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Photonic band structures of one- and two-dimensional periodic systems with metallic
components in the presence of dissipation

V. Kuzmiak* and A. A. Maradudin
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 30 October 1996!

We present an approach that allows calculating photonic band structures of electromagnetic waves propa-
gating in periodic systems containing dispersive and highly absorptive materials characterized by a dielectric
function, which is frequency dependent and has a non-negligible imaginary part. This method, which provides
a complementary approach to that of the transfer-matrix method, is based on the use of a position-dependent
dielectric function and the plane-wave technique. The use of the complex form of the dielectric function
transforms Maxwell’s equations into a generalized nonlinear eigenvalue problem. At low filling fractions of the
dispersive and absorptive component (f<1%), thegeneralized eigenvalue problem is reduced to a problem of
solving sets of simultaneous nonlinear equations which correspond to the diagonal terms of the matrix equation
in the plane-wave representation, with the nondiagonal elements taken into account perturbatively. The result-
ing complex band structure yields, in addition to the dispersion curves, the attenuation of each mode as it
propagates through the system. We first consider a model system represented by a one-dimensional~1D!
periodic array of alternating layers of vacuum, and a metal characterized by the complex frequency-dependent
dielectric function. To calculate the photonic band structure of this system we employ, in addition to the
transfer-matrix method and our perturbative plane-wave approach, a standard linearization technique which
solves the general nonlinear eigenvalue problem by the diagonalization of an equivalent, enlarged, matrix. We
then apply both our perturbative plane-wave approach and the linearization scheme to obtain the photonic band
structures of an infinite array of parallel, infinitely long metallic rods whose intersections with a perpendicular
plane form a simple square lattice. The interesting features associated with the presence of dissipation dis-
played by the photonic band structures, such as an asymmetric behavior of the absorption coefficient and the
lifetime of each electromagnetic wave for wave vectors near the Brillouin-zone boundaries, the splitting of the
lifetimes of degenerate modes, and the different dependences of the real and imaginary parts of the complex
photonic band structure on the polarization of the electromagnetic waves in 2D systems, are discussed.
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I. INTRODUCTION

In recent years the propagation of electromagnetic~EM!
waves in periodic dielectric structures has received much
perimental and theoretical attention. The photonic ba
structures of these systems exhibit intervals of frequencie
which EM waves are forbiddeen—photonic band gaps
which can open up under favorable circumstances. The e
tence of the photonic band gaps can lead to a variety
interesting phenomena of both fundamental and practica
terest, and has potential applications in many scientific
technical areas.1

To date, theoretical calculations of the dispersion relat
for propagation of EM waves in two-dimensional~2D! and
3D periodic media have been carried out for purely diel
tric, periodic media, whose components are characterize
dielectric functions, that are real, positive, an
frequency-independent.2–23 Interest in the nature of the pho
tonic band structures of periodic systems containing com
nents fabricated from metallic and semiconducting mater
has led recently to several theoretical investigations.24–33

Both the plane-wave technique and the transfer-ma
550163-1829/97/55~12!/7427~18!/$10.00
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approach10 have been applied successfully to the calculat
of the photonic band structures of EM waves propagating
2D and 3D periodic systems, with components characteri
by real, frequency-dependent, dielectric functions, and
systems constructed from dispersive and highly absorp
materials characterized by a dielectric function that
frequency-dependent and has a non-negligible imagin
part. Such an investigation is directly related to the expe
mental effort to create ordered dielectric materials with ba
gaps in the visible region of the optical spectrum, since
this region some materials have frequency-dependent die
tric constants and/or are highly absorbing. In the ne
infrared and visible regions various types of lasers and
tectors can be used to observe a rich variety of both lin
and nonlinear phenomena.34,35

The use of the plane-wave technique for the calculation
the photonic band structures of systems that contain com
nents characterized by frequency-dependent, complex die
tric functions presents a more challenging problem than d
its use in the case of purely dielectric materials, since
requires the solution of a generalized nonlinear eigenva
problem. This eigenvalue problem can be solved by a line
7427 © 1997 The American Physical Society
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7428 55V. KUZMIAK AND A. A. MARADUDIN
ization scheme, which requires the diagonalization of
equivalent, enlarged matrix.36,37 To incorporate the specific
nature of the frequency-dependent dielectric function an
ternative, plane-wave approach was published recently
the present authors,27 in which the generalized eigenvalu
problem is reduced to the problem of diagonalizing of a
of matrices whose size equals the number of plane wa
kept in the expansions for the components of the electrom
netic field in the system.

The aim of this paper is to present an approach, develo
within the framework of the plane-wave technique, whi
allows calculating photonic band structures of periodic s
tems containing components that are characterized by a c
plex, frequency-dependent, dielectric function. Our appro
provides an alternative method to that based on the hig
computer-intensive linearization scheme. Both methods
employed to explore how the photonic band structures in
and 2D periodic systems with metallic components are
fected by the presence of dissipation. In the case of 1D
tices the transfer-matrix method is also used to calculate
dispersion curves and the absorption coefficents of
modes.

If dissipation is introduced into the metallic componen
of a periodic array of slabs~rods! through the use of a com
plex dielectric function of the form

e~v!512
vp
2

v~v1 ig!
, ~1.1!

wherevp is the plasma frequency of the conduction ele
trons andg51/te is an inverse electron relaxation time, th
problem of obtaining the photonic band structure cannot
reduced to the solution of a single standard eigenvalue p
lem, but it can be transformed into a generalized nonlin
eigenvalue problem. The use of the standard lineariza
scheme leads to the diagonalization of high-dimensio
equivalent matrix whose eigenvalues are complex. For
filling fractions of the dispersive and absorptive compon
( f<0.01), the generalized nonlinear eigenvalue problem
be reduced to a solution of a set of uncoupled nonlin
equations, which correspond to the diagonal terms of
matrix equation in the plane-wave representation, with
nondiagonal elements taken into account perturbatively.
resulting complex band structure yields, in addition to t
dispersion curves, the attenuation of each mode as it pr
gates through the system.

We start in Sec. II by considering a model system rep
sented by a one-dimensional, periodic array of alterna
layers of vacuum and metallic slabs characterized by
complex dielectric function given by Eq.~1.1!. Both our per-
turbative plane-wave approach and the linearization te
nique are used to calculate the complex photonic band st
tures. In addition to these techniques, the transfer-ma
method is also employed to calculate the dispersion cu
and the absorption coefficients of the modes. In Sec. III
apply our method to obtain the photonic band structures
an infinite array of parallel, infinitely long metallic rods
whose intersections with a perpendicular plane form a squ
lattice. To assess the reliability and accuracy of our met
we also carry out a numerical computation of the photo
band structure of the infinite system consisting of meta
n
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rods arrayed in the square lattice by using the lineariza
scheme. The results obtained by the use of transfer-ma
method within the context of 1D systems and the approac
based on the plane-wave approximation in both 1D and
systems considered in this paper are presented in Sec. IV
Sec. V we discuss the results obtained, present possible
rections for future research, and summarize the conclus
of this work.

II. ONE-DIMENSIONAL SYSTEM-METALLIC SLABS IN
THE PRESENCE OF DISSIPATION

A. Reduction to a set of simultaneous nonlinear equations

We begin by formulating the problem of obtaining th
photonic band structures of one-dimensional periodic str
tures. The physical system we consider consists of alter
ing layers of vacuum and a metal characterized by
frequency-dependent dielectric functione(v) given by Eq.
~1.1!. We considers polarized~TE! waves assumed to propa
gate along thex1 axis, whose electric vector is parallel to th
x2 axis. The intersections of the axes of the slabs with
x1 axis form a one-dimensional lattice whose sites are gi
by the pointsx( l )5 la, wherea is the lattice constant, while
l is an arbitrary positive or negative integer, or zero. T
ratio of the thickness of the metallic layers to the period
the lattice is the filling fractionf52R/a, whered52R is the
thickness of the metal layer, and takes values in the ra
~0, a). Because the dielectric functione(xuv) of this system
is a position-dependent, periodic function ofx1, with the
period given by the lattice constanta,

e~x11auv!5e~x1uv!, ~2.1!

it may be expanded in a one-dimensional Fourier series
cording to

e~x1uv!5(
G

ê~G!eiGx1, ~2.2!

whereG52pn/a, n50,61,62, . . . , and

ê~G!512 f
vp
2

v~v1 ig!
G50 ~2.3a!

