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We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state
properties of various systems of interacting fermions. In this method, the ground state is projected from an
initial wave function by a branching random walk in an overcomplete basis of Slater determinants. By con-
straining the determinants according to a trial wave functigf), we remove the exponential decay of
signal-to-noise ratio characteristic of the sign problem. The method is variational and is gxagtig exact.

We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard
model. We show results for lattice sizes up toxiB6 and for various electron fillings and interaction strengths.
With simple single-determinant wave functions |gg), the method yields accurateften to within a few
percent estimates of the ground-state energy as well as correlation functions, such as those for electron
pairing. We conclude by discussing possible extensions of the algofis0i63-18207)08611-9

I. INTRODUCTION our method shares with the latter the ease of computing ex-
pectation values of certain correlation functions, which are
We describe a ground-state quantum Monte C&@IbIC) crucial to probe physical properties but which are often hard
algorithm that removes thexponentialscaling of computa- to compute accurately by the standard GFMC methods. On
tion time with system size which is characteristic of the in-the other hand, it shares the GFMC concept of importance
famous fermion “sign problem®? in QMC simulations™®  sampling with a trial wave functiohy), which greatly im-
Here we discuss the general concepts of the algorithm, whicproves its efficiency over the AFQMC method. In addition,
is approximate, and then describe details for its implementathe realization of the projection by open-ended random
tion using the Hubbard model as an example. The test resultgalks along the imaginary-time direction makes it practical
we present will show that the algorithm makes it possible toand easy to implement the second ingredient, the constrained
compute, in times scalinglgebraically with system size, path approximation, and hence to eliminate the exponential
general ground-state properties, such as superconductirsgaling due to the sign problem.
pairing correlation functions. A brief description of the basic The constrained path approximation ensures that the
algorithm and some of the results on the Hubbard modeMonte Carlo representation of the projected ground state has
were published earliét The algorithm, as it will be detailed no asymptotic signal-to-noise ratio decay in imaginary time.
here, can also be directly applied to study many other latticdhe resulting method is variational, with the computed
models of electron correlations, such as the extended Hulground-state energy being an upper bound, and becomes ex-
bard model, the Anderson lattice model, etc., where comact if |7) is exact. The constrained-path approximation
puter simulations with existing QMC algorithms are often builds upon the positive projection technique of Fahy and
difficult and sometimes impossible. Application of the Hamanmn:® but can also be viewed as a generalization of the
method to more general problem classes, such as atoms, mdiked-nodé*~® approximation in the GFMC method. Be-
ecules, and nuclei, is currently under study. cause of the different bases in which the approximations are
The algorithm, called the constrained path Monte Carloapplied, the effect of the constrained path approximation is
(CPMO) method, has two main ingredients: Thiest is cast-  expected to belifferentfrom that of the fixed-node approxi-
ing the projection of the ground state from an arbitrary initial mation.
state as importance-sampled branching random walks in a In Sec. Il, we will summarize the Green'’s function Monte
space of Slater determinants. Teecondingredient is con- Carlo and the auxiliary-field quantum Monte Carlo methods
straining the paths of the random walks so that any Slatefor ground-state calculations. Here, we will establish the nec-
determinant generated maintains a positive overlap with &ssary concepts and formalisms from these existing ap-
known trial wave functiorj¢). This ingredient is used only proaches that are integral parts of our method. In Sec. IlI, we
to deal with the sign problem. describe the CPMC method in general terms, focusing on the
The first of the two ingredients is an exact procedure. Asoncept of the importance-sampled random walks in Slater-
we will illustrate, it combines important advantages of two determinant space, the nature and consequences of the con-
existing methods, the Green's function Monte Carlostrained path approximation, and the computation of expec-
(GFMCO) (Refs. 3, 7, and Band the auxiliary-field quantum tation values. Implementations issues are discussed in Sec.
Monte Carlo(AFQMC) (Refs. 9—12 methods. For example, 1V in the context of the one-band Hubbard model. In Sec. V,
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we report results for this model that illustrate the aCCUfaC}tI);_’": whose columns are tma_ lowest HF eigenstates_ For

and performance characteristics of our method. Finally, irany two real nonorthogonal Slater determinat#® and
Sec. VI, we summarize and discuss several simple extensiorpg,r>, it can be shown that their overlap integral

of the CPMC method.
(pl¢p'y=de(dT®") (6)

Il. BACKGROUND and single-particle Green’s function

In this section, we summarize the AFQMC method and o,
also sketch a particular GFMC method, namely, the diffusion _ (¢leicil¢ >: ot T -1 T
AT Gij=—"7rn =0 [P(P'P) "D ;. (7)
Monte Carlo(DMC) method***which is most analogous to (¢l
our algorithm. In discussing the DMC method, the approach i L i i
we use is not standard, but rather it is one designed to pro- NOW Wwe consider the projection2) in this Slater-
vide the necessary groundwork for the description of theeterminant basis. The trial wave functigir) can be a
CPMC method. Both the AFOMC and GFMC methods con-“”e?r combination of dgtr—_zrmmgnts, but wnhout loss of gen-
tain elements important to the CPMC method. For example€rality, we assume that it is a single determinant. A key point
the basic techniques of the AFQMC method, such adS that the projection of any Slater determinant by any opera-
Hubbard-Stratonovich  transformation,  imaginary-time ©r Of the form
propagation of Slater determinants, and matrix multiplication
stabilization?**'” are shared by the CPMC method; on the exp(z CiTMijCj) (8)
other hand, the random walk realization of the 1]
propagatiorl,**importance sampling in the random walks by simply leads to another Slater determinant, i.e.,
use of a known trial functioft and the fixed-node
approximatiof* are all GFMC concepts of much relevance. N
Most ground-state quantum Monte Carlo methods are ex;{%‘, CiMjjc;
based on

[$)=¢"1¢"3-- '\ |0)=4"), (9)

o with ¢'T=3c/®/ andd’'=e Md.
|y lime™ ™), @ Thee A part of Eq.(3) has this form. The 2" part,
e however, does not a¥=1/2%;Vijuciclcicc. Following
that is, the ground statpy,) can be projected from any Hubbard, we rewritd/ as a quadratic form:
known trial statd ) that satisfieg | o) # 0. In @ numeri-

cal method, the limit can be obtained iteratively by _ E toan 2= } 2
V_2 ; )\a ; Ci Ri'C] ) ; )\apa! (10)

[yt Dy=e"AH|ym), (2)

where| (%) =|y7). With a smallA 7, the first-order Trotter
approximation can be used:

where the parametets, and the matrixR® are defined by
the element¥/;;; and the number o# is at mostN? but is
often much smaller. With this quadratic form, a Hubbard-

e AtH g AKg—ATV 3) Stratonovich(HS) transformation of the two-body part of Eq.
' (3) yields:

Typically, K andV are the kinetic and potential energy op-
erators. More generally, they are the one- and two-body in- 1 o einlz
teraction operators. ex;{ —= ATE )\api) =H f dx,——

2 @ a J-= 2T

A. Auxiliary-field quantum Monte Carlo method :
. X N TR%c.

In the AFQMC method, the operators and wave function exp( Xa Aﬂ\“; CiRiC ).
are in a second quantized representation, defined in terms of 11
fermion creation and destruction operatars and c. The (11)
basis is one of Slater determinants: wherex,, is an auxiliary-field variable. Denoting the collec-

_ ottt tion of such variables byx and defining B(x)
|4)= b1 oy, [0), @ =ex — Ar3c/Kji¢; I exd X,V — A7\ 2c/Ric],  we

where obtain
51=3 clo. ) e 2= [ axP(B(). 12

- 2
®;; are the elements of a matrik of dimensionNxN,,, whereP(x)=1I1,(e *«"?/\2) is a probability density func-
whereN is the size of the basis arld, is the number of tion andB(x) has the desired form of E¢8). The essence of
fermions with spino. Each column of the matri repre- the HS transformation is the conversion of an interacting
sents a single-particle orbital that is completely specified bysystem into manynoninteractingones living in fluctuating
a vector of dimensiofN. One example of such a Slater de- external auxiliary fields, and the summation over all such
terminant is the  Hartree-Fock (HF)  solution  auxiliary-field configurations recovers the correct many-body
|pup) =11,| re), Where eacH ¢y is defined by a matrix interactions. We note that different forms of this transforma-
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tion exist® and that they can affect the algorithm perfor- B. Diffusion Monte Carlo method
mance, possibly to a large degree. These issues are, however,—l-he DMC method® executes the iteration in Eq2) as

not anressed here, as we will only be describing the generalnqom walks in configuration space. When the fixed-point
algor_lthm. ) condition is reached, the random walks sample positions in
With Egs.(2) and(12), the ground-state expectatié®)  configuration space from a distribution that represents the
of some observable O can be computed Dby ,nknownamplitudeof the ground-state wave function.
(w™[O[gM)(ytV] ™). The denominator is We denote the configuration basis byR), where

(O]~ HgnATH| 40N R={ry,r,,...ry,} is the electron coordinates in the con-
tinuous three-dimensional space. In this basis, the potential
:f (41l

A7V in Eq. (3) is diagonal, but the ki-

energy propagatoe
lr) (13  netic energy propagata@ ™, whereK=—35;V? is not.

