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Constrained path Monte Carlo method for fermion ground states
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We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state
properties of various systems of interacting fermions. In this method, the ground state is projected from an
initial wave function by a branching random walk in an overcomplete basis of Slater determinants. By con-
straining the determinants according to a trial wave functionucT&, we remove the exponential decay of
signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact ifucT& is exact.
We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard
model. We show results for lattice sizes up to 16316 and for various electron fillings and interaction strengths.
With simple single-determinant wave functions asucT&, the method yields accurate~often to within a few
percent! estimates of the ground-state energy as well as correlation functions, such as those for electron
pairing. We conclude by discussing possible extensions of the algorithm.@S0163-1829~97!08611-6#
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I. INTRODUCTION

We describe a ground-state quantum Monte Carlo~QMC!
algorithm that removes theexponentialscaling of computa-
tion time with system size which is characteristic of the
famous fermion ‘‘sign problem’’1,2 in QMC simulations.3–5

Here we discuss the general concepts of the algorithm, w
is approximate, and then describe details for its impleme
tion using the Hubbard model as an example. The test res
we present will show that the algorithm makes it possible
compute, in times scalingalgebraically with system size,
general ground-state properties, such as supercondu
pairing correlation functions. A brief description of the bas
algorithm and some of the results on the Hubbard mo
were published earlier.6 The algorithm, as it will be detailed
here, can also be directly applied to study many other lat
models of electron correlations, such as the extended H
bard model, the Anderson lattice model, etc., where co
puter simulations with existing QMC algorithms are oft
difficult and sometimes impossible. Application of th
method to more general problem classes, such as atoms,
ecules, and nuclei, is currently under study.

The algorithm, called the constrained path Monte Ca
~CPMC! method, has two main ingredients: Thefirst is cast-
ing the projection of the ground state from an arbitrary init
state as importance-sampled branching random walks
space of Slater determinants. Thesecondingredient is con-
straining the paths of the random walks so that any Sl
determinant generated maintains a positive overlap wit
known trial wave functionucT&. This ingredient is used only
to deal with the sign problem.

The first of the two ingredients is an exact procedure.
we will illustrate, it combines important advantages of tw
existing methods, the Green’s function Monte Ca
~GFMC! ~Refs. 3, 7, and 8! and the auxiliary-field quantum
Monte Carlo~AFQMC! ~Refs. 9–12! methods. For example
550163-1829/97/55~12!/7464~14!/$10.00
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our method shares with the latter the ease of computing
pectation values of certain correlation functions, which a
crucial to probe physical properties but which are often h
to compute accurately by the standard GFMC methods.
the other hand, it shares the GFMC concept of importa
sampling with a trial wave functionucT&, which greatly im-
proves its efficiency over the AFQMC method. In additio
the realization of the projection by open-ended rand
walks along the imaginary-time direction makes it practic
and easy to implement the second ingredient, the constra
path approximation, and hence to eliminate the exponen
scaling due to the sign problem.

The constrained path approximation ensures that
Monte Carlo representation of the projected ground state
no asymptotic signal-to-noise ratio decay in imaginary tim
The resulting method is variational, with the comput
ground-state energy being an upper bound, and become
act if ucT& is exact. The constrained-path approximati
builds upon the positive projection technique of Fahy a
Hamann,13 but can also be viewed as a generalization of
fixed-node14–16 approximation in the GFMC method. Be
cause of the different bases in which the approximations
applied, the effect of the constrained path approximation
expected to bedifferent from that of the fixed-node approxi
mation.

In Sec. II, we will summarize the Green’s function Mon
Carlo and the auxiliary-field quantum Monte Carlo metho
for ground-state calculations. Here, we will establish the n
essary concepts and formalisms from these existing
proaches that are integral parts of our method. In Sec. III,
describe the CPMC method in general terms, focusing on
concept of the importance-sampled random walks in Sla
determinant space, the nature and consequences of the
strained path approximation, and the computation of exp
tation values. Implementations issues are discussed in
IV in the context of the one-band Hubbard model. In Sec.
7464 © 1997 The American Physical Society
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55 7465CONSTRAINED PATH MONTE CARLO METHOD FOR . . .
we report results for this model that illustrate the accura
and performance characteristics of our method. Finally
Sec. VI, we summarize and discuss several simple extens
of the CPMC method.

II. BACKGROUND

In this section, we summarize the AFQMC method a
also sketch a particular GFMC method, namely, the diffus
Monte Carlo~DMC! method,14,15which is most analogous to
our algorithm. In discussing the DMC method, the approa
we use is not standard, but rather it is one designed to
vide the necessary groundwork for the description of
CPMC method. Both the AFQMC and GFMC methods co
tain elements important to the CPMC method. For exam
the basic techniques of the AFQMC method, such
Hubbard-Stratonovich transformation, imaginary-tim
propagation of Slater determinants, and matrix multiplicat
stabilization,9,11,17 are shared by the CPMC method; on t
other hand, the random walk realization of th
propagation,7,18 importance sampling in the random walks b
use of a known trial function,3,7 and the fixed-node
approximation14 are all GFMC concepts of much relevanc

Most ground-state quantum Monte Carlo methods
based on

uc0&} lim
t→`

e2tHucT&; ~1!

that is, the ground stateuc0& can be projected from an
known trial stateucT& that satisfieŝcTuc0&Þ0. In a numeri-
cal method, the limit can be obtained iteratively by

uc~n11!&5e2DtHuc~n!&, ~2!

whereuc (0)&5ucT&. With a smallDt, the first-order Trotter
approximation can be used:

e2DtH'e2DtKe2DtV. ~3!

Typically, K andV are the kinetic and potential energy o
erators. More generally, they are the one- and two-body
teraction operators.

A. Auxiliary-field quantum Monte Carlo method

In the AFQMC method, the operators and wave funct
are in a second quantized representation, defined in term
fermion creation and destruction operatorsc† and c. The
basis is one of Slater determinants:

uf&[f1
†f2

†
•••fNs

† u0&, ~4!

where

f i
†[(

j
cj
†F j i . ~5!

F j i are the elements of a matrixF of dimensionN3Ns ,
whereN is the size of the basis andNs is the number of
fermions with spins. Each column of the matrixF repre-
sents a single-particle orbital that is completely specified
a vector of dimensionN. One example of such a Slater d
terminant is the Hartree-Fock ~HF! solution
ufHF&5)sufHF

s &, where eachufHF
s & is defined by a matrix
y
n
ns

d
n

h
o-
e
-
e,
s

n

e

-

n
of

y

FHF
s whose columns are theNs lowest HF eigenstates. Fo

any two real nonorthogonal Slater determinantsuf& and
uf8&, it can be shown that their overlap integral

^fuf8&5det~FTF8! ~6!

and single-particle Green’s function

Gi j[
^fucicj

†uf8&

^fuf8&
5d i j2@F8~FTF8!21F T# i j . ~7!

Now we consider the projection~2! in this Slater-
determinant basis. The trial wave functionucT& can be a
linear combination of determinants, but without loss of ge
erality, we assume that it is a single determinant. A key po
is that the projection of any Slater determinant by any ope
tor of the form

expS (
i j

ci
†Mi j cj D ~8!

simply leads to another Slater determinant, i.e.,

expS (
i j

ci
†Mi j cj D uf&5f81

†f82
†
•••f8Ns

† u0&[uf8&, ~9!

with f8 i
†5( j cj

†F j i8 andF8[e2MF.
Thee2DtK part of Eq.~3! has this form. Thee2DtV part,

however, does not asV51/2( i jkl Vi jkl ci
†cj

†clck . Following
Hubbard, we rewriteV as a quadratic form:

V5
1

2 (
a

laS (
i j

ci
†Ri j

acj D 2[1

2 (
a

lara
2 , ~10!

where the parametersla and the matrixRa are defined by
the elementsVi jkl and the number ofa is at mostN2 but is
often much smaller. With this quadratic form, a Hubbar
Stratonovich~HS! transformation of the two-body part of Eq
~3! yields:

expS 2
1

2
Dt(

a
lara

2 D 5)
a

E
2`

`

dxa

e2xa
2 /2

A2p

3expS xaA2Dtla(
i j

ci
†Ri j

acj D ,
~11!

wherexa is an auxiliary-field variable. Denoting the collec
tion of such variables by xW and defining B(xW )
5exp@2Dt(ci

†Ki j cj #)aexp@xaA2Dtla(ci
†Ri j

acj #, we
obtain

e2DtH5E dxWP~xW !B~xW !, ~12!

whereP(xW )5)a(e
2xa

2 /2/A2p) is a probability density func-
tion andB(xW ) has the desired form of Eq.~8!. The essence o
the HS transformation is the conversion of an interact
system into manynoninteractingones living in fluctuating
external auxiliary fields, and the summation over all su
auxiliary-field configurations recovers the correct many-bo
interactions. We note that different forms of this transform
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tion exist19 and that they can affect the algorithm perfo
mance, possibly to a large degree. These issues are, how
not addressed here, as we will only be describing the gen
algorithm.

