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Hybrid algorithm for Metropolis simulations at low temperatures:
Specific heat of the Coulomb glass
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We present an algorithm which suppresses the problem that correlation times increase rapidly at low
temperaturesT to a large extent. It bridges the gap between Metropolis simulation and analytical statistical
mechanics: The set of system states is decomposed into low- and high-energy subsets, and very fast transitions
within the low-energy subset are introduced guaranteeing immediate thermalization therein. Thus, even if there
is an appreciable number of local minima, equilibrium properties can be studied forT decreasing continuously
from high down to arbitrarily low values. The efficiency of this algorithm is demonstrated for the Coulomb
glass.@S0163-1829~97!06809-4#
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The Metropolis algorithm1 has proved to be an efficien
tool for the simulation of various systems.2 But diverging
correlation times restrict its applicability at lowT and close
to phase transitions. AsT→0, the portion of unsuccessfu
attempts rapidly tends to 100%; in addition, the number
transitions required to escape a local minimum diverg
Several methods have been proposed to treat the problem
large correlation times, e.g.,n fold way algorithm,3,4 cluster
algorithms,5,6 a cluster version of then fold way algorithm,7

multicanonical algorithms,8 simulated tempering,9 and, in the
context of simulated annealing, genetic algorithms.10 Here,
we present a hybrid procedure for lowT based on dividing
the configuration space into a low-energy subset, treated
directly performing the appropriate summations over
states included, and a high-energy subset studied by M
Carlo techniques; for a short preliminary version of this wo
see Ref. 11. First, we describe the algorithm in a gen
formulation. Then, we illustrate it by studying temperatu
and disorder dependences of the specific heat of the th
dimensional Coulomb glass.

We consider an arbitrary system with a discrete spect
of system statesi having energiesE@ i #. Let the transition
probability per unit time from statei to state j be w@ i , j #.
The states which can be reached within one primitive s
starting fromi are determined by the dynamics chosen
the simulation. We takeN such states,j 1

i , j 2
i , . . . ,j N

i , into
account, whereN does not depend oni . Thusw@ i , j #50 for
all statesj not belonging to this set; some of the transitio
i→ j n

i might be forbidden too. As in many Metropolis simu
lations, devoted solely to the study of equilibrium properti
thew@ i , j # are assumed to depend only on the energy cha
D@ i , j #5E@ j #2E@ i #,

w@ i , j #5w~0!@ i , j #H 1 if D@ i , j #<0,

exp$2D@ i , j #/T% if D@ i , j #.0,
~1!

wherew(0)@ i , j #5w(0)@ j ,i # equals either 1/N or zero. The
Boltzmann constant is taken to be 1 throughout.
550163-1829/97/55~12!/7460~4!/$10.00
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The w@ i , j # define the dynamics of the simulation. No
that, if solely mean values of equilibrium observables are
be obtained, the dynamics can be modified but detailed
ance must be maintained. Thus we introduce additional tr
sitions within a subset ofM local minima, or, in general, of
low-energy states,S( l )5$ i 1

( l ) ,i 2
( l ) , . . . ,i M

( l )%. Previous at-
tempts in this direction are, e.g.,J-walker algorithm,12 and
simulated tunneling.13 We ascribe to the transitions withi
S( l ) rates which are very large compared to thew@ i , j # intro-
duced in the above paragraph, see Ref. 7. This simplifies
numerical problem enormously: Thermalization withinS( l )
happens immediately after anyone of its states is reached
long asS( l ) is not left, all equilibrium observables can b
assumed to have the mean value related toS( l ).

The decisive point is the construction ofS( l ). We begin
with an initial S( l ) obtained by sampling local minima dis
tributed in the configuration space. Therefore, the system
repeatedly quenched starting from randomly chosen sta
Then, we iterateS( l ) modifying the idea of Ref. 14, viz., to
utilize the Metropolis algorithm to obtain low-energy state
We start at a sufficiently highT, and diminishT in the
course of the simulation stepwise. Before starting the in
gration over a given time interval, we adapt the dynami
i.e., we introduce very fast transitions connecting all sta
PS( l ) with each other. During the integration, the lowes
energy states ‘‘visited’’ are stored in some ‘‘temporary
memory, Stemp( l ) . After the end of the interval has bee
reached,S( l ) is updated by choosingM lowest-energy
states16 out of S( l )øStemp( l ) .

