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Influence of the electronic core polarization on the electric-field gradients in solids
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In conventional band-structure calculations it is normally assumed that closed electronic shells have a
spherically symmetric charge density. As a consequence of this approximation, these core states give no
contribution to the electric-field gradie(efg) at the nuclear site. In the present paper two equivalent methods
for the computation of the actual contribution of closed electron shells to the efg are presented. In the first
method the potential of the nuclear quadrupole moment is considered as a perturbation for the core electrons,
which causes a polarization of the core states, i.e., a deviation of the core-charge density from spherical
symmetry. In this case the core contribution to the efg can be calculated with the help of the Sternheimer
function y(r). The second method considers the nonspherical parts of the effective crystal potential near the
nucleus under consideration as a perturbation for the core electrons. These two methods yield identical results
for the interaction energy of the nuclear quadrupole moment with the calculated efg. They are compared with
alternative treatments of energetically high-lying core states within the framework of the full-potential
linearized-augmented-plane-wave meth{edmicore calculations and use of local orbjtalss test cases we
calculate the efg at the nearest-neighbor sites of a substitutiorieEN&atom in Cu(Al) and the efg at a regular
lattice site in hexagonal Mg. Additionally, results for the relaxed atomic positions, the efg, and the asymmetry
parameters around a substitutional (Rd atom in Cu(Al) are presented S0163-182807)03612-§

[. INTRODUCTION tions the charge density of the core electrons has been treated
for computational reasons as spherically symmetric. As a
In crystals the electric-field gradientsfg’s) do not vanish  consequence, there is no core contribution to the efg. Indeed,
at nuclear sites with noncubic point symmetry. The interacwithin the framework of such calculations, accurate or at
tion of the efg with the electric-quadrupole moment of theleast fair results for the efg could be obtained, for instance,
nuclei leads to quadrupolar splittings of the nuclear energyor hexagonal metals® in dilute copper alloys, in
levels, which can be measured by different technidees., YaBaCu,0,,*° and near atomic defects in Al or Cd?
nuclear magnetic resonand®MR), nuclear quadrupole Blaha, Schwarz, and Dederi¢hgent one step further and
resonance, Mssbauer spectroscopy, or perturbed angulatried to describe the polarization of the uppermost atomic
correlation; see, for instance, Refs. 1 and I2 the nuclear core states. They argued that for these states the spatial over-
qguadrupole momen® is known, the efg can be deduced lap of the corresponding orbitals at neighboring atoms is
from experimentally observed transition frequencies betweerery small, but still numerically significant so that they may
the nuclear energy levels. The efg is a ground-state propertye described as semicore states within the framework of a
of the system and depends sensitively on the electronitull-potential linearized-augmented-plane-wave  method
charge distribution in the vicinity of the nucleus under con-(FLAPW). (The polarization of the lower-lying core states
sideration. Therefore, the experimental determination of efgvas neglected.They found that the so-obtained core contri-
is an important and valuable tool for the investigation of thebution to the efg is negligibly small for most metals. The
chemical bonding and electronic structure of solids. Espestarting point of our investigations was the suspicion that the
cially important is the investigation of efg’s near atomic de-basis set used for the FLAPW semicore calculation is prob-
fects in solids because they serve as “fingerprints” for theably not flexible enough to describe the polarization of real
identification of the type of defect produced, for instance, bycore states in an appropriate manner and that in reality the
quenching, cold working, or irradiation with fast particfes. core contribution to the efg might be quite substantial, espe-
For the case of ionic crystals the calculational method ofcially close to atomic defects. The alternative methods that
Sternheimeffor an overview see Ref.)4s widely accepted. we developed are suited to describe the polarization of all
In this method the crystal is conceived as an assembly ofeal core states, i.e., of all core states that do not contribute to
point charges surrounding the atom under consideration aritie chemical bonding. In some cases the uppermost core
the polarization of the core states of this atom by the poinstates of the corresponding free atom are spatially extended
charges is accounted for by a Sternheimer fagtoiif the  beyond the Wigner-Seitz sphere in the crystal. To account
point charges are outside the considered core or by a Sterfor the considerable spatial overlap of these orbitals with
heimer functiony(r) otherwise. In metals and semiconduc- orbitals from neighboring atoms these extended core states
tors, however, the actual charge distribution cannot be dehave to be treated as semicore states or valence states in the
scribed by point charges and has to be determined bgrystal. Examples are thep3states of T2 the 4p states of
accurate band-structure calculations within the framework olo,'**and the P states of rare-earth aton'ss.1’ For these
the density-functional theory of Hohenberg and Kolamd  special cases our calculational methods cannot be applied.
the local-density approximatidhin most of these calcula- In the following, two methods are developed to describe
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nuclear quadrupole mome€} is treated as a perturbation of 53 ()]

the spherically symmetric core-charge density. This pertur-

bation induces an additional quadrupole moment in theSince the tensor of the efy,=V;; , is symmetric, it can be

charge density of the core electrons and it can be demordiagonalized by a transformation to the principal axis sys-

strated that the core contribution to the efg can be calculatetem. In this coordinate syste¥his characterized by the com-

with the help of the Sternheimer functiafr). In the second ponent with the greatest modulds,, and the asymmetry

method the nonspherical core-charge density is calculated hyarameter

considering the nonspherical parts of the effective potential

in the solid as a perturbation of the core states. _ Vi~ Vyy @)
These two methods yield identical results for the interac- = V,, '’

tion energy of the nuclear quadrupole moment with the ef

(Sec. ). They clearly demonstrate that, in general, the cor

contribution to the efg has to be considered in order to obtai

the core polarization. In the first method the potential of the 3XiX;  &j
VI] _j p(l’)( )d

g/vhere the principal components have been chosen in such a
yvay that|V,J>[Vy|>[V,,. According to Eq.(3), V, can
also be written as

a reliable efg.

All calculations in the present paper have been performed yp. (r
with the FLAPW method using theviengs codel® Within V,=2\/— J p_? Y,o(F)dr, (5)
this code there are two methods to determine the influence of S r

the highest core statés.g., 33 and 3 of coppej on the efg
(the polarization of lower-lying core states is neglegted
These are, on the one hand, semicore calculd_ligf@rjzg contribute to the efg.

above and, on the other hand, the use of local orbitafs. In order to obtain the tensor of the efg reliably we have to

The reliability and accuracy of these two methods for a deyetermine the ground-state charge dengity with high ac-

scription of true core states can be checked by comparisofracy. The appropriate tool to do this is@minitio electron

with our calculations and will be discussed thoroughly.  theory using density-functional theory and the local-density
The paper is organized as follows. In Sec. Il the general,,oximation. Kohn and Sh&nshowed that the correct

theory involved in theab initio calculation of efg’s in solids ground-state charge density of the system under consider-

is outlined. In Sec.. III.the two methods for the determinati(_)naﬁOn can be obtained by solving self-consistently single-

of the core contribution to the efg are presented. Sectiop,ticie Schidinger equations containing an effective poten-

IV A reports the results of calculations of the efg generated;)

by a substitutional nickelNi) atom in coppefCu) with spe-

cial regard to the influence of the core electrons on the efg. [—V2+Deuq(r)]¥;(r)=€¥,(r) (6)

The results for the core contribution to the efg will be com- )

pared with the results of FLAPW semicore calculations andor all Ne electrons of the systenfAll formulas in the

calculations using local orbitals. Additionally, we report the Present paper are given in aton{Rydberg units] The ef-

results for the relaxed atomic positions and efg’s near a sutfective potentialbg(r) is given by

stitutional palladium(Pd atom in Cu. Section IV B deals Ny ,

with the efg near a substitutional irgfe) or vanadium(V) Bo(r)=— 2Z, +f 2n(r’) dr'+®.(n(1))

atom in aluminum(Al) and Sec. IV C with the efg in hex- eff a=h [r—Ry| lr—r’| xe '

agonal magnesiurtMg). Section V gives a short discussion 7

and a summary.

