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Hybrid algorithm for Metropolis simulations at low temperatures:
Specific heat of the Coulomb glass
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We present an algorithm which suppresses the problem that correlation times increase rapidly at low
temperature§ to a large extent. It bridges the gap between Metropolis simulation and analytical statistical
mechanics: The set of system states is decomposed into low- and high-energy subsets, and very fast transitions
within the low-energy subset are introduced guaranteeing immediate thermalization therein. Thus, even if there
is an appreciable number of local minima, equilibrium properties can be studi@ddecreasing continuously
from high down to arbitrarily low values. The efficiency of this algorithm is demonstrated for the Coulomb
glass.[S0163-182807)06809-4

The Metropolis algorithrh has proved to be an efficient The w[i,j] define the dynamics of the simulation. Note
tool for the simulation of various systerAisBut diverging that, if solely mean values of equilibrium observables are to
correlation times restrict its applicability at low and close  be obtained, the dynamics can be modified but detailed bal-
to phase transitions. A$—0, the portion of unsuccessful ance must be maintained. Thus we introduce additional tran-
attempts rapidly tends to 100%; in addition, the number ofkitions within a subset df1 local minima, or, in general, of
transitions required to escape a local minimum divergesjow-energy states,S('):{i(l'),ig), . ,i,(\},)}. Previous at-
Several methods have been proposed to treat the problemstgfmpts in this direction are, e.gl;walker algorithmt? and
large correlation times, e.gn, fold way algorithm’* cluster  simulated tunneling® We ascribe to the transitions within
algoritth?’S a cluster version of tha fold way algorlthm7, S(l) rates which are very |arge Compared to W[S,J] intro-
multicanonical algorithm8 simulated temperingand, inthe  duced in the above paragraph, see Ref. 7. This simplifies the
context of simulated annealing, genetic algorittithsiere,  numerical problem enormously: Thermalization witksH’
we present a hybrid procedure for lolvbased on dividing  happens immediately after anyone of its states is reached:; as
the configuration space into a low-energy subset, treated byyng ass™ is not left, all equilibrium observables can be
directly performing the appropriate summations over allzssymed to have the mean value relatedth
states included, and a high-energy subset studied by Monte tha decisive point is the construction &f). We begin
Carlo techniques; for a short preliminary version of this work ith an initial S obtained by sampling local minima dis-

see Ref. 11. First, we describe the algorithm in a generglyp, 1o in the configuration space. Therefore, the system is
formulation. Then, we illustrate it by studying temperaturerepeatedly quenched starting from randomly chosen states.
and disorder dependences of the specific heat of the thregq .\ < “iteratest) modifying the idea of Ref. 14, viz., to

dimensional Coulomb glass. . . utilize the Metropolis algorithm to obtain low-energy states:
We consider an arbitrary system with a discrete SPectrunlya start at a sufficiently hight, and diminishT in the

of system states having energie€[i]. Let the transition course of the simulation stepwise. Before starting the inte-

probability per unit time from state to statej be wli,j]. ration over a given time interval, we adapt the dynamics,
The states which can be reached within one primitive ste .e., we introduce very fast transitions connecting all states

starting fromi are determined by the .cijyﬂamms_icho_sen for _ s with each other. During the integration, the lowest-
the simulation. We také such statesj;,jz, . .. ,jn, into energy states “visited” are stored in some “temporary”
account, wher&\ does not depend dn Thusw[i,j]=0 for 00 S After the end of the interval has been
all §itate_sj not belonging to this set; some of the ransitions, o - ched, s i updated by choosingVl lowest-energy
i— |}, might be forbidden too. As in many Metropolis simu- state out of SO U SO

lations, devoted solely to the study of equilibrium properties, temp:

thew[i,j] are assumed to depend only on the energy change The system stays W'th'ﬁ( only during a fract|_on of the_
AL 1=E[j]—E[i] simulation time. This fraction vanishes exponentially at high

