we can therefore apply Eq.~46! for
the charge densityr~r ! inside the MT sphere@note thatr~r !
is the charge density obtained in the FLAPW calculat
with spherically symmetric 1s-2p states# and add the contri-
bution to the efg from outside the MT sphere of the cons
ered Al atom multiplied withg` . This givesVzz

core5211.3
31019 V/m2. The total theoretical result is the
Vzz5249.731019 V/m2 andh50.69, in excellent agreemen
with the result of the effective-potential method~see above!.
This demonstrates strikingly the equivalence of the t
methods discussed in Sec. III.

A FLAPW calculation in which the 2p states of Al~and
the 3p states of Fe! are treated using local orbitals gives
contribution of the 2p electrons to the efg o
V zz

2p5211.131019 V/m2, again in satisfying agreement wit
the result of the effective-potential metho
V zz

2p5213.531019 V/m2. Figure 8 shows the local orbita
and effective-potential result for the 20 component of
density of the 2p electrons multiplied withr 2. In the calcu-
lation using the effective-potential method we have, for
reasons discussed in Sec. IV A, again only considered ra
excitations. In the region close to the nucleus both curve
Fig. 8 agree reasonably. The reason for the difference

FIG. 7. Sternheimer functiong(r ) of the Al atom next to a
substitutional Fe atom~solid line! and a Mg atom~dashed line! in
the perfect, hexagonal lattice, calculated in the spherically symm
ric part of the effective potential. The contribution of the 1s-2p
core electrons has been considered.~Al, RMT52.61 a.u.; Mg,
RMT52.95 a.u.!
s.
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tween the two curves in the region near the boundary of
MT sphere is the same as discussed in Sec. IV A. We a
performed at the end of the self-consistency cycle a calc
tion in a MT potential, which gives a very small value for th
2p contribution to the efg ofV zz

2p520.131019 V/m2. This
shows thatV zz

2p is almost completely determined by the p
larization of the 2p state under the influence of the no
spherical part of the effective potential and that the over
of thep states of neighboring atoms plays only a minor ro
for the efg. For the reasons discussed in Sec. IV A, we
not perform a semicore calculation to determine the efg
the NN site of the Fe atom.

As in the case of Cu, we also performed a calculation w
a 64-atom supercell in order to test the accuracy of the
culated efg’s and asymmetry parameters. As an example
choose a substitutional V atom in Al since for this system
quadrupolar splittings of the nuclear levels of Al~nuclear
spin I5 5

2! are experimentally observed by means of t
NQDOR technique36 and because there is a large differen
between the measured transition frequencies of the nucl
the NN and next-NN sites of the V atom, which must
reproduced by the calculation. The relaxed atomic positi
in units ofa0 are~0.488, 0.488, 0! for the first,~1.007, 0, 0!
for the second, and~0.497, 0.497, 0.996! for the third shell.
The two calculated quadrupolar transition frequencies
shell @corresponding to the transitionsumu565

2↔63
2 ~n2!

and6 3
2↔61

2 ~n1!; see Ref. 37# and the asymmetry paramete
of shells 1 and 2 are compared with the experimental val
in Table V. We usedQ~27Al !5140310231 m2.38,39 Again
there is good agreement between experiment and theor
particular the large difference between the transition frequ
cies of the nuclei in shells 1 and 2 is well reproduced by
calculation.

C. efg in hexagonal Mg

As a last test case we choose the calculation of the ef
the nuclear sites in hexagonal magnesium~Mg!. The calcu-
lations have been performed with the FLAPW method us
1020k points according to Monkhorst and Pack,40 the tetra-
hedron method41,42 for the Brillouin-zone sampling,Gc53.1
a.u.21, a056.07 a.u., andc0/a051.62. The calculation in

t-

FIG. 8. l52, m50 component of the 2p core-electron density,
multiplied by r 2, of an Al atom next to a substitutional Fe atom
The full curve is calculated using local orbitals for the 2p state and
the dashed curve using the effective-potential method~considering
only radial excitations!. RMT52.61 a.u.
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7490 55J. EHMANN AND M. FÄHNLE
which the 1s-2p states of Mg are treated as spherically sy
metric states givesVzz

sph core53.6731019 V/m2. The asymme-
try parameterh vanishes by symmetry.

Using the effective-potential method to determine t
core contribution to the efg at the end of the FLAPW cyc
givesVzz

core50.8031019 V/m2, which is approximately 22%
of Vzz

sph core. For the total efg we obtainVzz54.4731019

V/m2.
The Sternheimer function of Mg, considering the 1s-2p

states and calculated in the spherically symmetric part of
effective potential, is shown in Fig. 7. Outside the region
the core-charge densityg(r ) takes the constant valu
g`524.03. Inserting the charge density of the FLAPW c
culation with spherically symmetric 1s-2p states in Eq.~46!
gives Vzz

core50.8431019 V/m2, in good agreement with the
result of effective-potential method. The small difference b
tween the two results may be caused by the fact thatVzz

core is
calculated under the assumption thatg(r ) is constant outside
the MT sphere~RMT52.95 a.u.!, although this is not exactly
the case~see Fig. 7!. A calculation in which the 2s and 2p
states of Mg are treated with the help of local orbitals giv
a contribution of these states to the efg of 0.6731019 V/m2

and a total efg ofVzz54.2931019 V/m2.
Blaha, Schwarz, and Dederichs7 report on semicore cal

culations on hexagonal Mg. They showed that a calcula
in which the 2s and 2p electrons are treated as semico
states gives a negligible contribution of these states to
efg. The reason for this large discrepancy to the results
sented above is discussed in Sec. IV A. The valueVzz

sph core

54.83 1019 V/m2 reported in Ref. 7 is not comparable wit
our result since the authors used a smallerk-point mesh~the
efg depends sensitively on the number ofk points!.