with the spherical harmonit,o(r). Equations(3) and (5)
show that the spherically symmetric part pfr) does not

The first term is the Coulomb potential of thix nuclei with
nuclear number , at the position®k,,. The second and third
Il. AB INITIO CALCULATION terms are the Hartree potential and the exchange-correlation
OF ELECTRIC-FIELD GRADIENTS potential, respectively. The electronic density) of the sys-

The traceless symmetric tensor of the efg at a nucleus i}}em can be obtained through

the origin of our coordinate system is defined as Ng
n(r=2, [¥(n)* ®)

(?ZCD l =1

V”:&xi&xj O_ 3 djAPlo, @ Equations(6)—(8) are called Kohn-Sham equations. At the
end of the self-consistency cycle the ground-state charge
where denSity

r' ry=2,2,6(r—R,)—n(r 9
@(r)zf |;:<_r3| o @ p(N)=2 Z,3(r=Ry)=n(r) ©)

is known and the efg tens@B) can be calculated.
is the electrostatic potential andr) the total ground-state There are several methods for obtaining numerical solu-
charge density of the system. The subscript 0 indicates thdions of the Kohn-Sham equatiofie.g., FLAPW?122 full-
all derivatives have to be takenat0. Inserting Eq(2) into potential linearized-muffin-tin-orbitalFLMTO) method??
Eq. (1) yields pseudopotential methdd, and projector augmented-wave



7480 J. EHMANN AND M. FAHNLE 55

(PAW) method?*] which differ in the choice of the basis metry, with high accuracy. In the following subsection first
functions for the expansion of the single-particle wave functhe FLAPW method, which is used throughout the present
tions W;(r). All these methods have in common that the paper, will be discussed.

Kohn-Sham equations are solved using the full, nonspherical

effective pote_ntial only _fo_r the valence electrons. In the_ The FLAPW method

pseudopotential method it is assumed that the charge density o

of the core electrons in a solid is the same as for a free atom. In the FLAPW method no shape approximations for the
This so-called frozen-core approximation leads to the facgffective potential are made. The unit cédk the supercell
that in a pseudopotential calculation the core-charge densit§f the solid is divided into nonoverlapping so-called muffin-
is spherically symmetric and that the Kohn-Sham equation§n (MT) spheres with radiuRyr around the nuclei and the
need to be solved On|y for the valence electrons. In théemaining interstitial regiom.21 In the intel’stitial region the
FLMTO or FLAPW method the wave functions of the true Wave functions of the valence electrowfs(r) are expanded
core electrons are obtained by numerical integration of Eginto plane waves. Inside the MT spheres the basis functions
(6) using only the spherically symmetric part of the effective into which theW;(r) are expanded are linear combinations of
potential. As a consequence, the core-electron density calciadial functions u|(r,E;) and their energy derivatives
lated by means of Ed8) is spherically symmetric too. Con- Wi(r,E)) =du(r,E})/dE, multiplied by spherical harmonics
sequently, if the efg’s are computed using the pseudopotentim(f)-  Ui(r,E) is the regular solution of the radial part of
tial method (with subsequent reconstruction of the truethe Kohn-Sham equatiof6) in the spherically averaged ef-
valence wave functioR®, the FLAPW, or the FLMTO fective potential

method there is no contribution to the efg of the core elec-

trons at the nucleus considered. However, due to the weight- 1d ) d [(1+1) w B
ing of p(r) with 1/r® in Eq. (3), the efg is very sensitive tothe | ~ 12 gr " gr) * 7z + Peii () —Ei|ui(r,E)=0.
nonspherical parts of(r) close to the nucleus. Therefore, (10)

even small deviations of the core-charge density from spheri-

cal symmetry can cause a significant change of the efg. Iifhe linearization energf, is usually set to a value near the
order to obtain reliable results for the efg froab initio  center of the band with angular momentdim

calculations we have to determine the core polarization, i.e., The basis functions in the FLAPW method are thus plane
the deviation of the core-charge density from spherical symwaves, which are augmented inside the MT spheres

\/% elktOr for rel

¢ e(n) = (11)
% [AS i Uf(r o E) + BSOS (1 0 EM Y im(Ta)  for re Sy .
|
In Eq. (11 k is a vector Qf the first Brillouin zon.a; is a bi(k+G)=j,(|k+G|Ryp Ul (Ryr , Ef")
reciprocal lattice vectoi() is the volume of the unit cellor
the superce)| Sy is the muffin-tin sphere, and,=r—R,, —|k+Glj{ (|k+ G|Ry U (Ryr . Ef")-
whereR, is the position of thexth nucleus. The coefficients (15)
AKX and B/ ¢ follow from the requirement that the value
and slope ofp**©(r) match on the MT sphere boundaries. Here the prime stands fad/dr and thej, are spherical
They are given by Bessel functions.
Finally, the wave functions of the valence electrons are
1 , o given by the expansion
Azrmew—ﬁ4wi'<RﬁzT>2e'<k+G>Rw af(k+G)Yi,(k+G),
(12) Wi =2 Cee* e, (16)

ki L o \2ai(kEO)R, pa . where re_ciprocal lattice vectors with+G|_<Gc are gonsid-

Baim _\/_547” (Ryr)“e « bi'(K+G)Yj(k+G), ered.G, is the plane-wave cutoff. Inserting E¢L6) in Eq.
(13) (6) yields an eigenvalue problem for the expansion coeffi-
cientsCX. Once they are known, the density of the valence

with electronsn*@(r) can be calculated using E(B)

As mentioned earlier, the wave functions of the core elec-
af'(k+G)=|k+G|j (|k+G|Ry) U (Ryr , Ef") trons are computed in the spherically averaged effective po-
. . tential. It is assumed that they are completely localized
—ji([k+GIRYpU (Ryr.Ef), (14 within the MT spheres. Under these assumptions, the nu-
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merical solution of the radial part of the Kohn-Sham equa-Kohn-Sham equations are solved using the full nonspherical

tion yields the core wave functions effective potential. As in the case of semicore calculations,
cor cor cor ) the charge density of the highest core states is no longer
W o) =urr o EF7) Y m(T L) (17 spherically symmetric; hence the influence of these states on

the efg at the nuclear site is taken into account. Local orbitals

are superior to semicore calculations for several reasons.

The most important is the fact that the highest core electrons

are treated in the same energy window as the valence elec-

trons. Hence their wave functions are orthogonal to each
p(N=2, Z,8(r—R,)—n"(r)—> n®9r,). (18  other and there can be hybridizations between core and va-

“ “ lence electrons.

At the end of the self-consistency cycle of the FLAPW  We will discuss the accuracy of these two methods—

method we can compute the &fg2" by inserting Eq(18) ~ Semicore calculations and the use of local orbitals—

into Eqg. (3). The index “sph core” indicates that there is, concerning the computation of the core contribution to the

due to the spherical symmetry of the core-charge density, ngfg in Sec. IV.

contribution of the core electrons to the efg at the nuclear

site. Il. DETERMINATION OF THE CORE CONTRIBUTION

In the FLAPW method there are two methods to abandon TO THE efg
gﬁ;ﬁ:}er;ﬁleggf Z’;;:;ﬁ'&gt];?; t?c()ar ?ﬁ;epﬁztﬁ;‘a&r?rgf ;hto. As we have seen in the preceding section, the wave fupc-
highest ,core states. As mentioﬁed in the Introduction theéIons of the true core electrpns are calculated cons_|der|ng

9 . ' , ' only the spherically symmetric pa@®S\r) of the effective
actual spatial overlap of these core orbitals between neigh- .

