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Photonic band structures of one- and two-dimensional periodic systems with metallic
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We present an approach that allows calculating photonic band structures of electromagnetic waves propa-
gating in periodic systems containing dispersive and highly absorptive materials characterized by a dielectric
function, which is frequency dependent and has a non-negligible imaginary part. This method, which provides
a complementary approach to that of the transfer-matrix method, is based on the use of a position-dependent
dielectric function and the plane-wave technique. The use of the complex form of the dielectric function
transforms Maxwell’s equations into a generalized nonlinear eigenvalue problem. At low filling fractions of the
dispersive and absorptive componefi#(1 %), thegeneralized eigenvalue problem is reduced to a problem of
solving sets of simultaneous nonlinear equations which correspond to the diagonal terms of the matrix equation
in the plane-wave representation, with the nondiagonal elements taken into account perturbatively. The result-
ing complex band structure yields, in addition to the dispersion curves, the attenuation of each mode as it
propagates through the system. We first consider a model system represented by a one-dim@mional
periodic array of alternating layers of vacuum, and a metal characterized by the complex frequency-dependent
dielectric function. To calculate the photonic band structure of this system we employ, in addition to the
transfer-matrix method and our perturbative plane-wave approach, a standard linearization technique which
solves the general nonlinear eigenvalue problem by the diagonalization of an equivalent, enlarged, matrix. We
then apply both our perturbative plane-wave approach and the linearization scheme to obtain the photonic band
structures of an infinite array of parallel, infinitely long metallic rods whose intersections with a perpendicular
plane form a simple square lattice. The interesting features associated with the presence of dissipation dis-
played by the photonic band structures, such as an asymmetric behavior of the absorption coefficient and the
lifetime of each electromagnetic wave for wave vectors near the Brillouin-zone boundaries, the splitting of the
lifetimes of degenerate modes, and the different dependences of the real and imaginary parts of the complex
photonic band structure on the polarization of the electromagnetic waves in 2D systems, are discussed.
[S0163-18207)07711-4

[. INTRODUCTION approacf? have been applied successfully to the calculation
of the photonic band structures of EM waves propagating in
In recent years the propagation of electromagnégiel) 2D and 3D periodic systems, with components characterized
waves in periodic dielectric structures has received much exby real, frequency-dependent, dielectric functions, and in
perimental and theoretical attention. The photonic bandystems constructed from dispersive and highly absorptive
structures of these systems exhibit intervals of frequencies imaterials characterized by a dielectric function that is
which EM waves are forbiddeen—photonic band gaps—frequency-dependent and has a non-negligible imaginary
which can open up under favorable circumstances. The exigart. Such an investigation is directly related to the experi-
tence of the photonic band gaps can lead to a variety ofental effort to create ordered dielectric materials with band
interesting phenomena of both fundamental and practical ingaps in the visible region of the optical spectrum, since in
terest, and has potential applications in many scientific anthis region some materials have frequency-dependent dielec-
technical areas. tric constants and/or are highly absorbing. In the near-
To date, theoretical calculations of the dispersion relatiorinfrared and visible regions various types of lasers and de-
for propagation of EM waves in two-dimension@D) and  tectors can be used to observe a rich variety of both linear
3D periodic media have been carried out for purely dielecand nonlinear phenomerd®
tric, periodic media, whose components are characterized by The use of the plane-wave technique for the calculation of
dielectric functions, that are real, positive, andthe photonic band structures of systems that contain compo-
frequency-independeft? Interest in the nature of the pho- nents characterized by frequency-dependent, complex dielec-
tonic band structures of periodic systems containing compatric functions presents a more challenging problem than does
nents fabricated from metallic and semiconducting materialgs use in the case of purely dielectric materials, since it
has led recently to several theoretical investigatfdnd> requires the solution of a generalized nonlinear eigenvalue
Both the plane-wave technique and the transfer-matrijproblem. This eigenvalue problem can be solved by a linear-
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ization scheme, which requires the diagonalization of amods arrayed in the square lattice by using the linearization
equivalent, enlarged matriX:*’ To incorporate the specific scheme. The results obtained by the use of transfer-matrix
nature of the frequency-dependent dielectric function an almethod within the context of 1D systems and the approaches
ternative, plane-wave approach was published recently based on the plane-wave approximation in both 1D and 2D
the present authofd,in which the generalized eigenvalue systems considered in this paper are presented in Sec. IV. In
problem is reduced to the problem of diagonalizing of a seSec. V we discuss the results obtained, present possible di-
of matrices whose size equals the number of plane wave®ctions for future research, and summarize the conclusions
kept in the expansions for the components of the electromagsf this work.
netic field in the system.

_The aim of this paper is to present an approach, developed; oNE.pIMENSIONAL SYSTEM-METALLIC SLABS IN
within the framework of '_[he plane-wave technlqu_e, _vvh|ch THE PRESENCE OF DISSIPATION
allows calculating photonic band structures of periodic sys-
tems containing components that are characterized by a com-A. Reduction to a set of simultaneous nonlinear equations

plex, frequency-dependent, dielectric function. Our approach e begin by formulating the problem of obtaining the

provides an alternative method to that based on the highlystonic band structures of one-dimensional periodic struc-
computer-intensive linearization scheme. Both methods arg,res The physical system we consider consists of alternat-
employed to explore how the photonic band structures in 1[?ng layers of vacuum and a metal characterized by the
and 2D periodic systems with metallic components are affrequency-dependent dielectric functietiw) given by Eq.
fected by the presence of dissipation. In the case of 1D Iat(l_l)_ We consides polarized(TE) waves assumed to propa-
tices the transfer-matrix method is also used to calculate thg, along ther, axis, whose electric vector is parallel to the
dispersion curves and the absorption coefficents of thg yis The intersections of the axes of the slabs with the
modes. : . X, axis form a one-dimensional lattice whose sites are given
If dissipation is introduced into the metallic componentsby the pointsx(1)=la, wherea is the lattice constant, while
of a periodic array of slab§ods through the use of a com- | %is 5" arhjtrary positive or negative integer, or zero. The

plex dielectric function of the form ratio of the thickness of the metallic layers to the period of
5 the lattice is the filling fractiorf = 2R/a, whered=2R is the
1— @p (1.1) thickness of the metal layer, and takes values in the range
w(w+iy)’ ' (0, a). Because the dielectric functiar{x| w) of this system
is a position-dependent, periodic function »f, with the
where w,, is the plasma frequency of the conduction elec-period given by the lattice constaat
trons andy=1/7, is an inverse electron relaxation time, the
problem of obtaining the photonic band structure cannot be e(x,+alw)=e(x;|w), (2.1
reduced to the solution of a single standard eigenvalue prob-
lem, but it can be transformed into a generalized nonlineait may be expanded in a one-dimensional Fourier series ac-
eigenvalue problem. The use of the standard linearizatiogording to
scheme leads to the diagonalization of high-dimensional
equivalent matrix whose eigenvalues are complex. For low

e(w)=

filling fractions of the dispersive and absorptive component E(X1|w):% €(G)e®™, 22
(f=<0.01), the generalized nonlinear eigenvalue problem can
be reduced to a solution of a set of uncoupled nonlineawhereG=2=wn/a, n=0,-1,+2, ..., and
equations, which correspond to the diagonal terms of the
matrix equation in the plane-wave representation, with the . cuf,
nondiagonal elements taken into account perturbatively. The €(G)= 1—fm G=0 (2.33
resulting complex band structure yields, in addition to the
dispersion curves, the attenuation of each mode as it propa- 2 .
gates through the system. _ wp  sSinGR) G+0
We start in Sec. Il by considering a model system repre- w(o+iy) (GR)
sented by a one-dimensional, periodic array of alternating (2.3b

layers of vacuum and _metqllic slabs characterized by th?n the case ob polarization, we seek solutions of the Max-
complex dielectric function given by E¢l.1). Both our per- well equations which have ,the forms

turbative plane-wave approach and the linearization tech-
nigue are used to calculate the complex photonic band struc-
tures. In addition to these techniques, the transfer-matrix
method is also employed to calculate the dispersion curves
and the absorption coefficients of the modes. In Sec. Ill we H(x;t)=(0,0H(x;|w))exp —iwt). (2.4b
apply our method to obtain the photonic band structures of _ i

an infinite array of parallel, infinitely long metallic rods, '€ Maxwell curl equations for the two nonzero field com-
whose intersections with a perpendicular plane form a squar%Onents are

lattice. To assess the reliability and accuracy of our method

we also carry out a numerical computation of the photonic iE(x lw)=i EH(X ) (2.59
band structure of the infinite system consisting of metallic dxq ! c s '

E(x;t)=(0,E(X;|w),0)exp( —iwt), (2.48
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L@ L 1
—H(x1|w)=|ED(xl|w)=| EG(Xllw)E(Xﬂw)- ;=—2w|. (2.11)

dxq
(2.5b i . .
It is obvious that, in terms obr/c andw, /c, Eq.(2.10 can
When we eliminateH (x;| ») from these equations, we ob- be replaced by a pair of coupled equations for the real and
tain the equation satisfied B(x,| ), which we write in the  imaginary parts of the complex variablefor each value of

form G in the form
d? w? 03— wr[3w?+ 2w, y+cA(k+G)%+fw?]=0,
— E(x1] @)+ e(X1] @) E(xq|0)=0.  (2.6) ROTRET A " 2123
dxj c

Since e(x;|w) is unchanged by translation through a lattice oy + yof — o [30i—cA(k+G)?—fw}]

constanta, we can also expanB(x;|w) in a form
pand(x,|w) — M wi—c3(k+G)?]=0.