In order to write the latter in a more suitable form for a
Monte Carlo treatment, we invoke a Hubbard-Stratonovich

2n
H d;((l)p()Z(l))B()Z(l))
=1

=J [H 4P de( v B()Z('))\I’T), (HS) transformation:
| |
2
(14 2 e X2
eATVi/2: dxime\l—ﬂ,-Vl_ (17)

whereB(x) is the NX N matrix associated with the single-
particle operatoB(x) and Eqs(6), (9), and(12) have been Sincee®™i Vi|R) displaces; in |R) by VA7x;, the effect
applied. In the AFQMC methotin is fixed and the many- of e 27 on any |R) can be viewed as “diffusing” it to
dimensional integral in Eq(14) is evaluated by a Monte |R+ /A7x), where each componert of the auxiliary field
Carlo (MC) method like the 'V'EEVOPQ“S algorlthm. The MC X is drawn from the normal distribution function
process samples configuratiofe™,x(®, ... x2M of the . 3

auxiliary fields distributed according to the absolute value Otp()‘i%;\?va\;e /fEJZnQiod.zﬁ(”)) can be expressed in terms of the

the integrand. . (M — () .
In the AFQMC method, the sign problem occurs becaus@mpl'tUdes<.R|"/’ . >_"/{n) (R)'. In the random walk _rgahza-
tion of the iteration,'™(R) is represented by a finite en-

in general the determinant in E(.4) is not always positive. X i ")
In fact, its average sign approaches zero exponentially as Semble of configurationgR;”}. At each stage, the Monte
(or N) is increased. The integral then becomes vanishingly Carlo method provides the stochastic sampling<gt and
small. Thus arexponentialgrowth in computation time is consequently the movement/R{"V)—|R{" + \/E-)Zf(”)>
required in its evaluation, since the MC samples, drawn from= |R("* 1)) for each configuration in the ensemble. The factor
the absolute valueof the integrand, become dominated by —Arv(RM) | . iatib hing f for th
noise. This problem has remained largely uncontrolled, pre(-3 translates into a weigfibranching factorfor the

venting general simulations at low temperatures or large Sysqonflgpratlon. As the fteration gpproache§ the. fixed-point
tem sizes. condition, the weighted distribution of configurations repre-

One attempt to control the sign problem was the positivesems'/’O(R):(m'/’0>'

e . The sign problem in the DMC method has a somewhat
Fah Hamidnn. . . )

-?-LoéicﬂggdagpL%)gwﬁtagvgriﬂﬂizg;% aa:]dy ii‘rn};joseet:l nn different character than the sign problem in the AFQMC

conditions ¢ method. The Pauli exclusion principle requires that the ferm-

ion wave functiong(R) change sign if the positions of two
electrons with the same spin are interchanged. Unlike the
AFQMC method, the straightforward DMC method does not
impose the antisymmetric property in the projection process.
. _ _ Without additional mechanisms, the DMC method naturally
(he|B(X)B(x! D). .. B(X@)| 1) >0, produces points distributed according to the lowest eigen-
state of the diffusion equation. This state is symmetric and
I=2n,2n—1,...n+1, (16 bosoniclike. There has only been limited success in attempts
to construct exact algorithms that yield asymptoticdlly
in sampling the auxiliary fields. The approximation is similar n) a nonvanishing, antisymmetric Monte Carlo sigfied?
in spirit to that of the fixed-node approximation in the  The fixed-node methd#®is an approximate scheme to
GFMC method. However, the constraint inlocal in  prevent the convergence to the bosoniclike ground state. An-
imaginary time, as any change x¥ affects the constraint tisymmetry in ¢o(R) implies that there are equivalent re-
conditions atall times betweer andn. Thus all auxiliary ~ gions in configuration space which are separated by a nodal
fields had to be updated simultaneously and only paths sagurface on whichy,(R)=0. The exact nodal surface is in
isfying all constraining equations were accepted. The apgeneral unknown. In the fixed-node approximation, a trial
proach is hence computationally very intensive. In ourhodal surface is assumed, based on a known trial wave func-
CPMC method, we adopt the Fahy-Hamann concept of &on |¢1). A solution which is everywhere positive is then
constraining state but implement the constraint in the contexgought in the region/+(R)>0 by imposing the boundary
of a random walk in the space of Slater determinants, whiclgondition that HM(R) vanish at yr(R)=0. Unless
makes the procedure practical and straightforward. ¥7(R) =0 happens to be the correct node, the resulting DMC

(Pr|BXD)B(X?) - - - B(X)|ghe)>0, 1=12,...n,
(15)
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solution for the ground state is approximate. The groundtion for each walker would yield a linear combination of

state energy obtained is an upper botmd. many Slater determinants. In our random walk, this propaga-
An important feature of the DMC method is importancetion is achieved stochastically by Monte Carlo sampling of

sampling. This technique is necessary to reduce the variangg

of the computed results to acceptable levels. For brevity we

will not discuss this technique here. Instead, we will post- (n+1) S0 oy S| (.

pone such a discussion until it is needed to complete our | i >*J dxP(x)B(x)| #"); (21

description of the CPMC algorithm. ] B )

that is, for each random walker we choose an auxiliary-field

11l. CONSTRAINED PATH MONTE CARLO METHOD configuratiomz from the probablllty density functioﬂ?(i)
g be th | o o and propagate the walker to a new one via
We now describe the CPMC algorithm. It uses t e|¢(n+1) oy () :
. ; K y=B(X)| ). We repeat this procedure foall
zi?ﬁgéd'gszaéor'\‘/lo(;’r'ﬁg'lézsrle: sz:?r:r;;ﬁ:grgro?:fe dtuhree S?‘;%\r/'(t:owalkers in the population. These operations accomplish one
y . ) step of the random walk. The new population represents
that of the DMC method. The iterative procd® becomes P bop P

(n+1) H ; (n+1)
an open-ended random walk @later-determinant space Ldlz | ¢(>n+1|;1> 'It'nisesitneses a?(fa itiga;t(:g)i’n dlézﬁ,itelldl Aftgr an
Within the framework of this random walk, we introduce Kk /- P y-
equilibration phase, all walkers thereon are MC samples of

importance sampling and the constrained path approximathe ground-state wave functidio) and ground-state prop-

tion. i
; ; - erties can be computed.
We remark that any antisymmetric wave function can be . - .
y y In order to improve the efficiency of E¢L9) and make it

written as a linear combination of Slater determinants, i.e., . i . ; .
a practical algorithm, an importance sampling scheme is re-
quired. In the procedure just described, no information is

|l/f>:§ Xu(D)| ), (18) contained in the sampling of on the importance of the
_ ~ resulting determinant in representing,), yet such informa-
where the sum is over each member of the Slater determlnaﬂbn is C|ear|y important_ For examp|e, the ground_state en-
basis. As introducec_i in Sec. Il we will always ug) to ergy is given byEo= (| H| o)/ (1| o). Hence, estimating
dgnote antisymmetric wave functions ahgl) to den_ote a  E, requires estimating the denominator By,(y|#), in
single Slater determinant. Contrary to the configurationyhich|¢) denotes random walkers after equilibration. Since
space used in the DMC method, the Slater-determinant basifiese walkers are sampled with no knowledge( 9| %),

space of ¢) is nonorthogonaland overcomplete terms in the summation oveb can have large fluctuations
that lead to large statistical errors in the MC estimate of the
A. Importance-sampled random walk formulation denominator, thereby in that &.