With Eqs.~2! and ~12!, the ground-state expectation^O&
of some observable O can be computed by
^c (n)uOuc (n)&/^c (n)uc (n)&. The denominator is

^c~0!ue2nDtHe2nDtHuc~0!&

5E ^cTuF)
l51

2n

dxW ~ l !P~xW ~ l !!B~xW ~ l !!G ucT& ~13!

5E F)
l
dxW ~ l !P~xW ~ l !!GdetS CT

T)
l
B~xW ~ l !!CTD ,

~14!

whereB(xW ) is theN3N matrix associated with the single
particle operatorB(xW ) and Eqs.~6!, ~9!, and~12! have been
applied. In the AFQMC method,9 n is fixed and the many-
dimensional integral in Eq.~14! is evaluated by a Monte
Carlo ~MC! method like the Metropolis algorithm. The MC
process samples configurations$xW (1),xW (2), . . . ,xW (2n)% of the
auxiliary fields distributed according to the absolute value
the integrand.

In the AFQMC method, the sign problem occurs beca
in general the determinant in Eq.~14! is not always positive.
In fact, its average sign approaches zero exponentially an
~or N) is increased.1 The integral then becomes vanishing
small. Thus anexponentialgrowth in computation time is
required in its evaluation, since the MC samples, drawn fr
the absolute valueof the integrand, become dominated b
noise. This problem has remained largely uncontrolled, p
venting general simulations at low temperatures or large
tem sizes.

One attempt to control the sign problem was the posit
projection approximation proposed by Fahy and Haman13

They used a known wave functionucc& and imposed 2n
conditions

^cTuB~xW ~1!!B~xW ~2!!•••B~xW ~ l !!ucc&.0, l51,2, . . . ,n,
~15!

^ccuB~xW ~ l !!B~xW ~ l11!!•••B~xW ~2n!!ucT&.0,

l52n,2n21, . . . ,n11, ~16!

in sampling the auxiliary fields. The approximation is simil
in spirit to that of the fixed-node approximation in th
GFMC method. However, the constraint isnonlocal in
imaginary time, as any change inxW ( l ) affects the constrain
conditions atall times betweenl and n. Thus all auxiliary
fields had to be updated simultaneously and only paths
isfying all constraining equations were accepted. The
proach is hence computationally very intensive. In o
CPMC method, we adopt the Fahy-Hamann concept o
constraining state but implement the constraint in the con
of a random walk in the space of Slater determinants, wh
makes the procedure practical and straightforward.
ver,
ral

f

e

-
s-

e

t-
-
r
a
xt
h

B. Diffusion Monte Carlo method

The DMC method20 executes the iteration in Eq.~2! as
random walks in configuration space. When the fixed-po
condition is reached, the random walks sample position
configuration space from a distribution that represents
unknownamplitudeof the ground-state wave function.

We denote the configuration basis byuR&, where
R[$rW1 ,rW2 , . . . ,rWNs

% is the electron coordinates in the co
tinuous three-dimensional space. In this basis, the pote
energy propagatore2DtV in Eq. ~3! is diagonal, but the ki-

netic energy propagatore2DtK, whereK52 1
2 ( i¹ i

2 is not.
In order to write the latter in a more suitable form for
Monte Carlo treatment, we invoke a Hubbard-Stratonov
~HS! transformation:

eDt¹ i
2/25E dxi

e2xi
2/2

~2p!1/2
eADtxi•¹ i. ~17!

SinceeADtxi•¹ iuR& displacesr i in uR& by ADtxi , the effect
of e2DtK on any uR& can be viewed as ‘‘diffusing’’ it to
uR1ADtxW &, where each componentxi of the auxiliary field
xW is drawn from the normal distribution functio

P(xi)5e2xi
2/2/(2p)3/2.

The wave functionuc (n)& can be expressed in terms of th
amplitudes^Ruc (n)&[c (n)(R). In the random walk realiza-
tion of the iteration,c (n)(R) is represented by a finite en
semble of configurations$Rk

(n)%. At each stage, the Monte

Carlo method provides the stochastic sampling ofxW k
(n) and

consequently the movementuRk
(n)&→uRk

(n)1ADtxW k
(n)&

[uRk
(n11)& for each configuration in the ensemble. The fac

e2DtV(Rk
(n)) translates into a weight~branching factor! for the

configuration. As the iteration approaches the fixed-po
condition, the weighted distribution of configurations repr
sentsc0(R)5^Ruc0&.

The sign problem in the DMC method has a somew
different character than the sign problem in the AFQM
method. The Pauli exclusion principle requires that the fer
ion wave functionc0(R) change sign if the positions of two
electrons with the same spin are interchanged. Unlike
AFQMC method, the straightforward DMC method does n
impose the antisymmetric property in the projection proce
Without additional mechanisms, the DMC method natura
produces points distributed according to the lowest eig
state of the diffusion equation. This state is symmetric a
bosoniclike. There has only been limited success in attem
to construct exact algorithms that yield asymptotically~in
n) a nonvanishing, antisymmetric Monte Carlo signal.21,22

The fixed-node method14–16 is an approximate scheme t
prevent the convergence to the bosoniclike ground state.
tisymmetry in c0(R) implies that there are equivalent re
gions in configuration space which are separated by a n
surface on whichc0(R)50. The exact nodal surface is i
general unknown. In the fixed-node approximation, a tr
nodal surface is assumed, based on a known trial wave fu
tion ucT&. A solution which is everywhere positive is the
sought in the regioncT(R).0 by imposing the boundary
condition that c (n)(R) vanish at cT(R)50. Unless
cT(R)50 happens to be the correct node, the resulting DM
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55 7467CONSTRAINED PATH MONTE CARLO METHOD FOR . . .
solution for the ground state is approximate. The grou
state energy obtained is an upper bound.15

An important feature of the DMC method is importan
sampling. This technique is necessary to reduce the varia
of the computed results to acceptable levels. For brevity
will not discuss this technique here. Instead, we will po
pone such a discussion until it is needed to complete
description of the CPMC algorithm.

III. CONSTRAINED PATH MONTE CARLO METHOD

We now describe the CPMC algorithm. It uses t
Hubbard-Stratonovich-based formalism of the AFQM
method, but a Monte Carlo sampling procedure similar
that of the DMC method. The iterative process~2! becomes
an open-ended random walk inSlater-determinant space.
Within the framework of this random walk, we introduc
importance sampling and the constrained path approxi
tion.

We remark that any antisymmetric wave function can
written as a linear combination of Slater determinants, i.e

uc&5(
f

xc~f!uf&, ~18!

where the sum is over each member of the Slater determi
basis. As introduced in Sec. II, we will always useuc& to
denote antisymmetric wave functions anduf& to denote a
single Slater determinant. Contrary to the configurat
space used in the DMC method, the Slater-determinant b
space ofuf& is nonorthogonalandovercomplete.

A. Importance-sampled random walk formulation

Using Eq.~12!, we write the iterative equation~2! as

uc~n11!&5E dxWP~xW !B~xW !uc~n!&. ~19!

In the Monte Carlo realization of this iteration, we represe
the wave function at each stage by a finite ensemble of S
determinants, i.e.,

uc~n!&}(
k

ufk
~n!&. ~20!