(2.12b

If we assumeawr+# 0, then we can eliminateg by substitut-
ing w3 given by

E(xl|w)=% B(k|G)e k&, 2.7

To solve Eq.(2.6) we substitute the expansiorig.2) and
(2.7) into Eq.(2.6), and obtain the equation satisfied by the wi=3wi+ 2w, y+c*(k+ G)2+fw,2) (2.13

coefficients{B(k|G)} ,
{B(KIC)} into Eq. (2.12h, which gives
2

k+G)?B(k|G)= €(0)B(k|G Y
( )?B(K| _2'( )B(k|G) I3 I2 A[c2(k+G)2+f [23 2] 5 Sf_o'
(2.19

2
w ) o~
+— G—-G')B(k|G"), , ,
ng < JBIIGY) The latter equation can be transformed into the form

(2.8 w3+ pwz+q=0 (2.15
where the prime on the sum ové’' indicates that the term

with G’ =G is omitted. At this point we define a complex

variable 52
p=3[c?(k+G)?+fw)]— 12

by the use of the substitution,= w,+ /3, where

(2.163

w
=—. 2.9
B= g (2.9 2,3 i
q= 7——[c2(k+e)2+fw +¥+ g wf
(2.16b

Then we retain the roots of Eq®.12), which yield positive

Then use of the results fa(G) given by Eqs.(2.3) trans-
forms Eq.(2.8) into the following equation:

s .7 5 wg oy ) values for bothwg and 7 for each EM mode. Finally, the
pi+izpl=p| (k+G)?+ 7| =i =(k+G)?|B(K|G) substitution of the zero-order eigenvalues given by the roots
w¥ of Eq. (2.12 and the nondiagonal terms of E@.10
SI G-G'IR into the standard first-order perturbation formula gives the
,U«_ZE NS~ S R g ken-0, (210 P J

(|G-G'|R) corrected eigenvaluesg,
which has the form of a generalized eigenvalue problem for (0) QseQa'c
a complex matrix. For sufficiently small values of the filling HG= 1G +E uo- OO (2.17
fraction, we can treat the nondiagonal terms in 310 as G
a perturbation, and we proceed in two steps as follows: wevhere u{9=wg/c+iw, /c are the zero-order eigenvalues
first seek the zero-order eigenvalues given by the solutions gbr each value of the reciprocal-lattice vecto®, and
the equations which correspond to the diagonal terms of thg) s, are the nondiagonal elements
matrix equatior(2.10 for each value of the reciprocal-lattice
vector G used in the expansions given by Eq8.2) and © sm(|G G'|R)
(2.7). In the second step we substitute the zero-order eigen- Qe =~ Mg c2 W (2.18
values and the nondiagonal terms in Ed2.10,
—,uf(wf)/cz)sian—G’|R)/(|G—G’|R), into a standard first-
order perturbation formula to calculate corrected eigenval-
ues. The linearization technique is a standard method which
We can write the complex variablg. in the form transforms the nonlinear matrix equation into a linear form
u=wgrl/C+im, /c, wherewg represents the real part of the by construction of an equivalent matrix whose dimension is
frequency, andw, determines the lifetimer of the wave the number of plane waves used mult|pI|ed by the order of
according to the definition the polynomial eigenvalue probletf®’ We employ this

B. Construction of an equivalent matrix
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method to calculate the photonic band structures of the elec- wa b
tromagnetic waves propagating through the one-dimensional cok(a+b)=cos é(w)TCOS?
system described in the Sec. Il A. We first rewrite E2110
in the form 1 1
o e e s ‘E(VGWM)
w3l — u?P— uQ—R=0, (2.19
o o P . wa

where the elements of tidGXNG matricesP,Q, andR xsin 6(‘“)?3'“?- (2.22
are given by

- ) v Let us now consider the specific forms of the right-hand side
P(G|G")=—i E5G,G’ (2.208 of the latter equation corresponding to the dielectric func-
tions used to describe the components. In the absence of

. issipation the metalli mponen re char riz
w§5|n(|G—G’|R) dissipation the metallic components are characterized by a

2
5(G|G’)=5G o (k+G)2+fw_§ = real, frequency-dependent dielectric function that has the
’ c ¢ (|IG-G’'|R) simple free-electron metal form
(2.20b
= =1-w)w?. 2.2
R(G|G')=ig56,e,(k+e)2, (2.200 e(0)=1-wylw (2.23

andNG is the number of the plane waves used in the expanSince the dielectric function given by E(®.23 is negative
sions ofe(xy| ) andE(x;|w) given by Eqs(2.2) and(2.7),  in the frequency range<w,, its square root is pure imagi-
respectively. Equatiof2.19 represents a nonlinear problem Nary, and the right-hand side of E@.22) is real as well as
of the third order, which can be reformulated as a linearthe resulting dispersion relation, which has the form
problem in NG dimensions, where the equivalent matrix

W has the form

a b
cok(a+ b)=coshe(w)|1’2w?cos%
01 0
W(G,G')=|0 0 T (2.21) s Ie(w)ll’z——r1
’ L 2 |e(w)[**
R Q P a b
: 1299 @
The complete solution of Eq2.19 is obtained by solving xsintie(w)| ¢ e (229

for the eigenvalues oV by the diagonalization of this com-
plex, non-Hermitian matrix. We can write the eigenvalues
which are complex, in the fornu=wg/c+iw,/c, where
wg represents the real part of the frequency, anddeter-
mines the lifetimer of the wave according to the definition
given by Eq.(2.1]). Since the eigenvalues obtained by di-
agonalization yield a general solution, we have to discard the

solutions which correspond to unphysical modes, i.e., those coK(a+b)=fi(w)+ifw) (2.25
with a negative real patbg/c and with a positive imaginary '

part w, yielding a negative lifetime. This technique is an

accurate method which yields results that can be used aghere K=kg+ik, represents a complex wave vector, and
benchmarks against which the photonic band structures olf; () and f,(w) represent the real and imaginary parts of

tained by our plane-wave approach can be compared. Th@e right-hand side of Eq2.22. We can writef;(») and
linearization technique, however, requires the diagonalizaf, () explicitly in the forms

tion of a high-dimensional matrix of orderN35, which
makes the evaluation of the eigenvalues highly computer-

If dissipation is introduced into the metallic components
through the use of the dielectric function given by EfJ),
the right-hand side of the E€R.22) is also complex, and the
dispersion relation takes the form

intensive. wa wa wb
f1(w)=cog ng—|cosh nj— |cos—
c c c
C. Transfer-matrix method
. L . 1 ) wa wa
We consider the periodic structure that underlies the cal- 3 &R(w)sin ng— |cosh n,—
culations of 1D photonic band structures—an infinite, alter- ¢ ¢
nating array of slabs each of thicknesseach of which is wa wa\l b
. . . | . - el P
separated from its neighbors by vacuum layers of thickness +§& (w)Slﬂ)’( n, c cos( Ny c sm? ,

b. The dispersion relation for electromagnetic waves incident
normally on this structure has the fofn (2.263



55 PHOTONIC BAND STRUCTURES OF ONE- AND TWQ .. 7431

. wa
sinh n—
c

1 R ) wa wa
& (w)sin m? co nRT

wb We assume that the axes of the cylinders are parallel to the
COS? X3 axis, and the positions of the sites of this lattice are given
by the vectors

. wa
fo(w)= —sm(nRT

_E XH(|)=|13.1+|2a2, (31)

wherea; anda, are the two, noncolinear, primitive transla-
tion vectors of the lattice, whilé, andl, are arbitrary inte-
gers that we denote collectively byThe areaa. of a primi-
(2.26h tive unit cell of this lattice is given by

~wb
SIn—
c

wa

wa
+§'(w)sin( nR?) cosl{ N

where a.=|a; X ay|. (3.2
Ve(w)=ng+in, (220 The lattice reciprocal to the direct lattice whose points are
and defined by Eq(3.1) is defined by the translation vectors

G‘l(h)=h1b1+ hzbz, (33)