52 f
vp
2

v~v1 ig!

sin~GR!

~GR!
GÞ0.

~2.3b!

In the case ofs polarization, we seek solutions of the Max
well equations which have the forms

E~x;t !5„0,E~x1uv!,0…exp~2 ivt !, ~2.4a!

H~x;t !5„0,0,H~x1uv!…exp~2 ivt !. ~2.4b!

The Maxwell curl equations for the two nonzero field com
ponents are

d

dx1
E~x1uv!5 i

v

c
H~x1uv!, ~2.5a!
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d

dx1
H~x1uv!5 i

v

c
D~x1uv!5 i

v

c
e~x1uv!E~x1uv!.

~2.5b!

When we eliminateH(x1uv) from these equations, we ob
tain the equation satisfied byE(x1uv), which we write in the
form

d2

dx1
2E~x1uv!1e~x1uv!

v2

c2
E~x1uv!50. ~2.6!

Sincee(x1uv) is unchanged by translation through a latti
constanta, we can also expandE(x1uv) in a form

E~x1uv!5(
G

B~kuG!ei ~k1G!x1. ~2.7!

To solve Eq.~2.6! we substitute the expansions~2.2! and
~2.7! into Eq. ~2.6!, and obtain the equation satisfied by t
coefficients$B(kuG)% ,

~k1G!2B~kuG!5
v2

c2
ê~0!B~kuG!

1
v2

c2(G8

8 ê~G2G8!B~kuG8!,

~2.8!

where the prime on the sum overG8 indicates that the term
with G85G is omitted. At this point we define a comple
variable

m5
v

c
. ~2.9!

Then use of the results forê(G) given by Eqs.~2.3! trans-
forms Eq.~2.8! into the following equation:

S m31 i
g

c
m22mF ~k1G!21 f

vp
2

c2 G2 i
g

c
~k1G!2DB~kuG!

2m
vp
2

c2(G8

8 f
sin~ uG2G8uR!

~ uG2G8uR!
B~kuG8!50, ~2.10!

which has the form of a generalized eigenvalue problem
a complex matrix. For sufficiently small values of the fillin
fraction, we can treat the nondiagonal terms in Eq.~2.10! as
a perturbation, and we proceed in two steps as follows:
first seek the zero-order eigenvalues given by the solution
the equations which correspond to the diagonal terms of
matrix equation~2.10! for each value of the reciprocal-lattic
vector G used in the expansions given by Eqs.~2.2! and
~2.7!. In the second step we substitute the zero-order eig
values and the nondiagonal terms in Eq.~2.10!,
2m f (vp

2/c2)sin(uG2G8uR)/(uG2G8uR), into a standard first-
order perturbation formula to calculate corrected eigenv
ues.

We can write the complex variablem in the form
m5vR /c1 iv I /c, wherevR represents the real part of th
frequency, andv I determines the lifetimet of the wave
according to the definition
r

e
of
e

n-

l-

1

t
522v I . ~2.11!

It is obvious that, in terms ofvR /c andv I /c, Eq. ~2.10! can
be replaced by a pair of coupled equations for the real
imaginary parts of the complex variablem for each value of
G in the form

vR
32vR@3v I

212v Ig1c2~k1G!21 fvp
2#50,

~2.12a!

v I
31gv I

22v I@3vR
22c2~k1G!22 fvp

2#

2g@vR
22c2~k1G!2#50.

~2.12b!
If we assumevRÞ0, then we can eliminatevR by substitut-
ing vR

2 given by

vR
253v I

212v Ig1c2~k1G!21 fvp
2 ~2.13!

into Eq. ~2.12b!, which gives

v I
31v I

2g1v I
1
4 @c2~k1G!21 fvp

21g2#1
g

8
vp
2 f50.

~2.14!

The latter equation can be transformed into the form

vZ
31pvZ1q50 ~2.15!

by the use of the substitutionvZ5v I1g/3, where

p5 1
4 @c2~k1G!21 fvp

2#2
g2

12
, ~2.16a!

q5
2g3

27
2

g

12
@c2~k1G!21 fvp

21g2#1
g

8
vp
2 f .

~2.16b!

Then we retain the roots of Eqs.~2.12!, which yield positive
values for bothvR and t for each EM mode. Finally, the
substitution of the zero-order eigenvalues given by the ro
mG
(0) of Eq. ~2.12! and the nondiagonal terms of Eq.~2.10!

into the standard first-order perturbation formula gives
corrected eigenvaluesmG ,

mG5mG
~0!1(

G8

QGG8QG8G

mG
~0!2mG8

~0! , ~2.17!

where mG
(0)5vR /c1 iv I /c are the zero-order eigenvalue

for each value of the reciprocal-lattice vectorsG, and
QGG8 are the nondiagonal elements

QGG852mG
~0! f

vp
2

c2
sin~ uG2G8uR!

~ uG2G8uR!
. ~2.18!

B. Construction of an equivalent matrix

The linearization technique is a standard method wh
transforms the nonlinear matrix equation into a linear fo
by construction of an equivalent matrix whose dimension
the number of plane waves used multiplied by the order
the polynomial eigenvalue problem.36,37 We employ this
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method to calculate the photonic band structures of the e
tromagnetic waves propagating through the one-dimensi
system described in the Sec. II A. We first rewrite Eq.~2.10!
in the form

m3 IJ2m2PJ2mQJ2RJ50, ~2.19!

where the elements of theNG3NG matricesPJ ,QJ , andRJ

are given by

PJ ~GuG8!52 i
g

c
dG,G8 ~2.20a!

QJ ~GuG8!5dG,G8F ~k1G!21 f
vp
2

c2 G1 f
vp
2

c2
sin~ uG2G8uR!

~ uG2G8uR!
~2.20b!

RJ~GuG8!5 i
g

c
dG,G8~k1G!2, ~2.20c!

andNG is the number of the plane waves used in the exp
sions ofe(x1uv) andE(x1uv) given by Eqs.~2.2! and~2.7!,
respectively. Equation~2.19! represents a nonlinear proble
of the third order, which can be reformulated as a line
problem in 3NG dimensions, where the equivalent matr

WJ has the form

WJ ~G,G8!5F 0 IJ 0

0 0 IJ

RJ QJ PJ
G . ~2.21!

The complete solution of Eq.~2.19! is obtained by solving

for the eigenvalues ofWJ by the diagonalization of this com
plex, non-Hermitian matrix. We can write the eigenvalu
which are complex, in the formm5vR /c1 iv I /c, where
vR represents the real part of the frequency, andv I deter-
mines the lifetimet of the wave according to the definitio
given by Eq.~2.11!. Since the eigenvalues obtained by d
agonalization yield a general solution, we have to discard
solutions which correspond to unphysical modes, i.e., th
with a negative real partvR /c and with a positive imaginary
part v I yielding a negative lifetime. This technique is a
accurate method which yields results that can be used
benchmarks against which the photonic band structures
tained by our plane-wave approach can be compared.
linearization technique, however, requires the diagonal
tion of a high-dimensional matrix of order 3NG, which
makes the evaluation of the eigenvalues highly compu
intensive.