Our final result for the efg,Vzz54.531019 V/m2, is far
from being converged with respect to the number ofk
points; hence a comparison with the experimental va
Vzz
expt565.331019 V/m2 ~Ref. 1! is not meaningful. How-

ever, the calculations show that considering the core con
bution to the efg improves the agreement with experim
significantly.

V. SUMMARY AND CONCLUSIONS

In conventional band-structure calculations it is assum
that the charge density of the core states is spherically s
metric around the nuclear sites. Consequently, the core
tribution to the efg is completely disregarded. The aim of
present paper was to show that the influence of closed e

TABLE V. Quadrupolar transition frequencies of the Al nucl
near a substitutional V atom, calculated with the FLAPW meth
using 10 Chadi-Cohenk points,GC52.7 a.u.21, and a relaxed 64-
atom supercell. The core contribution (1s-2p) to the efg has been
calculated with the effective-potential method.

Theory Experiment

Shell h
n2

~kHz!
n1

~kHz! Vzz
core/Vzz

sph core h
n2

~kHz!
n1

~KHz!

1 0.05 1260 630 10.08 0.12 1249 635
2 0 250 125 10.12 0 220 110
-
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e
c-

tron shells on the electric-field gradient has to be conside
in order to obtain reliable results for the total efg. We ha
presented two different methods for the computation of t
core contribution to the efg, which yield identical resu
concerning the quadrupolar interaction energy with
nuclear quadrupole momentQ. These two methods can b
applied at the end of the self-consistency cycle of a ba
structure calculation with spherically symmetric core stat
e.g., a FLAPW, FLMTO, PAW, pseudopotential calculatio
and so on.

The first method treats the potential of the nuclear qu
rupole moment as a perturbation for the spherically symm
ric core-charge density. This perturbation induces an ad
tional quadrupole moment in the core-charge density, wh
is given byQind(r )52g(r )Q, with the Sternheimer func-
tion g(r ). g(r ) can be calculated using the spherica
symmetric part of the effective potential by means of
inhomogeneous differential equation. The valence electr
and the neighboring nuclei at a distancer from the nucleus
considered then interact locally with a local quadrupole m
mentQtot(r )5[12g(r )]Q. This leads to the fact that for th
computation of the efg these charges have to be weigh
with the factor 12g(r ) in order to obtain the correct quadru
polar interaction energy with the nuclear quadrupole mom
Q alone.

In the second method the Kohn-Sham equation of the c
electrons is solved using the full nonspherical effective p
tential. This is done by expanding the core wave funct
into a suitably chosen basis set and solving the resul
eigenvalue problem numerically. As a consequence,
charge density of the core electrons is no longer spheric
symmetric and the core contribution to the efg can be ca
lated directly.

The equivalence of these two methods concerning
quadrupolar interaction energy and hence the splitting of
nuclear levels~which is the quantity that is accessible expe
mentally! has been shown in Sec. III using second-order p
turbation theory. It should be noted that the two metho
give completely different results for the perturbation of t
core wave function.

In Sec. IV we have calculated the efg at the neare
neighbor sites of substitutional Ni~Fe! in Cu ~Al ! as well as
the efg at the nuclear sites in hexagonal magnesium. In
these cases the core contribution to the efg is consider
and therefore should not be neglected. The theoretical t
sition frequencies in the neighborhood of a substitutional
~V! atom in Cu ~Al !, which we have computed using th
results for the efg and the asymmetry parameter of a 64-a
supercell calculation and tabulated values for the nuc
quadrupole moment, are in good agreement with the frequ
cies obtained by means of NQDOR measurements.

Up to now it has been assumed that, in combination w
the FLAPW method, the contribution of the highest co
states~e.g., of 3s and 3p states of Cu! to the efg can be
computed reliably with the help of semicore calculation
However, in Sec. IV A we showed that semicore calculatio
are not suited for the determination of the core contribut
to the efg due to the limited basis set inside the MT sphe
The resulting core contributions are often an order of m
nitude too small. Contrarily, the results of FLAPW calcul

d
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tions with local orbitals are in good agreement with the
sults of the two methods presented in this paper. The rea
for this is that in calculations with local orbitals the co
electrons are treated together with the valence electron
the same energy window and that the perturbation of the c
wave functions by the nonspherical part of the effective
tential can be described by the augmentation functions of
s.

.
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FLAPW basis set for the valence wave functions inside
MT spheres.
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