)= (0)+i¢(w)=e(w)+ (2.28

1
Je(w) whereb, andb, are the primitive translation vectors of the
reciprocal lattice, anth; andh, are arbitrary integers which
The real part of the complex wave vectércorresponds t0  \ve denote collectively byr. The dielectric function of this
the wave numbek, while the imaginary part determines the system,e(x|), is a position-dependent, periodic function

absorption coefficienix as the inverse of the attenuation of , with the periodicity of the Bravais lattice defined by Eq.
lengthl according the following definition: (3.2),

%:a=2k, . (2.29 elxtx(D]w]=e(x|w). 3.4
It can therefore be expanded into a two-dimensional Fourier

The solutions of Eqs2.22), (2.24), and(2.25 are found  series according to
by seeking the frequencies which for a given wave vector
k satisfy these equations. The resulting dispersion curves can N - iG-x
be displayed directly by plotting the right-hand side of Eq. E(X“lw)_% (G e, (3.5
(2.22 as a function of frequency when the dielectric function
is real and frequency dependent. When the dielectric funcin the particular case of cylinders characterized by the di-
tion e(w) is complex we also have to consider the Comp|exelectric function(1.1), whose cross section is a circle of ra-
nature of the wave vectdf in Eq. (2.25, and we obtain a diusR, for the Fourier coefficient%(G”) we obtain

set of equations which allow obtaining each of its compo- ,

nents. Consequently, the real part of the photonic band struc- R oy
ture can be found by seeking the frequenesewhich satisfy (G =1-f w(w+iy)’ G=0 (3.6a
for given wave numbekg the following equation:
fg(w) —-1/2 _ wf, 2J,(G|R) G20
cokr(a+b)=fi(w) m'i‘l . (2.30 w(w+iy) (G”R) ' ==

(3.6b

Equation(2.25 was solved numerically to determine a com-
plex photonic band structure, which, besides the dispersio ) . .
curvesw= w(k), also yields the absorption coefficieatof volume_occup|ed_ by th? rods, _adgi(x) |s_al Bessel function.
the corresponding mode. While we use the resulting disper- Tgedmvers;e d'g!eCtr'C.funﬁt'ga(XM“’) can alsodt_)e etx—
sion curves as the benchmark against which we compare ggnded in a two-dimensional Fourier Series according to
real part of the photonic band structure obtained by the per-

Heref =mR?/a, is the filling fraction, i.e., the fraction of the

turbative plane-wave_ methd(ﬂ’_V\_/M) approach described in ;:2 :}(G”)eiG\I'XH. (3.7
Sec. Il A, the absorption coefficients represent a complemen- G(Xu|w) G
tary characteristic to that of the mode lifetime obtained by .
the PWM approach. The Fourier coefficients(G) in the case of rods assumed
to have a circular cross section of radRsre then given by
Ill. TWO-DIMENSIONAL SYSTEM-METALLIC RODS 2
IN THE PRESENCE OF DISSIPATION K(GH)=1+f w2_w2p+i -, G||=0 (3.89
The method outlined in Sec. Il A can be readily general- Py
ized to two dimensions. Specifically, we consider a system 2
consisting of an array of infinitely long metallic cylinders of _ “p 2J1(GR) £0
circular cross section surrounded by vacuum, whose intersec- w’— w§+ iyo (GR) ' I

tions with a perpendicular plane form a simple square lattice. (3.8b
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We now apply these results to the determination of the pho

2
. . ) .Y w
tonic band structures d&- andH-polarized electromagnetic | u°+i < u®~p (k||+G|)2+fE§}
waves in the system described by this dielectric function.
Y )
A. E polarization —1 E(kH+GII) )B(K|IG))
1. Reduction to a set of simultaneous nonlinear equations 2 _
In the case ofE polarization, we seek solutions of the rz —(|GH_GH’|R) (kjIG))=0, (3.14

Maxwell equations which have the forms G|

which has the form of a generalized eigenvalue problem for
a complex matrix. To solve this matrix equation for suffi-
ciently small values of the filling fraction, we proceed ac-
H(x;t)= (Hy(x)|®),Ha(Xj| w),00exp( —iwt). (3.9  cording to the method described in Sec. Il: We first solve
separately the equations which correspond to the diagonal
The Maxwell curl equations for the three nonzero field com-terms of the matrix equatio(8.14 to obtain the zero-order
ponents are eigenvaluesﬁeou) for each value of the reciprocal-lattice vec-

tor G used in the expansions given by E(3.5) and(3.12),

E(x;t)=(0,0,E3(xj| w))exp —iwt), (3.99

H, 9H, _w ® and then substitute the nondiagonal terms of Ej14),
W—W=—'ED3=—IE€(X”|w)E3, (8108 — uf(wj/c?)231(|Gj—G{|R)/(G|—G||R) into the standard
! 2 first-order perturbation formula to calculate the corrected ei-
genvalues.
&E3 _ LW H
(9_)(1 - c 2 (3.10 2. Construction of an equivalent matrix
Now we apply the linearization scheme described in Sec.
JEs Il B for the calculation of the photonic band structures of the
X =1-Ha. (3.100  electromagnetic waves propagating through the two-

dimensional array of infinitely long dissipative metallic rods.
We start from the nonlinear eigenvalue problem given by Eq.
(3.14), obtained by transforming Maxwell's equations for
E-polarized electromagnetic waves by means of the plane-
wave expansion$3.5) and(3.12. We rewrite Eq.(3.14) in

the polynomial form

When we eliminateH, and H, from these equations, we
obtain, as the equation satisfied By,

2

2 92 ®
Es+ E(X|||w)?E3=0. (3.11

+

ozt 22
T P
. . uol = puP—uQ—-R=0, (3.19

To solve Eq.(3.11) we use the expansiof8.5), and write

Es(x)|w) in the form oo -
where the elements of tldGX NG matricesP,Q, andR

are given by
Es(xj| @)= B(k||G)e ®iten, (3.12
G

P(G||G))=—i g&GH e (3.163
wherek = (kq,k,,0) is the two-dimensional wave vector of
the wave. When these expansions are substituted into Eq.
(3.11), we obtain, as the equation satisfied by the coefficients

o , , L ©p

{B(k|IG)}, Q(G)|G)) =g, c| (kj+GP*+f 7

2 w5 231(|G—G{|R)
(k||+GH)ZB("MGH)Z%f(O)B(kMGu) e (G-GR) * 100

wzz ~
+—2>," €(G—G))B(K||G|), -
c? GH’ I [ (1| R(GH|G\D=| %56” ,GH'(k||+GH)21 (3160
(3.13

andNG is the number of plane waves used in the expansions
where the prime on the sum ov& indicates that the term of e(x|®) and E3(x||w) given by Egs.(3.5 and (3.12,
with G{=G is omitted. We now use the definition @f  respectively. The nonlinear_ eigen\(alue problem given l_ay Eq.
given by Eq.(2.9), and the result fo%(G”) given by Egs. (3.15 can be transformed into a linear Broblem iNG di-
(3.6), to transform Eq(3.13 into mensions by the construction of a matki given by
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The solution of Eq(3.14) is reduced to the diagonalization
of the complex, non-Hermitian matrW, which yields com-

o O
o

W(G)|G)= (3.17)

R

Ut 1

plex eigenvalues. We select the solutions with a positive real
component and a negative imaginary component, which cor-
respond to the physical modes that can be expressed in the

form u=wr/c+iw,/c according the definition introduced
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4,:7Y 3 2 2 wrza .Y 2
prHi o= pf (Kt Gt Z| —in o (k+ Gy
(1)2
+(1—f)c—§(k||+G|)2)A(k|G|)
—fw—‘z’Z 231(IG-G{|R)
c® 5 (G=GjlR
X (kj+G))- (kj+G))A(k|IG[) =0, (3.23

in Sec. Il B. The results obtained by this approach providenhich has the form of a generalized eigenvalue problem for
standard solutions which can be directly compared to thosa complex matrix. To solve this matrix equation, we use the

obtained by our perturbative plane wave method.