C. Transfer-matrix method

We consider the periodic structure that underlies the
culations of 1D photonic band structures—an infinite, alt
nating array of slabs each of thicknessa, each of which is
separated from its neighbors by vacuum layers of thickn
b. The dispersion relation for electromagnetic waves incid
normally on this structure has the form38
c-
al

-

r

,

e
e

as
b-
he
-

r-

l-
-

ss
t

cosk~a1b!5cosAe~v!
va

c
cos

vb

c

2
1

2 S Ae~v!1
1

Ae~v!
D

3sinAe~v!
va

c
sin

vb

c
. ~2.22!

Let us now consider the specific forms of the right-hand s
of the latter equation corresponding to the dielectric fun
tions used to describe the components. In the absenc
dissipation the metallic components are characterized b
real, frequency-dependent dielectric function that has
simple free-electron metal form

e~v!512vp
2/v2. ~2.23!

Since the dielectric function given by Eq.~2.23! is negative
in the frequency rangev,vp , its square root is pure imagi
nary, and the right-hand side of Eq.~2.22! is real as well as
the resulting dispersion relation, which has the form

cosk~a1b!5coshue~v!u1/2
va

c
cos

vb

c

1
1

2 S ue~v!u1/22
1

ue~v!u1/2D
3sinhue~v!u1/2

va

c
sin

vb

c
. ~2.24!

If dissipation is introduced into the metallic componen
through the use of the dielectric function given by Eq.~1.1!,
the right-hand side of the Eq.~2.22! is also complex, and the
dispersion relation takes the form

cosK~a1b!5 f 1~v!1 i f 2~v!, ~2.25!

whereK5kR1 ikI represents a complex wave vector, a
f 1(v) and f 2(v) represent the real and imaginary parts
the right-hand side of Eq.~2.22!. We can writef 1(v) and
f 2(v) explicitly in the forms

f 1~v!5cosS nRva

c D coshS nIvac D cosvbc
2
1

2 FjR~v!sinS nRva

c D coshS nI vac D
1j I~v!sinhS nI vac D cosS nRva

c D sinvbc G ,
~2.26a!
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f 2~v!52sinS nRva

c D sinhS nIvac D cosvbc
2
1

2 FjR~v!sinhS nI vac D cosS nRva

c D
1j I~v!sinS nRva

c D coshS nI vac D sinvbc G ,
~2.26b!

where

Ae~v!5nR1 inI ~2.27!

and

j~v!5jR~v!1 i j I~v![Ae~v!1
1

Ae~v!
. ~2.28!

The real part of the complex wave vectorK corresponds to
the wave numberk, while the imaginary part determines th
absorption coefficienta as the inverse of the attenuatio
length l according the following definition:

1

l
5a52kI . ~2.29!

The solutions of Eqs.~2.22!, ~2.24!, and~2.25! are found
by seeking the frequenciesv which for a given wave vecto
k satisfy these equations. The resulting dispersion curves
be displayed directly by plotting the right-hand side of E
~2.22! as a function of frequency when the dielectric functi
is real and frequency dependent. When the dielectric fu
tion e(v) is complex we also have to consider the comp
nature of the wave vectorK in Eq. ~2.25!, and we obtain a
set of equations which allow obtaining each of its comp
nents. Consequently, the real part of the photonic band st
ture can be found by seeking the frequenciesv which satisfy
for given wave numberkR the following equation:

coskR~a1b!5 f 1~v!F f 2
2~v!

sin2kR~a1b!
11G21/2

. ~2.30!

Equation~2.25! was solved numerically to determine a com
plex photonic band structure, which, besides the disper
curvesv5v(k), also yields the absorption coefficienta of
the corresponding mode. While we use the resulting disp
sion curves as the benchmark against which we compare
real part of the photonic band structure obtained by the p
turbative plane-wave method~PWM! approach described in
Sec. II A, the absorption coefficients represent a complem
tary characteristic to that of the mode lifetime obtained
the PWM approach.

III. TWO-DIMENSIONAL SYSTEM-METALLIC RODS
IN THE PRESENCE OF DISSIPATION

The method outlined in Sec. II A can be readily gener
ized to two dimensions. Specifically, we consider a syst
consisting of an array of infinitely long metallic cylinders
circular cross section surrounded by vacuum, whose inter
tions with a perpendicular plane form a simple square latt
an
.

c-
x

-
c-

n

r-
he
r-

n-
y

-

c-
e.

We assume that the axes of the cylinders are parallel to
x3 axis, and the positions of the sites of this lattice are giv
by the vectors

xi~ l !5 l 1a11 l 2a2 , ~3.1!

wherea1 anda2 are the two, noncolinear, primitive transla
tion vectors of the lattice, whilel 1 and l 2 are arbitrary inte-
gers that we denote collectively byl . The areaac of a primi-
tive unit cell of this lattice is given by

ac5ua13a2u. ~3.2!

The lattice reciprocal to the direct lattice whose points
defined by Eq.~3.1! is defined by the translation vectors

Gi~h!5h1b11h2b2 , ~3.3!

whereb1 andb2 are the primitive translation vectors of th
reciprocal lattice, andh1 andh2 are arbitrary integers which
we denote collectively byh. The dielectric function of this
system,e(xiuv), is a position-dependent, periodic functio
of xi with the periodicity of the Bravais lattice defined by E
~3.1!,

e@xi1xi~ l !uv#5e~xiuv!. ~3.4!

It can therefore be expanded into a two-dimensional Fou
series according to

e~xiuv!5(
Gi

ê~Gi!e
iGi•xi. ~3.5!

In the particular case of cylinders characterized by the
electric function~1.1!, whose cross section is a circle of ra
diusR, for the Fourier coefficientsê(Gi) we obtain

ê~Gi!512 f
vp
2

v~v1 ig!
, Gi50 ~3.6a!

52 f
vp
2

v~v1 ig!

2J1~GiR!

~GiR!
, GiÞ0.

~3.6b!

Here f5pR2/ac is the filling fraction, i.e., the fraction of the
volume occupied by the rods, andJ1(x) is a Bessel function.

The inverse dielectric functione(xiuv)21 can also be ex-
panded in a two-dimensional Fourier series according to

1

e~xiuv!
5(

Gi

k̂~Gi!e
iGi•xi. ~3.7!

The Fourier coefficientsk̂(Gi) in the case of rods assume
to have a circular cross section of radiusR are then given by

k̂~Gi!511 f
vp
2

v22vp
21 igv

, Gi50 ~3.8a!

5
vp
2

v22vp
21 igv

f
2J1~GiR!

~GiR!
, GiÞ0.

~3.8b!
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We now apply these results to the determination of the p
tonic band structures ofE- andH-polarized electromagneti
waves in the system described by this dielectric function

A. E polarization

1. Reduction to a set of simultaneous nonlinear equations

In the case ofE polarization, we seek solutions of th
Maxwell equations which have the forms

E~x;t !5„0,0,E3~xiuv!…exp~2 ivt !, ~3.9a!

H~x;t !5„H1~xiuv!,H2~xiuv!,0…exp~2 ivt !. ~3.9b!

The Maxwell curl equations for the three nonzero field co
ponents are

]H2

]x1
2

]H1

]x2
52 i

v

c
D352 i

v

c
e~xiuv!E3 , ~3.10a!

]E3

]x1
52 i

v

c
H2 , ~3.10b!

]E3

]x2
5 i

v

c
H1 . ~3.10c!

When we eliminateH1 and H2 from these equations, w
obtain, as the equation satisfied byE3,

S ]2

]x1
2 1

]2

]x2
2DE31e~xiuv!

v2

c2
E350. ~3.11!

To solve Eq.~3.11! we use the expansion~3.5!, and write
E3(xiuv) in the form

E3~xiuv!5(
Gi

B~kiuGi!e
i ~ki1Gi !•xi, ~3.12!

whereki5(k1 ,k2,0) is the two-dimensional wave vector o
the wave. When these expansions are substituted into
~3.11!, we obtain, as the equation satisfied by the coefficie
$B(kiuGi)%,

~ki1Gi!
2B~kiuGi!5

v2

c2
ê~0!B~kiuGi!