: ) . C potential. Hence we may regard
boring atoms is small, but numerically significant, so they
may be treated as band states. The two method§)asemi- HOYO=E O, (21)
core calculations andi) local orbitals. .

(i) In a FLAPW semicore calculatiéfi®®the highest core  With H°=—V?+®(r), as the unperturbed Sciuiager
statege.g., 3 and 3 in Cu) are treated in exactly the same equation for the core wave function®. In a solid we have
way as the valence electrons, but in a separate energy wi© take into account two perturbations of the core electrons.
dow. This is done by choosing as linearization energigs The first perturbation is the nonspherical part of the effective
the centers of the bands with angular momentuai these  potential, which we will call®"™r) in the following. If the
core states. Two separate calculations are then performed fBHclear spirl is larger tharj, the second perturbatich®(r)
the semicore and valence electrons. At the end of an iteratiol caused by the electric-quadrupole moment of the nucleus.
step the total charge density is given by Therefore we have to solve the perturbed problem

and with the help of Eq(8) the spherically symmetric core
densityn®qr ) of the ath nucleus.
The total charge density reads

ns Qo —
p(N=3 Z,8(—R,)—n"(r) (1)~ 3, n*rr,), (H+ O™+ OB)y=Ey. 22
(19 s
In the following we denote the first-order perturbation of the
core wave functions byp"(®°) with "Xy°), with

where n®®qr ) is now the density of the remaining core

states of the nucleus in theth MT sphere. Since®*{r) is

calculated using the total nonspherical effective poteitésl

for the valence electrofsthe contribution of the semicore

states to the total charge density is not spherically symmetriand

around the nuclear sites; hence the semicore electrons con-

tribute to the efg. 920 (H°—E%)yf=—(D°-ED) ¢’ (24)
(ii) With the help of local orbitats*“* the highest core . . 0. ns .

states can be treated together with the valence states in ofig can be seen by inserting=y’+y1*+y? into Eq. (22)

energy window. Local orbitals are an extension of the2nd USingEQS/Q:W,Olq),nsq¢0>' It becomes clear from Egs.
FLAPW basis set. They are given by (23) and (24) that in first order of perturbation theory the

correctiony is independent of the correctioff® and vice

(HO=E%)yr*= —(P"—E)y° (23

OLO(r) = [ Ajmuy (r, EY3) + Byl (1, EV?) versa. Physically speaking, this means that for instance, the
) nuclear quadrupole moment induces a polarization of the
+Cmuy (1, EFO)TY (), (200 core states that is rigidly corotated when changing the orien-

. . . tation of the nuclear quadrupole moment. The energy of the
where the radial functions, are solutions of Eq(10) and system up to second order is given by

E'® is the linearization energy of the valence states with
angular momenturh andEf" that of the highest core states. (PO+ ¢+ PRI H| g+ Y™+ 4?)

The coefficientsA,,,, Bj,, andC,,, are determined by the = 0, s, Q0. 05, O\
requirement thaip[2(r) is normalized and has zero value WO et gLy g o)
and slope at the boundary of tMeT sphere. The wave func- It can be showf that the part of the second-order energy

tions of the valence electrons and the highest core states aterrection that depends on the orientation of the nuclear
now expanded into the basis functiofid) and(20) and the  quadrupole moment relative to the nonspherical parts of the

(25



7482 J. EHMANN AND M. FAHNLE 55

effective potential and hence contributes to the quadrupolawith the abbreviatiorC,=—Q+/4/5, as a perturbation of
interaction energy is given bthe first-order terms do not the core electrons. The problem is to find the solution of the

depend on this orientation inhomogeneous differential equati¢®4). The unperturbed
core wave functions can be written as
E59=2(y0 @y + 2(y 2™ yR) + 2(y 1 HO— E%Ly). o 1)
up(r .
26 Yom=—— Yin(P), (30

The first term on the right-hand side of E6) is the

orientation-dependent part of the interaction energyyheren is the principal quantum number ahgn the quan-
(PP+ 3PP+ ¢ of the nuclear quadrupole moment yym numbers of the angular momentum. Tk, are degen-
with the “external” efg that would arise if there were no grate with respect to the magnetic quantum nunmbesince
polarization of the core states by the nuclear quadrupole mgne energyE ?, does not depend om. Nevertheless, we can

ment. In reality, however, there is such a core polarizationgpply nondegenerate perturbation theory because the matrix

orientation-dependent part of the corresponding interaction

energy(y°+ 4| ®"y O+ 4 ) is given by the second term. = [ud,(r)]2

The third term describes the orientation-dependent part of (¢ﬂ|m|¢>Q|¢2,m,)=CzG(I2I,mOm’)f n—3 dr

the polarization energy that is required to distort the origi- 0 '

nally spherically symmetric core-charge density ®Y? and (3D

®°. This is hard to see directly from the matrix element as itare zero form’ #m. The reason for this is that the Gaunt

appears, but it becomes obvious when taking into accourgoefficientsG(l’'LI,m’Mm), defined by

that the terms of the total ener@yas given by Eq(25) must

describe either the energy required to generate the polariza- , , A . .

tions |75 and|4$) or the interaction energies related to the G(I'LI,m Mm)=f Y (DYLm(NDYim(r)do, (32)

existence of these polarizations. Because the latter contribu- . o

tions are accounted for by the first and second terms, thganish form’#M-+m. [Note that if the perturbation is

third term on the right-hand side of E(26) has to describe Proportional toY, y(r) with M #0, the matrix of the pertur-

(the orientation-dependerpart of the polarization energy. bation potential in a degenerate subspace is not diagonal, so
Multiplying Eq. (23) by ¢°, Eq.(24) by ' and integrat- that in this case nondegenerate perturbation theory cannot be

ing overdr gives us applied] . _ .
Inserting Eq.(30) into Eq. (24) yields, for the right-hand
(90102 = (| D" yf) = — (YITHO - Ey2) o side,
2
Q Q 0 ug|(|’) U2|(r)

if we demand thaty®|y39=(y |y Q=0 [since yj* and ¢Q  —(P~—Ef)¢nm= —Z Co|\ —a—,
are solutions of the inhomogeneous differential equations !
(23) and(24) it is always possible to orthogonalize them on [ud(r1?
¢°]. With the help of Eq(27) we can simplifyE}® to X | — 3 —dr & |G('2l,m0m)

ERR=2(y 0y =2(s0uf). (29 XYirm(©) %9

This shows that the two orientation-dependent contributiong/here we used the relation

to the interaction energy are of equal size and that either of

the two contributions is exactly canceled by the polarization Yo (VY (F) =S G(1'21.mom)Y., (F 34
energy of the core charge. The important result is that we 2o(F)Yim(F) ,E ( ' MYirm(F)- 34
obtain the correct quadrupole interaction energy by consid- Q

ering eitherd™ or d< as a perturbation of the core electrons Making for ¢/i* the ansatz

(see also Refs. 1 and 28t should be recalled that the total ui(nl1")

core polarization is of course given by the sum|##% and Q _¢ G(1’2l.mom MRV 35
|49). Nevertheless, because of the cancellation of the third Yiim 2; ("2, ) r mlf), (39

term of Eq.(26) with either the first or the second term we
must account for only one of the two perturbatich® and ~ We see that the angular-dependent parts of the left-hand and

@2 when evaluating the electric-field gradient for the calcu-fight-hand sides of Eq24) [the latter is given in Eq(33)]

lation of the quadrupolar interaction energy. have the same form. Comparing the differé’nte_rms _in the _
sum, we arrive at the inhomogeneous radial differential
A Treat 0 , . equation
. Treating ®~ as a perturbation (Sternheimer approach
In this subsection we will consider the potential of the d? . ar+1) ) ,
nuclear quadrupole moment - W—'—(Deﬁrkr)—'— —z Enjui(nll’)