B. H polarization
1. Reduction to a set of simultaneous nonlinear equations

In the case ofH polarization, we seek solutions of the
Maxwell equations which have the forms

H(x;t)=(0,0H3(xj| w))exp( —iwt), (3.189
E(x;t) = (E1(x)| @), Ex(X)| ), 0exp —iwt).
(3.18h
The Maxwell curl equations in this case are

X, 9%, cHe (3.193

Ms i 2p,—i E 3.19

(9—)(1 IE 2—IE6(X”|w) 2, ( b

M 9p - i® E 3.19
07_x2__|€ 1——|E€(X|\|w) 1 (3.199

When we eliminateE; and E, from these equations, we
obtain the equation satisfied By;, which we write in the
form

d 1 oH;\ o 1 oHg +w2H o
X, e(X|||w)<9_X1 X, e(XH|w)5_X2 cZ T
(3.20

To solve this equation, we expaikth(X;) according to

H3(X|||w)=%: A(K)|G)e' it e, (3.21)
I

When we substitute the latter expansion together with the

expansion ofefl(x|||w) given by Eq.(3.7) into Eq. (3.20,
we obtain as the equation satisfied by the coefficient
{A(k|G))},

~ (,!)2
2, (kj+Gyp)- (ki +G[) k(G = G )A(k||G]) = 7 A(k||G)).
G’
” (3.22

Now we use the definition ofe given by Eq.(2.9 and the
Fourier coefficients{;}(G”)} given by Egs.(3.8 in Eq.
(3.22, which transform the latter into

same approach as we applied in the cas& gfolarization:

we first solve the equations which correspond to the diagonal
terms of the matrix Eq(3.23) to obtain the zero-order eigen-
values ,ug)”) for each value of the reciprocal-lattice vector

G, used in the expansions given by E¢&.7) and(3.21), and
then we use perturbation theory to obtain the corrected ei-
genvalues by taking the nondiagonal terms given by the last
term in the latter equation,— f(wﬁ/cz)(kHﬁLGH) (K
+G|)23.(IG— G| IR)/(IG|— G||R), as a perturbation.

The diagonal terms of the matrix E(.23 can be rewrit-
ten as a pair of coupled nonlinear equations in terms of the
componentsi/c andw, /c of the complex variablg. given
by Eq.(2.9) for eachGy:

wé— w§[6w|2+ 3w, y+ C2(k||+ GH)Z-I— wrz)] + a)|4+ 'yw|3
+ w|2[C2(kH+ G||)2+ wf,] + ) ’yCz(kH+ GH)Z

+(1-fwic?(k+G)?=0, (3.243

Y

3y
w|3+ w|2+w|{0.5[02(kH+G”)2+wg]—wé}—wZRZ

4

+ 2 ¢k |+ G)?=0, (3.240

We solved these coupled nonlinear equations numerically for
each vectoiG used in the expansions given by E@8.7)

and (3.21), by using the computational procedure from
MATHEMATICA ,*° and retained only the solutions of physical
interest, i.e., those for which Reg)”)(k”)]ZO and

|m[M§§‘f(kH)]so.

2. Construction of an equivalent matrix

In this section we apply the linearization technique de-

écribed in Sec. Il A 2 for calculating the photonic band

structure ofH-polarized electromagnetic waves propagating
through the two-dimensional periodic system considered in
Sec. lll. In this case Maxwell's equations for the magnetic
vector are transformed by the plane wave expans{8r8
and(3.2)) into the generalized nonlinear eigenvalue problem
given by Eq.(3.23, which can be rewritten in the polyno-
mial form

M“T— ,u3§— ,LL2§— ,u'F—LT=O, (3.2
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where the elements of théGx NG matricesR, S, T,and  gion of the optical spectrum, is,~10'°s™*, while a typical
U are given by value of the electron relaxation time ig~10 '3 s. There-
fore, we used the value of=0.0lw, in obtaining these

- , Y results. We took as a normalization conditiega/27c=1,
R(G)|G|)=—i c 50\\ G| (3268 \hich determines the value afga/2mc at which the change
in sign of eX(w) occurs whenwg= wp(1— y? w3)*2
- ) ) w; In Fig. 1(a) we plot the six lowest-frequency bands which
S(G|IG])=6g.q/| (kTG + z|, (3260 gatisty Eq. (2.2 for the filling fraction of the slabs

f=0.001. The band structure for this value of the filling
fraction is a slightly perturbed version of the dispersion re-

T(GII|GH,):i %56“ ,GH’(kH“LGll)Z' (3.269 lation for EM waves in vacuum. In Figs.(ld) and Xc) we
depict the band structures which correspond to the filling
. w2 fractions f=0.01 and 0.1, respectively. The dispersion
U(G||G])=dg, o C—E(f —1)(kj+G))? curves exhibit the existence of a band gap below the lowest-
energy band, and structural gaps between the higher energy
wg 2Jl(|GH—G”’|R) bands—see Fig.(it). The presence of damping gives rise to
+f— (kj+Gp - (kj+Gp), an additional partial band below the lowest-frequency band

¢ (I6—G{IR) o - . T
for the filling fraction f=0.1, as is shown in Fig.(). To
(3.260  analyze this effect we first compare the right-hand side of the

andNG is the number of the plane waves used in expansiondiSPersion relatior2.24 for metallic slabs characterized by
of 5*1(x|‘|w) and HS(XH|‘U) given by Eqgs.(3.7) and (3.21), the real, frequency-dependent dielectric function given by

respectively. The nonlinear eigenvalue problem given by EqEq' (2'23: _The expre_ssion on the right-hand side of E_q.
(3.25 can be transformed into a linear problem NG di- (2.24) exhibits harmonic behavior in the range of frequencies
' considered—see Fig. 2, and yields dispersion curves which

mensions by the construction of a matkixgiven by correspond to the case without damping. If dissipation is
introduced into the metallic components through the use of

O 1 00 the complex dielectric function given by EL.1), the pho-

0 07 O tonic band structure is negligibly changed over most of the
\7(GII|G|D: 1. (3.27  frequency range, except in the vicinity of the polewst 0,

0 0 0 | where the major change in the behavior of the function

- o o o f1(w) given by Eq.(2.263 occurs—see Fig. 3. As a result,

UuT SR an additional, lowest-frequency band, appears for small val-

The solution of Eq(3.25 is reduced to the diagonalization U€S Ofkd and vanishes at a finite valkei whose magnitude
depends on the value of the damping constanised in the

of the .complex, non-Hermitian matrr\x_, which yields COM-  complex dielectric functione(w) given by Eq.(1.1). The
plex eigenvalues. We se}ec? the _solutlons with a POSItive regy,istence of this mode is primarily due to the singular be-
component and a negative imaginary component, which Corsvior of the imaginary parf,(w) and the simultaneous,

respond to the physical modes that can be expressed in ﬂ%ﬁbstantial, decrease of the real pitw) in the neighbor-
form w=wg/c+iw,/c according the definition introduced hood of the pole ato=0.

in Sec. Il B. The results obtained by the linearization tech- In Fig. 4a) we plot the absorption coefficient associ-
nigue are used as the standard solution which allows direc&{ted with the six lowest-frequency bands on a logarithmic
comparison to the results obtained by our perturbative plane,s-Cale in the reduced zone scheme for a filling fraction
wave method. f=0.001 in the standard reduced zone scheme. The absorp-
tion of the modes associated with the bands decreases with
IV. RESULTS increasing wave numbds, and displays a global maximum
A. 1D systems at theI" point k=0, where the strongest absorption of the
i ) . mode associated with the lowest band occurs. We have
We first consider the results obtained by the transferong that the absorption coefficient displays a remarkable
matrix method for a structure consisting of metallic cOmpo-featyre—an asymmetric behavior near the Brillouin-zone
nents characterized by the complex dielectric funcém)  poundaries. To demonstrate this effect we used the extended-
given by Eq.(1.1), which can be written explicitly as zone scheme to display the absorption coefficienon a
logarithmic scale as a function of the wave numkdor the

— _m :_m
€(0)=er(w) Tie(w), 4D filing fractions f=0.001, 0.01, and 0.1. The asymmetry of
where the absorption coefficient is represented by its decrease for
electromagnetic waves with frequencies near the lower band
w? Yol edge at the Brillouin-zone boundary, and its significant in-
m 1 P m _ P . . . .
er(w)=1 —w2+72' €| (w)_—w(w2+y2)' (4.2 crease for electromagnetic waves with frequencies in the

neighborhood of the upper band edge at the Brillouin zone
A typical value of the plasma frequency of the conductionboundary. This effect becomes more pronounced when the
electrons in metals, which usually lies in the ultraviolet re-filling fraction of the slabs is increased, as is seen in Fig.



2.8
2.6
2.4
2.2

2.0 °

1.8
Q

E 16
= 1.4

1.2

1.0

0.8
0.6
0.4

0.2 !
0.0

3.0
2.8
2.6
2.1
2.2
2.0
1.8
o
& 16
v 1.4
° 1.2
1.0
0.8
0.6
0.4
0.2

0.0
(b)

3.0
2.8
2.6
2.4
2.2
2.0
1.8

o

1.6

N

o 1.4

3
1.2
1.0
0.8
0.6
0.4
0.2
0.0

(©

3 *

PHOTONIC BAND STRUCTURES OF ONE- AND TWQ .. 7435

£=0.001  sa=1-wp?/w(w+iy) 7=0.01wp

t :
} |

0.0 0.5 1.0 1.5 2.0 25 3.0
kd

£=0.01  ea=1-wp?/w(w+iy) 7=0.01lw,
T T

00 05 1.0 15 20 25 3.0
kd

1=0.1  ea=l-wp®/w(w+iy) y=0.01wp
T T T T T

f=0.1 ea=1-wp?/w? =0
10.0 T T T T T T T

FIG. 2. The right-hand side of the dispersion relation given by
Eq. (2.29 for a periodic system of metallic layers in which the
effect of dissipation is not taken into accourft=0.1, y=0,
0<w<2w,.