1
v2

c2(
Gi8

8 ê~Gi2Gi8!B~kiuGi8!,

~3.13!

where the prime on the sum overGi8 indicates that the term
with Gi85Gi is omitted. We now use the definition ofm

given by Eq.~2.9!, and the result forê(Gi) given by Eqs.
~3.6!, to transform Eq.~3.13! into
-

-

q.
ts

S m31 i
g

c
m22mF ~ki1Gi!

21 f
vp
2

c2 G
2 i

g

c
~ki1Gi!

2)B~kiuGi!

2m
vp
2

c2(
Gi8

f
2J1~ uGi2Gi8uR!

~ uGi2Gi8uR!
B~kiuGi8!50, ~3.14!

which has the form of a generalized eigenvalue problem
a complex matrix. To solve this matrix equation for suf
ciently small values of the filling fraction, we proceed a
cording to the method described in Sec. II: We first so
separately the equations which correspond to the diag
terms of the matrix equation~3.14! to obtain the zero-orde
eigenvaluesmGi

(0) for each value of the reciprocal-lattice ve

torGi used in the expansions given by Eqs.~3.5! and~3.12!,
and then substitute the nondiagonal terms of Eq.~3.14!,
2m f (vp

2/c2)2J1(uGi2Gi8uR)/(Gi2Gi8uR) into the standard
first-order perturbation formula to calculate the corrected
genvalues.

2. Construction of an equivalent matrix

Now we apply the linearization scheme described in S
II B for the calculation of the photonic band structures of t
electromagnetic waves propagating through the tw
dimensional array of infinitely long dissipative metallic rod
We start from the nonlinear eigenvalue problem given by E
~3.14!, obtained by transforming Maxwell’s equations fo
E-polarized electromagnetic waves by means of the pla
wave expansions~3.5! and ~3.12!. We rewrite Eq.~3.14! in
the polynomial form

m3 IJ2m2PJ2mQJ2RJ50, ~3.15!

where the elements of theNG3NG matricesPJ ,QJ , andRJ

are given by

PJ ~GiuGi8!52 i
g

c
dGi ,Gi8

, ~3.16a!

QJ ~GiuGi8!5dGi ,Gi8F ~ki1Gi!
21 f

vp
2

c2 G
1 f

vp
2

c2
2J1~ uGi2Gi8uR!

~ uGi2Gi8uR!
, ~3.16b!

RJ~GiuGi8!5 i
g

c
dGi ,Gi8

~ki1Gi!
2, ~3.16c!

andNG is the number of plane waves used in the expansi
of e(xiuv) and E3(xiuv) given by Eqs.~3.5! and ~3.12!,
respectively. The nonlinear eigenvalue problem given by
~3.15! can be transformed into a linear problem in 3NG di-

mensions by the construction of a matrixWJ given by
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WJ ~GiuGi8!5F 0 IJ 0

0 0 IJ

RJ QJ PJ
G . ~3.17!

The solution of Eq.~3.14! is reduced to the diagonalizatio

of the complex, non-Hermitian matrixWJ , which yields com-
plex eigenvalues. We select the solutions with a positive
component and a negative imaginary component, which
respond to the physical modes that can be expressed in
form m5vR /c1 iv I /c according the definition introduce
in Sec. II B. The results obtained by this approach prov
standard solutions which can be directly compared to th
obtained by our perturbative plane wave method.

B. H polarization

1. Reduction to a set of simultaneous nonlinear equations

In the case ofH polarization, we seek solutions of th
Maxwell equations which have the forms

H~x;t !5„0,0,H3~xiuv!…exp~2 ivt !, ~3.18a!

E~x;t !5„E1~xiuv!,E2~xiuv!,0…exp~2 ivt !.
~3.18b!

The Maxwell curl equations in this case are

]E2

]x1
2

]E1

]x2
5 i

v

c
H3 , ~3.19a!

]H3

]x1
5 i

v

c
D25 i

v

c
e~xiuv!E2 , ~3.19b!

]H3

]x2
52 i

v

c
D152 i

v

c
e~xiuv!E1 . ~3.19c!

When we eliminateE1 and E2 from these equations, w
obtain the equation satisfied byH3, which we write in the
form

]

]x1
S 1

e~xiuv!

]H3

]x1
D1

]

]x2
S 1

e~xiuv!

]H3

]x2
D1

v2

c2
H350.

~3.20!

To solve this equation, we expandH3(xi) according to

H3~xiuv!5(
Gi

A~kiuGi!e
i ~ki1Gi !•xi. ~3.21!

When we substitute the latter expansion together with
expansion ofe21(xiuv) given by Eq.~3.7! into Eq. ~3.20!,
we obtain as the equation satisfied by the coefficie
$A(kiuGi)%,

(
Gi8

~ki1Gi!•~ki1Gi8!k̂~Gi2Gi8!A~kiuGi8!5
v2

c2
A~kiuGi!.

~3.22!

Now we use the definition ofm given by Eq.~2.9! and the
Fourier coefficients$k̂(Gi)% given by Eqs. ~3.8! in Eq.
~3.22!, which transform the latter into
al
r-
the

e
e

e

ts

S m41 i
g

c
m32m2F ~ki1Gi!

21
vp
2

c2 G2 im
g

c
~ki1Gi!

2

1~12 f !
vp
2

c2
~ki1Gi!

2DA~kiuGi!

2 f
vp
2

c2(
Gi8

2J1~ uGi2Gi8uR!

~ uGi2Gi8uR!

3~ki1Gi!•~ki1Gi8!A~kiuGi8!50, ~3.23!

which has the form of a generalized eigenvalue problem
a complex matrix. To solve this matrix equation, we use
same approach as we applied in the case ofE polarization:
we first solve the equations which correspond to the diago
terms of the matrix Eq.~3.23! to obtain the zero-order eigen
valuesmGi

(0) for each value of the reciprocal-lattice vect

Gi used in the expansions given by Eqs.~3.7! and~3.21!, and
then we use perturbation theory to obtain the corrected
genvalues by taking the nondiagonal terms given by the
term in the latter equation,2 f (vp

2/c2)(ki1Gi)•(ki
1Gi8)2J1(uGi2Gi8uR)/(uGi2Gi8uR), as a perturbation.

The diagonal terms of the matrix Eq.~3.23! can be rewrit-
ten as a pair of coupled nonlinear equations in terms of
componentsvR /c andv I /c of the complex variablem given
by Eq. ~2.9! for eachGi :

vR
42vR

2@6v I
213v Ig1c2~ki1Gi!

21vp
2#1v I

41gv I
3

1v I
2@c2~ki1Gi!

21vp
2#1v Igc

2~ki1Gi!
2

1~12 f !vp
2c2~ki1Gi!

250, ~3.24a!

v I
31

3g

4
v I
21v I$0.5@c

2~ki1Gi!
21vp

2#2vR
2%2vR

2 g

4

1
g

4
c2~ki1Gi!

250. ~3.24b!

We solved these coupled nonlinear equations numerically
each vectorGi used in the expansions given by Eqs.~3.7!
and ~3.21!, by using the computational procedure fro
MATHEMATICA ,39 and retained only the solutions of physic
interest, i.e., those for which Re@mGi

(0)(ki)#>0 and

Im@mGi

(0)(ki)#<0.

2. Construction of an equivalent matrix

In this section we apply the linearization technique d
scribed in Sec. III A 2 for calculating the photonic band
structure ofH-polarized electromagnetic waves propagati
through the two-dimensional periodic system considered
Sec. III. In this case Maxwell’s equations for the magne
vector are transformed by the plane wave expansions~3.7!
and~3.21! into the generalized nonlinear eigenvalue proble
given by Eq.~3.23!, which can be rewritten in the polyno
mial form

m4 IJ2m3RJ2m2SJ2mTJ2UJ50, ~3.25!
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where the elements of theNG3NG matricesRJ , SJ, TJ, and

UJ are given by

RJ~GiuGi8!52 i
g

c
dGi ,Gi8

, ~3.26a!