To introduce importance sampling, we iterate a modified

equation with a modified wave function, without changing
. .. the underlying eigenvalue problem of Ed.9). Specifically,

|¢(n+1)>=f dxP(x)B(x)[¢™). (19  for each Slater determinant), we define an importance

o o ) function
In the Monte Carlo realization of this iteration, we represent

the wave function at each stage by a finite ensemble of Slater O+(¢)={y|P), (22
determinants, i.e.,

Using Eq.(12), we write the iterative equatiof?) as

which estimates its overlap with the ground-state wave func-
tion. We can then rewrite Eq19) as

|w<”>>°<§ | o). (20)

(n+1)\ — <P B(%)| 7

Herek labels the Slater determinants and an overall normal- [ ) f dxPOIBOOY™), 3

ization factor of the wave function has been omitted. Thewhere the modified wave function is

Slater determinants are referred tarasdom walkerss they

are generated by the random walk. At any stage of the itera- -

tion, the sum will be over only part of the basis as the deter- [ ™M)= Or( ) xym( )| ) (24)

minants in this sum are statistical samples whose distribution ¢

represents the linear coefficieglm in Eq. (18). The statis- and the modified “probability density function” is

tical accuracy of this representation increases algebraically

as the number of independent samples is increased. In the Or(p"* D)
Or(¢'™)

remainder of the paper, EQRO) will serve as the definition

of the Monte Carlo representation of a wave function in the -

CPMC method. We will start from an initial ensemble We note thatP(x) is a function of both the futurgp"*1)

where, for eactk, |0 =|yr). 2 and the currents™) positions in Slater-determinant space.
One step of the iteration involves the propagation of eacit is trivially verified that Eqs(19) and (23) are identical.

walker according to Eq19). Since the noninteracting opera-  In the random walk, the ensemble of walkeig{™)}

tor B(X) operating on any Slater determinant leads to anothepow represents the modified wave functiofy™)
Slater determinant, an analytical realization of this propaga= | #{"), which is to say that their distribution represents

P(x)= P(X). (25)
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the functionO+x ). The iterative relation for each walker is difficult to implement effectively in standard AFQMC

again given by Eq(21), but with P(x) replaced byF’(i). method3 it is extremely simple to implement under our ran-
The latter is in general not a normalized probability densitydom walk formulation.
function, and we denote the normalization constant for The sign problem occurs because of the fundamental sym-

walkerk by N(#{™) and rewrite Eq(21) as metry existing bgt\zl\ieen the fermion ground statg) and its '
negative — | ).">** For any ensemble of Slater determi-

nants{| ¢)} which gives a Monte Carlo representation of the
5 B(x)|#™). (26)  9ground-state wave function, this symmetry implies that there
N(¢") exists another ensembfe-| )} which is also a correct rep-

o : . . resentation. In other words, the Slater-determinant space can
This iteration now forms the basis of the CPMC algorlthm.be divided into two degenerate halves (and —) whose

As in the DMC method, it is convenient to associate aweighboundin surfaceV'is defined by | #)=0 and is in gen-
wj” with each walker, which can be initialized to unity. One gr4| unknown
step of the random walk is then as follows: For each walker |, some special cases, such as the particle-hole symmet-

Ld)f(n)}, (i) sample ax from the probability density function ric, half-filled one-band Hubbard model, symmetry prohibits
P(X)/N(¢™), (ii) propagate the walker bB(X) to generate any crossing of\ in the random walk. The calculation is
a new walker, and (i) compute a weight then free of the sign probleAi.In more general cases, walk-
w" D=w{VN(¢{") for the new walker. With the introduc- erst;an CV%SSN_ in theti; propagatioon bye™ 4™, Lhe Signlk
tion of th ight | ™) e S, W] (Y. problem then invariably occurs. Once a random walker
fon of the weighty/ ™) Zgwc”| g ) reachesV, it will make no further contribution to the repre-
r§entati0n of the ground state since

6N [ @

Steps(i) and(iii) are sometimes difficult to implement. To
ease their implementation, we apply the HS transformatio
of Egs.(23) and(25) to eachcomponent ok. This applica- (ol )=0=(yhole"™M|p)=0 for any r. (27
tion is simple since botP(x) andB(x) can be decomposed
into a product of independent factors corresponding to indi
vidual componentg, . Every step of the random walk then

Paths that result from such a walker have equal probability
of being in either half of the Slater-determinant space. Com-
consists of successive substeps in whichxhere sampled Eutedl gnalytflffaltlz, they t.WOUItd Sancel, lbgt. V‘f{ﬁhom (;:my
one by one, each according(ig—(iii ). As we discuss in Sec. nowiedge ovv, they continue o beé sampled In the random
d/yalk and become Monte Carlo noise. At sufficiently large

IV, such a decomposition is adequate to make the Hubbar the Monte Carl tai £ th d-stat
model application straightforward, since the HS transformal’ € Monte L.arlo représentation of Ih€ ground-state wave

tion we use allows only two discrete values 1) for each function consists of aequal mixture of the+ and — en-
L~ sembles, regardless of where the random walks originated.
X, and, thus, the easy tabulation®fx,). For more general

e .~ The Monte Carlo signal is therefore lost. The decay of the
cases, however, it is often necessary to further approxima

= ) _ t'seignal-to-noise ratio, i.e., the decay of the average sign of
P(x,). The following procedure can be adopted: Under the, . | 4) occurs at an exponential rate with imaginary time.
assumption of smalh 7, the ratio of the overlap integrals is

) g : In this regard, the fermion sign problem appears very

manipulated into the form of an exponential whose exponentimiar in either the DMC, AFQMC, or CPMC algorithms.

is linear inx,; P(X,) is then written as a shifted Gaussian The difference between the algorithms is that in the DMC

times a normalization constant. The basic idea of this procealgorithm minus signs appear when particles interchange po-

dure is similar to that used in the DMC method. sitions in configuration space while in the CPMC and
To better see the effect of importance sampling, we 0bAFQMC algorithms the orbitals must interchange. The orbit-

serve that ifl 1) =| ), the normalizatiory P(x)dx is con-  als are an extended quantity and hence, at least for systems

stant. Therefore the weights of walkers remain a constant angear a mean-field solution, the fermion sign problem is re-

the random walk has no fluctuation. Furthermore, we refeduced.

again to the estimator fd€,. With importance sampling, the To eliminate the decay of the signal-to-noise ratio, we

denominator becomes the sum of weightswhile the nu- impose the constrained path approximation. It requires that

merator is= 4(yr|H|p)W,4 /(41| ), where again¢) de-  each random walker at each step have a positive overlap with

notes walkers after equilibration. Ag/7) approache$y,),  the trial wave functior y):

all walkers contribute equally to the estimator and the vari-

ance approaches zero. We emphasize that different choices (1l ") >0. (28

of importance functions only affect the efficiency of the cal-

\ This yields an approximate solution to the ground-state wave
culation.

function, |¢g)=X4|¢), in which all Slater determinants
_ o |p) satisfy EQ.(28). From Eq.(27), it follows that this ap-
B. Constrained path approximation proximation becomesxactfor an exact trial wave function
Despite the advantages over the standard AFQMGYr)=|1o).?
method in terms of sampling efficiency, the random walk As a consequence of the constrained path approximation,
formulation still suffers from the sign problem. Here we will the ground-state enerdy;;, computed by the estimator dis-
illustrate the origin of the sign problem in this framework cussed in Sec. lll A, is an upper bound to the true value
and then introduce the constrained path approximation tég. To see this, we introduce an antisymmetrization operator
eliminate the exponential decay of the average sign. We wilA,, in the Slater-determinant space that extends any wave
see that while a fixed-node-like approximation has provedunction defined in half the space B,| ¢) into the whole
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space by2 4| ) — 3 _ 4| — ¢b). SinceA | yg) is an eigenfunc- (O) extrar 2{ D) mixea—{ O)vars (33
tion of the modified HamiltoniatH®=H + V¢, whereV* is - _
% at N and O elsewhere, we haveH®(A,|ys)) where the variational estimat€), = ( 7| O| )/ (Y| 7).