4(b), where the absorption coefficients for the three different

values of the filling fractions are shown. One can see that,

except at the Brillouin-zone boundaries, the absorption coef-
ficient exhibits a monotonic dependence on the wave num-
ber, and has its maximum value for the lowest-frequency

band atkd=0. The results shown in Fig.(d) also confirm

the expected fact that the modes become increasingly ab-
sorbed with increasing value of the filling fraction.

We believe that the asymmetry in the absorption coeffi-
cient is due to the redistribution of the electromagnetic field
at the top and the bottom of a gap. A solution near a band
edge requires the use of degenerate perturbation theory,
which yields two standing-wave solutions¥,(x)
«sin(mx/d), and W,(x)ocos@x/d) for the photon wave
function. Since the metal acts like a repulsive potential, the
lower-frequency state corresponds 40,(x), which peaks
between the metal slabs. Consequently, the overlap of the
EM field and the metal is minimized and the absorption is
small. The upper state corresponds to the wave function

£=0.1  ga=1-wp?/w(w+iy) 7=0.001wp
T T T T

10.0 . ; .

0.0 0.1 0.2 0.3 0.4

0.6 0.7 0.8 0.9 1.0

0.5
wd/2mc

FIG. 1. The photonic band structure of a 1D lattice consisting of  FIG. 3. The right-hand side of the dispersion relation given by
lossy metallic slabs in vacuum obtained by the transfer matrixeq. (2.25 for a periodic system of metallic layers in presence of

method.E polarization:(a) f=0.001, (b) f=0.01, and(c) f=0.1.

dissipation:f=0.1, y=0.00lw,, 0<w<2w,.
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%3'0 [ e, 0y 00y, o st v FIG. 5. The photonic band structure of a 1D lattice consisting of
gﬂ” I oo, s, =001 lossy metallic slabs in vacuum obtained by the perturbative plane-
00, ° 40 $000044, 06, . . . .
220 ottugo 000800y Sornrntnngny oo wave methodE polarization:(a) f=0.001 and(b) f=0.01. The
o 49|
15 | M ) £ =0001 + - number of plane waves used in these calculatioré@s=91.
o L MW”";
08 1 ] The imaginary part of the complex photonic band struc-

00 tures is represented by the lifetimes of the modes as deter-

mined from the imaginary parts of their frequencies,
which correspond to the normalized complex frequency
FIG. 4. The absorption coefficient of the modes associated witht = wr/C+iw, /c according to the definitiof2.11). In Figs.
the photonic band structure of a 1D lattice consisting of lossy me6(a) and Gb) we plot the lifetimes of the modes associated
tallic slabs in vacuum displayed in reduced zone schefae: Wwith the 12 lowest frequency bands on a logarithmic scale as
f=0.001; extended-zone schemé&) f=0.001 (OOOO), f a function of the wave numbée for a 1D lattice formed by
=0.01(0 0 ¢ ¢),andf=0.1 (000@). the metallic slabs in vacuum when the filling fraction
f=0.001 and 0.01, respectively. The lifetime of the modes
W¥,(x), which has nodes between the slabs. Therefore thassociated with the bands increases with increasing value of
overlap between the metal and the field is maximized, andéhe wave numbek, and displays a minimum at tHe point
the absorption is greater. k=0, where the strongest attenuation of the mode associated
We now turn to the results obtained by the perturbativewith the lowest band occurs. We display the lifetimes asso-
plane-wave method described in Sec. Il A for a structure ofiated with the 12 lowest bands to demonstrate the fact that
metallic layers. In Figs. @) and §b) we present the disper- the lifetimes saturate to a finite value in the limit of large
sion curves which include the five lowest-frequency bandsvave numbek. The value of the lifetime at th€ point is
for a 1D lattice formed by the metallic slabs in vacuum whenequal to the electron relaxation time given by the damping
the filling fraction of the slabs i$=0.001 and 0.01, respec- constanty used in the dielectric function given by E{..1).
tively. A total of 91 plane waves was used in obtaining theselhe lifetimes associated with the modes at and above the
results. The results presented are in good agreement with tigasma frequency are 3010’ times larger than the electron
results obtained by the transfer-matrix method. The disperrelaxation time, and are of the order of 1d and 10 °s for
sion curves exhibit the existence of a band gap below thé¢he filling fractionsf=0.001 and 0.01, respectively. A study
lowest band at thd" point, whose width increases as the of the dependence of the band structures on the damping
filling fraction is increased. They do not reveal the existenceconstanty indicates that the imaginary part is directly pro-
of an additional band below the lowest-frequency band, aportional to the value of the damping constantunlike the
found by the transfer-matrix method. real part, which does not vary significantly when the damp-

0.0 2.0 4.0 6.0 8.0 10.0

kd

12.0 14.0 16.0 18.0 20.0

(b)
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35
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R0 T X FIG. 7. The photonic band structure of a 1D lattice consisting of
(b) k lossy metallic slabs in vacuum obtained by the linearization tech-

nigue.E polarization:(a) f=0.001,(b) f=0.01, andc) f=0.1. The
FIG. 6. The lifetime of the modes associated with the dispersiorhumber of p|ane waves used in these calculatiolé@s=151.
curves shown in Fig. 5a) f=0.001.(b) f=0.01.
logarithmic scale as functions of the wave numkerThe
ing constant is changed. The convergence of the calculationgetimes shown in Fig. 8 correspond to the frequency bands
of the band structure was mon_itored by increasing the numshown in Figs. 7—7(c) for the filling fractiong =0.001,
ber of the plane waves used in expansi@®). For small .01, and 0.1, respectively, and they exhibit identical behav-
values of the filling fractionf<1%, the use of a modest jor to that obtained by our perturbative plane wave approach,
number of plane waves-100 is sufficient to produce con- iz, they display a minimum at th&€ point which corre-
verged results. sponds to the strongest attenuation for the lowest-frequency
Finally, we present the results obtained by the linearizapand. In addition, the lifetimes obtained by the linearization

tion scheme. In Figs.(d), 7(b), and 7c), we plot the bands scheme also predict the existence of the asymmetrical behav-
for the fllllng fractionsf =0.001, 0.01, and 0.1, reSpeCtively. ior near the Brillouin-zone boundaries.

We monitored the convergence of these results by using up
to 151 plane waves, which leads to the problem of diagonal-

ea=1—wp?/w(w+iy) ¥y=0.0lwp
T T T

izing a 453< 453 complex matrix. The dispersion curves ob- 8.0 ' ‘ '

tained clearly confirm the characteristic features of the pho- - 5 L« + « « « o o v v v
tonic band structures of 1D metallic systems, such as the ; . PP A, M.,
existence of the band gap below the lowest-frequency band 6.0 r . M‘*M”‘ f= 0‘001........:
and the structural band gaps for higher values of the filling & 50 L - e MWMMW“”“‘" )
fraction, and agree very well with the results calculated by § - . M,M."W': NP et -1 Sy
using the transfer matrix method and the perturbative plane & 4.0 / T - ]

wave approach based on the reduction of the generalizedd 5 | % & ¢
eigenvalue problem to the problem of solving a set of = DT
coupled nonlinear equations. In contrast to the results ob-  2:0
tained by the transfer matrix method, those displayed in Fig. o | ]
7 do not reveal the existence of the partial band below the
lowest frequency band. 0.0
The diagonalization of the complex non-Hermitian matrix
yields complex eigenvalues which correspond to the normal-

ized complex frequencyt=wg/c+iw,/c defined by Eq. FIG. 8. The absorption coefficient of the modes associated with
(2.9), and thus allow a direct comparison with those obtainedhe photonic band structures displayed in Fig. 7, plotted in the ex-
by our perturbative plane wave approach. In Fig. 8 we plotended zone scheméd=0.001 (OOQO0), f=0.01 (& ¢ ¢ O),

the lifetimes of the modes in the extended-zone scheme onandf=0.1(0 00 ®).