Herek labels the Slater determinants and an overall norm
ization factor of the wave function has been omitted. T
Slater determinants are referred to asrandom walkersas they
are generated by the random walk. At any stage of the it
tion, the sum will be over only part of the basis as the de
minants in this sum are statistical samples whose distribu
represents the linear coefficientxc(n) in Eq. ~18!. The statis-
tical accuracy of this representation increases algebraic
as the number of independent samples is increased. In
remainder of the paper, Eq.~20! will serve as the definition
of the Monte Carlo representation of a wave function in
CPMC method. We will start from an initial ensemb
where, for eachk, ufk

(0)&5ucT&.
23

One step of the iteration involves the propagation of e
walker according to Eq.~19!. Since the noninteracting opera
torB(xW ) operating on any Slater determinant leads to ano
Slater determinant, an analytical realization of this propa
-
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e
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tion for each walker would yield a linear combination
many Slater determinants. In our random walk, this propa
tion is achieved stochastically by Monte Carlo sampling
xW :

ufk
~n11!&←E dxWP~xW !B~xW !ufk

~n!&; ~21!

that is, for each random walker we choose an auxiliary-fi
configurationxW from the probability density functionP(xW )
and propagate the walker to a new one v
ufk

(n11)&5B(xW )ufk
(n)&. We repeat this procedure forall

walkers in the population. These operations accomplish
step of the random walk. The new population represe
uc (n11)& in the sense of Eq. ~20!, i.e., uc (n11)&
}(kufk

(n11)&. These steps are iterated indefinitely. After
equilibration phase, all walkers thereon are MC samples
the ground-state wave functionuc0& and ground-state prop
erties can be computed.

In order to improve the efficiency of Eq.~19! and make it
a practical algorithm, an importance sampling scheme is
quired. In the procedure just described, no information
contained in the sampling ofxW on the importance of the
resulting determinant in representinguc0&, yet such informa-
tion is clearly important. For example, the ground-state
ergy is given byE0[^cTuHuc0&/^cTuc0&. Hence, estimating
E0 requires estimating the denominator by(f^cTuf&, in
which uf& denotes random walkers after equilibration. Sin
these walkers are sampled with no knowledge of^cTuf&,
terms in the summation overf can have large fluctuation
that lead to large statistical errors in the MC estimate of
denominator, thereby in that ofE0.

To introduce importance sampling, we iterate a modifi
equation with a modified wave function, without changin
the underlying eigenvalue problem of Eq.~19!. Specifically,
for each Slater determinantuf&, we define an importance
function

OT~f![^cTuf&, ~22!

which estimates its overlap with the ground-state wave fu
tion. We can then rewrite Eq.~19! as

uc̃~n11!&5E dxW P̃~xW !B~xW !uc̃~n!&, ~23!

where the modified wave function is

uc̃~n!&5(
f

OT~f!xc~n!~f!uf& ~24!

and the modified ‘‘probability density function’’ is

P̃~xW !5
OT~f~n11!!

OT~f~n!!
P~xW !. ~25!

We note thatP̃(xW ) is a function of both the futureuf (n11)&
and the currentuf (n)& positions in Slater-determinant spac
It is trivially verified that Eqs.~19! and ~23! are identical.

In the random walk, the ensemble of walkers$ufk
(n)&%

now represents the modified wave functionuc̃ (n)&
}(kufk

(n)&, which is to say that their distribution represen
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the functionOTxc(n). The iterative relation for each walker i
again given by Eq.~21!, but with P(xW ) replaced byP̃(xW ).
The latter is in general not a normalized probability dens
function, and we denote the normalization constant
walker k by N(fk

(n)) and rewrite Eq.~21! as

ufk
~n11!&←N~fk

~n!!E dxW
P̃~xW !

N~fk
~n!!

B~xW !ufk
~n!&. ~26!

This iteration now forms the basis of the CPMC algorith
As in the DMC method, it is convenient to associate a wei
wk
(n) with each walker, which can be initialized to unity. On

step of the random walk is then as follows: For each wal
ufk

(n)&, ~i! sample axW from the probability density function

P̃(xW )/N(fk
(n)), ~ii ! propagate the walker byB(xW ) to generate

a new walker, and ~iii ! compute a weight
wk
(n11)5wk

(n)N(fk
(n)) for the new walker. With the introduc

tion of the weight,uc̃ (n)&}(kwk
(n)ufk

(n)&.
Steps~i! and~iii ! are sometimes difficult to implement. T

ease their implementation, we apply the HS transforma
of Eqs.~23! and~25! to eachcomponent ofxW . This applica-
tion is simple since bothP(xW ) andB(xW ) can be decompose
into a product of independent factors corresponding to in
vidual componentsxa . Every step of the random walk the
consists of successive substeps in which thexa are sampled
one by one, each according to~i!–~iii !. As we discuss in Sec
IV, such a decomposition is adequate to make the Hubb
model application straightforward, since the HS transform
tion we use allows only two discrete values (61) for each
xa and, thus, the easy tabulation ofP̃(xa). For more genera
cases, however, it is often necessary to further approxim
P̃(xa). The following procedure can be adopted: Under
assumption of smallDt, the ratio of the overlap integrals i
manipulated into the form of an exponential whose expon
is linear inxa ; P̃(xa) is then written as a shifted Gaussia
times a normalization constant. The basic idea of this pro
dure is similar to that used in the DMC method.

To better see the effect of importance sampling, we
serve that ifucT&5uc0&, the normalization* P̃(xW )dxW is con-
stant. Therefore the weights of walkers remain a constant
the random walk has no fluctuation. Furthermore, we re
again to the estimator forE0. With importance sampling, the
denominator becomes the sum of weightsw, while the nu-
merator is(f^cTuHuf&wf /^cTuf&, where againuf& de-
notes walkers after equilibration. AsucT& approachesuc0&,
all walkers contribute equally to the estimator and the va
ance approaches zero. We emphasize that different cho
of importance functions only affect the efficiency of the c
culation.

B. Constrained path approximation

Despite the advantages over the standard AFQ
method in terms of sampling efficiency, the random wa
formulation still suffers from the sign problem. Here we w
illustrate the origin of the sign problem in this framewo
and then introduce the constrained path approximation
eliminate the exponential decay of the average sign. We
see that while a fixed-node-like approximation has prov
y
r
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difficult to implement effectively in standard AFQMC
method,13 it is extremely simple to implement under our ra
dom walk formulation.

The sign problem occurs because of the fundamental s
metry existing between the fermion ground stateuc0& and its
negative2uc0&.

13,21 For any ensemble of Slater determ
nants$uf&% which gives a Monte Carlo representation of t
ground-state wave function, this symmetry implies that th
exists another ensemble$2uf&% which is also a correct rep
resentation. In other words, the Slater-determinant space
be divided into two degenerate halves (1 and 2) whose
bounding surfaceN is defined bŷ c0uf&50 and is in gen-
eralunknown.

In some special cases, such as the particle-hole sym
ric, half-filled one-band Hubbard model, symmetry prohib
any crossing ofN in the random walk. The calculation i
then free of the sign problem.25 In more general cases, walk
ers can crossN in their propagation bye2DtH. The sign
problem then invariably occurs. Once a random walk
reachesN, it will make no further contribution to the repre
sentation of the ground state since

^c0uf&50⇒^c0ue2tHuf&50 for any t. ~27!

Paths that result from such a walker have equal probab
of being in either half of the Slater-determinant space. Co
puted analytically, they would cancel, but without an
knowledge ofN, they continue to be sampled in the rando
walk and become Monte Carlo noise. At sufficiently lar
n, the Monte Carlo representation of the ground-state w
function consists of anequalmixture of the1 and2 en-
sembles, regardless of where the random walks origina
The Monte Carlo signal is therefore lost. The decay of
signal-to-noise ratio, i.e., the decay of the average sign
^cTuf&, occurs at an exponential rate with imaginary time

In this regard, the fermion sign problem appears ve
similar in either the DMC, AFQMC, or CPMC algorithms
The difference between the algorithms is that in the DM
algorithm minus signs appear when particles interchange
sitions in configuration space while in the CPMC a
AFQMC algorithms the orbitals must interchange. The orb
als are an extended quantity and hence, at least for sys
near a mean-field solution, the fermion sign problem is
duced.

To eliminate the decay of the signal-to-noise ratio, w
impose the constrained path approximation. It requires
each random walker at each step have a positive overlap
the trial wave functionucT&:

^cTufk
~n!&.0. ~28!