, Even a good trial wave functio with a good varia-
— H(A Y8 = E4(A,lUS). Both A[yg) and A,lyp) re- g ir) with a g

LN : tt|onal energy can sometimes fail to give a reasonable esti-
side in the same Slater-determinant space and both are anmate for certain correlation functions. In such cases (&)
symmetric functions. Thu&(=E,. On the other hand, we

will not be effective. It is then imperative to compute Eg.

recall that (32). To do this, we devised a scheme calletk propaga-
HlyC HA | S tion (BP), the essence of which comes from the forward-
ES= (¢l |lf°> = Vi ¢|l€°>_ (290  walking (FW) techniqué® in the GFMC method:
(rlg) (rl Ayl o)
_ c
ThereforeEg=Ej and EG=E,,. (O)gp= <¢//Texp( Ho) Ol ¢o) (34)
To implement the constrained path approximation in the oo ((/fTeXIO(—THc)Wo)
random walk, we redefine the importance function by Eq. L i
(22): A subtle distinction, however, exists between back propaga-
tion and forward walking. In back propagation,
O+(p)=max (| ¢),0}. (30)  (rexp(HY)|=(ylexp(-=m™H,) is restricted to ‘“con-

strained” paths, i.e., those paths that do not violate the con-
Straint in theoriginal forward directionexp(—A7Hg)|¢E). In

the DMC method a path in configuration space has no sense
. . ; of direction with respect to the nodal surface. In the CPMC
tion .vanl_she.s smoothly al/ and th‘? con_stramed path ap- method, however, there is a sense of direction: A set of de-
proximation is properly imposed. With a finiter, however, o minants along the path of a random walk which does not
P(X) has a discontinuity a0’ and the distribution does not violate the constraint at any step when going from right to
vanish. We have found this effect to be very small for readeft may indeed violate it any even number of times when
sonably small |mag|nary -time stepsr . Nonetheless, we going from left to right.

correct for it by modlfylngP(x) near\ so that it approaches Because of this sense of direction, expressid may
zero smoothly atV. As we discuss in Sec. IV, the procedure not yield Eq.(32). However, sincéyyg) is itself approximate,

is analogous to the mirror correcti§rf® used in the DMC  this issue is not crucial. What is crucial is tH@?) gp remains

This prevents walkers from crossing the trial nodal surfac
N and entering the “” half-space as defined bjt). In
the limit A7—0, Eq. (30) ensures that the walker distribu-

method. exact for an exact trial wave function. To demonstrate that it
does, we will use perturbation theory and start by consider-
C. Computing expectation values ing a Hamiltonian
After the random walk has equilibrated, the distribution of H' =H+\O (35)

random walkers represents the ground-state wave function

|5) under the constrained path approximation. Various exwhere O is the operator whose expectation value we seek.
pectation values can then be computed from a population dfVe then apply the CPMC method to the new Hamiltonian
these walkers and their weights. For example, the groundH’ with a new constraint governed By), where

state energy is

(GrlHIPS) S ,07(b)x(d){w|H| $)/Ox( ) |y =|¢r) + N 8¢, (39

T 0 +O1(P) x Ut T _ _ ,

0= oy and |Syr) is orthogonal to|yr), i.e., (¥l )= (el ),

O (ylyf) 2 ,01($)x($){ | $)/O7() which isT the standard boundTary conditTionT of peTrturTbation
S wid '//T|H|¢k>/<l//T|¢k) theory. In the limit of small\, the constraint becomes iden-

(3D tical to that of the original Hamiltoniaki. To first order in
N\, we thus simply regain the previous expressi@4) for
where terms in the numeratégr|H| b )/{ 1| ¢i) are given  (O)gp. The term proportional tdsy1) does not contribute
by combinations of elements of the Green’s function as debecause it is orthogonal to the true ground state.
fined in Eq.(7). Numerically we comparedO)gp with {(O)¢ in several
An estimator similar to Eg. (31), namely, simple cases and observed reasonable agreement. In prin-
(| Ol ) { 1] 45), is easily obtained for any other opera- ciple we can computeO)° by creating a separate walk for
tor O. In the GFMC method, this type of estimator is referredthe left-hand wave function, which propagates frgg|
to as themixedestimator. We recall that the true expectationwith an appropriate sense of direction, and then matching it

2 Wy

value of O with respect td#§) is with populations in the reguldright-hand walk. In practice,
however, it is difficult for such a scheme to yield accurate
(5| Ol ¥g) results, due to a lack of proper importance sampfing.
<O>C=W- (32) Neither of the above measurement procedures is free from

bias in the long imaginary-time limit. Since we are dealing
For the energy, the mixed estimator is equivalent to the truevith a branching random walk, there is necessarily a bias
estimator(32), but this is not true for any that does not that arises from finite population sizes. However, this bias
commute withH. In this case, it is sometimes possible to can be greatly reduced by taking a relatively large population
improve the mixed estimator by the linear extrapolation  size(a few hundred to a few thousandhe convergence and
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amount of bias will depend upogr) and the low-energy components of the auxiliary field by i, instead of bya,

excitations of the system. We have found the backhecause of their one-to-one correspondence with lattice sites.
propagation estimate of ground-state observables to be both

statistically and physically accurate in our Hubbard model
calculations.

It is relatively simple to implement the back-propagation ~Each Slater determinarip)=|¢')|$'), and similarly
scheme on top of a regular CPMC calculation. We choose aB(x)=B'(x)B*(x). Any overlap integral between two Slater
iterationn and store the entire populati({dwf(”))}. As the  determinants involves the product of overlaps of individual
random walk proceeds, we keep track of the following twospin determinants, e.{r| ) =11,{( 7| #°). Reflective of
items for each new walkei(1) the sampled auxiliary-field the interaction, thé and| spin determinants share auxiliary
variables that led to the new walker from its parent walkerfields. Aside from this connection, they propagate indepen-
and(2) an integer that labels the parent. After an additionaldently. With these details about electron spin taken into con-
m iterations, we carry out the back propagation: For eaclsideration, all our previous discussions directly apply.
walker | in the (n+m)th (curren) population, we initiate a To reduce errors associated with the first-order Trotter
determinant | and act on it with the corresponding propa- approximation(3), we use the second-order symmetric form
gators, but taken in reverse order. Timesuccessive propa- exp(—AmH)~exp(—AK/2)expA7V)exp(—A7K/2). Thus,
gators are constructed from the stored items, with
exp(—A7K/2) inserted where necessary. The resulting de- B(X) =By 2By(X)Bk2, (39
terminantg ¢(™| are combined with its parent from iteration .

n to computg O)gp, in @ way similar to the mixed estimator where By(x) is the auxiliary-field-dependent propagator
(31). The weights are given correctly by{"*™ due to im- from the HS transformation. From Eg. (38),
portance sampling in the regular walk. Starting from anotheBY(x) =IT;b%(x;), where

iterationn’, this process can be repeated and the results ac-

cumulated. bS(x;) = [A7UR2+ (o) mile] cig (40)

A. Specific issues

IV. IMPLEMENTATION ISSUES: THE HUBBARD MODEL with s(7)=1 ands(|)=—1, andBy,,= e 2™"2 The prob-
. . . ability density function isP(x) =I1;p(X;).
The or;e_-band I_-|ubb|ard modell |sHa S|_r|np|(_e paradigm %f 4 For a walker|¢), we now describe one substep of the
system of interacting electrons. Its Hamiltonian is given bY 4n4om walk in which théth componenk; of the HS field is

sampled and therby(x;) is applied to the walker. If
H=K+V=—t3 (chcj,+clc)+US nni,, by(x;)|#) is denoted by ¢'), we have
(i)o i

(37) ~ Or(¢")

D(Xi)=mp

wheret is the overlap integral) >0 is the on-site Coulomb T
repulsion, nig=ciTgciU, and the angular brackets indicate Thus the probability of picking one of the two possible val-
near neighbors. We will také=1 and assume a two- ues ofx; is p(x;)/[p(+1)+p(—1)]. Once anx; is chosen,
dimensional square lattice of sizZé=L XL, with periodic |¢) is propagated to obtain a new walker and the new weight
boundary conditions. is w[p(+1)+p(—1)]. Sinceby(x;) modifies only one row