L L L t 1 1 . L
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NG=113 (wpa/2mc)=1 v=0.01w, NG=113 (wpa/2mc)=1 7=0.0%awp
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FIG. 9. The photonic band structure of a square lattice of lossy ~FIG. 10. The lifetime of the modes associated with the photonic
metal cylinders in vacuum obtained by the perturbative plane-wav&and structures shown in Fig. @) f=0.001.(b) f=0.01.
method.E polarization:(a) f=0.001 and(b) f=0.01. The number

of plane waves used in these calculationdl=113. authors, where a simple free-electron dielectric function

e(w) without damping was used. The calculated band

In thi th mmetrv is represented by the increase 5 ructures also predict the existence of a band gap below the
n this case tne asymmetry 1S represented by west-frequency band as a consequence of the metallic na-

the lifetime of the mode with the frequency of the lower y, o of the cylinders. The width of this gap is seen to increase

band edge at _the_ Brillouin-zone bogndary, and by the de\'/vith increasing filling fractiorf. In Figs. 1@a) and 1@b), we
crease of the lifetime of the mode with the frequency of the lot the lifetimes of the modes on a logarithmic scale as

upper band edge at the Brillouin-zone boundary. The absor Unctions of the wave vectok;, for filing fractions

tion coefficient and lifetime of a mode, as the complemen-_ 5 551 5nq 0.01, respectively. As shown in these figures,
tary quantities characterizing the propagation of wave

. . . She lifetimes of the modes as a function of the wave vector

through 1D lossy metallic systems, provide consistent ev"k” resemble the behavior of the associated real part of the

r}Shotonic band structure, and display the strongest attenuation

for the lowest band at thE point. The value of the lifetime

at this point is equal to the electron relaxation timegiven

by the damping constang used in the dielectric function
We first present the results obtained by using our perture(w). For frequenciesw>w,, the lifetimes are 19-10°

bative plane-wave approach based on the reduction of thémes larger than the electron relaxation time, and are of the

generalized eigenvalue problem to the problem of solving arder of 10'° and 10! s for the filling fractions

set of coupled nonlinear equations. In Fig&)%nd 9b), we  f=0.001 and 0.01, respectively. The 2D photonic band

plot the real part of the photonic band structuresEopo-  structures display the same behavior as observed in the 1D

larized electromagnetic waves propagating through a twoease with respect to their dependence on the damping con-

dimensional system consisting of lossy metallic rods arrayedtant y—the imaginary part is found to be directly propor-

in a simple square lattice of lattice constemt when the tional to the damping constant, unlike the real part, which

filling fraction of the rods i =0.001 and 0.01, respectively. does not vary significantly when the damping constant is

We again assume,a/2mc=1. A total of 113 plane waves changed. The convergence of the calculation of the band

was used in obtaining these results. For both filling fractionstructures was monitored by increasing the number of the

consideredf =0.001 and 0.01, we obtained a band structureplane waves used in the expansiais7) and (3.12. For

that is a slightly perturbed version of the dispersion relatiorsmall values of the filling fractionf<0.01, the use of a

for electromagnetic waves in vacuum, and which is in quanmodest number of plane waveN,G~ 100, is sufficient to

titative agreement with earlier results obtained by the presergroduce converged results.

cies in the neighborhood of the Brillouin-zone boundaries.

B. 2D systems
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FIG. 11. (a) The photonic band structure of a square lattice of FIG. 12. The same as Fig. 11, except that0.01.

lossy metal cylinders in vacuum obtained by the perturbative plane iated with th turbati h d
wave approachH polarization;f=0.001.(b) The lifetimes of the Inaccuracy associated wi € perturbative approach used,

modes associated with this band structure whose frequencies afa€ c@lculated flatbands should be regarded only as indicative
smaller thanw,, . (c) The lifetimes of the modes associated with this of the true flat band structure that exists in the frequency
band structure whose frequencies are greater éhanThe number ~ ange G<w<wy.

of plane waves used in these calculationslB=113. In Figs. 11b) and 11c), we plot the lifetimes of these
modes on a logarithmic scale as functions of the wave vector

In Fig. 11(a) we present the real part of the photonic bandk; . The lifetimes of the modes with frequencies greater than
structure for the case df polarization for a square lattice, , are essentially proportional to the wave vedtpr while
when the filling fraction of the rods i6=0.001. By solving the lifetimes of the modes with frequencies belay are
the set of nonlinear equatiort8.213 and(3.21h, we have essentially inversely proportional to the wave veckqr
found two independent solutions for each band for a giverHence the lifetimes of the modes from both the frequency
wave vectork;. The solutions represent two qualitatively regions below and abowe, are larger than those associated
different parts of the photonic band structure, namely, awith the flatbands, which yield a global minimum of the
nearly dispersionless one, which is consistent with the existlifetime of the complete photonic band structure.
ence of the flatbands in the region<@®<w, reported In Fig. 12a) we present the real part of the photonic band
recently?’ and a dispersive part of the photonic band struc-structure for the case d polarization for a square lattice,
ture which resembles the dispersion relation for electromagwhen the filling fraction of the rods i6=0.01, obtained by
netic waves in vacuum. The convergence of the calculatiosolving the set of nonlinear equations. In Figs(k2and
of the band structure was monitored by increasing the numi2(c) we plot the lifetimes of these modes on a logarithmic
ber of plane waves used in expansi@118. Since the con- scale as functions of the wave vectoy for modes with
vergence of these calculations for small values of the fillingfrequencies smaller and greater thap, respectively. The
fraction, f=<0.01, is rapid, relatively small matrices calculations whose results are presented in these figures were
NG~ 100 were required for an accurate determination of thecarried out exactly in the same way as were the calculations
dispersive part of the photonic band structure. In fact, a totalvhose results are presented in Fig. 11, and the results are
of 113 plane waves was used in obtaining these results. As gualitatively very similar to those for a lower filling fraction.
known from our earlier calculatioré;?’ the convergence of Quantitatively, the lifetimes of the modes corresponding to
the flatbands is significantly slower than the convergence othe filling fraction f =0.01 are smaller than the lifetimes of
the dispersive part of the photonic band structure, and the ugshe modes calculated fdr=0.001, which is consistent with
of a large number of plane waves together with an extrapothe expected fact that the modes become more attenuated as
lation procedure is required to obtain accurate results. Takinthe filling fraction of the rods increases.
into account that the eigenvalues converge asymptotically We now turn to the results for both polarizations obtained
with increasing number of plane waves, and the inherenby the linearization technique described in Set All2 and
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FIG. 13. The photonic band structure of a square lattice of lossy
metal cylinders in vacuum obtained by the linearization technique
E polarization:(a) f=0.001,(b) f=0.01, andc) f=0.3. The num-
ber of plane waves used in these calculationd @=197.

FIG. 14. The lifetime of the modes associated with the photonic
band structures shown in Fig. 18) f=0.001.(b) f=0.01. (c)
f=0.3.

ated with the 12 lowest bands plotted in Figs(8313c),

Il B 2. In Figs. 13a) and 13b), we plot the frequency bands which correspond to the filling fractiorfs=0.001, 0.01, and
for E-polarized electromagnetic waves propagating througl.3, respectively. The results shown in these figures agree
the system of lossy metallic rods arrayed in a simple squargualitatively with those obtained by our perturbative plane-
lattice with the filling fractionsf=0.001 and 0.01, respec- wave method. However, they reveal additional features such
tively. The dispersion curves obtained are identical withas the asymmetric behavior near the Brillouin-zone
those calculated by using our perturbative plane-wave apsoundaries—indicated in Figs. (g—14(c) by a full line—
proach based on solving a set of coupled nonlinear equdor the lowest-frequency mode, and an anomalous behavior
tions. In addition, the linearization technique allows calculat-of the lifetimes associated with the frequency bands which
ing the photonic band structures of systems with higheare degenerate along the high-symmetry directions in the
filling fractions of the rods, as is shown in Fig.(&B where  Brillouin zone. For the sake of clarity of the figures in which
the real part of the photonic band structure Ebpolarized the lifetimes in the presence of singular behavior near the
electromagnetic waves for the filling fractidr=0.3 is de-  Brillouin zone boundaries are shown, we use dotted lines to
picted. This photonic band structure displays a typical behavplot them. In fact, the lifetimes associated with the twofold-
ior of the dispersion curves for systems containing metallicdegenerate bands are split into two different branches, which
elements which, for higher values of the filling fraction, pre- correspond to symmetric and asymmetric modes, respec-
dict, besides the gap below the lowest-frequency band, #vely. The splitting of these modes is demonstrated in Figs.
structural one between the first and the second bands. Weka) and 14b), in which both types of modes associated
note that the presence of damping does not affect the dispewith the 12 lowest bands form two different regions of the
sion relation for electromagnetic waves propagating througlifetimes. The results shown in Figs. (B+—14(c) also indi-
2D metallic systems in comparison with that determined forcate that the values of the lifetimes decrease as the filling
the identical systems characterized by a lossless free electrdraction is increased. We observed that for higher values of
dielectric functior?” We used 197 plane waves in obtaining the filling fraction—see Fig. 14)—the lifetimes of the de-
these results. The convergence of the results for higher vagenerate modes display different behavior which, however,
ues of the filling fraction was monitored by using up to 529does not result in the existence of separated branches of the
plane waves. lifetimes, as is observed for lower values of the filling frac-