SJ~GiuGi8!5dGi ,Gi8F ~ki1Gi!
21

vp
2

c2 G , ~3.26b!

TJ~GiuGi8!5 i
g

c
dGi ,Gi8

~ki1Gi!
2, ~3.26c!

UJ ~GiuGi8!5dGi ,Gi8

vp
2

c2
~ f21!~ki1Gi!

2

1 f
vp
2

c2
2J1~ uGi2Gi8uR!

~ uGi2Gi8uR!
~ki1Gi!•~ki1Gi8!,

~3.26d!

andNG is the number of the plane waves used in expansi
of e21(xiuv) andH3(xiuv) given by Eqs.~3.7! and ~3.21!,
respectively. The nonlinear eigenvalue problem given by
~3.25! can be transformed into a linear problem in 4NG di-

mensions by the construction of a matrixVJ given by

VJ~GiuGi8!5F 0 IJ 0 0

0 0 IJ 0

0 0 0 IJ

UJ TJ SJ RJ

G . ~3.27!

The solution of Eq.~3.25! is reduced to the diagonalizatio

of the complex, non-Hermitian matrixVJ , which yields com-
plex eigenvalues. We select the solutions with a positive
component and a negative imaginary component, which
respond to the physical modes that can be expressed in
form m5vR /c1 iv I /c according the definition introduce
in Sec. II B. The results obtained by the linearization te
nique are used as the standard solution which allows di
comparison to the results obtained by our perturbative pla
wave method.

IV. RESULTS

A. 1D systems

We first consider the results obtained by the trans
matrix method for a structure consisting of metallic comp
nents characterized by the complex dielectric functione(v)
given by Eq.~1.1!, which can be written explicitly as

e~v!5eR
m~v!1 i e I

m~v!, ~4.1!

where

eR
m~v!512

vp
2

v21g2 , e I
m~v!5

gvp
2

v~v21g2!
. ~4.2!

A typical value of the plasma frequency of the conducti
electrons in metals, which usually lies in the ultraviolet r
s

.

al
r-
the

-
ct
e-

r-
-

-

gion of the optical spectrum, isvp;1015 s21, while a typical
value of the electron relaxation time iste;10213 s. There-
fore, we used the value ofg50.01vp in obtaining these
results. We took as a normalization conditionvpa/2pc51,
which determines the value ofvRa/2pc at which the change
in sign of eR

m(v) occurs whenvR5vP(12g2/vP
2 )1/2.

In Fig. 1~a! we plot the six lowest-frequency bands whic
satisfy Eq. ~2.27! for the filling fraction of the slabs
f50.001. The band structure for this value of the fillin
fraction is a slightly perturbed version of the dispersion
lation for EM waves in vacuum. In Figs. 1~b! and 1~c! we
depict the band structures which correspond to the fill
fractions f50.01 and 0.1, respectively. The dispersi
curves exhibit the existence of a band gap below the low
energy band, and structural gaps between the higher en
bands—see Fig. 1~c!. The presence of damping gives rise
an additional partial band below the lowest-frequency ba
for the filling fraction f50.1, as is shown in Fig. 1~c!. To
analyze this effect we first compare the right-hand side of
dispersion relation~2.24! for metallic slabs characterized b
the real, frequency-dependent dielectric function given
Eq. ~2.23!. The expression on the right-hand side of E
~2.24! exhibits harmonic behavior in the range of frequenc
considered—see Fig. 2, and yields dispersion curves wh
correspond to the case without damping. If dissipation
introduced into the metallic components through the use
the complex dielectric function given by Eq.~1.1!, the pho-
tonic band structure is negligibly changed over most of
frequency range, except in the vicinity of the pole atv50,
where the major change in the behavior of the funct
f 1(v) given by Eq.~2.26a! occurs—see Fig. 3. As a resul
an additional, lowest-frequency band, appears for small
ues ofkd and vanishes at a finite valuekd whose magnitude
depends on the value of the damping constantg used in the
complex dielectric functione(v) given by Eq.~1.1!. The
existence of this mode is primarily due to the singular b
havior of the imaginary partf 2(v) and the simultaneous
substantial, decrease of the real partf 1(v) in the neighbor-
hood of the pole atv50.

In Fig. 4~a! we plot the absorption coefficienta associ-
ated with the six lowest-frequency bands on a logarithm
scale in the reduced zone scheme for a filling fract
f50.001 in the standard reduced zone scheme. The abs
tion of the modes associated with the bands decreases
increasing wave numberk, and displays a global maximum
at theG point k50, where the strongest absorption of th
mode associated with the lowest band occurs. We h
found that the absorption coefficient displays a remarka
feature—an asymmetric behavior near the Brillouin-zo
boundaries. To demonstrate this effect we used the exten
zone scheme to display the absorption coefficienta on a
logarithmic scale as a function of the wave numberk for the
filling fractions f50.001, 0.01, and 0.1. The asymmetry
the absorption coefficient is represented by its decrease
electromagnetic waves with frequencies near the lower b
edge at the Brillouin-zone boundary, and its significant
crease for electromagnetic waves with frequencies in
neighborhood of the upper band edge at the Brillouin zo
boundary. This effect becomes more pronounced when
filling fraction of the slabs is increased, as is seen in F
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FIG. 1. The photonic band structure of a 1D lattice consisting
lossy metallic slabs in vacuum obtained by the transfer ma
method.E polarization:~a! f50.001, ~b! f50.01, and~c! f50.1.
4~b!, where the absorption coefficients for the three differe
values of the filling fractions are shown. One can see th
except at the Brillouin-zone boundaries, the absorption co
ficient exhibits a monotonic dependence on the wave nu
ber, and has its maximum value for the lowest-frequen
band atkd50. The results shown in Fig. 4~b! also confirm
the expected fact that the modes become increasingly
sorbed with increasing value of the filling fraction.

We believe that the asymmetry in the absorption coef
cient is due to the redistribution of the electromagnetic fie
at the top and the bottom of a gap. A solution near a ba
edge requires the use of degenerate perturbation theo
which yields two standing-wave solutionsC1(x)
}sin(px/d), and C2(x)}cos(px/d) for the photon wave
function. Since the metal acts like a repulsive potential, t
lower-frequency state corresponds toC1(x), which peaks
between the metal slabs. Consequently, the overlap of
EM field and the metal is minimized and the absorption
small. The upper state corresponds to the wave functi

f
x

FIG. 2. The right-hand side of the dispersion relation given b
Eq. ~2.24! for a periodic system of metallic layers in which the
effect of dissipation is not taken into account:f50.1, g50,
0,v,2vp .

FIG. 3. The right-hand side of the dispersion relation given b
Eq. ~2.25! for a periodic system of metallic layers in presence o
dissipation:f50.1, g50.001vp , 0,v,2vp .
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7436 55V. KUZMIAK AND A. A. MARADUDIN
C2(x), which has nodes between the slabs. Therefore
overlap between the metal and the field is maximized,
the absorption is greater.

We now turn to the results obtained by the perturbat
plane-wave method described in Sec. II A for a structure
metallic layers. In Figs. 5~a! and 5~b! we present the disper
sion curves which include the five lowest-frequency ban
for a 1D lattice formed by the metallic slabs in vacuum wh
the filling fraction of the slabs isf50.001 and 0.01, respec
tively. A total of 91 plane waves was used in obtaining the
results. The results presented are in good agreement with
results obtained by the transfer-matrix method. The disp
sion curves exhibit the existence of a band gap below
lowest band at theG point, whose width increases as th
filling fraction is increased. They do not reveal the existen
of an additional band below the lowest-frequency band,
found by the transfer-matrix method.