Cay, [uni(r)]? 1
PN = 75 Yool ), (29 =(f s dr 8- r—g)uﬁ.m (36
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for u(nl,I"), which can be solved numerically. For a given Q®(r)=Q[1— y(r)]. From a mean-field-like viewpoint the

angular momentum of the unperturbed wave functiamly  influence of the core electrons on the quadrupolar interaction
certain values of’ are allowed, due to the selection rules for energy can therefore be accounted for by weighting the ex-
Gaunt coefficients. These are givenIby=I, 1=2. (ForI1=0 ternal charges in the formula for the computation of the efg
only |'=2 is allowed: the triangle ruleThis means that an (3) with the factor[1—(r)]. If p(r) is the total charge den-
unperturbed state gets under the influence®® an admix-  sity of the system, calculated with spherically symmetric
ture ofd character, an unperturb@dstate gets admixtures of core states, the “effective” efg at the nucleus under consid-
p andf character, and so on. eration is thus given by

The first-order change of the core-electron density
3x

r

X O
v--=f 1—y(r)]p(r ( 'X‘—J)dr. 45
nl(r):2Re(§m l/fﬁfmdffﬁm) 37 i = | 1=yl =513 (45
In Eq. (45) we can use the total charge density of the system
instead of the charge density of the external charges because
5 1 the spherically symmetric core-charge density of the nucleus
ni(r)=-—C, — U(r)Y,y(F), (39 considered does not contribute\q . In this context “effec-
4m r tive” means that we obtain, using;; from Eg. (45), the
with correct quadrupolar interaction energy with the nuclear quad-
rupole momenQQ and consequently the correct quadrupolar
4 splitting of the nuclear levels, which is proportional@/,,.
25 V20m(21+1)(21' +1) These considerations show that in this method the core

contribution to the efg at the nucleus is given by

can be written &

um=2 >

nl

X G(211",000u?, u(nl,1"). (39
. 3XiX; i
Equation(38) shows that perturbations proportionaMgy(f) viore= —f y(r)p(r)( r|5 1 r%) dr, (46)
can only inducd. =2, M =0 components in the core-electron

density. where : . .
) . ; . . ) p(r) is again the total charge density of the system,
With the help of Poisson’s equation, the induced potential g |ated with spherically symmetric core states, #1d is
can be computed, giving us the Sternheimer function, calculated in the spherically sym-
metric part of the effective potential. The total efg is finally

) 1 r .
®"d(r)=2C, r—3f U(r’)r'2dr’ given by
0

Vi = VP corep ygore, 47

o U(r' .
+r2f (,3) dr’}Yzo(r). (40) A
ro r whereV;P" " is the result of a calculation with spherically

By comparing Eq.(40) with Eq. (29), we may interpret SYmmetric core-charge density.

®"(r) as the potential of an induced quadrupole moment
B. Treating ®" as a perturbation (effective-potential method

dind(r)y=— gndg \/E Yoo 1), (41) This second but equivalent methtgke aboveconsiders
r S the nonspherical part of the effective potential
with
| : - U ®MN= X PNV, (49
Q'”d(r)=2Q[f U(r’)r’zdr’+r5f Tydr’} ’
° ' (42) as a perturbation of the core electrons. In principle, we can

calculate the perturbation of the core wave functigf$by
The total quadrupole moment of the system nucleus plusolving Eg.(23). However, the method described in Sec.

core electrons is therefore given by Il A can only be applied if®" has only components with
o - M=0. This is due to the fact that in the-degenerate sub-
QUH(r)=Q+Q"(r)=Q[1—¥(n)], (43)  space of the unperturbed stat¢$,, the matrix of the per-
where we introduced the Sternheimer function turbation
r ® U(r’) 0 q)n 0 _ 2 I I ]
y(r)=—2 f U(r’)r’zdr’+r5j - dr'|. (49 (Yol @™ ) = G(ILI,mMm')
0 r r L#0M
fg::?olrir;it of y(r) for r—o is the well-known Sternheimer Xf ESM(V)[Ugl(f)]Z dr (49

An external point chargéexternal to the system nucleus
plus core electrons, e.g., a valence electron or a neighboririg not diagonal foM #0 since the Gaunt coefficients do not
nucleug then interacts with the local quadrupole momentvanish if the relatiorm=M+m’ is satisfied.
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In the following we will present an alternative approach  TABLE I. Decomposition of the core contribution to the efg at
to find the core wave functions in the full nonspherical ef-the NN site of a substitutional Ni atom in Cu.
fective potential. Instead of the first-order perturbation equa:

tion (23) we solve State V5o€in 10'° v/im?
1s -0.2
—VZHOHEN) + 2 O YL | gi(r) =Egs(r). 2s 0.0
L#0M 2 -16
(50) i
3s 0.1
This can be done by expanding thg(r) (i=1,... Ncg, 3p -7.2
where N is the number of core electronin a suitable 1s-3p -8.9
chosen set of basis functions. In our approach the expansion
's given by IV. RESULTS
0
ur(r) - A. efg near a substitutional Ni or Pd atom in Cu
(=2 Cimn = Yim(F) ’

In order to test the accuracy of the different methods to
determine the core contribution to the efg.g., FLAPW
+ > Dfir! exp(—ar?)Yn(f). (51)  semicore calculations or calculations with local orbitals, and
Ima the effective-potential approackve have calculated the efg
¥, =u’(r)/rY,.(F) are the unperturbed core wave func- at the nearestjneighbd)dN) site of substitutio_ngl Be, Ni, Pd,
tions, which means the firdtg/2 solutions of Eq(50) if we and Pt atoms in C_u using a supercell containing 15 Cu atoms
consider only the spherically averaged effective potential2nd One substitutional atom. As a representative example to
The second part of the basis set, which is necessary since tH§monstrate the effects we discuss the results for the system

perturbation of the core wave functions cannot be describel}! In Cu because it gives a rather large core contribution to
by the 4, alone, is given by Gaussians. In this part we the efg. Furthermore, the experimental value for the efg at

considered values dfup to 4. For the width of these Gaus- the NN site is accurately known from nuclear quadrupole

siansa we choose ten different values between zero and thg_ouble-resggance measguremzents on dilute CuNi affblss

MT sphere radius. The convergence of the results with rediven by|VZP|=42x10" vim? _

spect to the number and choice of thean be monitored by~ USing the FLAPW method and treating the-Bp elec-
comparing them with the results of the previous method fofrons of Cu and Ni as spherically symmetgc core states, we
cases withM =0, where we have to solve an inhomogeneousobtained at the NN Cu ato,,=—36.1x10" V/m®. In this
differential equation and where no additional basis functiongalculation we have used eigktpoints according to Chadi
are needed. We find that using ten different values gives, t§nd Coher; gaussmn broademr?@_,a plane-wave cutoff of

a very good approximation, the same perturbed wave func®c=4.0 a.u.”, and the experimental lattice constant
tions and hence the same core contributions to the efg.  80=6.82 a.u. and we took into account the relaxation of the

Inserting Eq.(51) into Eq. (50), we obtain an eigenvalue CU atoms surrounding the Ni atom.