The lifetimes of theE-polarized modes are determined tion. We again suggest that the origin of the anomalous be-
from the imaginary part of the complex eigenvalues obtainedhavior of the lifetime near the Brillouin-zone boundaries is
by diagonalizing the non-Hermitian matrix given by Eg. the redistribution of the electromagnetic field for modes at
(3.17. In Figs. 14a)—14(c), we present the lifetimes associ- the top and the bottom of a gap as we proposed in the context
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FIG. 15. (a) The photonic band structure of a square lattice of FIG. 16. The same as Fig. 15, except that0.01.
lossy metal cylinders in vacuum obtained by the linearization tech-
nique. H polarization,f=0.001. (b) The lifetimes of the modes
associated with this band structure whose frequencies are smaller
thanw, . (c) The lifetimes of the modes associated with this band

. NG=529 (wpa/2mc)=1 ¥=0.0lwp
structure whose frequencies are greater thgn The number of

plane waves used in these calculationdlis=197. 2.2 o 7.0 =
2.0 6.5 I w<wp

of the one-dimensional system in Sec. IV A. The existence -8 [ —6.0
of the different lifetimes associated with the degenerate 7 255 ¢
modes can possibly be related to the interaction between the§ 2 | N0
modes which removes the degeneracy in the imaginary part 3 ¢ E+S T
of the complex frequency. However, further theoretical 5o.s ED“-O I
analysis is needed to provide the full physical explanation of 0.6 m— ]
this effect. 04 ¢ 3.0

In Figs. 15a), 16(a), and 17a), we demonstrate the pro- 02 ¢ 25 N
foundly different behavior of the dispersion curves for  *° v 'rk' X w0 T X M
H-polarized electromagnetic waves propagating through the (@ I (o) ki
same two-dimensional system for the filling fractions
f=0.001, 0.01, and 0.1, respectively. They confirm the ex- 0 f=0.1
istence of the flatbands below the plasma frequengy 6.5 | wsar
which have been identified as due to the overlap of 6.0 L
H-polarized excitations associated with an isolated metallic S5 L
cylinder?’ It is interesting to note that the dispersion curves {5.0 L
obtained by the linearization scheme exhibit a wider range of S5 |
the frequencies in which the flatbands occur in comparison 40 h
with those obtained by using our perturbative plan-wave ap- W35 p
proach described in Sec. Ill B 1, and they provide clear evi- ~3.0
dence of the strong interaction of the free-space dispersion 25 o s
relation with the flat modes. The lifetimes of the 2.0 Letetiali il
H-polarized modes propagating through the two-dimensional (©) kj
system with the filling fraction§=0.001, 0.01, and 0.1 are
shown in Figs. 1f) and 1%c), 16(b) and 16c), and 17b) FIG. 17. The same as Fig. 11, except that0.1. The number of

and 17c). In agreement with the lifetimes obtained by our plane waves used in these calculation8lis=529.
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perturbative plane-wave approach, they also reveal diect tonic band structures of periodic arrays of lossy metallic
versg proportionality to the wave vectdt of the lifetime  slabs(rods embedded in vacuum are not significantly differ-
associated with the modes with frequencies ab@aow)  ent from the dispersion curves for electromagnetic waves in
the plasma frequenay,,, while the minimum of the lifetime  vacuum, and agree qualitatively with the results obtained by
given by the damping constantis associated with the flat- using a simple free-electron model dielectric function in the
bands. As the most striking feature of these results, the lifeabsence of damping. The photonic band structures of EM
times obtained by the linearization scheme in contrast tquaves ofE polarization, in addition to possessing a struc-
those obtained by our perturbative plane-wave method disyra| gap between the higher-frequency bands, which appears
play substantially different dependences_ on the wave VECIGHr the values of the filling fractiori=0.25, possess an ab-
Ky in the frequency ranges along the high-symmetry direCyojyte band gap below the lowest-frequency band, whose
tlon_s in which the a§souated modgs are degenerate, apd dispersion curve does not tend to zero frequency af tte)
their singular behavior near the Brillouin-zone boundariesygint. The width of this gap increases with increasing filling
The latter effect is indicated in Figs. @3, 16(c) and 17¢)  fraction. Such a gap is not observed in the 1D structures
by the full line for the highest-frequency mode, while the consisting of dielectric slabs, and in 2D systems when the
splitting of the lifetimes associated with the degeneratgneta) cylinders are replaced by dielectric cylinders, and is a
modes along th&/ —I' andX—M directions is indicated by  ¢onsequence of the metallic nature of the components. Both
the dotted lines in Figs. 16) and 16b). The existence of the oy perturbative plane-wave approach and the linearization
different lifetimes associated Wlth the degenerate_fr_equencphethod employed for the calculation of the photonic band
modes was not observed for higher values of the filling fractryctures of EM waves o polarization propagating in a
tion for frequencies below,—see Fig. 1#)—because the system of metallic rods in the presence of dissipation pro-
photonic band structure in this frequency range is dominateg,ce results that are nearly identical to those found in the
by the presence of the flatbands. absence of damping. The dispersion curves do not possess a
band gap below the lowest-frequency band, and confirm the
existence of additional, nearly dispersionless, bands in the
frequency rangew<w,, effectively superimposed on the

In this paper we calculated the photonic band structures afispersive part of the band structures. We have found that the
electromagnetic waves propagating through periodic oneflatbands strongly interact with the free-space dispersion
and two-dimensional systems containing components characurves, and act as traps for energy entering the system
terized by the complex, frequency-dependent, dielectri¢hrough the free-space wave. These features clearly demon-
function given by Eq(1.1), which accounts for the dissipa- strate the differences between the band structures for differ-
tive behavior of real lossy metallic materials. We developecdent polarizations of the waves, and provide an explanation
an interesting approach within the framework of the planefor the well-known fact that a conducting wire system can
wave approximation, based on the reduction of a generalizedct as a polarizer which transmits EM wavestbipolariza-
eigenvalue problem to the problem of solving sets of coupledion at low frequencies, but not waves Bfpolarization.
nonlinear equations. We demonstrated that for low filling By using the transfer-matrix method and both plane-wave
fractions this perturbative plane-wave method provides dechniques, we determined from the imaginary part of the
computationally viable alternative to the computer-intensiveresulting photonic band structures the absorption coefficient
linearization method for calculating the photonic band struc-and the lifetime of the modes as complementary quantities
tures of both one- and two-dimensional periodic systemsvhich characterize the modes as they propagate through the
containing lossy metallic components. The calculated comsystem. Except in the frequency regions near the Brillouin-
plex photonic band structures yield both the dispersiorzone boundaries, both the absorption coefficient and the life-
curves and the lifetimes of the modes associated with th&me exhibit a monotonic behavior, displaying a global ex-
bands. Besides the perturbative plane wave technique, for thieemum at thd" point, yielding the smallest lifetime and the
1D system we also used the transfer-matrix method, whictargest absorption coefficient for the lowest-frequency band.
yields an explicit, analytic, dispersion relation that can beBoth the absorption coefficient and the lifetime of the modes
used to assess the accuracy and the reliability of the variantisplay an asymmetric behavior in the neighborhood of the
of the plane-wave method. The results obtained by thdéand edges. We note that although the asymmetry of the
transfer-matrix method, except for the existence of an addilifetime, which is consistent with that of the absorption co-
tional band below the lowest-frequency band, agree vergfficient, is predicted by the linearization scheme, it is, how-
well for the most part with those obtained by both our ap-ever, not found in the results of our perturbative plane-wave
proach and the linearization scheme. This discrepancy indimethod. Even if we take into account that the asymmetric
cates, that the singular behavior of the dielectric function fotbehavior is negligible for small filling fractions, the absence
a metal given by Eq(1.1) at the polew=0 and, conse- of such features for the lifetime of the modes suggests that
quently, the mutual interaction of both the real and imagi-our approximation does not give the correct picture due to
nary parts of the dispersion relation at this point is not sufthe (nea) degeneracy of the bands in the neighborhood of
ficiently accurately described within the plane-wavethe gaps. We have proposed an explanation of this effect as
approximation used in both methods, and thus does not acaused by the redistribution of the electromagnetic field in
count for the additional modes below the lowest frequencythe modes at the top and bottom of a gap. Considering that a
band. metal acts as a reflecting potential, the smaller absorption

The dispersion curves obtained by our perturbative planeand longer lifetime of modes at the bottom of the gap is due
wave approach and the linearization technique for the phato the minimized overlap of the associated photon wave