FIG. 4. The absorption coefficient of the modes associated w
the photonic band structure of a 1D lattice consisting of lossy m
tallic slabs in vacuum displayed in reduced zone scheme:~a!
f50.001; extended-zone scheme:~b! f50.001 ~ssss!, f
50.01 ~LLLL!, and f50.1 ~dddd!.
e
d

e
f

s

e
the
r-
e

e
s

The imaginary part of the complex photonic band stru
tures is represented by the lifetimes of the modes as de
mined from the imaginary parts of their frequenciesv I ,
which correspond to the normalized complex frequen
m5vR /c1 iv I /c according to the definition~2.11!. In Figs.
6~a! and 6~b! we plot the lifetimes of the modes associat
with the 12 lowest frequency bands on a logarithmic scale
a function of the wave numberk for a 1D lattice formed by
the metallic slabs in vacuum when the filling fractio
f50.001 and 0.01, respectively. The lifetime of the mod
associated with the bands increases with increasing valu
the wave numberk, and displays a minimum at theG point
k50, where the strongest attenuation of the mode associ
with the lowest band occurs. We display the lifetimes as
ciated with the 12 lowest bands to demonstrate the fact
the lifetimes saturate to a finite value in the limit of larg
wave numberk. The value of the lifetime at theG point is
equal to the electron relaxation timete given by the damping
constantg used in the dielectric function given by Eq.~1.1!.
The lifetimes associated with the modes at and above
plasma frequency are 102–103 times larger than the electro
relaxation time, and are of the order of 10211 and 10210 s for
the filling fractionsf50.001 and 0.01, respectively. A stud
of the dependence of the band structures on the dam
constantg indicates that the imaginary part is directly pr
portional to the value of the damping constantg, unlike the
real part, which does not vary significantly when the dam

th
-

FIG. 5. The photonic band structure of a 1D lattice consisting
lossy metallic slabs in vacuum obtained by the perturbative pla
wave method.E polarization:~a! f50.001 and~b! f50.01. The
number of plane waves used in these calculations isNG591.
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ing constant is changed. The convergence of the calculat
of the band structure was monitored by increasing the n
ber of the plane waves used in expansion~2.2!. For small
values of the filling fraction,f<1%, the use of a modes
number of plane waves;100 is sufficient to produce con
verged results.

Finally, we present the results obtained by the lineari
tion scheme. In Figs. 7~a!, 7~b!, and 7~c!, we plot the bands
for the filling fractionsf50.001, 0.01, and 0.1, respectivel
We monitored the convergence of these results by using
to 151 plane waves, which leads to the problem of diagon
izing a 4533453 complex matrix. The dispersion curves o
tained clearly confirm the characteristic features of the p
tonic band structures of 1D metallic systems, such as
existence of the band gap below the lowest-frequency b
and the structural band gaps for higher values of the fill
fraction, and agree very well with the results calculated
using the transfer matrix method and the perturbative pl
wave approach based on the reduction of the general
eigenvalue problem to the problem of solving a set
coupled nonlinear equations. In contrast to the results
tained by the transfer matrix method, those displayed in F
7 do not reveal the existence of the partial band below
lowest frequency band.

The diagonalization of the complex non-Hermitian mat
yields complex eigenvalues which correspond to the norm
ized complex frequencym5vR /c1 iv I /c defined by Eq.
~2.9!, and thus allow a direct comparison with those obtain
by our perturbative plane wave approach. In Fig. 8 we p
the lifetimes of the modes in the extended-zone scheme

FIG. 6. The lifetime of the modes associated with the dispers
curves shown in Fig. 5.~a! f50.001.~b! f50.01.
ns
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logarithmic scale as functions of the wave numberk. The
lifetimes shown in Fig. 8 correspond to the frequency ban
shown in Figs. 7~a!–7~c! for the filling fractionsf50.001,
0.01, and 0.1, respectively, and they exhibit identical beh
ior to that obtained by our perturbative plane wave approa
viz. they display a minimum at theG point which corre-
sponds to the strongest attenuation for the lowest-freque
band. In addition, the lifetimes obtained by the linearizati
scheme also predict the existence of the asymmetrical be
ior near the Brillouin-zone boundaries.

n

FIG. 7. The photonic band structure of a 1D lattice consisting
lossy metallic slabs in vacuum obtained by the linearization te
nique.E polarization:~a! f50.001,~b! f50.01, and~c! f50.1. The
number of plane waves used in these calculations isNG5151.

FIG. 8. The absorption coefficient of the modes associated w
the photonic band structures displayed in Fig. 7, plotted in the
tended zone scheme:f50.001 ~ssss!, f50.01 ~LLLL!,
and f50.1(dddd).
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7438 55V. KUZMIAK AND A. A. MARADUDIN
In this case the asymmetry is represented by the increas
the lifetime of the mode with the frequency of the low
band edge at the Brillouin-zone boundary, and by the
crease of the lifetime of the mode with the frequency of
upper band edge at the Brillouin-zone boundary. The abs
tion coefficient and lifetime of a mode, as the compleme
tary quantities characterizing the propagation of wa
through 1D lossy metallic systems, provide consistent e
dence of the anomalous behavior of the waves with frequ
cies in the neighborhood of the Brillouin-zone boundarie

B. 2D systems

We first present the results obtained by using our per
bative plane-wave approach based on the reduction of
generalized eigenvalue problem to the problem of solvin
set of coupled nonlinear equations. In Figs. 9~a! and 9~b!, we
plot the real part of the photonic band structures forE po-
larized electromagnetic waves propagating through a t
dimensional system consisting of lossy metallic rods arra
in a simple square lattice of lattice constanta, when the
filling fraction of the rods isf50.001 and 0.01, respectively
We again assumevpa/2pc51. A total of 113 plane waves
was used in obtaining these results. For both filling fractio
considered,f50.001 and 0.01, we obtained a band struct
that is a slightly perturbed version of the dispersion relat
for electromagnetic waves in vacuum, and which is in qu
titative agreement with earlier results obtained by the pres

FIG. 9. The photonic band structure of a square lattice of lo
metal cylinders in vacuum obtained by the perturbative plane-w
method.E polarization:~a! f50.001 and~b! f50.01. The number
of plane waves used in these calculations isNG5113.
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authors, where a simple free-electron dielectric funct
e(v) without damping was used.27 The calculated band
structures also predict the existence of a band gap below
lowest-frequency band as a consequence of the metallic
ture of the cylinders. The width of this gap is seen to incre
with increasing filling fractionf . In Figs. 10~a! and 10~b!, we
plot the lifetimes of the modes on a logarithmic scale
functions of the wave vectorki , for filling fractions
f50.001 and 0.01, respectively. As shown in these figur
the lifetimes of the modes as a function of the wave vec
ki resemble the behavior of the associated real part of
photonic band structure, and display the strongest attenua
for the lowest band at theḠ point. The value of the lifetime
at this point is equal to the electron relaxation timete given
by the damping constantg used in the dielectric function
e(v). For frequenciesv.vp , the lifetimes are 103–102

times larger than the electron relaxation time, and are of
order of 10210 and 10211 s for the filling fractions
f50.001 and 0.01, respectively. The 2D photonic ba
structures display the same behavior as observed in the
case with respect to their dependence on the damping
stantg—the imaginary part is found to be directly propo
tional to the damping constantg, unlike the real part, which
does not vary significantly when the damping constant
changed. The convergence of the calculation of the b
structures was monitored by increasing the number of
plane waves used in the expansions~3.7! and ~3.12!. For
small values of the filling fraction,f<0.01, the use of a
modest number of plane waves,NG;100, is sufficient to
produce converged results.