This yields an approximate solution to the ground-state w
function, uc0

c&5(fuf&, in which all Slater determinants
uf& satisfy Eq.~28!. From Eq.~27!, it follows that this ap-
proximation becomesexactfor an exact trial wave function
ucT&5uc0&.

26

As a consequence of the constrained path approximat
the ground-state energyE0

c , computed by the estimator dis
cussed in Sec. III A, is an upper bound to the true va
E0. To see this, we introduce an antisymmetrization opera
Af in the Slater-determinant space that extends any w
function defined in half the space by(fuf& into the whole
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space by(fuf&2(2fu2f&. SinceAfuc0
c& is an eigenfunc-

tion of the modified HamiltonianHc5H1Vc, whereVc is
` at N and 0 elsewhere, we haveHc(Afuc0

c&)
5H(Afuc0

c&)5E08(Afuc0
c&). Both Afuc0

c& and Afuc0& re-
side in the same Slater-determinant space and both are
symmetric functions. ThusE08>E0. On the other hand, we
recall that

E0
c[

^cTuHuc0
c&

^cTuc0
c&

5
^cTuHAfuc0

c&

^cTuAfuc0
c&

. ~29!

ThereforeE0
c5E08 andE0

c>E0.
To implement the constrained path approximation in

random walk, we redefine the importance function by E
~22!:

OT~f![max$^cTuf&,0%. ~30!

This prevents walkers from crossing the trial nodal surfa
N and entering the ‘‘2 ’’ half-space as defined byucT&. In
the limit Dt→0, Eq. ~30! ensures that the walker distribu
tion vanishes smoothly atN and the constrained path ap
proximation is properly imposed. With a finiteDt, however,
P̃(xW ) has a discontinuity atN and the distribution does no
vanish. We have found this effect to be very small for re
sonably small imaginary-time stepsDt . Nonetheless, we
correct for it by modifyingP̃(xW ) nearN so that it approache
zero smoothly atN. As we discuss in Sec. IV, the procedu
is analogous to the mirror correction16,20 used in the DMC
method.

C. Computing expectation values

After the random walk has equilibrated, the distribution
random walkers represents the ground-state wave func
uc0

c& under the constrained path approximation. Various
pectation values can then be computed from a populatio
these walkers and their weights. For example, the grou
state energy is

E0
c5

^cTuHuc0
c&

^cTuc0
c&

5
(fOT~f!x~f!^cTuHuf&/OT~f!

(fOT~f!x~f!^cTuf&/OT~f!

.
(kwk^cTuHufk&/^cTufk&

(kwk
, ~31!

where terms in the numerator^cTuHufk&/^cTufk& are given
by combinations of elements of the Green’s function as
fined in Eq.~7!.

An estimator similar to Eq. ~31!, namely,
^cTuOuc0

c&/^cTuc0
c&, is easily obtained for any other oper

torO. In the GFMC method, this type of estimator is referr
to as themixedestimator. We recall that the true expectati
value ofO with respect touc0

c& is

^O&c5
^c0

cuOuc0
c&

^c0
cuc0

c&
. ~32!

For the energy, the mixed estimator is equivalent to the t
estimator~32!, but this is not true for anyO that does not
commute withH. In this case, it is sometimes possible
improve the mixed estimator by the linear extrapolation3
nti-

e
.

e

-

f
on
-
of
d-

-

e

^O&extrap'2^O&mixed2^O&var, ~33!

where the variational estimate^O&var5^cTuOucT&/^cTucT&.
Even a good trial wave functionucT& with a good varia-

tional energy can sometimes fail to give a reasonable e
mate for certain correlation functions. In such cases, Eq.~33!
will not be effective. It is then imperative to compute E
~32!. To do this, we devised a scheme calledback propaga-
tion ~BP!, the essence of which comes from the forwar
walking ~FW! technique18 in the GFMC method:

^O&BP5 lim
t→`

^cTexp~2tHc!uOuc0
c&

^cTexp~2tHc!uc0
c&

. ~34!

A subtle distinction, however, exists between back propa
tion and forward walking. In back propagation
^cTexp(2tHc)u5^cTuexp(2tHc) is restricted to ‘‘con-
strained’’ paths, i.e., those paths that do not violate the c
straint in theoriginal forward directionexp(2DtHc)uc0

c&. In
the DMC method a path in configuration space has no se
of direction with respect to the nodal surface. In the CPM
method, however, there is a sense of direction: A set of
terminants along the path of a random walk which does
violate the constraint at any step when going from right
left may indeed violate it any even number of times wh
going from left to right.

Because of this sense of direction, expression~34! may
not yield Eq.~32!. However, sinceuc0

c& is itself approximate,
this issue is not crucial. What is crucial is that^O&BP remains
exact for an exact trial wave function. To demonstrate tha
does, we will use perturbation theory and start by consid
ing a Hamiltonian

H85H1lO, ~35!

whereO is the operator whose expectation value we se
We then apply the CPMC method to the new Hamiltoni
H8 with a new constraint governed byucT8&, where

ucT8&5ucT&1ludcT&, ~36!

and udcT& is orthogonal toucT&, i.e., ^cT8 ucT&5^cTucT&,
which is the standard boundary condition of perturbat
theory. In the limit of smalll, the constraint becomes iden
tical to that of the original HamiltonianH. To first order in
l, we thus simply regain the previous expression~34! for
^O&BP. The term proportional toudcT& does not contribute
because it is orthogonal to the true ground state.

Numerically we compared̂O&BP with ^O&c in several
simple cases and observed reasonable agreement. In
ciple we can computêO&c by creating a separate walk fo
the left-hand wave function, which propagates from^cTu
with an appropriate sense of direction, and then matchin
with populations in the regular~right-hand! walk. In practice,
however, it is difficult for such a scheme to yield accura
results, due to a lack of proper importance sampling.27

Neither of the above measurement procedures is free f
bias in the long imaginary-time limit. Since we are deali
with a branching random walk, there is necessarily a b
that arises from finite population sizes. However, this b
can be greatly reduced by taking a relatively large populat
size~a few hundred to a few thousand!. The convergence and
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amount of bias will depend uponucT& and the low-energy
excitations of the system. We have found the ba
propagation estimate of ground-state observables to be
statistically and physically accurate in our Hubbard mo
calculations.

It is relatively simple to implement the back-propagati
scheme on top of a regular CPMC calculation. We choose
iteration n and store the entire population$ufk

(n)&%. As the
random walk proceeds, we keep track of the following tw
items for each new walker:~1! the sampled auxiliary-field
variables that led to the new walker from its parent walk
and ~2! an integer that labels the parent. After an additio
m iterations, we carry out the back propagation: For ea
walker l in the (n1m)th ~current! population, we initiate a
determinant̂ cTu and act on it with the corresponding prop
gators, but taken in reverse order. Them successive propa
gators are constructed from the stored items, w
exp(2DtK/2) inserted where necessary. The resulting
terminantŝ f̄ l

(m)u are combined with its parent from iteratio
n to computêO&BP, in a way similar to the mixed estimato
~31!. The weights are given correctly bywl

(n1m) due to im-
portance sampling in the regular walk. Starting from anot
iterationn8, this process can be repeated and the results
cumulated.

IV. IMPLEMENTATION ISSUES: THE HUBBARD MODEL

The one-band Hubbard model is a simple paradigm o
system of interacting electrons. Its Hamiltonian is given b

H5K1V52t (
^ i j &s

~cis
† cjs1cjs

† cis!1U(
i
ni↑ni↓ ,

~37!

wheret is the overlap integral,U.0 is the on-site Coulomb
repulsion, nis5cis

† cis , and the angular brackets indica
near neighbors. We will taket51 and assume a two
dimensional square lattice of sizeN5L3L, with periodic
boundary conditions.