solved numerically. The nonspherical core-electron density’LAPW self-consistency cycle Ieadg to a core contribution
is finally given by to the efg of Vo= —8.9x 10'° V/m® This gives us the

theoretical valueV,,=—44.9<10'° V/m? in reasonable
corer ) agreement with the experimental valEor a detailed com-
n e(r)—zi | i(n)] (52) parison between theory and experiment we have to use more
k points as well as larger supercells in order to avoid “finite-
and the core contribution to the efg can be calculated wittsize” effects) The core contribution to the efg can be de-
the help of composed into the contributions of the different core states.
Table | shows that the main contribution comes from tipe 3
core .| 3XiXj O] electrons. The contribution of thep2electrons is small and
ViJ_-j n*r) L) dr. (33 that of s electrons can be neglected.
In Sec. Il A we have already seen that within the frame-
In principle, it is possible to include the calculation of the work of a first-order perturbation approachLa=2, M =0
nonspherical core-charge density in the self-consistencperturbation can only inducela=2, M =0 component in the
cycle of the FLAPW method. This can be done by comput-core-charge density. Similarly, it can be shown that pertur-
ing the contribution of the core-charge density to the non-bations proportional t&', ,, induce to first order only. com-
spherical components of the effective potential in each iteraponents in the core-charge density. Because for the efg only
tion by means of Poisson’s equation. However, in generafthe L=2 components are relevant, only perturbations with
this contribution is small compared to the one of the valencd =2 must be considered to determine the core contribution
electrons. Therefore, the reaction of the valence electrons dio the efg. The principal axis system of the total efg tensor as
the nonspherical core contribution to the effective potentialell as of VP! ©"®and V" at the NN site of the Ni atom is
is negligible, as we have shown by several test calculationgjiven by x=(0,0,—1), y=(—1#~/2,1#2,0), and z=(1~2,1/
and it suffices to compute the nonspherical core-charge der?2,0). In this coordinate system only the two=2 compo-
sity once at the end of the self-consistency cycle. nents®5; and ®55 of the effective potential are allowed by
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TABLE Il. Decomposition of the P contribution to the efg at

the NN site of a substitutional Ni atom in Cu into contributions L5 i
from radial and angular excitations. /
1.0t /
3p excitation VE€in 101 V/im? A !
05 Y f
Radial -7.4 I s
Angular +0.2 0.0 // P
\\\/’ o
05} ’ . 1
‘\ /. 3p radial excitation
symmetry at the NN site of the Ni atom and the principal ol b /’ ——=- u(rE>
component of the core contribution to the e¥f,'®, is, ac- ' . == i, (rE)
cording to Eq(5), determined by th& =2, M =0 component _15 ‘ . ,
of the core-charge density induced BE3Y,, (see above 0.0 10 20 30 4.0

For the determination d¥52"® we therefore have to consider rfan]

only the perturbationb53Y,, and consequently we can cal-
culate the perturbation of the core wave functiofi§ by
solving Eq.(23) with the method described in Sec. Il Gve
have only to replac®® by ®33Y,0) since the matrix repre-
sentation ofb3Y,,in anm-degenerate subspace is diagonal.
In Sec. Ill A we have shown that a perturbation, which is
proportional toY ,(f), adds wave functions with =2 to an o5 81 =2 [ASHCuy(r, ES) + B CUa(r ESH Y 1m(T)
unperturbed state and with’ =1, =2 to unperturbed states m

of angular momenturh#0. An unperturbed (p) state gets (54
under the influence oP33Y,, an admixture ofd (p andf)  [see Eq(11)]. The functionuy(r,E$9 and its energy deriva-
character. According to Sternheimer, admixtures that havéve u,(r,E39 are also shown in Fig. 1. It is evident that in
the same angular momentumas the unperturbed state are the region close to the nuclegshich is most important for
called radial excitationéfor example, in the case ofm—p  the computation of the efghe radial excitation of the (3
excitation, whereas those with' =1+2 are called angular State can, in principle, be described by(r,ET9. But we
excitations. The contribution of thep3electrons to the efg have to remember that the coefficier§;,® and B, in

can be further decomposed into these radial and angular efd- (54) are determined by the augmentation. Since the value

citations (Table I). It turns out that the contribution of an- @nd slope oful(r,EiC)' are very small at the MT sphere
gular excitations |j—f ) is very small. boundary, the coefficient87,,” are, according to Eq¢13)

The contribution of the 8 and 3 electrons of Cu to the @nd(15), very small too. Thé =1 part of the $ wave func-
efg at the NN site of a substitutional Ni atom can, in prin-tion (in the following reasoning we will only consider ttié
ciple, also be calculated with a FLAPW semicore calculationP@int k=0) inside the MT sphere can be written as
or with the help of local orbitalgésee Sec. Il A, whereas the
contributions of the statess12p that add up to—1.8x10'° V(=2 CPe5,(r)

V/Im? (Table ) cannot be obtained by these methods. The G

calculation in which the Cu |3 states are treated using local _ A
orbitals (the remaining core statesBs are still treated as = [@%Puy(r,ES)+b2Puy (r,ES) Y 1m(F),
spherically symmetric statpgives us a contribution of the "

3p electrons to the efg of 3P=—6.7x10"° V/m?, in satis- (55
fying agreement with the result of the effective-potentialyip

method(—7.2x10* V/m?).

Treating the 3 and 3 electrons by means of a semicore
calculation, we obtainV3P=-0.4x10" V/m? which is aﬁf=% CEATm, bgmng CEBIn- (56)
much too small compared to the results of the effective-
potential method and the local-orbital calculation. We will Although the coefficient8$,, are small, it may be possible
now discuss the reason for the failure of the semicore calcuthata 3P andb 3P are of comparable magnitude. However, we
lation. have to keep in mind that thep3electrons of Cu are almost

If we choose the principal axis system of the efg as ourcompletely confined within the MT sphere and that therefore
coordinate systemV/ 3P is dominated by the radial excitation the value and slope OF3,(r) must be very small at the MT
of the 3p electrons under the influence of the=2, M=0  sphere boundary. Sineg(r,E3° is large near this boundary,
component of the effective potentialP33Y,,. Figure 1  the coefficient 3P has to be very small in order to avoid an
shows the radial part of thep3radial excitation, induced by energetically unfavorable large delocalization of theee3ec-
®53Y,, and calculated by solving E423) with the method  trons. In contrast to this, the coefficiebfP should take a
described in Sec. Il A. In a semicore calculation the basissignificant value in order to account for the radial excitation
functions with p character inside the MT sphere of the of the 3p wave function. However, the accurate account of
nucleus considered are given by the radial excitation is energetically much less important

FIG. 1. Radial excitationf{—p) of the 3p state, induced by
@YY, and multiplied by 5000. Also shown are the-Bke aug-
mentation functioru,(r,E39 and its energy derivative. The radius
of the MT sphere is 2.3 a.u.
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— 3p angular exq’itation
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FIG. 2. Angular excitation§—f ) of the 3p state, induced by FIG. 3. Radial excitation of thestate(induced byd33Y ,, and
D33Y 0 and multiplied by 5000. Also shown are the augmentationmultiplied by 5000, augmentation functionsu,(r,EY®) and
function ug(r,E3’) and its energy derivative with character. The  j,(r,E¥@), and local orbital for the NN Cu atom of a substitutional
radius of the MT sphere is 2.3 a.u. Ni atom. The radius of the MT sphere is 2.3 a.u.

than the accurate description of the correct localization. Furfegion andul(r,Efp) for the energy of the center of the

thermore, the coefficientS¢” are determined by the varia- gma|| 35 band. These three augmentation functions are
tion principle in such a way thaks,(r) is small in the inter-  ghown in Fig. 3 together with the radial excitatiqn-& p) of
estitial region. Under these circumstances, it is impossibley,e 3p state induced bybJ3Y . It is evident that now the
due to the limited variational freedom, that a superposition of54ia| excitation of the B state can be described by the two
the basis functions according to E&S) yields a good de-  fnctions u,(r,E¥®) and U,(r,E¥), at least in the region
scription of the radial excitation in the whole MT sphere.  (|5se 1o the nucleutsee Fig. 3 The part of the ® wave