The system stays withinS( l ) only during a fraction of the
simulation time. This fraction vanishes exponentially at hi
T, it increases with decreasingT, and finally tends to
100% asT→0. At sufficiently low T, the consideration of
only S( l ) yields good approximations of the mean values
equilibrium observables. Thus our approach provides
smooth transition between ‘‘standard’’ Metropolis algorith
at highT, and simple summations at lowT. It differs sub-
stantially from Ref. 7, whereS( l ), updated in each step, in
7460 © 1997 The American Physical Society
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55 7461HYBRID ALGORITHM FOR METROPOLIS SIMULATIONS . . .
cludes a complete history. Moreover, two further efficie
improvements of Ref. 7 should be noted:~a! The energy
threshold criterion in updatingS( l ) provides a natural mecha
nism of gradual forgetting.~b! The overhead for handling
S( l ) is far lower here, we have to update this subset onl
few times perT point.

The usual Metropolis simulation is based on two ideas:~i!
substituting temporal for ensemble averaging, and~ii ! coarse
graining the time in order to simplify the decisions to
performed in simulating the stochastic process. However
T→0, ~ii ! proves to be ineffective: The number of possib
choices remains finite whereas the number of unsucces
attempts per successful one diverges. Therefore, abando
~ii !, we ‘‘directly’’ determine the dwelling time at the actua
state, considering the time as a continuous variable. Suc
approach was published first in the form of then fold way
algorithm;3 for surveys and the generalization to clusters
states see Refs. 4, 15, and 7, respectively.

Each elementary step starts with classifying the ac
statei according to whether or not it belongs toS( l ). Con-
sider firsti¹S( l ): The dwelling time is an exponentially dis
tributed random variable with the mean value

t@ i #51Y (
n51

N

w@ i , j n
i #. ~2!

In order to perform the random decision for the next st
j k
i the cumulated probabilities

sk@ i #5 (
n51

k

w@ i , j n
i # ~3!

are calculated. A random numberj, equally distributed in
$0,1%, is chosen, and thatk is determined for which

sk21@ i #<jsN@ i #,sk@ i # ~4!

holds~wheres0@ i #50). Thus, the mean value of an obser
ableO is calculated integrating overO@ i (t)#.

Assume now iPS( l ). The immediate thermalization
within S( l ) permits us to integrate directly until leaving th
subset: All equilibrium observablesO can be assumed t
have the related mean value,

^O&~ l !5 (
m51

M

pm
~ l !O@ im

~ l !#, ~5!

where

pl
~ l !5exp$2E@ i l

~ l !#/T%Y (
m51

M

exp$2E@ im
~ l !#/T%. ~6!

The time, during which the system remains trapped wit
S( l ), is an exponentially distributed random variable too.
mean value is given by

t~ l !51Y (
m51

M

pm
~ l ! (

n51

N

w@ im
~ l ! , j

n

im
~ l !

#Q@ j n
im
~ l !

#, ~7!
t
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whereQ@ j #50 if jPS( l ) andQ@ j #51 otherwise. The deci-
sion for the next state after leavingS( l ) is performed along
similar lines as above. First, cumulated probabilities are c
culated,

slk
~ l !5 (

m51

l21

pm
~ l ! (

n51

N

w@ im
~ l ! , j

n

im
~ l !

#Q@ j n
im
~ l !

#

1pl
~ l ! (

n51

k

w@ i l
~ l ! j

n

il
~ l !

#Q@ j n
il
~ l !

#. ~8!

Then the final state is determined. It is advantageous to
form this choice within two steps, first deciding which initia
stateim

( l ) is now to be left, and then choosing the final sta
¹S( l ). Note, that the full set ofslk

( l ) has to be calculated only
once after updatingS( l ), or changingT.