The physics of this model is rich, containing magnetism
metal-insulator transition, and heavy Fermion behav
Originally the model was proposed for ferromagnetism;
day’s interest focuses on the extent to which it might exh
superconductivity away from the half-filled case
N↑5N↓5N/2. It is in the electron- and hole-doped regio
around half-filling that existing QMC methods experience
debilitating sign problem that restricts the simulations
small lattice sizes. In another paper, we will detail our stu
of the physical properties of this model.24

To illustrate the CPMC algorithm in more detail, we no
describe our implementation of it for the Hubbard Ham
tonian. For this and related lattice models, we use the
crete version25 of the Hubbard-Stratonovich transformation

e2DtUni↑ni↓5e2DtU~ni↑1ni↓!/2 (
xi561

p~xi !e
gxi ~ni↑2ni↓!,

~38!

where cosh(g)5exp(DtU/2) and the probability density
function p(xi)51/2 allows only xi561. Here we label
-
th
l

n

r
l
h

h
-

r
c-

a

a
r.
-
it

y

s-

components of the auxiliary fieldxW by i , instead of bya,
because of their one-to-one correspondence with lattice s

A. Specific issues

Each Slater determinantuf&5uf↑&uf↓&, and similarly
B(xW )5B↑(xW )B↓(xW ). Any overlap integral between two Slate
determinants involves the product of overlaps of individu
spin determinants, e.g.,^cTuf&5)s^cT

sufs&. Reflective of
the interaction, the↑ and↓ spin determinants share auxiliar
fields. Aside from this connection, they propagate indep
dently. With these details about electron spin taken into c
sideration, all our previous discussions directly apply.

To reduce errors associated with the first-order Tro
approximation~3!, we use the second-order symmetric for
exp(2DtH)'exp(2DtK/2)exp(2DtV)exp(2DtK/2). Thus,

B~xW !5BK/2BV~xW !BK/2 , ~39!

where BV(xW ) is the auxiliary-field-dependent propagat
from the HS transformation. From Eq. ~38!,
BV

s(xW )5) ibV
s(xi), where

bV
s~xi !5e2[DtU/21s~s!gxi ]cis

† cis, ~40!

with s(↑)51 ands(↓)521, andBK/2
s 5e2DtKs/2. The prob-

ability density function isP(xW )5) i p(xi).
For a walkeruf&, we now describe one substep of th

random walk in which thei th componentxi of the HS field is
sampled and thenbV(xi) is applied to the walker. If
bV(xi)uf& is denoted byuf8&, we have

p̃~xi !5
OT~f8!

OT~f!
p~xi !. ~41!

Thus the probability of picking one of the two possible va
ues ofxi is p̃(xi)/@ p̃(11)1 p̃(21)#. Once anxi is chosen,
uf& is propagated to obtain a new walker and the new wei
is w@ p̃(11)1 p̃(21)#. SincebV

s(xi) modifies only one row
of the matrixFs, it is straightforward and inexpensive t
compute the resulting ratio of determinants for each of
two possible values ofxi , provided the inverse of the over
lap matrix (CT

TFs)21 is known. As one moves to the nex
i , the overlap matrix can be efficiently updated by proc
dures that are almost identical to ones used in the AFQ
method.9,11

As we mentioned in Sec. III B, with a finiteDt, Eq. ~30!
causesp̃(xi) to be discontinuous atN. To correct for this, we
include a simple ‘‘mirror-correction’’ procedure in the abov
substep: If walkeruf& is close toN, where we define
‘‘close’’ as when one application ofbV(xi) ~with eitherxi)
would lead to a determinantuf8& with a negative
overlap with ucT&, we modify its weight to
w/@12^cTuf8&/OT(f)#. After the new walkeruf8& has
been accepted, we again check whether it is close toN. This
is done by applyingbV(xi) one additional time with the cho
sen xi . Similar to w above, the weightw8 is modi-
fied to w8/@12^cTubV(xi)uf8&/^cTuf8&# if the overlap
^cTubV(xi)uf8& is negative. We note that there is essentia
no computational cost in computing this overlap.
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B. Algorithm outline

The basic steps of the algorithm are the following.
~1! For each walker, specify its initial state to be som

appropriateCT and assign its weightw and overlapOT each
a value of unity.

~2! If the weight of the walker is nonzero, propagate it v
BK/2 .

~a! Perform the matrix-matrix multiplication

F85BK/2F ~42!

and compute the new importance function

OT85OT~f8!. ~43!

~b! If OT8Þ0, update the walker, weight, andOT :

F←F8, w←wOT8 /OT , OT←OT8 . ~44!

~3! If the walker’s weight is still nonzero, propagate it v
BV(xW )5) jbV(xj ).

~a! Compute the inverse of the overlap matrix

Oinv5~CT
TF!21. ~45!

~b! For eachauxiliary field xi ( i51,N) do the following.
~i! Compute p̃(xi) in which the ratio withOT can be

expressed in terms ofxi and the Green’s function elemen
Gii as defined in Eq.~7!.

~ii ! Samplexi and update the weight according to th
discussion in Sec. IV A.

~iii ! If the weight of the walker is still not zero, propaga
the walker bybV(xi) and then updateOT andOinv .

~iv! Apply the mirror correction in step~i! or ~iii ! if nec-
essary.

~4! Repeat step~2!.
~5! Include an overall normalization factor in walke

weight:w←weDtET, whereET is an estimate ofE0.
~6! Repeat steps~2!–~5!, which form one step of the ran

dom walk, for all walkers in the population.
~7! If the population of walkers has achieved a stea

state distribution, periodically make estimates of physi
quantities.

~8! Periodically adjust the population of walkers.
~9! Periodically reorthonormalize the columns of all th

F with nonzero weights.
~10! Cycle the process until an adequate number of m

surements are collected.
~11! Compute final averages, estimate their statistical

ror, and stop.
We omitted the spin indexs, but identical operations fo

both electron spin determinants are implied whenever a
trix manipulation is described. In presenting the above ste
we focused on illustrating the algorithm; the outline does
represent the most efficient implementation.

We also ignored back propagation. To implement it,
additional procedure is required in each random walk ste
the measurement phase. As discussed at the end of Sec.
this procedure takesoneof the following three possibilities
~i! storing all walkers@step ~6!#, ~ii ! storing ancestry links
@step~3!#, and auxiliary fields@step~3 b iii!# for each walker,
and copying them if necessary@step~8!#, or ~iii ! back propa-
-
l

a-

r-

a-
s,
t

n
in
I C,

gating from ^cTu, computing^O&BP, and accumulating re-
sults @step ~6!#. The lengthm of the back propagation is
preset as are the number of iterations in each measure
block, the frequency of measurements, etc.

Additionally, we introduced several previously undi
cussed steps and procedures. We now discuss these.

C. Additional algorithmic issues

In this section, we discuss the use ofET , the growth
estimator, population control, and reorthogonalization. Va
ants of the first three are present in all GFMC calculatio
while the last one is adopted from the AFQMC method. W
merely highlight these issues in the context of algorithm a
point to references with more extensive discussions. W
we will refer to the outline for the Hubbard implementatio
in Sec. IV B, the issues are general.

As shown in step~5!, a constanteDtET multiplies the
propagatore2DtH. If ET5E0

c , the steady-state eigenvalue
Eq. ~2! is unity. In other words, after equilibration the tot
weight of walkers remains a constant on the average.
inaccurate input ofET is only a minor concern, since th
value ofET simply changes the total weight systematica
by a constant factor. A statistical estimate of this factor
easily obtained from the random walk by observing the to
weights through a number of iterations.3 On the average
these totals scale as exp@2Dt(E0

c2ET)# and hence provide
an estimate ofE0

c . This procedure for estimating the groun
state energy is often referred to as thegrowth estimator.

In the random walk, one walker will eventually domina
all others and the random walk will spend most of its tim
sampling walkers which contribute little. To avoid such
loss of efficiency, a population control procedure20 is needed
@step~8!#. First, a branching~or birth and death! scheme is
applied, in which walkers with large weights are replicat
and ones with small weights are eliminated with some pr
ability. There exist various ways to do this,3,20,28 with the
guideline being that the process should not affect the dis
bution statistically. Branching allows the total number
walkers to fluctuate and possibly become too large or
small. Thus, as a second step, the population size is adju
if necessary, by rescaling the weights with an overall fac
Readjusting the population size introduces a bias and sh
only be done infrequently. If this is not possible due to
poor ucT& or poor importance sampling, several calculatio
must be done with different~average! population sizes in
order to extrapolate to the infinite population limit.