The physics of this model is rich, containing magnetism, aof the matrix ®7, it is straightforward and inexpensive to
metal-insulator transition, and heavy Fermion behaviorcompute the resulting ratio of determinants for each of the
Originally the model was proposed for ferromagnetism; to-two possible values aof;, provided the inverse of the over-
day’s interest focuses on the extent to which it might exhibitiap matrix (\Iﬂq)“)—l is known. As one moves to the next
superconductivity away from the half-filled case ofj the overlap matrix can be efficiently updated by proce-
N;=N;=N/2. It is in the electron- and hole-doped regions dures that are almost identical to ones used in the AFQMC
around half-filling that existing QMC methods experience amethod®1!
debilitating sign problem that restricts the simulations to  As we mentioned in Sec. Il B, with a finit& 7, Eq. (30)
small lattice sizes. In another paper, we will detail our studycause$(x;) to be discontinuous at. To correct for this, we
of the physical properties of this modé. include a simple “mirror-correction” procedure in the above

To illustrate the CPMC algorithm in more detail, we now sypstep: If walker|¢) is close to N, where we define
describe our implementation of it for the Hubbard Hamil- “close” as when one app”cation dﬁV(Xi) (Wlth eitherxi)

tonian. For this and related lattice models, we use the disyould lead to a determinanf¢’) with a negative
crete versiof? of the Hubbard-Stratonovich transformation overlap with |¢7), we modify its weight to

W/[1— (| ') O1(p)]. After the new walker|¢') has
e A7UnN — = ArUmpm 2 ST o) @il —ni) _been accepted, we again check whether_it is cI_osM.tﬂShis
xS ' is done by applyindy(X;) one additional time with the cho-
' (38) sen x;. Similar to w above, the weightw’ is modi-
fied to w'/[1—(¢+|by(x)|d' (1| p')] if the overlap
where coshp)=exp(A7U/2) and the probability density (ir|by(X)|¢’) is negative. We note that there is essentially
function p(x;)=1/2 allows only x;=*1. Here we label no computational cost in computing this overlap.

(X). (41)
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The basic steps of the algorithm are the following.
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gating from (|, computing{O)gp, and accumulating re-
sults [step (6)]. The lengthm of the back propagation is

(1) For each walker, specify its initial state to be somepreset as are the number of iterations in each measurement

appropriate?'; and assign its weighw and overlagO+ each
a value of unity.

block, the frequency of measurements, etc.
Additionally, we introduced several previously undis-

(2) If the weight of the walker is nonzero, propagate it via cussed steps and procedures. We now discuss these.

BK/(2:;1.) Perform the matrix-matrix multiplication
d' =By, d (42
and compute the new importance function
Or=01(¢"). (43
(b) If O7#0, update the walker, weight, ar@ :
d—d', w—wO;/Or, O7+Or1. (44)

(3) If the walker’s weight is still nonzero, propagate it via
Bv(X) = H]bv(XJ) .

(a) Compute the inverse of the overlap matrix

Oy = (¥1P) 2. (45)

(b) For eachauxiliary fieldx; (i=1,N) do the following.

(i) Computep(x;) in which the ratio withO; can be

expressed in terms of; and the Green’s function element
G;; as defined in Eq(7).

C. Additional algorithmic issues

In this section, we discuss the use Bf, the growth
estimator, population control, and reorthogonalization. Vari-
ants of the first three are present in all GFMC calculations,
while the last one is adopted from the AFQMC method. We
merely highlight these issues in the context of algorithm and
point to references with more extensive discussions. While
we will refer to the outline for the Hubbard implementation
in Sec. IV B, the issues are general.

As shown in step(5), a constante®™T multiplies the
propagatoe 2™ If E;=ES, the steady-state eigenvalue of
Eqg. (2) is unity. In other words, after equilibration the total
weight of walkers remains a constant on the average. An
inaccurate input ofE; is only a minor concern, since the
value of E; simply changes the total weight systematically
by a constant factor. A statistical estimate of this factor is
easily obtained from the random walk by observing the total
weights through a number of iteratioh<On the average
these totals scale as éxpA 7(Eg—E1)] and hence provide
an estimate oEg . This procedure for estimating the ground-

(i) Samplex; and update the weight according to the state energy is often referred to as trewth estimatar

discussion in Sec. IV A.

In the random walk, one walker will eventually dominate

(iii ) If the weight of the walker is still not zero, propagate all others and the random walk will spend most of its time

the walker byb,(x;) and then updat® andO;,, .

(iv) Apply the mirror correction in stefi) or (iii) if nec-
essary.

(4) Repeat stef2).

(5) Include an overall normalization factor in walker
weight: w—we* T, whereE+ is an estimate oF,,.

(6) Repeat step&2)—(5), which form one step of the ran-
dom walk, for all walkers in the population.

sampling walkers which contribute little. To avoid such a
loss of efficiency, a population control procediiris needed
[step(8)]. First, a branchindor birth and deathscheme is
applied, in which walkers with large weights are replicated
and ones with small weights are eliminated with some prob-
ability. There exist various ways to do thié%?8 with the
guideline being that the process should not affect the distri-
bution statistically. Branching allows the total number of

(7) If the population of walkers has achieved a steady-Wwalkers to fluctuate and possibly becom(_a too Iar_ge or too
state distribution, periodically make estimates of physicasmall. Thus, as a second step, the population size is adjusted,

guantities.
(8) Periodically adjust the population of walkers.

if necessary, by rescaling the weights with an overall factor.
Readjusting the population size introduces a bias and should

(9) Periodically reorthonormalize the columns of all the only be done infrequently. If this is not possible due to a

& with nonzero weights.

poor | ) or poor importance sampling, several calculations

(10) Cycle the process until an adequate number of meamust be done with differentaveragg population sizes in

surements are collected.

order to extrapolate to the infinite population limit.

(11) Compute final averages, estimate their statistical er- The overall structure of that of a CPMC calculation re-

ror, and stop.
We omitted the spin index, but identical operations for

sembles a typical GFMC calculatidrifter equilibration, we
introduce an intermediate phase in which the growth estima-

both electron spin determinants are implied whenever a mdor is computed. The length of this phase is a parameter and

trix manipulation is described. In presenting the above stepshe outcome is used to adjust. The new value ofr is

we focused on illustrating the algorithm; the outline does nothen used in the next phase, which is divided into indepen-

represent the most efficient implementation. dent blocks. Because of the correlated nature of successive
We also ignored back propagation. To implement it, ansteps, measurements are made only at suitable intervals. At

additional procedure is required in each random walk step in iterationn when measurements are taken, the average of a

the measurement phase. As discussed at the end of Sec. Il @yantity © is O™ =u/d™. In each block, we do not ac-

this procedure takesne of the following three possibilities: cumulate O™, Instead we accumulate!™ and d™ sepa-

(i) storing all walkergstep (6)], (ii) storing ancestry links rately and compute a final average at the end of the block.