Completing the general part of this paper, we discuss
limitations of our algorithm. Due to modifying the transitio
rates, this approach is not appropriate for a direct study
dynamical properties. Moreover, as generally in such
proaches, there is no guarantee that all relevant low-ene
states are found, only for sufficiently small systems the
lated probability is close to 1. Therefore, concerning the s
tem size, there is always a bound limiting the applicabil
region — although this bound can be surprisingly large
demonstrated below. For larger systems, the simulation u
ally fails for one of the following reasons:~i! all initial ar-
chive states can be separated ‘‘from the most important
leys by too high barriers,’’ or~ii ! the simulation can ge
stuck around some local minimum¹S( l ). This applicability
bound depends on the model studied, as well as on
strength of the corresponding disorder, and on the integra
time. However, determining the latter by means of an au
matic accuracy control, see below, increases considerably
efficiency, and enlarges therefore the applicability region

The advantages of the algorithm presented in the first
of this paper are now demonstrated studying the specific
of the Coulomb glass. This semiclassical model describe
diluted impurity band, i.e., a disordered system of interact
localized states with negligible quantum tunneling betwe
them. For related reviews see Refs. 17 and 18. Here we fo
on a half-filled impurity band. It is represented by the Ham
tonian

H5(
a

«ana1
1

2(
aÞb

~na21/2!~nb21/2!

uxWa2xWbu
, ~9!

where naP$0,1% denote the occupation numbers of sta
localized at sitesxWa . We assume these sites to form a regu
three-dimensional lattice ofL3 sites, and impose periodi
boundary conditions.1 Elementary charge, lattice spacin
and dielectric constant are all taken to be 1. The values of
random potential«a are uniformly distributed between
2B/2 andB/2.

The specific heat of the Coulomb glassc(T) has been
studied numerically, including arbitrary correlations, in t
literature along two different lines. On the one hand, t
Metropolis algorithm was used in Refs. 14, 19, and 2
These papers are restricted toT*231022 due to the dra-
matically increasing effort asT→0 . On the other hand, the
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7462 55A. MÖBIUS AND P. THOMAS
specific heat was investigated by first obtaining large set
low-energy system states and then calculatingc by means of
analytical statistical mechanics. The principal feasility of th
approach was demonstrated in Ref. 14. Based on a m
efficient numerical method to obtain low-energy states
corresponding detailed study of the influence of correlati
was accomplished in Ref. 21. TheT region investigated
could be extended down to 531023 in Refs. 14 and 21,
where this bound results from severe finite size effects. H
ever, due to finite size effects and high-energy cutoff,
c(T) results for fixedL covered only about a factor of 3 o
theT scale so that the total curve had to be assembled f
the pieces obtained for differentL.21

The advantages of both these approaches are combine
the hybrid algorithm presented here. To test it, we perform
simulations including into the original dynamics on
nearest-neighbor hops and transitions of one electron
tween the sample and a reservoir at infinity. The specific h
was determined according toc(T)5(^H2&2^H&2)/(T2L3),
where the accuracy was controlled by means of the follow
procedure. We decompose the time interval into 30 eq
parts, and check whether the dispersion of the related va
^c&n is sufficiently small and, moreover, the value measu
over the full interval̂ c& does not deviate too much from th
mean value of thê c&n . An initial S( l ) was obtained by
repeated relaxation down to states which are stable with
spect to particle exchange with a reservoir at infinity, ar
trary one-particle, and compact two-particle hops inside
sample.

To ensure reliability and efficiency of our program w
performed several tests, all of them forB51:

~i! The influence of the number of statesM kept in S( l )
was studied considering the ensemble average of t
samples of 43 sites. We calculatedc(T) for 14T values,
starting at 0.2, and then diminishingT by the factorA1/2
step by step down to 2.231023 ~not accessible to standar
Metropolis simulations!. Two such series of runs were pe
formed where the permitted fluctuations ofc(T) were re-
stricted to 5 and 2 %, respectively. The results are given
Fig. 1 which relates the CPU timetCPU to M . For small

FIG. 1. Dependence of the CPU timetCPU, needed for investi-
gating three samples of 43 sites, in dependence on the number
statesM in the reservoirS( l ). tCPU is measured in processor secon
at an HP K200. The aspired error bounds ofc(T) were chosen to be
5% and 2%, respectively.
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M , tCPU diverges with decreasingM due to capturing of the
system close to local minima: The task could not be p
formed within reasonabletCPU for M51, which, due to the
missing additional transitions withinS( l ) and negligible over-
head for handlingS( l ), corresponds to the standardn fold
way algorithm. Even forM53, tCPU is by roughly two or-
ders of magnitude larger than for the optimalM . For large
M , tCPU increases withM because of the effort for treatin
S( l ). The optimalM value as well as that region, where th
sharp lowM increase oftCPU starts, shift to higherM as the
permitted fluctuations get smaller.