For the angular excitation of thep3state under the influ-  ,nction with p character is now given bfagain fork=0)
ence of ®53Y,, the situation is similar. Figure 2 shows the

radial part of the angular excitation of th@ u state at the
NN site of a substitutional Ni atom induced I&55Y,, and

again calculated by solving Eq23). Also shown are the Wap(r) =2, CRI( + > [aPuy(r,EP)
augmentation functions,(r,E3% andu(r,E$) with f char- m m
acter. It can be seen that the angular excitation of the 3 + D3P0y (1, B Y 1 (F). (59)

state can only poorly be described by these augmentation
functions. Therefore, the contribution of angular excitations
to the efg is not correctly reproduced by semicore calculaThe coefficientsa i’ and b are adjusted by the variation
tions. These considerations show that we may not expect terinciple in such a way that, on the one hand, the value and
obtain accurate values for the contribution of the highest corglope of W5,(r) are small but not zero at the MT radius
electrons(e.g., the 3 and 3 electrons of Clto the efg (accounting for the small overlap of neighboring Svave
using a FLAPW semicore calculation since neither the imJfunctiong and that, on the other hand, the radial excitation is
portant radial nor the angular excitation is described corfeproduced accurately. In contrast to the FLAPW semicore
rectly. calculation there are now two functions,(r,E}®) and
The situation is completely different if thep3state of Cu Uy (r,EY®) that contribute with comparable weight to the
is treated with the help of local orbitals together with thewave function at the MT sphere boundary and are both able
valence electrons in one energy window. In this case théo describe the radial excitation in the region close to the
basis functions withp character inside the MT sphere are nucleus. Consequently, in a FLAPW calculation with local
given by the local orbital orbitals the variational freedom is increased compared to a
semicore calculation and the contribution of the radial exci-
LO Y — val : val tation of the 3 state to the efg is reproduced.
@im(1)=[Aamtia (1, B2 + Bl (1, E) Figures 1—3 also show that the radial and angular excita-
+CypUg(r,E3P) 1Y () (57)  tions of the unperturbed Bwave function are very small
(remember that they have been multiplied by 500here-
and fore, the orthogonality of the core wave functions on the
valence wave functions, which is, for true core states, exactly
G G val . val R fulfilled if these are treate_d as spheripally symmetric stétes,
O O(r) =2 [AfnCuy(r, BV + B Cuy (r EY) Y 1m(F), is to a very good approximation maintained.
" (59) For the angular excitation of thep3state the situation that
arises when using local orbitals is analogous to the case of a
where the augmentation functian(r,E}®) and its energy semicore calculation. It is not accurately reproduced in a
derivative are calculated for an energy in the valence-ban&LAPW calculation using local orbitals.
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FIG. 4. =2, m=0 component of the 8 core-electron density, FIG. 5.1=0,m=0 component of the 8 core-electron density of
multiplied by r2 of a NN Cu atom of substitutional Ni. The full @ NN Cu atom of substitutional NRyr=2.3 a.u. is the radius of
curve is calculated using local orbitals for the 3tate and the the MT sphere.

dashed curve using the effective-potential mettemhsidering only ) o o ) )
radial excitations bution arising from the asphericity of the effective potential

inside the MT sphere we performed a calculation in a MT

Figure 4 shows the 20 component of the charge density gfotential, i.e., a calculation in which only the spherically
the 3p electrons multiplied withr? and calculated with the symmetric part of the effective potential inside the MT
effective-potential method as well as with local orbitals. Thissphere is considered and the potential in the interstitial re-
component determines the contribution of theeectrons to  gion is set to zero. Figure 6 shows again the 20 component of
the efg[see Eq.(53)]. We have already seen that angularthe 3p charge density, multiplied by?. The full line is the
excitations are not correctly described by a FLAPW calcula+tesult of the FLAPW calculation in which thep3states are
tion with local orbitals. Additionally, Fig. 2 shows that in the treated using local orbitals and where the full nonspherical
region close to the nucleus the augmentation functions fwith effective potential has been taken into account. This curve is
character are very small; hence, in this region the contributhe same as that plotted in Fig. 4. As already mentioned, this
tion of angular excitations t0?n38(r) in a FLAPW semi- calculation givesV 3P=—6.7x10" V/m? At the end of the
core or local orbital calculation is negligibly small. There- self-consistency cycle we made an additional last iteration in
fore, we may assume that for a comparison of the localwhich only the spherically symmetric part of the effective
orbital result forn3B(r) with the result of the effective- potential inside the MT sphere was conside(ée MT po-
potential method it is reasonable to consider in the lastentia). This results in the dashed curve shown in Fig. 6. In
method only radial excitations. This assumption is justifieda calculation using a MT potential the nonspherical parts of
by the reasonable agreement of the two curves in Fig. 4the 3p charge density can only be caused by the overlap of
especially in the important region close to the nucleus. Thisthe 3p wave functions of neighboring atoms, i.e., by the
together with the fact that the contribution of angular excita-contribution of the p states to chemical binding. This over-
tions is, in general, very smallable Il), results in the good lap leads to an increase phd(r) near the MT sphere bound-
agreement of the two values WP stated before.

In contrast, in the region near the boundary of the MT
sphere there is a large discrepancy between the two results
for r2n3B(r) shown in Fig. 4. This is due to the fact that the sx107 |
3p state is treated completely different in the two methods.
In the effective-potential method thep3tate is treated as an
atomic state with no solid-state boundary conditions to be
satisfied, whereas in a calculation using local orbitals it is

treated as a band state. The calculation with local orbitals - ,
shows that the asphericity of th@ Zharge density is largest
at the MT sphere boundary due to the overlap of tipe 3

wave functions of neighboring atoms.

In the following we will address the question whether or "

o - . -5x10 L .

not it is, concerning the computation of the efg, a good ap- 0.0 1.0 20
proximation to treat the 8 electrons of Cu as atomic states. rlau]
The density of the B electrons is almost completely con-
fined within the MT sphere, as can be seen in Flg 5. Never- FIG. 6. 20 component of the@Belectron densityzngg(r) of a
theless, there is a small amount outside the MT spher@N Cu atom of substitutional Ni, calculated using local orbitals.
which gives a direct contribution to chemical binding. In The full curve is obtained if the full effective potential is used; the
order to separate the contributionrigB(r) arising from the  dashed curve is the result of a calculation in a MT potential. The
overlap of neighboring 8 wave functions from the contri- MT radius is 2.3 a.u.

full effective potential
———- muffin-tin potential
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TABLE Ill. Quadrupolar transition frequencies of tG&Cu nu- TABLE IV. Decomposition of the core contribution to the efg at
clei near a substitutional Pd atom, calculated with the FLAPWthe NN site of a substitutional Fe atom in Al.
method using ten Chadi-Cohda points, Go=3.4 a.u’}, and a
relaxed 64-atom supercell. The core contributios-@p) to the efg State VE€in 10 vim?2
has been calculated with the effective-potential method. 0 indi-

cates thaty vanishes by symmetry. 1s 0.8
2s 1.0
Theory Experiment 2p -13.5
Shell vy (kHz) 7 VIV p (kHz) g 1s-2p -11.6
1 3160 0.3 -0.07 3145 0.2
2 520 0 —-0.08 534 te sz| 772
3 390 0.6 +0.27 241 Vq= >h 1+ 3 (60)

and the asymmetry parameter for the Cu atgmglear spin
ary. In the region close to the nucleus, however, the values df=3) up to shell 3 together with experimental values fgr
ngg(r) from the MT potential calculation are very small obtained with the nuclear quadrupole double resonance
compared to the values calculated in the full effective poteniNQDOR) techniqué® and for » obtained by means of
tial. Consequently, the calculation in the MT potential gives, NMR. ” For the nuclear quadrupole moment of the Cu iso-
similar to the semicore calculation, a very small value for thelOP€ “"Cu we usedQ=—220x10"" m".>> Table Ill shows
3p contribution to the efgy/ 3P=—0.2x10" V/m2 V2 is that theory 'and experiment agree excellently for the flrst two
thus almost completely determined by the polarization of theshells. Again the core contribution to the efg is considerable