T, it increases with decreasing, and finally tends to
100% asT—0. At sufficiently low T, the consideration of
) only S" yields good approximations of the mean values of
equilibrium observables. Thus our approach provides a
smooth transition between “standard” Metropolis algorithm
wherew(©)i,j]=w()[j,i] equals either 1M or zero. The at highT, and simple summations at loW. It differs sub-
Boltzmann constant is taken to be 1 throughout. stantially from Ref. 7, wher&"), updated in each step, in-

1 if Afi,j]=<O0,

wii,j1=wri,j] exg—A[i,j T} if A[i,j]>0,
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cludes a complete history. Moreover, two further efficientwhere®[j]=0 if j e S’ and®[j]=1 otherwise. The deci-
improvements of Ref. 7 should be note@ The energy sion for the next state after leavir§j" is performed along
threshold criterion in updating!" provides a natural mecha- similar lines as above. First, cumulated probabilities are cal-
nism of gradual forgetting(b) The overhead for handling culated,

S is far lower here, we have to update this subset only a

few times perT point. I e (LIl

The usual Metropolis simulation is based on two idéBs: si=2> PL)E wli) i+ 100 ]
substituting temporal for ensemble averaging, éindcoarse w=t -t
graining the time in order to simplify the decisions to be K 0 0
performed in simulating the stochastic process. However, as +pi > wlil’j 10" 1. 8
T—0, (ii) proves to be ineffective: The number of possible v=1

choices remains finite whereas the number of unsuccessT"I”hen the final state is determined. It is advantageous to per-

attempts per successful one diverges. Therefore, abandonigg, s choice within two steps, first deciding which initial

(i), we “directly” determine the dwelling time at the actual ...i0) is now to be left, and then choosing the final state
state, considering the time as a continuous variable. Such ang(l)”N te. that the full set o6!) has to be calculated onl
approach was published first in the form of thefold way ¢ o7 Note, that the Tull set os,, has to be caiculated only

algorithm? for surveys and the generalization to clusters ofoNC€ after updating", or changingT. .

states see Refs. 4, 15, and 7, respectively. . pompletmg the gen.eral part of this paper, we dlscu§_5 the
Each elementary step starts with classifying the actuaimitations of our algorithm. Due to modifying the transition

statei according to whether or not it belongs &. Con-  'ates. this approach is not appropriate for a direct study of

sider firsti ¢ SO: The dwelling time is an exponentially dis- dYnamical properties. Moreover, as generally in such ap-

tributed random variable with the mean value proaches, there is no guarantee that all relevant low-energy
states are found, only for sufficiently small systems the re-

N lated probability is close to 1. Therefore, concerning the sys-
1 . tem size, there is always a bound limiting the applicability
=1 U1 2 . ; -
] / vzl Wit @ region — although this bound can be surprisingly large as
demonstrated below. For larger systems, the simulation usu-
In order to perform the random decision for the next stateally fails for one of the following reasonsi) all initial ar-

j'. the cumulated probabilities chive states can be separated “from the most important val-
leys by too high barriers,” ofii) the simulation can get
K _ stuck around some local minimumS®". This applicability
s,([i]zz1 wli,j'] (3 bound depends on the model studied, as well as on the

strength of the corresponding disorder, and on the integration
time. However, determining the latter by means of an auto-
matic accuracy control, see below, increases considerably the
efficiency, and enlarges therefore the applicability region.
, . . The advantages of the algorithm presented in the first part
Se—ali]=ésnlil<s.li] (4)  of this paper are now demonstrated studying the specific heat
. of the Coulomb glass. This semiclassical model describes a
hOIdS(WhereSO[']:O.)' Thus_, the mean value of an observ- a4 impurity band, i.e., a disordered system of interacting
ableO is calculated mE;agratlng ovep[i(t)]. . localized states with negligible quantum tunneling between
Assume nowieS". The immediate thermalization hem For related reviews see Refs. 17 and 18. Here we focus

within S permits us to integrate directly until leaving this op, 4 half-filled impurity band. It is represented by the Hamil-
subset: All equilibrium observable® can be assumed to {gpian

have the related mean value,

are calculated. A random numbér equally distributed in
{0,1}, is chosen, and that is determined for which

n,—1/2)(ng—1/2)