The overall structure of that of a CPMC calculation r
sembles a typical GFMC calculation.3 After equilibration, we
introduce an intermediate phase in which the growth estim
tor is computed. The length of this phase is a parameter
the outcome is used to adjustET . The new value ofET is
then used in the next phase, which is divided into indep
dent blocks. Because of the correlated nature of succes
steps, measurements are made only at suitable intervals
an iterationn when measurements are taken, the average
quantityO is O(n)5u(n)/d(n). In each block, we do not ac
cumulateO(n). Instead we accumulateu(n) and d(n) sepa-
rately and compute a final average at the end of the blo
The final result and statistical error estimate@step~11!# are
obtained from these bin averages.
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Step~9! is prompted by the fact that the repeated mu
plication of B(xW ) leads to a numerical instability: A rela
tively quickly numerical error grows to the point whe
ufk

(n)& represents an unfaithful propagation ofufk
(0)&. This

instability is well known in the AFQMC method and i
controlled11,17by a numerical stabilization technique that r
quires the periodic reorthonormalization of the sing
particle orbitals inufk

(n)&. In our calculation, we use th
modified Gram-Schmidt procedure11,17 which for each
walker uf& factors the matrixF asF5QR, whereQ is a
matrix whose columns are a set of orthonormal vectors
R is a triangular matrix. After this factorization,F is re-
placed byQ and the corresponding overlapOT is replaced by
OT /det(R).

V. RESULTS

We have presented a rather detailed discussion of the
strained path Monte Carlo method to make the CPMC al
rithm as transparent as possible. In this section we prese
variety of results from simulations of the Hubbard model th
are chosen primarily for their importance in illustrating alg
rithmic issues. These results are for two-chain and tw
dimensional lattices. First, we give results for the groun
state energy as a function of system sizeN, filling fraction
^n&5(N↑1N↓)/N, and trial wave function. Later, we exam
ine results for other physical quantities such as pairing c
relation functions.

A. Ground-state energy

In Fig. 1 we demonstrate the convergence and stability
the CPMC method. The energy~top! and overlap integra

FIG. 1. Stability and convergence of the CPMC method. In
lower half of the figure is the overlap integral^cTuc (n)& as a func-
tion of the imaginary timet5nDt, wheren labels the random walk
step. In the presence of the sign problem, this overlap inte
would decayexponentiallywith n. In the upper half of the figure is
the corresponding estimate of the total energy as a function on.
The inset is an enlarged version of the portion betweent537.5 and
t5117.5 in which the dotted line indicates the computed ene
value from blocks of lengtht510. This calculation yielded a
ground-state energy ofE0

c5265.13560.008, compared to an
AFQMC result~Ref. 29! of 265.0260.06.
-

-

d

n-
-
t a
t

-
-

r-

f

~bottom! are plotted as a function of imaginary tim
t[nDt. On the left, we demonstrate the initial convergen
from the trial wave function to the ground state and, on
right, the asymptotic stability of the algorithm. This figure
constructed for an 838 lattice with ^n&50.875 andU54.
This parametrization generates a fairly difficult system
the AFQMC method because of the sign problem.uCT& was
an unrestricted Hartree-Fock wave function obtained w
U50.4 ~not 4) and yielded a variational energy o
253.05. The average number of walkers was 600. The
havior shown is quite typical of CPMC calculations.

In the relaxation phase (t<10), a trial energy of
ET5258.0 was used. This value is significantly higher th
the true ground-state energy, and so the overlap inte
^cTuc (n)& and, consequently, the population size grow qu
rapidly. During this phase, population control is applied fr
quently~every five steps!. The rapid fluctuations in value o
the overlap integral shown in the bottom left are due to
adjustments of the total population size in each of these
plications. For 10,t<20 ~not shown!, we used the same
ET and applied population control with the same frequen
but computed the ground-state energy with the growth e
mator. This value was then used for the trial energyET dur-
ing the measurement phase (t.20). In this phase, even
though population control was applied every ten steps
branching occurs, the total population size remained wit
the preset lower and upper bounds of 300 and 1200. Ind
all vertical displacements in the overlap integral in the low
right of the figure correspond to the beginning of a blo
where we reset the population size to within 10% of t
expected average of 600.

Clearly, the values of both the overlap integral and t
energy are completely stable as a function ofn. In contrast,
the standard AFQMC method has a bad sign problem.
deed, for a 434 lattice at the same filling fraction and th
sameU, the average sign decays exponentially by roug
5 orders of magnitudeas the imaginary timet increases
from 0 to 20.1

The ground-state energyE0
c5265.13560.008.~Extrapo-

lation toDt50 will slightly reduce the average value.! The
best AFQMC result available for this system
265.0260.06,29 which is slightly higher than our uppe
bound. Thet dependence of the energy after convergenc
shown in the upper right of the figure. The inset demo
strates the short-term fluctuations in the mixed estimate
the energy; these fluctuations are also shown as the solid
in the main figure. Constructing local ‘‘binned’’ averages
the energy from blocks of lengtht510 yields the energy
estimates shown as dotted lines in the inset. These bin
averages are nearly statistically independent, and their r
mean-squared deviations divided by the square root of
number of bins yielded the quoted statistical error.

The computational requirements of the CPMC method
fairly modest when compared, for example, with t
AFQMC method. Efficiency, however, can be dramatica
affected by implementation issues. Two important issues
the accuracy of the trial wave function and of the imagina
time propagator. To obtain the maximum efficiency, it
essential to use a propagator accurate to second order i
breakup between kinetic and potential terms. For exam
Fig. 2 shows the energies obtained for first-order and seco
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order Trotter approximations for the propagators for a 434
lattice with N↑5N↓56 spins andU54. The first-order
propagator introduces significant systematic effects even
quite small time steps; however, the second order propag
permits significantly larger values ofDt to be used. We note
that we also included a mirror correction to the propagat
to make certain that there are no corrections of order
than (Dt)2. In this case, however, the differences betwe
using second-order propagators with and without this cor
tion are comparable to the error bars in the figure.

Of course, while stability and efficiency are necessary
a useful simulation, accuracy is the principal concern.
Tables I and II, we compare our results for the Hubba
model to exact results for small systems and to other m
ods for large systems. Since the CPMC method depe
upon approximate knowledge of the ground state of the s
tem, we also included results for different trial wave fun
tions. To date, we have used only free-electron and u
stricted Hartree-Fock~UHF! trial wave functions.

In Table I, we see that the accuracy of the CPMC grou
state energy is always better than 5%, often much be
even when the trial wave function is very poor. The wo
case is 333 with 4 ↑ and 4↓ spins, which is an open-she
case that corresponds to a very difficult filling fraction f
the AFQMC method, and has a largeU of 8, which makes
single-determinant trial wave functions rather poor appro
mations. The Hartree-Fock wave function used asucT& had a
very poor energy,20.0025, compared to the exact energy
20.809. The CPMC method, however, was still able to o
tain an energy of20.766(2). Clearly a more accurate ap
proximation to the ground-state wave function would yie
an even better result.

In Table II we compare our results with available da
from other numerical approaches, including stochastic dia
nalization~SD!,32 AFQMC, and density-matrix renormaliza
tion group~DMRG! ~Ref. 33! methods. The SD method use
Monte Carlo methods to attempt the construction of an e

FIG. 2. Illustration of the Trotter approximation error. The com
puted energy per site is shown as a function of the time stepDt for
a 434 lattice with 6↑ 6↓ electrons andU54. The first-order Trot-
ter approximation leads to significant finite time-step error. With
second-order approximation, convergence to theDt50 limit is
much more rapid. The right triangle indicates the exact energy
this system. The variational nature of the CPMC energies is visi
The Monte Carlo error bars are indicated. Curves are to aid the
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cient basis for approximating the ground-state wave funct
of the system. Since an explicit basis is used, no sign pr
lem occurs; however, an exponential growth in comput
time occurs, reflecting the increased effort in selecting me
bers of the basis as system size increases. In contrast
AFQMC method is in principle exact, but suffers from e
ponential growth in computing time as the system size
creases because of the sign problem. Finally, the DM
method is a variational method that is very effective for on
dimensional and quasi-one-dimensional models.

TABLE I. Hubbard-model ground-state energies per site fro
CPMC simulations compared with exact results. The first colu
under ‘‘system’’ is the lattice size and, the second, the number
electrons with↑ and↓ spins.U is the on-site Coulomb repulsion
The trial wave functionucT& used in CPMC is either a free-electro
~free! or an unrestricted Hartree-Fock~UHF! wave function.Evar

indicates the corresponding variational energy from this wave fu
tion. Statistical errors are in the last digit and are shown in par
theses. Exact results for the 434 systems are taken from Refs
30–32.