3p state under the influence of the nonspherical part of th%nd improves the agreement with experiment significantly.

effective potential. From these considerations we may congv?]?c:]h;gsr:g"a’ z%vg(rag/e;}llcs Igg?v(\alggidthbgofrmg?ﬁ?éi Zfrfien(m:(tesr;t
clude that for the determination of the contribution of the 3 pancy y P '

lect to the efq in Cu it i d imation to t Calculations with a 16-atom supercell for the same system
electrons fo the €lg in LU 1t1s a good approximation to reat'showed that already this supercell size gives reasonable val-
them as atomic states.

ues for the relaxed atomic positions of the NN atoms of the

The question of which of the two methods yields the moslg, titytional Pd atom and for the efg at the NN nuclear sites
accurate results is difficult to answer. Local orbitals certalnly(See also Ref. 3

have the advantage that they can also be applied to systems
with extended core statessee the Introduction The
effective-potential method is not applicable for these sys-
tems. Points in favor of the effective-potential method are We have performed calculations of the efg near Fe or V
that (i) the flexibility of the basis set may be superior com- substitut_ional atoms in Al. Because the core contribution to
pared to a local orbital calculation for the case of a veryth€ €fg is much larger for Fe than for V, we confine our-

small overlap of neighboring core states, where the core corp€!VeS mainly to the discussion of the first case. As in the
tribution to the efg arises nearly exclusively from the as-case of a substitutional Ni atom in Cu, the calculations of the
pherical effective potentialii) the contribution of all core efgrfatrrt:e dNI\\/Ivi?Ee of zigubtstrlrt]utlonalrFel;ator: dm tﬁl ha;’f;:\?vn
electrons to the efg can be determined; &ifid both radial peetr?od eThe ex e?imenglovaluseu%er ti]ee efa and tﬁe asvmme-
and angular excitations can be considered. Furthermore, ir ara.meter a? the NN site lS/eX”ﬂ—42><?L019 Vim2 ar)(d
can be applied in combination with the pseudopotentialilxgege; zz I

method after the reconstruction of the true valence wave’ | . . . .
functions from the pseudovalence wave functfdriso A FLAPW calculation(40 k points according to Chadi

. - ) X and Cohen, Gaussian broadeniig=3.4 a.u: %, the experi-
The calculations for the substitutional Ni atom in Cu re- .o/ |owice constarit,=7.65 a.u., and relaxation of the Al
ported so far have been performed with a small supercell;; o surrounding the Fe atom are taken into acgpimt

contgining 16 atoms. This supergell size aIIO\_/vs only the deyhich the 15-2p electrons of Al and the &3p electrons of
termination of the efg at the NN sites of the Ni atom becausg-g are treated as spherically symmetric core states, gives, for
the next NN already lies on the boundary of the supercellthe efg at the NN site of the Fe atorW,,=—38.4x10'
Additionally, the calculated efg at the NN site may be influ-\//m? and an asymmetry of 0.87.

enced by the small supercell siZthe finite-size effegt At the end of the self-consistency cycle we obtain by the
Hence, for a direct comparison with experiment we have teffective-potential method a rather large core contribution to
use a larger supercell. As an example we calculated the efgitie efg of Vo= —11.6x 10*° V/m?. The total theoretical
near a substitutional Pd atom in Cu using a 64-atom superesults for the efg,V,,=—50.0<10"° V/m? and for the
cell. In this supercell the atoms of the fourth shell around theasymmetry parametey=0.7 are, despite the small supercell
impurity lie on the supercell boundary, so that we can deterused, in good agreement with the experimental values. The
mine the relaxed atomic positions and efg’s for the first threelecomposition of the core contribution to the efg into the
shells. The relaxed atomic positions are in unit@agiven  contributions of the different core states is shown in Table
by (0.5080,0.5080,)0for the first, (1.0012,0,0 for the sec- V. The main contribution comes from thep2electrons.
ond, and(0.4996,0.4996,1.0020or the third shell. Table [l  Similar to the case of Cu, the contribution ®&lectrons can
shows the calculated transition frequencies be neglected. The contribution of the@ 2lectrons to the efg

B. efg near a substitutional Fe or V atom in Al
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FIG. 8. =2, m=0 component of the 2 core-electron density,

FIG. 7. Sternheimer function(r) of the Al atom next to a L 5 o
substitutional Fe atonfsolid line) and a Mg atom(dashed lingin ?#lt'fpl;led byr., oflanl 'At‘l gtom n?xt tlo ab.stu?s?tuttlrc:na;t Fte at(;m.
the perfect, hexagonal lattice, calculated in the spherically symmet- € Iull curve 1s caiculated using focal orbitals for the =tate an

ric part of the effective potential. The contribution of the-2p the dashed curve using the effective-potential metfoonhsidering
core electrons has been consider¢dl, Ryr=2.61 a.u.; Mg, only radial excitations Ryr=2.61 a.u.
Rur=2.95 a.u) tween the two curves in the region near the boundary of the
MT sphere is the same as discussed in Sec. IV A. We also
can be decomposed into the radial and angular excitationperformed at the end of the self-consistency cycle a calcula-
The radial excitation contributes14.8<10*° V/m? the an-  tion in a MT potential, which gives a very small value for the
gular excitation gives only a very small contribution of 2p contribution to the efg ol 2=—0.1x10" V/m? This
1.3x10° V/m2 shows thatv 2P is almost completely determined by the po-
We have also calculated the core contribution to the efdarization of the 3 state under the influence of the non-
using the Sternheimer function approach described in Se&pherical part of the effective potential and that the overlap
Il A. At the end of the self-consistency cycle of the above- Of the p states of neighboring atoms plays only a minor role
mentioned FLAPW calculation, in which thes®2p elec- for the efg. For the reasons discussed in Sec. IV A, we did
trons of Al are treated as spherically symmetric states, th@ot perform a semicore calculation to determine the efg at
Sternheimer function can be computed with the help of Eqthe NN site of the Fe atom.
(44) using the spherically symmetric part of the effective As in the case of Cu, we also performed a calculation with
potential in Eq.(36). For the Al atom next to the substitu- @ 64-atom supercell in order to test the accuracy of the cal-
tional Fe atomy(r) is shown in Fig. 7. In the region outside culated efg’s and asymmetry parameters. As an example we
the 1s-2p charge densityy(r) takes the constant value Cchoose a substitutional V atom in Al since for this system the
¥.=—2.93. Figure 7 shows that this is the caserforRy,r, quadrupolar splittings of the nuclear levels of &luclear
i.e., outside the MT sphere. In order to compute the corépin |=3) are experimentally observed by means of the
contribution to the efg, we can therefore apply E4p) for NQDOR techniqu@ and because there is a large difference
the charge density(r) inside the MT sphergnote thatp(r) between the measured transition frequencies of the nuclei at
is the charge density obtained in the FLAPW calculationthe NN and next-NN sites of the V atom, which must be
with spherically symmetric 4-2p state$ and add the contri- reproduced by the calculation. The relaxed atomic positions
bution to the efg from outside the MT sphere of the considin units ofa, are(0.488, 0.488, Dfor the first,(1.007, 0, 0
ered Al atom multiplied withy,,. This givesV<o®=—11.3 for the second, an@.497, 0.497, 0.996for the third shell.