|)za_)zﬁ|

H=2> eana+52 ( ()
255

M
(0)"= 2, p,,'OLi}, ], (5) “ ‘

u=1
wheren,e{0,1} denote the occupation numbers of states

where localized at site§a. We assume these sites to form a regular
three-dimensional lattice of ® sites, and impose periodic
" " M " boundary conditionsS. Elementary charge, lattice spacing,
p{'=exp{—E[i{"1T} / X exp{—E[i{))/T}. (6)  and dielectric constant are all taken to be 1. The values of the
pu=1 . . . .
random potentiale, are uniformly distributed between
B/2 andB/2.
The specific heat of the Coulomb glaséT) has been
studied numerically, including arbitrary correlations, in the
literature along two different lines. On the one hand, the
M N o " Metropolis algorithm was used in Rel;s. 14, 19, and 20.
() — ) TONIM y These papers are restricted Tez2X 10" “ due to the dra-
T 1/ ,Zl Pu Vzl Wi 10, @ matically increasing effort a§— 0. On the other hand, the

The time, during which the system remains trapped within ™
SM, is an exponentially distributed random variable too. Its
mean value is given by
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FIG. 1. Dependence of the CPU timgp, needed for investi-
gating three samples of¥4sites, in dependence on the number of
statesM in the reservoiss!). 7cp,is measured in processor seconds
at an HP K200. The aspired error bound6f) were chosen to be
5% and 2%, respectively.

FIG. 2. Temperature dependence of the specific heat of the
three-dimensional Coulomb glass for three different degrees of dis-
order. 50 samples of $Gites were studied in each case. The pairs
of curves cover the 1+ region of ensemble averaging. They result
from sets of T points where neighboring ones differ by a factor
specific heat was investigated by first obtaining large sets of2. For comparison, data from a previous Metropolis simulations
|0W_energy System states and then Ca|cu|au'rtg/ means of (Ref 14) are includedcircles and double trianglﬁsas well as the
analytical statistical mechanics. The principal feasility of thisresults forL=8 from a study based on constructing large sets of
approach was demonstrated in Ref. 14. Based on a mofysStem statetRef. 21 (dashed ling
efficient numerical method to obtain low-energy states, a

corresponding detailed study of the influence of correlationg, epy diverges with decreasingl due to capturing of the

was accomplished in Ref. 21. ThE region investigated R .
could be extended down to>510 2 in Refs. 14 and 21, system c!o;e to local minima: The_task (?OUId not be per
formed within reasonablecp, for M=1, which, due to the

where this bound results from severe finite size effects. How-". " " () -
ever, due to finite size effects and high-energy cutoff, thd"1SSINg addltlopal tr|a)1n5|t|0ns withif) and negligible over-
c(T) results for fixedL covered only about a factor of 3 of head for handlings®”, corresponds to the standandfold

the T scale so that the total curve had to be assembled froy@y algorithm. Even foM =3, 7cpy is by roughly two or-
the pieces obtained for different? ders of magnitude larger than for the optin\l For large
The advantages of both these approaches are combined M, 7cpu increases witiM because of the effort for treating
the hybrid algorithm presented here. To test it, we performed’. The optimalM value as well as that region, where the
simulations including into the original dynamics only sharp lowM increase ofrcpy starts, shift to higheM as the
nearest-neighbor hops and transitions of one electron bgermitted fluctuations get smaller.
tween the sample and a reservoir at infinity. The specific heat (ii) To test how reliably the deepest states are found, and
was determined according t(T)=((H%)—(H)?)/(T?L%), to check the automatic accuracy control, we performed 50
where the accuracy was controlled by means of the followinguns considering the same sample of $@es. For this size,
procedure. We decompose the time interval into 30 equalve estimated the number of local minima of the dynamics of
parts, and check whether the dispersion of the related valughe standard Metropolis simulation to exceed?1@he T
(c), is sufficiently small and, moreover, the value measuredralues were those of Fig. 21 =10 000 was chosen; a ran-
over the full intervak'c) does not deviate too much from the dom error of 5% was aspired. First reentrance ifd oc-
mean value of thec),. An initial S’ was obtained by cured atT~3x10 2. New states, later on included into
repeated relaxation down to states which are stable with res("), were detected betweenx7.02 and 8<10 3. Below
spect to particle exchange with a reservoir at infinity, arbi-roughly 8x10 3, more than 95% of(c) originate from
trary one-particle, and compact two-particle hops inside thes!). We found the lowest 15 states of the fi@? to be the

sample. o o same for all runs, where 10 of them are local minima differ-
To ensure reliability and efficiency of our program we ing from each other by the occupation of up to 62 sites. That
performed several tests, all of them fBr=1: these 15 lowest states are very likely indeed complete was