y
e

FIG. 10. The lifetime of the modes associated with the photo
band structures shown in Fig. 9.~a! f50.001.~b! f50.01.



nd
,

e
ly
,
is

uc
a
tio
um

in
s
th
ot
s
f

u
po
in
al
e

sed,
tive
cy

ctor
an

cy
ed
e

nd
,

ic

were
ons
are
.
to
f

d as

ed

o
an

s
is

55 7439PHOTONIC BAND STRUCTURES OF ONE- AND TWO- . . .
In Fig. 11~a! we present the real part of the photonic ba
structure for the case ofH polarization for a square lattice
when the filling fraction of the rods isf50.001. By solving
the set of nonlinear equations~3.21a! and ~3.21b!, we have
found two independent solutions for each band for a giv
wave vectorki . The solutions represent two qualitative
different parts of the photonic band structure, namely
nearly dispersionless one, which is consistent with the ex
ence of the flatbands in the region 0,v,vp reported
recently,27 and a dispersive part of the photonic band str
ture which resembles the dispersion relation for electrom
netic waves in vacuum. The convergence of the calcula
of the band structure was monitored by increasing the n
ber of plane waves used in expansion~3.18!. Since the con-
vergence of these calculations for small values of the fill
fraction, f<0.01, is rapid, relatively small matrice
NG;100 were required for an accurate determination of
dispersive part of the photonic band structure. In fact, a t
of 113 plane waves was used in obtaining these results. A
known from our earlier calculations,24,27 the convergence o
the flatbands is significantly slower than the convergence
the dispersive part of the photonic band structure, and the
of a large number of plane waves together with an extra
lation procedure is required to obtain accurate results. Tak
into account that the eigenvalues converge asymptotic
with increasing number of plane waves, and the inher

FIG. 11. ~a! The photonic band structure of a square lattice
lossy metal cylinders in vacuum obtained by the perturbative pl
wave approach.H polarization; f50.001.~b! The lifetimes of the
modes associated with this band structure whose frequencie
smaller thanvp . ~c! The lifetimes of the modes associated with th
band structure whose frequencies are greater thanvp . The number
of plane waves used in these calculations isNG5113.
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inaccuracy associated with the perturbative approach u
the calculated flatbands should be regarded only as indica
of the true flat band structure that exists in the frequen
range 0,v,vp .

In Figs. 11~b! and 11~c!, we plot the lifetimes of these
modes on a logarithmic scale as functions of the wave ve
ki . The lifetimes of the modes with frequencies greater th
vp are essentially proportional to the wave vectorki , while
the lifetimes of the modes with frequencies belowvp are
essentially inversely proportional to the wave vectorki .
Hence the lifetimes of the modes from both the frequen
regions below and abovevp are larger than those associat
with the flatbands, which yield a global minimum of th
lifetime of the complete photonic band structure.

In Fig. 12~a! we present the real part of the photonic ba
structure for the case ofH polarization for a square lattice
when the filling fraction of the rods isf50.01, obtained by
solving the set of nonlinear equations. In Figs. 12~b! and
12~c! we plot the lifetimes of these modes on a logarithm
scale as functions of the wave vectorki for modes with
frequencies smaller and greater thanvp , respectively. The
calculations whose results are presented in these figures
carried out exactly in the same way as were the calculati
whose results are presented in Fig. 11, and the results
qualitatively very similar to those for a lower filling fraction
Quantitatively, the lifetimes of the modes corresponding
the filling fraction f50.01 are smaller than the lifetimes o
the modes calculated forf50.001, which is consistent with
the expected fact that the modes become more attenuate
the filling fraction of the rods increases.

We now turn to the results for both polarizations obtain
by the linearization technique described in Sec. III A 2 and

f
e

are

FIG. 12. The same as Fig. 11, except thatf50.01.
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III B 2. In Figs. 13~a! and 13~b!, we plot the frequency band
for E-polarized electromagnetic waves propagating throu
the system of lossy metallic rods arrayed in a simple squ
lattice with the filling fractionsf50.001 and 0.01, respec
tively. The dispersion curves obtained are identical w
those calculated by using our perturbative plane-wave
proach based on solving a set of coupled nonlinear eq
tions. In addition, the linearization technique allows calcul
ing the photonic band structures of systems with hig
filling fractions of the rods, as is shown in Fig. 13~c!, where
the real part of the photonic band structure forE-polarized
electromagnetic waves for the filling fractionf50.3 is de-
picted. This photonic band structure displays a typical beh
ior of the dispersion curves for systems containing meta
elements which, for higher values of the filling fraction, pr
dict, besides the gap below the lowest-frequency band
structural one between the first and the second bands.
note that the presence of damping does not affect the dis
sion relation for electromagnetic waves propagating thro
2D metallic systems in comparison with that determined
the identical systems characterized by a lossless free ele
dielectric function.27 We used 197 plane waves in obtainin
these results. The convergence of the results for higher
ues of the filling fraction was monitored by using up to 5
plane waves.

The lifetimes of theE-polarized modes are determine
from the imaginary part of the complex eigenvalues obtain
by diagonalizing the non-Hermitian matrix given by E
~3.17!. In Figs. 14~a!–14~c!, we present the lifetimes assoc

FIG. 13. The photonic band structure of a square lattice of lo
metal cylinders in vacuum obtained by the linearization techniq
E polarization:~a! f50.001,~b! f50.01, and~c! f50.3. The num-
ber of plane waves used in these calculations isNG5197.
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ated with the 12 lowest bands plotted in Figs. 13~a!–13~c!,
which correspond to the filling fractionsf50.001, 0.01, and
0.3, respectively. The results shown in these figures ag
qualitatively with those obtained by our perturbative plan
wave method. However, they reveal additional features s
as the asymmetric behavior near the Brillouin-zo
boundaries—indicated in Figs. 14~a!–14~c! by a full line—
for the lowest-frequency mode, and an anomalous beha
of the lifetimes associated with the frequency bands wh
are degenerate along the high-symmetry directions in
Brillouin zone. For the sake of clarity of the figures in whic
the lifetimes in the presence of singular behavior near
Brillouin zone boundaries are shown, we use dotted lines
plot them. In fact, the lifetimes associated with the twofo
degenerate bands are split into two different branches, wh
correspond to symmetric and asymmetric modes, resp
tively. The splitting of these modes is demonstrated in Fi
14~a! and 14~b!, in which both types of modes associate
with the 12 lowest bands form two different regions of t
lifetimes. The results shown in Figs. 14~a!–14~c! also indi-
cate that the values of the lifetimes decrease as the fil
fraction is increased. We observed that for higher values
the filling fraction—see Fig. 14~c!—the lifetimes of the de-
generate modes display different behavior which, howev
does not result in the existence of separated branches o
lifetimes, as is observed for lower values of the filling fra
tion. We again suggest that the origin of the anomalous
havior of the lifetime near the Brillouin-zone boundaries
the redistribution of the electromagnetic field for modes
the top and the bottom of a gap as we proposed in the con

y
. FIG. 14. The lifetime of the modes associated with the photo
band structures shown in Fig. 13.~a! f50.001. ~b! f50.01. ~c!
f50.3.
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of the one-dimensional system in Sec. IV A. The existen
of the different lifetimes associated with the degener
modes can possibly be related to the interaction between
modes which removes the degeneracy in the imaginary
of the complex frequency. However, further theoretic
analysis is needed to provide the full physical explanation
this effect.