System U ucT& Evar /N ECPMC/N Eexact/N

232 2↑1↓ 4 UHF -1.5327 -1.6038~6! -1.6046
233 2↑2↓ 4 free -1.267 -1.3828~9! -1.4009
233 2↑2↓ 8 free -0.889 -1.221~2! -1.244
234 2↑2↓ 4 UHF -1.333 -1.3678~5! -1.374
234 3↑3↓ 4 UHF -1.438 -1.5693~5! -1.569
138 3↑3↓ 4 free -0.645 -0.8329~7! -0.834
333 4↑4↓ 8 UHF -0.0025 -0.766~2! -0.809
434 2↑2↓ 4 UHF -2.8225 -2.8813~3! -2.8825
434 4↑4↓ 4 UHF -1.025 -1.095~1! -1.096
434 5↑5↓ 8 free -0.7188 -1.0925~7! -1.0944
434 6↑6↓ 4 UHF -1.3117 -1.4763~5! -1.478
434 7↑7↓ 4 UHF -0.8669 -0.9831~6! -0.9838
434 7↑7↓ 12 UHF -0.474 -0.606~5! -0.628

TABLE II. Hubbard-model ground-state energies from CPM
simulations compared with available results from other approac
The first two columns follow the same convention as the cor
sponding ones in Table I. The interaction strengthU is 4. The
stochastic diagonalization~SD! results are from Ref. 32; the
density-matrix renormalization group~DMRG! results on two
chains are from Ref. 34. The statistical errors are in the last on
two digits, as indicated.

System ucT& ECPMC ESD EAFQMC

434 5↑5↓ free -19.582~5! -19.58 -19.58~1!

636 13↑13↓ free -42.34~2! -40.77 -42.32~7!

636 14↑14↓ UHF -40.17~2! -40.44~22!
838 25↑25↓ free -72.48~2! -67.00 -72.80~6!

838 27↑27↓ UHF -67.46~4! -67.55~19!
10310 41↑41↓ free -109.55~3! -109.7~6!

12312 61↑61↓ free -153.43~5! -151.4~1.4!
16316 101↑101↓ free -286.55~8!

System ucT& ECPMC EDMRG

238 7↑7↓ free -13.067~4! -13.0664~2!

2316 14↑14↓ free -26.87~2! -26.867~3!
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TABLE III. Comparisons of the computed expectation values and correlation functions by diff
estimators for a 434 lattice with 5↑ 5↓ electrons andU54. The trial wave function is the free-electro
wave function. The corresponding variational values from it are shown in the first row. The next row co
mixed estimates from CPMC simulations, while ‘‘Extrap’’ shows the values extrapolated from the firs
rows via Eq.~33!. The row labeled BP gives the CPMC result via the back-propagation scheme. In th
row, D1s is from AFQMC simulations~Ref. 32!, while the others are exact diagonalization results, with
first four from Ref. 30 and the last from Ref. 35.Ek indicates the kinetic energy,r( l x ,l y) the one-body
density matrix,S andSd the spin and charge density structure factors, andD1s andD2d thes- ~on-site! and
d-wave pairing correlations, respectively. The Monte Carlo errors are shown in parentheses.

Ek r(2,1) S(p,p) Sd(p,p) D1s(2,1) D2d(2,1)

Variational -24.0 -0.0625 0.625 0.625 0.003906 0.03125
Mixed -24.0~0! -0.0625~0! 0.6938~4! 0.5572~1! 0.000684~3! 0.03095~2!

Extrap -24.0~0! -0.0625~0! 0.763~1! 0.4894~2! -0.002538~6! 0.03065~4!

BP -22.55~2! -0.0563~3! 0.729~1! 0.508~1! -0.000615~9! 0.0246~2!

Exact -22.52 -0.0560 0.73 0.506 -0.00058~5! 0.02453
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In Table II we focus on filling fractionŝn& around or
greater than 80% as they are more interesting and also m
difficult for QMC calculations. For the closed-shell 434
system, the results from the CPMC, SD, and AFQMC me
ods agree well. As we increase the lattice size, the SD res
are comparatively poorer, presumably because of an ins
cient number of states. The results from the AFQMC a
CPMC methods continue to agree well up to fairly lar
lattice sizes. The worst case is an 838 lattice with 25↑ and
25 ↓ spins, where the CPMC result lies approximately 0.4
6 0.2% above the AFQMC result. For still larger lattic
sizes, the sign problem limits the use of the AFQMC meth
to only closed-shell systems, for which the sign problem
much reduced. Even in these cases, we see that the
estimates in AFQMC are much larger than the correspond
statistical errors from the CPMC method. In the 12312 case,
the difference is roughly a factor of 30, i.e., about a factor
900 more in CPU time.~Our calculations typically took ten
of hours on an IBM RS6000 590.! Furthermore, the CPMC
result is actually lower in energy in this case than t
AFQMC results, but size of the error bars in AFQMC
similar to the difference between the two results. The CPM
result on a 16316 lattice, a size far beyond the reach of t
AFQMC method due to the sign problem, was obtained fr
a simulation comparable to that for the 12312 system in
terms of the numbers of iterations and walkers. For the tw
chain system, we obtained excellent agreement with
DMRG results of Noack.34 Here the energy agreed to withi
less than 0.1%.

B. Correlation functions

To effectively study ground-state properties, we need
accurately calculate pairing correlation functions, mom
tum distributions, and other ground-state expectation val
In previous sections, we discussed various ways of estim
ing a ground-state expectation value, in particular the ba
propagation scheme. Here we will mostly benchmark res
and further discuss related algorithmic behavior. We rem
that for any simulation method correlation functions are
general much more difficult to compute than the ener
Thus there is limited data available from other methods w
which we can benchmark our correlation functions. T
re
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means that self-consistency checks~e.g., comparison of re-
sults obtained with different choices ofucT&) are crucial.

In Table III, we show results on the simple closed-sh
434 system of 5↑ 5↓ electrons at U54 and with
Dt50.05. The one-body density matrix is the expectat
value of the Green’s function elements:r( l)5^c0

†cl&, where
l5( l x ,l y). The spin density structure factor is

S~kx ,ky!5S~k!51/N(
l
exp~ ik• l!^s0sl&, ~46!

wheresl5nl↑2nl↓ is the spin at sitel. The charge density
structure factorSd is similar to Eq.~46!, with spin replaced
by density, i.e., with the2 sign in sl replaced by a1 sign.
The electron pairing correlation is defined as

Da~ l x ,l y!5D~ l!5^Da
†~ l!Da~0!&, ~47!

wherea indicates the nature of pairing. The on-sites-wave
pairing function hasD1s( l)5cl↑cl↓ , while in this particular
case ford-wave pairing we usedD2d( l)5cl↑(df (d)cl1d↓ ,
where d is (61,0) and (0,61). For d along thex axis,
f (d) is 1; otherwise, it is21. We average over different0
sites to improve statistics.

In Table III we compare CPMC results from the ba
propagation estimate with exact results.~The length of back-
propagation wast56.! We see that the CPMC result is e
sentially exact for this system. The variational results sugg
that the free-electron functionucT& is not a very good trial
wave function. Nonetheless, the constrained path error se
to be negligibly small. In fact, very limited branching occu
in the calculations, which indicates effective importan
sampling withucT&. Furthermore, asU is increased to 8, the
variational results become worse, but the CPMC results
tained with the sameucT& remain accurate.6 Also in this
table are estimates by the mixed and extrapolation sche
discussed in Sec. III C. While these schemes often impr
the variational results considerably, their systematic err
are significant, particularly when compared to the high le
of statistical accuracy that can be achieved with the CP
method.

In Table IV, we show expectation values for a system
7↑ 7↓ electrons. This open-shell case has the worst s
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TABLE IV. Computed expectation values and correlation functions from CPMC for a 434 lattice with
7↑ 7↓ electrons andU54, compared with exact results. Results are shown for two different trial w
functionsucT1& and ucT2&. Exact diagonalization results are from Ref. 30; numbers in parentheses ind
either the range of values due to the ground-state degeneracy or uncertainties in extracting number
graph. Statistical errors on the last digit of the CPMC results are in parentheses. Symbols are the sa
Table III. nk is momentum distribution.