V. DISCUSSION AND CONCLUSIONS
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function with the metal. The reverse is true for modes at theBrillouin-zone boundaries and the splitting of the lifetimes
top of the band, where the overlap between the field and thassociated with the twofold-degenerate modes along high-
metal is maximized and, therefore, the absorption is largesymmetry directions in the Brillouin zone. The origin of the
and the lifetime is shorter. former effect was identified as the redistribution of the elec-
The asymmetric behavior observed for both the absorptromagnetic field in the modes at the bottom and top of a
tion coefficient and the lifetime of the modes provides angap. The existence of the different lifetimes associated with
interesting example of a more general phenomenon assodilegenerate modes can be understood in terms of the interac-
ated with the properties of the electromagnetic wave propation of the modes, which removes the degeneracy in the
gation near the Brillouin-zone edges, and it is therefore oimaginary part of the complex frequency. A detailed expla-
interest to study this effect further in the context of thenation of this effect, however, requires further theoretical
anomalous behavior of the absorption coefficient which ocinvestigation.
curs due to the fundamental change in the nature of transport Studies in progress focus on the photonic band structures
through a disordered medium, and which was suggested asoh a periodic array of slabgrodg fabricated from a lossy
probe for the existence of a photon mobility ed§é* polar semiconductor whose dielectric function has the form
The results forE-polarized EM waves obtained by our
perturbative plane-wave approach in both 1D and 2D peri-
odic systems indicate that the modes associated with the
lowest-frequency band are the most strongly attenuated, and . L . . .
that their lifetime tends to the value of the conduction elec-Where €o IS _the static dielectric constang; is the optical
tron relaxation timer, at thel” (I') point. The lifetimes of the "€duency dielectric constantyy is the frequency of the

modes as functions of the wave vecto(k|) resemble the transv_erse optical modg of infinite wavelength, gIhds a
behavior of the associated real part of the photonic ban&iampmg constant. In this case the Maxwell equations can be

structures, and display the strongest attenuation for the lowffansformed into a generalized eigenvalue problem. This

est frequency band at thé (I') point. The difference be- problem can be solved by using the linearization scheme,

tween the lifetimes of the modes of the lowest frequenc;pased on the constrL_Jction of an equivallent enlarged matrix
band and the lifetimes of the modes with frequencies and, for structures with small filling fractions, the approach

abovew, decreases as the filling fraction of the slabgl- requiring the solution of sets of nonlinear equations devel-

inder9 increases. A quite different dependence is observe&ped in this paper can also be_ us_ed._
for the attenuation of the modes as a function of the wave We also plan to study the distribution of the electromag-

vectork, for H-polarized EM waves propagating through anetic field in terms of the eigenmodes which correspond to

2D array of lossy metal rods. The attenuation of the fIatbandf‘e. tindifviduakll frc_aquenc;c/j batr;]dsﬁ By e¥aluating thliatt;:jroup Ve-
also exhibits nearly dispersionless behavior, and the corr ocity of €ach eigenmode, the Tlow of energy will be exam-

sponding lifetimes of these modes are found to be close t ed. Then_ we '”t_ef‘d to study the symmetry_of the mOdeS
the electron relaxation time,, which corresponds to the oun_d by diagonalizing a complex, non-Hermitian matrix. In
bands at the plasma frequenay,. The lifetimes of the particular, the symmetry of the photon waves which corre-
modes in the dispersive part of the photonic band structur pond to the lower and upper edges of the band gaps and

with frequencies above, are proportional to the wave vec- 028 SSSRCEEC WL (1S FCRCREEE BIRE. B
tor kH, while the lifetimes associated with the modes with P

frequencies below, are inversely proportional to the wave quire deeper physical insight into the nature of the phenom-

q P Y prop : . __ena associated with the imaginary component of the complex
vectork . Thus the lifetimes of the modes with frequencies h .

) . : otonic band structures.
from both regions are larger than those associated with thB
flatbands.

Rather more striking behavior is revealed by the results
for the lifetimes of both th&- andH-polarized modes in 2D The work of V.K. was supported in part by the Grant of
systems obtained by using the linearization technique. Thethe Czech Academy of Sciences No. 202/96/1239. The work
agree qualitatively with those obtained by using our pertur-of A.A.M. was supported in part by NSF Grant No. DMR93-
bative plane-wave approach. However, they display addi19404. This research was also supported by the University of
tional features such as an asymmetric behavior near th€alifornia, Irvine, through an allocation of computer time.

2
o7

0 —iTw’ .9

G(w):Ei"‘(Eo_Ei)w%_

ACKNOWLEDGMENTS

*Permanent Address: Institute of Radio Engineering and Electron-°P. R. Villneuve and M. Pichel. Opt. Soc. Am. /8, 1296(1991).
ics, Czech Academy of Sciences, Chaberska 57, 182 51 Pragu@S. L. McCall, P. M. Platzman, R. Dalichaouch, D. R. Smith, and
8, Czech Republic. S. Schultz, Phys. Rev. Let67, 2017(1991).

1See the papers in the special issue of J. Opt. Soc. AAXB on "R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopo-
Development and Applications of Materials Exhibiting Photonic  ulos, Appl. Phys. Lett61, 495(1992.
Band Gaps, edited by C. M. Bowden, J. P. Dowling, and H. O. 8P, R. Villneuve and M. PichePhys. Rev. B46, 4969(1992.

Everitt, pp. 279-4131993. 9P. R. Villneuve and M. PichePhys. Rev. B46, 4973(1992.
2E. Yablonovitch, Phys. Rev. Lets8, 2059 (1987. 103, B. Pendry and A. MacKinnon, Phys. Rev. Le89, 2772
3M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, Opt. ~ (1992.

Commun.50, 199 (1992). 1A, A. Maradudin and A. R. McGurn, J. Opt. Soc. Am.1B, 307

“M. Plihal and A. A. Maradudin, Phys. Rev. &4, 8565(1997). (1993.



7444 V. KUZMIAK AND A. A. MARADUDIN 55

2p. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, 2®M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, Phys.

and P. M. Platzman, J. Opt. Soc. Am.1B, 314(1993. Rev. B49, 11 080(1994.

13R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joanno-2’V. Kuzmiak, A. A. Maradudin, and F. Pincemin, Phys. Re\6®
poulos, J. Opt. Soc. Am. RO, 328 (1993. 16 835(1994).

14p. L. Bullock, C.-C. Shih, and R. S. Margulies, J. Opt. Soc. Am. 28p. A. Maradudin, V. Kuzmiak, and A. R. McGurn, iRhotonic
B 10, 399(1993. Band Gap Materialsedited by C. M. SoukouligKluwer, Dor-

15K, M. Leung and Y. Qiu, Phys. Rev. B8, 7767(1993. drecht, 1995 p. 271.

18R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos,?°V. Kuzmiak and A. A. Maradudin, iiPhotonic Band Gap Mate-
and O. L. Alerhand, Phys. Rev. 88, 8434(1993. rials (Ref. 28, p. 319.

A, A. Maradudin and A. R. McGurn, iRhotonic Band Gaps and  *°J. B. Pendry, J. Mod. Opt1, 209 (1994).
Localization edited by C. M. SoukouligPlenum, New York, 81T, Suzuki and P. K. L. Yu, J. Opt. Soc. Am. B, 583(1994.

1993, p. 247. 32, J. Ward, J. B. Pendry, and W. J. Stewart, J. Phyg, @217
83, N. Winn, R. D. Meade, and J. D. Joannopoulos, J. Mod. Opt.  (1995.
41, 257 (1994). 33M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys.
19A. A. Maradudin and A. R. McGurn, J. Mod. Optl, 275(19949. Rev. B52, 11 744(1995.
20R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D.3*K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J.
A. Smith, and K. Kash, J. Appl. Phyg5, 4753(1994. W. Haus, Jpn. J. Appl. Phy83, L1436 (1994).
2lW. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, *°K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and
A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. 68t2033 A. Yamanaka, Phys. Rev. B3, 1010(1996.
(1992. 36p. LancasterLambda-Matrices and Vibrating SysterfBerga-

22\\. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, mon, London, 1996 Chap. 4.
A. M. Rappe, and J. D. Joannopoulos, J. Opt. Soc. AMlOB  37G. Peters and J. H. Wilkinson, SIAM J. Appl. Matfi, 479

333(1993. (1970.

233, Schultz and D. R. Smith, iRhotonic Band Gaps and Local- *8Pochi Yeh,Optical Waves in Layered MediaViley, New York,
ization (Ref. 19, p. 305. 1988, p. 125.

247, R. McGurn and A. A. Maradudin, Phys. Rev. 48, 17 576 393, Wolfram, MATHEMATICA (Addison-Wesley, Reading, MA,
(1993. 1988.

25M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, *°S. John, Phys. Rev. Let68, 2486(1987.
and K. M. Ho, Phys. Rev. B8, 14 121(1993. 413, John, Phys. Toda§4(5), 32 (1991).