[step(3)], and auxiliary field§step(3 biiii)] for each walker, The final result and statistical error estimastep(11)] are

and copying them if necessarstep(8)], or (iii ) back propa- obtained from these bin averages.
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(bottom) are plotted as a function of imaginary time
r=nAr. On the left, we demonstrate the initial convergence
from the trial wave function to the ground state and, on the
right, the asymptotic stability of the algorithm. This figure is
constructed for an 8 8 lattice with(n)=0.875 andU =4.
This parametrization generates a fairly difficult system for
1% the AFQMC method because of the sign probléw;) was
oy 66 an unrestricted Hartree-Fock wave function obtained with
; U=0.4 (not 4) and yielded a variational energy of
ms —53.05. The average number of walkers was 600. The be-
havior shown is quite typical of CPMC calculations.
I )10 In the relaxation phase r&10), a trial energy of
‘Mﬂ E+=—58.0 was used. This value is significantly higher than
the true ground-state energy, and so the overlap integral
U ST a0 0 a0 w0 e 7o 80 s0 10 110 120 (7| ¥™) and, consequently, the population size grow quite
T rapidly. During this phase, population control is applied fre-
hequently(every five steps The rapid fluctuations in value of
the overlap integral shown in the bottom left are due to re-
tion of the imaginary time-=nA 7, wheren labels the random walk adjus_tments of the total population size in each of these ap-
step. In the presence of the sign problem, this overlap integralP“C""t'onS' Fpr 16 ng,o (not showq, we used the same
would decayexponentiallywith n. In the upper half of the figure is Er and applied population control with th(_a same frequency_,
the corresponding estimate of the total energy as a functiam of PUt computed the ground-state energy with the growth esti-
The inset is an enlarged version of the portion betwees7.5 and ~ Mator. This value was then used for the trial eneffgydur-
7=117.5 in which the dotted line indicates the computed energyind the measurement phase>20). In this phase, even
value from blocks of lengthr=10. This calculation yielded a though population control was applied every ten steps and
ground-state energy oES=—65.135-0.008, compared to an branching occurs, the total population size remained within
AFQMC result(Ref. 29 of —65.02+0.06. the preset lower and upper bounds of 300 and 1200. Indeed,
all vertical displacements in the overlap integral in the lower
Step(9) is prompted by the fact that the repeated multi-right of the figure correspond to the beginning of a block
plication of B(x) leads to a numerical instability: A rela- Where we reset the population size to within 10% of the
tively quickly numerical error grows to the point where €xpected average of 600. _
|¢§(n)> represents an unfaithful propagation |¢(ko)>_ This Clearly, the values of both the overlgp integral and the
instability is well known in the AFQMC method and is ENerdy are completely stable as afunctlompin contrast,
controlled™'7 by a numerical stabilization technique that re- the standard AFQMC method has a bad sign problem. In-
quires the periodic reorthonormalization of the single-d€€d; for a &4 lattice at the same filling fraction and the
particle orbitals in|¢{). In our calculation, we use the samel, the average sign decgys gxpongntlally by roughly
modified Gram-Schmidt procedute!” which for each 5 orders of 1rnagmtudeas the imaginary timer increases
walker | ¢) factors the matrix® as ®=QR, whereQ is a from O to 20.
matrix whose columns are a set of orthonormal vectors and _The ground-stgte ?nerg%: —65.135-0.008. (Extrapo-
R is a triangular matrix. After this factorizationp is re- lation to A7=0 will slightly reduce the average valy&he

placed byQ and the corresponding overl& is replaced by ~ PeSt AFQMC result available for this system is
O+ /det(R). —65.02£0.06;7° which is slightly higher than our upper

bound. Ther dependence of the energy after convergence is
shown in the upper right of the figure. The inset demon-
V. RESULTS strates the short-term fluctuations in the mixed estimate of

We have presented a rather detailed discussion of the coff2€ e€nergy; these fluctuations are also shown as the solid line
strained path Monte Carlo method to make the CPMC algol the main figure. Constructing local “binned” averages of
rithm as transparent as possible. In this section we presenttBe energy from blocks of length=10 yields the energy
variety of results from simulations of the Hubbard model thatestimates shown as dotted lines in the inset. These binned
are chosen primarily for their importance in illustrating algo- averages are nearly statistically independent, and their root-
rithmic issues. These results are for two-chain and twomean-squared deviations divided by the square root of the
dimensional lattices. First, we give results for the ground-number of bins yielded the quoted statistical error.
state energy as a function of system sitefilling fraction ‘The computational requirements of the CPMC method are
(ny=(N;+N,)/N, and trial wave function. Later, we exam- fairly modest when compared, for example, with the

ine results for other physical quantities such as pairing corAFQMC method. Efficiency, however, can be dramatically
relation functions. affected by implementation issues. Two important issues are

the accuracy of the trial wave function and of the imaginary-
time propagator. To obtain the maximum efficiency, it is
essential to use a propagator accurate to second order in the
In Fig. 1 we demonstrate the convergence and stability obreakup between kinetic and potential terms. For example,
the CPMC method. The energyop) and overlap integral Fig. 2 shows the energies obtained for first-order and second-

-65.0

o
—65.1

-65.2

—65.3 | |

-65.4

FIG. 1. Stability and convergence of the CPMC method. In t
lower half of the figure is the overlap integrals| ™) as a func-

A. Ground-state energy
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TABLE I. Hubbard-model ground-state energies per site from

= CPMC simulations compared with exact results. The first column
.. - o 1 under “system” is the lattice size and, the second, the numbers of
= 2™ order Trotter break-up electrons withT and | spins.U is the on-site Coulomb repulsion.
The trial wave function ) used in CPMC is either a free-electron
8oy (free) or an unrestricted Hartree-Fo¢k/HF) wave function.E,,,
indicates the corresponding variational energy from this wave func-
E -1790F tion. Statistical errors are in the last digit and are shown in paren-
theses. Exact results for thex4t systems are taken from Refs.
1800 L 1% order Trotter break-up 1 30-32.
-18.10 + fﬁ‘ =075 1 SyStem U | ¢T> Evar/N ECPMC/N Eexact/N
2X2 211] 4 UHF -15327 -1.603®) -1.6046
820 L : - - : . ; 2x3 212| 4  free -1.267  -1.3828) -1.4009
0.00 0.02 0.04 0.06 0.08 o0.10 0.12
At 2X3 212| 8 free  -0.889 -1.22) -1.244
2X4 212| 4 UHF -1.333 -1.3678%) -1.374
FIG. 2. lllustration of the Trotter approximation error. The com- 254 33| 4 UHE -1.438 -1.569%) -1.569
puted energy per site is shown as a function of the time Atefor 1x8 3]3| 4 free -0.645 -0.8329) .0.834
a4x4 Iatt?ce vyith 6 6] elec_:tro_n_s and!_J f4._The first-order Trpt- 3x3 414] 8 UHF  -0.0025 -0.76@) -0.809
ter approximation Iea(_js to.S|gn|f|cant finite time-step error. .W'Ith the4><4 212 4 UHF  -2.8225 -2.8813) 28825
second-order approximation, convergence to Me=0 limit is
much more rapid. The right triangle indicates the exact energy for4><4 414 4 UHF  -1.025 -1.09Q) -1.096
this system. The variational nature of the CPMC energies is visible?<4 55! 8 free -0.7188 -1.0923)  -1.0944
The Monte Carlo error bars are indicated. Curves are to aid the eyé<4 66| 4 UHF  -13117 -14765) -1.478
4X4 17| 4 UHF -0.8669 -0.983B) -0.9838
order Trotter approximations for the propagators foradd 454 777| 12 UHF -0474  -0.606) -0.628

lattice with N;=N,;=6 spins andU=4. The first-order
propagator introduces significant systematic effects even for
quite small time steps; however, the second order propagatéfent basis for approximating the ground-state wave function
permits significantly larger values dfr to be used. We note Of the system. Since an explicit basis is used, no sign prob-
that we also included a mirror correction to the propagatiorlem occurs; however, an exponential growth in computing
to make certain that there are no corrections of order lesme occurs, reflecting the increased effort in selecting mem-
than (A7)2. In this case, however, the differences betweerPers of the basis as system size increases. In contrast, the
using second-order propagators with and without this correcAFQMC method is in principle exact, but suffers from ex-
tion are comparable to the error bars in the figure. ponential growth in computing time as the system size in-
Of course, while stability and efficiency are necessary foicreases because of the sign problem. Finally, the DMRG
a useful simulation, accuracy is the principa| concern. |nmethod is a variational method that is very effective for one-
Tables | and Il, we compare our results for the Hubbarddimensional and quasi-one-dimensional models.
model to exact results for small systems and to other meth- o =\ b0 ground-state energies from CPMC

ods for 'arg? s;gstims. IS(;nce ]Erlﬁ CPMCdmtet?odf ?ﬁpendﬁmulations compared with available results from other approaches.
upon approxma € knowledge o e. groun S ate of the Sys’I"he first two columns follow the same convention as the corre-
tem, we also included results for different trial wave func'sponding ones in Table I. The interaction strengthis 4. The
tions. To date, we have used only free-electron and Unresy,chastic diagonalizationiSD) results are from Ref. 32; the
stricted Hartree-FockUHF) trial wave functions. density-matrix renormalization groupDMRG) results on two

In Table I, we see that the accuracy of the CPMC groundchains are from Ref. 34. The statistical errors are in the last one or
state energy is always better than 5%, often much bettefwo digits, as indicated.