Ek r(1,0) r(2,2) S(p,p) Sd(p,p) nk(p/2,0)

Variational ucT1& -24.0 0.1875 -0.0625 1.654 0.625 1.0
ucT2& -21.88 0.1706 -0.0602 4.39 0.516 0.941

CPMC ucT1& -21.44~2! 0.168~1! -0.051~1! 2.90~1! 0.432~1! 0.92~1!

ucT2& -21.39~8! 0.168~1! -0.049~1! 2.92~2! 0.430~1! 0.92~1!

Exact -21.39~1! 0.168~1! -0.051 2.16~2! 0.425 0.93~1!
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problem for a 434 system. We show results from CPM
simulations with two different trial wave functions. Both a
unrestricted Hartree-Fock wave functions, butucT1& was ob-
tained with aU of 0.1, while ucT2& with U54. The calcu-
lation with ucT1& has much less fluctuation, even thou
ucT2& has a lower variational energy. In fact, we found th
trend to be rather general: Free-electron-like wave functi
tend to be better importance functions than unrestric
Hartree-Fock wave functions. We see that the two trial wa
functions yield very different variational estimates, but th
CPMC results are consistent and in reasonable agree
with exact results. For example, in the free-electron-l
function ucT1&, the momentum distribution is a step functio
and thek5(1,0) state is completely occupied (nk51), but
even with this trial wave function the CPMC method st
gives the correct occupation of 0.92(1).

In Fig. 3 we show thed-wave pairing correlation function
D2d( l) and static magnetic structure factorS(k). Our gen-
eral definition ofD2d( l) for Eq. ~47! is slightly different
from the 434 case mentioned above. It isD2d( l)
5(df (d)(cl↑cl1d↓2cl↓cl1d↑). We show results obtaine
with two different trial wave functions for a 636 system.
The expectation values obtained directly from these two
ferent trial wave functions are shown as thick lines, and
corresponding back-propagation estimates^O&BP are shown
as thin lines. While the two CPMC estimates do not ag
exactly, they do demonstrate a much closer correspond
with each other than those obtained with the original wa
functions. The case shown is comparatively easy becaus
the small size of the lattice and the relatively low value
electron filling. However, the overall trend is rather gener

VI. SUMMARY AND DISCUSSION

We described in detail the background, formalism, a
implementation of a constrained path Monte Carlo alg
rithm. The CPMC method is a general quantum Monte Ca
algorithm for computing fermion ground-state properties
introduces several new concepts, including importan
sampled random walks in a Slater-determinant space and
constrained path approximation within this framework. T
algorithm combines advantages of the existing Green’s fu
tion Monte Carlo and auxiliary-field quantum Monte Car
methods, is free of any signal-to-noise ratio decay, and sc
algebraically with system size. Together with data in Ref
we demonstrated that the method produces very accurat
s
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sults for the Hubbard model, even with very simple choic
of the trial wave functionucT&.

Compared to the GFMC method, the current algorith
allows the random walk to take place in a basis other th
that of configurations or occupation numbers. In this sen
the CPMC algorithm is a generalization of the GFMC alg
rithm. The CPMC method expresses the ground-state w
function ~stochastically! in the form of Eq.~20!, rather than
c0(R)5(kd(R2Rk) as in the GFMC method. This form i
advantageous as it makes feasible the use of various t
niques developed for one-electron calculations for atoms
solids. In addition, it makes our back-propagation sche
efficient and effective. Thus expectation values can be co
puted via Eq.~7!, while in the GFMC method the analogou
forward-walking technique has often been difficult and co
putations of some correlation functions have almost b
impossible. If applications of the CPMC method to co
tinuum systems are successful, the ability to compute

FIG. 3. Sensitivity of CPMC results to the choice of trial wav
function uCT& for some correlation functions. The upper figure
thed-wave electron pairing correlationD2d( l) and the lower curve
is the magnetic structure factorS(k). The free-electron wave func
tion ucT1& and the unrestricted Hartree-Fock wave functionucT2&
~with U54) are used. The corresponding mean-field results
these correlation functions are also shown~thick lines!. The com-
puted ground-state energies from CPMC are242.345(3) and
242.295(16)~cf. Table II!.
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expectation values of such quantities as forces will be v
valuable. These applications are under study.

There is an obvious resemblance between the constra
path~CP! approximation in the CPMC method and the fixe
node~FN! approximation in the GFMC method. Both resu
in solutions to the Schro¨dinger equation that are consiste
with some artificial boundary conditions. An important d
ference, however, is also evident. The FN approximation
in configuration space and requires the solution to hav
predefined node:c0

FN(R)50 wherecT(R)50. The CPMC
method is in a Slater-determinant space. The CP approx
tion on each individual Slater determinantuf&, translated
into configuration spaceuR&, is nonlocal and requires
*cT(R)f(R)dR.0. Thus the node, as well as the amplitu
f(R), is allowed to vary. The systematic error in the CPM
method arises because the solution it yields, in the form
Eq. ~18!, has the artificial constraintxc0

(f).0.

In the CPMC method, each Slater determinantuf& ana-
lytically defines a continuous functionf(R) in contrast to
walkers in the GFMC method which ared functions. It is
thus easier to impose symmetries. One example is the tr
case of a noninteracting system: The CPMC method n
rally yields the correct result, while standard GFMC s
requires knowledge of the node. Another is the one-b
Hubbard model at half-filling, where the CPMC method r
tains the exact nature of the AFQMC method, while t
GFMC method retains the sign problem.36

Recently, ten Haaf and van Leeuwen37 presented data on
the Hubbard model from standard GFMC simulations w
the fixed-node approximation, which they and collaborat
had earlier generalized38 to treat lattice fermion systems. Fo
the 434 system in Table II (5↑ 5↓ U54), the CPMC result
for the energy per site isE/N521.2239(3)~exact value30!
of 21.2238). With anidentical trial wave function, the
fixed-node calculations of ten Haaf and van Leeuwen yiel
21.2186(4). Incorporating a Gutzwiller factor only slightly
improved their FN result to21.2201(4). Unfortunately, the
rest of their results are all FN energies computed for h
filled systems, for which the CPMC energies would beexact.
Further comparisons away from half-filling would allow
more systematic understanding of the relative strength
the CPMC method.

It is worth noting that the CPMC algorithm provides
stochastic method closely linked with more traditional qua
tum chemistry approaches such the configuration interac
~CI! method. Similar to the CI method, the CPMC meth
produces a collection of determinants whose sum repres
the ground-state wave function. The determinants, howe
do not have to be orthogonal to each other. Furtherm
they are generated efficiently andsystematicallyby a Monte
y
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Carlo process that isguidedby importance sampling. The
drawback of the CPMC method is of course its variation
nature due to the CP approximation.

We are currently investigating several schemes for furt
improving the algorithm. These include a method analog
to released-node technique16 in the GFMC method. For the
energy, this seems straightforward. For other expecta
values, it involves evaluatinĝO&BP(t1 ,t2) defined as

^O&BP~t1 ,t2!5^cTexp@2t2H
c#exp@2t1H#uOu

3exp@2t1H#uc0&. ~48!

In this expressionH is the original Hamiltonian without the
constraint, andHc indicates the Hamiltonian in the presen
of the constraint. Hence, for a period of twicet1, we evolve
the system without constraint and for anothert2 we include
the constraint. In the limit of zerot1 we obtain the approxi-
mation used to date, while finitet1 improves the estimate
i.e., makes it exact, at the cost of increasing statistical er
The bookkeeping in such a calculation could be arrange
calculate directly the difference between the current^O&BP
and the transient estimation and, hence, to provide a strin
test on the accuracy of a given calculation.

Other possibilities for improving estimates of expectati
values include optimization techniques for improving t
trial wave function. As mentioned earlier, the algorithm
described can be used with a multideterminantucT&, with the
computational cost increasing only linearly with the numb
of determinants. Thus it is desirable to have good trial wa
functions in the form of linear combinations of Slater dete
minants. In addition, wave functions in this form that can
tuned systematically to yield different properties would
highly useful, since self-consistency checks with the CPM
method can then be carried out simply by changing para
eters inucT&. Yet other algorithmic topics include the deve
opment of interacting-walker21 and mirror potential39 ana-
logs.
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