%10 V/m2 The total theoretical reszuzlt is then The two calculated quadrupolar transition frequencies per

V,,=—49.7x10" V/m? and »=0.69, in excellent agreement Shell [3correlsponding to the transitiorjsn| =*3< %3 (1)
with the result of the effective-potential meth¢gbe above ~ and*3—=*3 (v)); see Ref. 37and the asymmetry parameter
This demonstrates strikingly the equivalence of the twoOf shells 1 and 2 are compared with the experimental values
methods discussed in Sec. Ill. in Table V. We usedQ(*’Al)=140x10"3! m?.383° Again

A FLAPW calculation in which the @ states of Al(and  there is good agreement between experiment and theory; in
the P states of Feare treated using local orbitals gives a p_artlcular the Iarg(_a difference betwgen the transition frequen-
contribution of the P electrons to the efg of Ci€s of t_he nuclei in shells 1 and 2 is well reproduced by the
VZ2=_11.1x10" V/m?, again in satisfying agreement with Calculation.
the result of the  effective-potential method,
V2P=-13.5<10" V/Im? Figure 8 shows the local orbital
and effective-potential result for the 20 component of the As a last test case we choose the calculation of the efg at
density of the D electrons multiplied withr?. In the calcu-  the nuclear sites in hexagonal magnesi(Muy). The calcu-
lation using the effective-potential method we have, for thelations have been performed with the FLAPW method using
reasons discussed in Sec. IV A, again only considered radidl020k points according to Monkhorst and P&%he tetra-
excitations. In the region close to the nucleus both curves ithedron methott#?for the Brillouin-zone samplingG.=3.1
Fig. 8 agree reasonably. The reason for the difference bex.u. %, a,=6.07 a.u., andcy/ag=1.62. The calculation in

C. efg in hexagonal Mg
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TABLE V. Quadrupolar transition frequencies of the Al nuclei tron shells on the electric-field gradient has to be considered
near a substitutional V atom, calculated with the FLAPW methodin order to obtain reliable results for the total efg. We have
using 10 Chadi-Cohek points,Gc=2.7 a.u.*, and a relaxed 64- presented two different methods for the computation of this
atom supercell. The core contributionst2p) to the efg has been 410 contribution to the efg, which yield identical results
calculated with the effective-potential method. concerning the quadrupolar interaction energy with the
nuclear quadrupole mome@. These two methods can be
vy ” vy ” applied at the end of 'Fhe self-gonsistency cyg:le of a band-
Shell 5 (kHz) (kHz) VSo9Veneoe  (417) (KHz) structure calculation with spherically symmet_rlc core stz_;ltes,
e.g., a FLAPW, FLMTO, PAW, pseudopotential calculation,
1 0.05 1260 630 +0.08 0.12 1249 635 and so on.
2 0 250 125 +0.12 0 220 110 The first method treats the potential of the nuclear quad-
rupole moment as a perturbation for the spherically symmet-
ric core-charge density. This perturbation induces an addi-
which the 1s-2p states of Mg are treated as spherically sym-tional quadrupole moment in the core-charge density, which
metric states give‘s(i‘gh core= 3,67 10*° V/Im?. The asymme- s given by Qi”d(r): —¥(r)Q, with the Sternheimer func-
try parametery vanishes by symmetry. tion 1(r). Hr) can be calculated using the spherically
Using the effective-potential method to determine thesymmetric part of the effective potential by means of an
core contribution to the efg at the end of the FLAPW cyclejnhomogeneous differential equation. The valence electrons
gives V5o°=0.80x 10" V/m? which is approximately 22% and the neighboring nuclei at a distancérom the nucleus
of V32" For the total efg we obtai/,,=4.47x10"  considered then interact locally with a local quadrupole mo-
Vim?, mentQ™(r)=[1— ¥(r)] Q. This leads to the fact that for the
The Sternheimer function of Mg, considering the-2p  computation of the efg these charges have to be weighted
states and calculated in the spherically symmetric part of thgith the factor 1-9(r) in order to obtain the correct quadru-

effective potential, is shown in Fig. 7. Outside the region ofyq 5y interaction energy with the nuclear quadrupole moment
the core-charge density(r) takes the constant value Q alone.

v,=—4.03. Inserting the charge density of the FLAPW cal-
culation with spherically symmetricst2p states in Eq(46)
gives VS9°=0.84x 10'° V/m?, in good agreement with the
result of effective-potential method. The small difference be
tween the two results may be caused by the fact\#j3f is
calculated under the assumption thét) is constant outside

Theory Experiment

In the second method the Kohn-Sham equation of the core
electrons is solved using the full nonspherical effective po-
tential. This is done by expanding the core wave function
into a suitably chosen basis set and solving the resulting
eigenvalue problem numerically. As a consequence, the
charge density of the core electrons is no longer spherically

the MT spherdR,;r=2.95 a.u), although this is not exactly : - g
the casgsee Fig. 7. A calculation in which the & and 2 zrg(;n(jeitr;cct%nd the core contribution to the efg can be calcu

states of Mg are treated with the help of local orbitals gives The equivalence of these two methods conceming the

a contribution of these states to the efg of @D V/m? : . -~
and a total efg ok, ,=4.29x 101° V/m?. quadrupolar interaction energy z_ind hence the sphttlng of t_he
Blaha Schwarzzzand Dedericheeport on semicore cal- nuclear levelgwhich is the quantity that is accessible experi-
S ' . mentally) has been shown in Sec. lll using second-order per-
culations on hexagonal Mg. They showed that a Calcumnoﬁrbation theory. It should be noted that the two methods

in which the 2 and 2 electrons are treated as semicore ive completely different results for the perturbation of the
states gives a negligible contribution of these states to thd P y P
core wave function.

e o e 1 e 52 ™ I Sec. IV v ave e e ey at he nearest.
— 4.8 % 10" V/m? reported in Ref 7 is no.t comparable with neighbor sites of substltgtlon.al NiFe) in Cu (Al) as vyell as

: . : , the efg at the nuclear sites in hexagonal magnesium. In all
our result since the authors used a smatigoint meshithe these cases the core contribution to the efg is considerable

efg depends sensitively on the numberkopoints. ;
- . 9 5 . and therefore should not be neglected. The theoretical tran-
Our fl_nal result for the_efgyzz—4.5x101 vim, is far sition frequencies in the neighborhood of a substitutional Pd
frqm being converged V‘."th respect to the T‘“mbef kof (V) atom in Cu(Al), which we have computed using the
pg,'(g}f'+hence 01% comzparlson W'th the exp_enmental Valu‘?esults for the efg and the asymmetry parameter of a 64-atom
Vz; =%5.3X10" VIm® (Ref. 1) is not meaningful. How-  ghercell calculation and tabulated values for the nuclear

ever, the calculations show that considering the core ContriQUadrupole moment, are in good agreement with the frequen-

b_uti(_)r_1 to the efg improves the agreement with experimentias obtained by means of NQDOR measurements.
significantly. Up to now it has been assumed that, in combination with
the FLAPW method, the contribution of the highest core
states(e.g., of 3 and 3 states of Cuto the efg can be
computed reliably with the help of semicore calculations.
In conventional band-structure calculations it is assumedHowever, in Sec. IV A we showed that semicore calculations
that the charge density of the core states is spherically symare not suited for the determination of the core contribution
metric around the nuclear sites. Consequently, the core coie the efg due to the limited basis set inside the MT spheres.
tribution to the efg is completely disregarded. The aim of theThe resulting core contributions are often an order of mag-
present paper was to show that the influence of closed elecitude too small. Contrarily, the results of FLAPW calcula-

V. SUMMARY AND CONCLUSIONS
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tions with local orbitals are in good agreement with the re-FLAPW basis set for the valence wave functions inside the
sults of the two methods presented in this paper. The reasddT spheres.

for this is that in calculations with local orbitals the core

electrons are treated together with the valence electrons in ACKNOWLEDGMENTS
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