even when the trial wave function is very poor. The worst

case is X3 with 4 T and 4| spins, which is an open-shell System | ) Ecpmc Esp Earomc
case that corresponds to a very difficult filling fraction for

the AFQMC method, and has a largeof 8, which makes ~4X4 515l free  -19.58%5) -19.58 -19.581)
single-determinant trial wave functions rather poor approxi-><6 13/13| free  -42.342) -40.77 -42.327)
mations. The Hartree-Fock wave function usedlya$ had a ~ 6%6 14114] UHF  -40.172) -40.4422)
very poor energy;-0.0025, compared to the exact energy of8%8 25[25| free  -72.482) -67.00 -72.806)
—0.809. The CPMC method, however, was still able to ob-8%8 27127] UHF  -67.464) -67.5519)
tain an energy of-0.76§2). Clearly a more accurate ap- 10x10 417141| free  -109.583) -109.16)
proximation to the ground-state wave function would yield 12x12 61761| free -153.4%) -151.41.4)
an even better result. 16x16 1011101 free -286.588)

In Table Il we compare our results with available data

from other numerical approaches, including stochastic diago- System [¥m)  Ecewe Eowre
nalization(SD),*> AFQMC, and density-matrix renormaliza- 2x8 77| free  -13.0674) -13.06642)
tion group(DMRG) (Ref. 33 methods. The SD method uses 2x 16 14 14| free  -26.872) -26.8673)

Monte Carlo methods to attempt the construction of an effi
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TABLE IIl. Comparisons of the computed expectation values and correlation functions by different
estimators for a X4 lattice with 5] 5] electrons andJ=4. The trial wave function is the free-electron
wave function. The corresponding variational values from it are shown in the first row. The next row contains
mixed estimates from CPMC simulations, while “Extrap” shows the values extrapolated from the first two
rows via Eq.(33). The row labeled BP gives the CPMC result via the back-propagation scheme. In the last
row, D44 is from AFQMC simulationgRef. 32, while the others are exact diagonalization results, with the
first four from Ref. 30 and the last from Ref. 3B indicates the kinetic energy(l,,l,) the one-body
density matrix,S and S, the spin and charge density structure factors, BpgandD,4 the s- (on-site and
d-wave pairing correlations, respectively. The Monte Carlo errors are shown in parentheses.

Ek p(z!l) S(7T,'7T) Sd(ﬂ-!ﬂ-) Dls(zvl) D2d(211)
Variational -24.0 -0.0625 0.625 0.625 0.003906 0.03125
Mixed -24.00) -0.06250) 0.69384) 0.55721) 0.0006843) 0.0309%2)
Extrap -24.00) -0.06250) 0.7631) 0.48942) -0.0025386) 0.0306%4)
BP -22.55%2) -0.05633) 0.7291) 0.5081) -0.00061%9) 0.02462)
Exact -22.52 -0.0560 0.73 0.506 -0.00058 0.02453

In Table Il we focus on filling fractiongn) around or means that self-consistency checksg., comparison of re-
greater than 80% as they are more interesting and also mosellts obtained with different choices pf+)) are crucial.
difficult for QMC calculations. For the closed-shellx4 In Table Ill, we show results on the simple closed-shell
system, the results from the CPMC, SD, and AFQMC meth4x4 system of 3 5| electrons atU=4 and with
ods agree well. As we increase the lattice size, the SD results 7=0.05. The one-body density matrix is the expectation
are comparatively poorer, presumably because of an insuffiralue of the Green’s function elemenxs(:l)=<c$c|>, where
cient number of states. The results from the AFQMC and:(|x,|y), The spin density structure factor is
CPMC methods continue to agree well up to fairly large
lattice sizes. The worst case is aix 8 lattice with 257 and )

25 | spins, where the CPMC result lies approximately 0.4% Sk, ky) = S(k) = 1/NZI explik-1)(ss),  (46)

+ 0.2% above the AFQMC result. For still larger lattice

sizes, the sign problem limits the use of the AFQMC methodvheres=n;;—n); is the spin at sitd. The charge density
to only closed-shell systems, for which the sign problem isstructure factoiS, is similar to Eq.(46), with spin replaced
much reduced. Even in these cases, we see that the errgy density, i.e., with the- sign ins replaced by at+ sign.
estimates in AFQMC are much larger than the correspondinghe electron pairing correlation is defined as

statistical errors from the CPMC method. In the<T? case,

the difference is roughly a factor of 30, i.e., about a factor of D,(Ix,ly)= D(h=(Al()A(0)), (47
900 more in CPU time(Our calculations typically took tens

of hours on an IBM RS6000 590Furthermore, the CPMC Where« indicates the nature of pairing. The on-sitevave
result is actually lower in energy in this case than thepairing function has\(I)=c;c,;, while in this particular
AFQMC results, but size of the error bars in AFQMC is case ford-wave pairing we used ,4(1)=c;Z 5f(d)C4 5,
similar to the difference between the two results. The CPMGvhere 6 is (£1,0) and (0£1). For é along thex axis,
result on a 1& 16 lattice, a size far beyond the reach of thef(4d) is 1; otherwise, it is—1. We average over differe
AFQMC method due to the sign problem, was obtained fronsites to improve statistics.

a simulation comparable to that for the 122 system in In Table Il we compare CPMC results from the back
terms of the numbers of iterations and walkers. For the twopropagation estimate with exact resulfghe length of back-
chain system, we obtained excellent agreement with th@ropagation was=6. We see that the CPMC result is es-
DMRG results of Noack* Here the energy agreed to within sentially exact for this system. The variational results suggest
less than 0.1%. that the free-electron functiony;) is not a very good trial
wave function. Nonetheless, the constrained path error seems
to be negligibly small. In fact, very limited branching occurs
in the calculations, which indicates effective importance

To effectively study ground-state properties, we need tesampling with| ). Furthermore, adl is increased to 8, the
accurately calculate pairing correlation functions, momenvariational results become worse, but the CPMC results ob-
tum distributions, and other ground-state expectation valuesained with the saméy) remain accurat®.Also in this
In previous sections, we discussed various ways of estimatable are estimates by the mixed and extrapolation schemes
ing a ground-state expectation value, in particular the backdiscussed in Sec. lll C. While these schemes often improve
propagation scheme. Here we will mostly benchmark resultshe variational results considerably, their systematic errors
and further discuss related algorithmic behavior. We remarlare significant, particularly when compared to the high level
that for any simulation method correlation functions are inof statistical accuracy that can be achieved with the CPMC
general much more difficult to compute than the energymethod.

Thus there is limited data available from other methods with In Table IV, we show expectation values for a system of
which we can benchmark our correlation functions. This77 7| electrons. This open-shell case has the worst sign

B. Correlation functions
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TABLE IV. Computed expectation values and correlation functions from CPMC fox 4 4attice with
71 7| electrons andJ=4, compared with exact results. Results are shown for two different trial wave
functions|¢r,) and|+,). Exact diagonalization results are from Ref. 30; numbers in parentheses indicate
either the range of values due to the ground-state degeneracy or uncertainties in extracting numbers from a
graph. Statistical errors on the last digit of the CPMC results are in parentheses. Symbols are the same as in
Table Ill. n, is momentum distribution.