(i) The influence of the number of statht kept in " confirmed by an independent study according to Ref. 21. The
was studied considering the ensemble average of threemarkably small percentage of, on the average, only
samples of 4 sites. We calculate@(T) for 14T values, 0.16% missing states out of the lowest 100 ones clearly dem-
starting at 0.2, and then diminishirif by the factory1/2  onstrates the power of our approach. Moreover, the maxi-
step by step down to 2:210 2 (not accessible to standard mum relative mean square deviation cfT) was found to
Metropolis simulations Two such series of runs were per- amount to 6%.
formed where the permitted fluctuations of T) were re- (iii) Figure 2 compares with previous studies. It shows the
stricted to 5 and 2 %, respectively. The results are given irensemble average for 50 samples of Hites. Very good
Fig. 1 which relates the CPU timecp, to M. For small  agreement is found with previous Metropolis d&tas well
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as with data obtained directly by considering system sfates. simulations were dramatically diminished by taking advan-
The advantages of our hybrid procedure are obvious: Aage of the large memory of modern computers. The algo-
broad lowT region not accessible to usual Metropolis simu-rithm proposed is expected to be useful also for the study of
lations could be investigated. In comparison with Ref. 21,other equilibrium properties of this model. Since the Cou-
the accuracy problems in assembling the total curve fromomb glass is not special compared to other disordered sys-
pieces for different is avoided, and, moreover, the acces-tems — in particular, it exhibits a complicated hierarchy of
sible T region is enlarged by increasing the maximummetastable states — this algorithm should be advantageous
sample size from 512 to 1000 sites. for the study of low-temperature equilibrium properties of a
Finally, the properties of the Coulomb glass themselvegygag class of disordered systems. Moreover, parts of our
are discussed. The influence of the degree of disorder is studyyr4ach to the long-standing problem of handling situations
ied in Fig. 2 by comparing results f@=1, 2, and 4. Finite  ith many local minima, should be of considerable advan-

size effects are accounted for as in Ref. 21. Figure 2 sugges}gge for completing physical methods of combinatorial opti-

three conclusions: N : . .
. . — mization, as simulated annealing. Finally, we stress that the
(1) There is a tendency toward¢T) being independent of algorithm presented is well suited for the implementation on

BasT—0. massive parallel computers
(ii) The description ot(T—0) in terms of a power law P P '

with a characteristic exponent is not possible within The This work was supported by the German Israeli Founda-

region studied. tion for Scientific Research and Development under Grant
(iii) ForT>0.03, the increase & seems to correspond to No. I-0331-256.07/93. A considerable part of the results was
a rescaling of the temperature. obtained during a stay of A.M. at the Weizmann Institute

Moreover, the present results, which have a considerabliRehovot. We are grateful to the Albert Einstein Centre for
higher accuracy than previous data, confirm the physicalheoretical Physics at the Weizmann Institute of Science for
analysis of the influence of correlations in Ref. 21. enabling this visit. A.M. thanks the colleagues at the Physics

Concluding, we have presented a hybrid algorithm bridg-Department of the Weizmann Institute, in particular A.
ing the gap between Metropolis algorithm and analyticalFinkel'stein, for their warm-hearted hospitality. Discussions
methods of statistical mechanics. It proved to be very sucwith S.L. Drechsler, S. Haas, S. Kobe, S. Mertens, M. Or-
cessful in investigating the specific heat of the Coulombtuno, M. Pollak, M. Richter, and M. Schreiber have been
glass, where the low-temperature problems of Metropolisrery useful.
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