~ii ! To test how reliably the deepest states are found,
to check the automatic accuracy control, we performed
runs considering the same sample of 103 sites. For this size,
we estimated the number of local minima of the dynamics
the standard Metropolis simulation to exceed 1022. The T
values were those of Fig. 2;M510 000 was chosen; a ran
dom error of 5% was aspired. First reentrance intoS( l ) oc-
cured atT'331022. New states, later on included int
S( l ), were detected between 731022 and 831023. Below
roughly 831023, more than 95% of̂ c& originate from
S( l ). We found the lowest 15 states of the finalS( l ) to be the
same for all runs, where 10 of them are local minima diffe
ing from each other by the occupation of up to 62 sites. T
these 15 lowest states are very likely indeed complete
confirmed by an independent study according to Ref. 21.
remarkably small percentage of, on the average, o
0.16% missing states out of the lowest 100 ones clearly d
onstrates the power of our approach. Moreover, the m
mum relative mean square deviation ofc(T) was found to
amount to 6%.

~iii ! Figure 2 compares with previous studies. It shows
ensemble average for 50 samples of 103 sites. Very good
agreement is found with previous Metropolis data,14 as well

FIG. 2. Temperature dependence of the specific heat of
three-dimensional Coulomb glass for three different degrees of
order. 50 samples of 103 sites were studied in each case. The pa
of curves cover the 1-s region of ensemble averaging. They resu
from sets ofT points where neighboring ones differ by a fact
A2. For comparison, data from a previous Metropolis simulatio
~Ref. 14! are included~circles and double triangles!, as well as the
results forL58 from a study based on constructing large sets
system states~Ref. 21! ~dashed line!.
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55 7463HYBRID ALGORITHM FOR METROPOLIS SIMULATIONS . . .
as with data obtained directly by considering system state21

The advantages of our hybrid procedure are obvious
broad low-T region not accessible to usual Metropolis sim
lations could be investigated. In comparison with Ref. 2
the accuracy problems in assembling the total curve fr
pieces for differentL is avoided, and, moreover, the acce
sible T region is enlarged by increasing the maximu
sample size from 512 to 1000 sites.

Finally, the properties of the Coulomb glass themsel
are discussed. The influence of the degree of disorder is s
ied in Fig. 2 by comparing results forB51, 2, and 4. Finite
size effects are accounted for as in Ref. 21. Figure 2 sugg
three conclusions:

~i! There is a tendency towardsc(T) being independent o
B asT→0.

~ii ! The description ofc(T→0) in terms of a power law
with a characteristic exponent is not possible within theT
region studied.

~iii ! ForT.0.03, the increase ofB seems to correspond t
a rescaling of the temperature.

Moreover, the present results, which have a considera
higher accuracy than previous data, confirm the phys
analysis of the influence of correlations in Ref. 21.

Concluding, we have presented a hybrid algorithm brid
ing the gap between Metropolis algorithm and analyti
methods of statistical mechanics. It proved to be very s
cessful in investigating the specific heat of the Coulo
glass, where the low-temperature problems of Metrop
r,
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simulations were dramatically diminished by taking adva
tage of the large memory of modern computers. The al
rithm proposed is expected to be useful also for the study
other equilibrium properties of this model. Since the Co
lomb glass is not special compared to other disordered
tems — in particular, it exhibits a complicated hierarchy
metastable states — this algorithm should be advantage
for the study of low-temperature equilibrium properties o
broad class of disordered systems. Moreover, parts of
approach to the long-standing problem of handling situati
with many local minima, should be of considerable adva
tage for completing physical methods of combinatorial op
mization, as simulated annealing. Finally, we stress that
algorithm presented is well suited for the implementation
massive parallel computers.
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