Ek p(l,O) p(212) S(7T,’7T) Sd(Trrﬂ-) nk(7T/2,0)
Variational | #71) -24.0 0.1875 -0.0625 1.654 0.625 1.0
| ra) -21.88 0.1706 -0.0602 4.39 0.516 0.941
CPMC  |¢m) 21.442)  0.1681)  -0.05¥1)  2.901)  0.4321) 0.921)
2 21.398)  0.1681)  -0.0491)  2.922) 0.4301) 0.921)
Exact -21.391)  0.1681)  -0.051 2.162) 0.425 0.981)

problem for a 44 system. We show results from CPMC sults for the Hubbard model, even with very simple choices
simulations with two different trial wave functions. Both are of the trial wave functiorj yr7).
unrestricted Hartree-Fock wave functions, bi#t,) was ob- Compared to the GFMC method, the current algorithm
tained with aU of 0.1, while |1,) with U=4. The calcu- allows the random walk to take place in a basis other than
lation with |#+1,) has much less fluctuation, even thoughthat of configurations or occupation numbers. In this sense,
|1,) has a lower variational energy. In fact, we found thisthe CPMC algorithm is a generalization of the GFMC algo-
trend to be rather general: Free-electron-like wave functionsithm. The CPMC method expresses the ground-state wave
tend to be better importance functions than unrestrictedunction (stochastically in the form of Eq.(20), rather than
Hartree-Fock wave functions. We see that the two trial wavely(R)=Z6(R—R,) as in the GFMC method. This form is
functions yield very different variational estimates, but theiradvantageous as it makes feasible the use of various tech-
CPMC results are consistent and in reasonable agreemenigues developed for one-electron calculations for atoms and
with exact results. For example, in the free-electron-likesolids. In addition, it makes our back-propagation scheme
function| 1), the momentum distribution is a step function, efficient and effective. Thus expectation values can be com-
and thek=(1,0) state is completely occupied =1), but  puted via Eq(7), while in the GFMC method the analogous
even with this trial wave function the CPMC method still forward-walking technique has often been difficult and com-
gives the correct occupation of 0(39. putations of some correlation functions have almost been
In Fig. 3 we show th&-wave pairing correlation function impossible. If applications of the CPMC method to con-
D,4(1) and static magnetic structure factSfk). Our gen- tinuum systems are successful, the ability to compute the
eral definition of A,4(1) for Eq. (47) is slightly different

from the 4x4 case mentioned above. It if,4(l) 11
=25f(0)(ci ¢+ 5 —Ci Clt5). We show results obtained 091 646 <>=072 U=4
with two different trial wave functions for a 66 system. o7 b

The expectation values obtained directly from these two dif-
ferent trial wave functions are shown as thick lines, and thec
corresponding back-propagation estimat€5gp are shown

as thin lines. While the two CPMC estimates do not agree
exactly, they do demonstrate a much closer correspondence -%'«t

01

with each other than those obtained with the original wave ~ ©9 4= co he e A ©o
functions. The case shown is comparatively easy because of o CPMGC with ¥ /

the small size of the lattice and the relatively low value of v, K /

electron filling. However, the overall trend is rather general. [ < ¢ gPMC with %, [ TN

& , ~
VI. SUMMARY AND DISCUSSION 051 e =
We described in detail the background, formalism, and 7 .

implementation of a constrained path Monte Carlo algo-  *J ™\« o ke ek 00

rithm. The CPMC method is a general quantum Monte Carlo

algorithm for computing fermion ground-sta.te prloperties. It FIG. 3. Sensitivity of CPMC results to the choice of trial wave
introduces several new concepts, including importanceqnetion |w,) for some correlation functions. The upper figure is
sampled random walks in a Slater-determinant space and th&e 4-wave electron pairing correlatidb.g(l) and the lower curve
const_ralned pat_h approximation within this framework. Thejs the magnetic structure factS¢k). The free-electron wave func-
algorithm combines advantages of the existing Green's funcion | 1) and the unrestricted Hartree-Fock wave functigh,)

tion Monte Carlo and auxiliary-field quantum Monte Carlo (with U=4) are used. The corresponding mean-field results for
methods, is free of any signal-to-noise ratio decay, and scal@Rese correlation functions are also shoftiick lines. The com-
algebraically with system size. Together with data in Ref. 6,puted ground-state energies from CPMC aret2.345(3) and
we demonstrated that the method produces very accurate re-42.295(16)(cf. Table I)).
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expectation values of such quantities as forces will be verfCarlo process that iguided by importance sampling. The

valuable. These applications are under study. drawback of the CPMC method is of course its variational
There is an obvious resemblance between the constrainedture due to the CP approximation.

path(CP) approximation in the CPMC method and the fixed- We are currently investigating several schemes for further

node(FN) approximation in the GFMC method. Both result improving the algorithm. These include a method analogous

in solutions to the Schrbinger equation that are consistent to released-node techniden the GFMC method. For the

with some artificial boundary conditions. An important dif- energy, this seems straightforward. For other expectation

ference, however, is also evident. The FN approximation isalues, it involves evaluatingD)gp(71,7,) defined as

in configuration space and requires the solution to have a

predefined nodeg{N(R)=0 wherey+(R)=0. The CPMC (O)gp(11,72) = (prexi] — r,HJexd — 7 H]|O)|
method is in a Slater-determinant space. The CP approxima-
tion on each individual Slater determinaft), translated xex — 71H][ o). (48)

into configuration spacgR), is nonlocal and requires ) _ . - N .
[¥1(R)#(R)dR>0. Thus the node, as well as the amplitude'n this expressioH is the original Hamiltonian without the
#(R), is allowed to vary. The systematic error in the CPMC constraint, andd€ indicates the Hamiltonian in the presence
method arises because the solution it yields, in the form off the constraint. Hence, for a period of twieg we evolve
Eq. (18), has the artificial constraing,, (¢)>0 the system without constraint and for anotherwe include

’ 0 "

In the CPMC method, each Slater determings) ana- the constraint. In the limit of zere,; we obtain the approxi-

. . . . . mation used to date, while finite; improves the estimate,
lytically defines a continuous functiog(R) in contrast to . . . ; >
: . : ; i.e., makes it exact, at the cost of increasing statistical error.
walkers in the GFMC method which ar@ functions. It is S .
. . . . .. The bookkeeping in such a calculation could be arranged to
thus easier to impose symmetries. One example is the trivial

case of a noninteracting system: The CPMC method natugalculate directly the difference between the curéfijge

rally yields the correct result, while standard GFMC stil and the transient estimation and, hence,.to provide a stringent
; . st on the accuracy of a given calculation.

requires knowledge of the node. Another is the one-banae Other possibilities for improving estimates of expectation

Hubbard model at half-filling, where the CPMC method re- P P 9 P

e e ot Tt o i QU s s s, e s ehniaes [ o b
GFMC method retains the sign probléfn. ' : 9

Recently, ten Haaf and van Leeuiépresented data on described can be used with a multidetermini@n, with the

the Hubbard model from standard GFMC simulations Withcomputatl_onal cost increasing _only linearly with the _number
' oo . of determinants. Thus it is desirable to have good trial wave
the fixed-node approximation, which they and collaborator

had earlier generalizédto treat lattice fermion systems. For Sfunctlons n the_f_orm of linear cqmblnatm_ns of Slater deter-

. -~ minants. In addition, wave functions in this form that can be
the 4x4 system in Table Il (5 5] U=4), the CPMC result tuned systematically to yield different properties would be
for the energy per site iE/N= —1.2239(3)(exact valué’) Y ytoy prop

of —1.2238). With anidentical trial wave function, the highly useful, since self-consistency checks with the CPMC

fixed-node calculations of ten Haaf and van Leeuwen yielde(ﬁnethOd can then be carried out simply by changing param-

~1.21864). Incorporating a Gutzwiller factor only slightly eters in| 7). Yet other algorithmic topics include the devel-

improved their FN result te-1.22014). Unfortunately, the I%prgent of interacting-walkét and mirror potentiaf ana-
rest of their results are all FN energies computed for half- gs-
filled systems, for which the CPMC energies woulddxact
Further comparisons away from half-filling would allow a
more systematic understanding of the relative strengths of We thank A. Moreo, R. M. Noack, and R. T. Scalettar for
the CPMC method. providing unpublished data, M. H. Kalos, D. J. Scalapino,

It is worth noting that the CPMC algorithm provides a and C. J. Umrigar for stimulating discussions, and M. Guer-
stochastic method closely linked with more traditional quan—ero, M. M. Steiner, and J. W. Wilkins for helpful comments
tum chemistry approaches such the configuration interactioon the manuscript. This work was supported in part by the
(Cl) method. Similar to the CI method, the CPMC methodApplied Mathematics Program of the Department of Energy.
produces a collection of determinants whose sum represen@alculations were performed at the Cornell Theory Center
the ground-state wave function. The determinants, howevengn the SP2 computer. S.Z. also acknowledges support by
do not have to be orthogonal to each other. FurthermoreDOE-BES, Division of Material SciencéGrant No. DE-
they are generated efficiently asgistematicalljpy a Monte ~ FG02-88ER4534)7
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