In Figs. 15~a!, 16~a!, and 17~a!, we demonstrate the pro
foundly different behavior of the dispersion curves f
H-polarized electromagnetic waves propagating through
same two-dimensional system for the filling fractio
f50.001, 0.01, and 0.1, respectively. They confirm the
istence of the flatbands below the plasma frequencyvp
which have been identified as due to the overlap
H-polarized excitations associated with an isolated meta
cylinder.27 It is interesting to note that the dispersion curv
obtained by the linearization scheme exhibit a wider range
the frequencies in which the flatbands occur in compari
with those obtained by using our perturbative plan-wave
proach described in Sec. III B 1, and they provide clear e
dence of the strong interaction of the free-space disper
relation with the flat modes. The lifetimes of th
H-polarized modes propagating through the two-dimensio
system with the filling fractionsf50.001, 0.01, and 0.1 ar
shown in Figs. 15~b! and 15~c!, 16~b! and 16~c!, and 17~b!
and 17~c!. In agreement with the lifetimes obtained by o

FIG. 15. ~a! The photonic band structure of a square lattice
lossy metal cylinders in vacuum obtained by the linearization te
nique. H polarization, f50.001. ~b! The lifetimes of the modes
associated with this band structure whose frequencies are sm
thanvp . ~c! The lifetimes of the modes associated with this ba
structure whose frequencies are greater thanvp . The number of
plane waves used in these calculations isNG5197.
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FIG. 16. The same as Fig. 15, except thatf50.01.

FIG. 17. The same as Fig. 11, except thatf50.1. The number of
plane waves used in these calculations isNG5529.
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7442 55V. KUZMIAK AND A. A. MARADUDIN
perturbative plane-wave approach, they also reveal direct~in-
verse! proportionality to the wave vectorki of the lifetime
associated with the modes with frequencies above~below!
the plasma frequencyvp , while the minimum of the lifetime
given by the damping constantg is associated with the flat
bands. As the most striking feature of these results, the
times obtained by the linearization scheme in contras
those obtained by our perturbative plane-wave method
play substantially different dependences on the wave ve
ki in the frequency ranges along the high-symmetry dir
tions in which the associated modes are degenerate, an
their singular behavior near the Brillouin-zone boundari
The latter effect is indicated in Figs. 15~c!, 16~c! and 17~c!
by the full line for the highest-frequency mode, while th
splitting of the lifetimes associated with the degener
modes along theM2G andX2M directions is indicated by
the dotted lines in Figs. 15~b! and 16~b!. The existence of the
different lifetimes associated with the degenerate freque
modes was not observed for higher values of the filling fr
tion for frequencies belowvp—see Fig. 17~b!—because the
photonic band structure in this frequency range is domina
by the presence of the flatbands.

V. DISCUSSION AND CONCLUSIONS

In this paper we calculated the photonic band structure
electromagnetic waves propagating through periodic o
and two-dimensional systems containing components cha
terized by the complex, frequency-dependent, dielec
function given by Eq.~1.1!, which accounts for the dissipa
tive behavior of real lossy metallic materials. We develop
an interesting approach within the framework of the pla
wave approximation, based on the reduction of a general
eigenvalue problem to the problem of solving sets of coup
nonlinear equations. We demonstrated that for low filli
fractions this perturbative plane-wave method provide
computationally viable alternative to the computer-intens
linearization method for calculating the photonic band str
tures of both one- and two-dimensional periodic syste
containing lossy metallic components. The calculated co
plex photonic band structures yield both the dispers
curves and the lifetimes of the modes associated with
bands. Besides the perturbative plane wave technique, fo
1D system we also used the transfer-matrix method, wh
yields an explicit, analytic, dispersion relation that can
used to assess the accuracy and the reliability of the vari
of the plane-wave method. The results obtained by
transfer-matrix method, except for the existence of an ad
tional band below the lowest-frequency band, agree v
well for the most part with those obtained by both our a
proach and the linearization scheme. This discrepancy i
cates, that the singular behavior of the dielectric function
a metal given by Eq.~1.1! at the polev50 and, conse-
quently, the mutual interaction of both the real and ima
nary parts of the dispersion relation at this point is not s
ficiently accurately described within the plane-wa
approximation used in both methods, and thus does not
count for the additional modes below the lowest frequen
band.

The dispersion curves obtained by our perturbative pla
wave approach and the linearization technique for the p
-
o
s-
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-
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.

e

cy
-

d

of
e-
c-
ic

d
-
ed
d

a
e
-
s
-
n
e
he
h
e
ts
e
i-
ry
-
i-
r

-
-

c-
y

e-
o-

tonic band structures of periodic arrays of lossy meta
slabs~rods! embedded in vacuum are not significantly diffe
ent from the dispersion curves for electromagnetic wave
vacuum, and agree qualitatively with the results obtained
using a simple free-electron model dielectric function in t
absence of damping.27 The photonic band structures of EM
waves ofE polarization, in addition to possessing a stru
tural gap between the higher-frequency bands, which app
for the values of the filling fractionf*0.25, possess an ab
solute band gap below the lowest-frequency band, wh
dispersion curve does not tend to zero frequency at theG ~Ḡ!
point. The width of this gap increases with increasing fillin
fraction. Such a gap is not observed in the 1D structu
consisting of dielectric slabs, and in 2D systems when
metal cylinders are replaced by dielectric cylinders, and
consequence of the metallic nature of the components. B
our perturbative plane-wave approach and the lineariza
method employed for the calculation of the photonic ba
structures of EM waves ofH polarization propagating in a
system of metallic rods in the presence of dissipation p
duce results that are nearly identical to those found in
absence of damping. The dispersion curves do not posse
band gap below the lowest-frequency band, and confirm
existence of additional, nearly dispersionless, bands in
frequency rangev,vp , effectively superimposed on th
dispersive part of the band structures. We have found tha
flatbands strongly interact with the free-space dispers
curves, and act as traps for energy entering the sys
through the free-space wave. These features clearly dem
strate the differences between the band structures for di
ent polarizations of the waves, and provide an explana
for the well-known fact that a conducting wire system c
act as a polarizer which transmits EM waves ofH polariza-
tion at low frequencies, but not waves ofE polarization.

By using the transfer-matrix method and both plane-wa
techniques, we determined from the imaginary part of
resulting photonic band structures the absorption coeffic
and the lifetime of the modes as complementary quanti
which characterize the modes as they propagate through
system. Except in the frequency regions near the Brillou
zone boundaries, both the absorption coefficient and the
time exhibit a monotonic behavior, displaying a global e
tremum at theG point, yielding the smallest lifetime and th
largest absorption coefficient for the lowest-frequency ba
Both the absorption coefficient and the lifetime of the mod
display an asymmetric behavior in the neighborhood of
band edges. We note that although the asymmetry of
lifetime, which is consistent with that of the absorption c
efficient, is predicted by the linearization scheme, it is, ho
ever, not found in the results of our perturbative plane-wa
method. Even if we take into account that the asymme
behavior is negligible for small filling fractions, the absen
of such features for the lifetime of the modes suggests
our approximation does not give the correct picture due
the ~near! degeneracy of the bands in the neighborhood
the gaps. We have proposed an explanation of this effec
caused by the redistribution of the electromagnetic field
the modes at the top and bottom of a gap. Considering th
metal acts as a reflecting potential, the smaller absorp
and longer lifetime of modes at the bottom of the gap is d
to the minimized overlap of the associated photon wa
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function with the metal. The reverse is true for modes at
top of the band, where the overlap between the field and
metal is maximized and, therefore, the absorption is lar
and the lifetime is shorter.

The asymmetric behavior observed for both the abso
tion coefficient and the lifetime of the modes provides
interesting example of a more general phenomenon ass
ated with the properties of the electromagnetic wave pro
gation near the Brillouin-zone edges, and it is therefore
interest to study this effect further in the context of t
anomalous behavior of the absorption coefficient which
curs due to the fundamental change in the nature of trans
through a disordered medium, and which was suggested
probe for the existence of a photon mobility edge.40,41

The results forE-polarized EM waves obtained by ou
perturbative plane-wave approach in both 1D and 2D p
odic systems indicate that the modes associated with
lowest-frequency band are the most strongly attenuated,
that their lifetime tends to the value of the conduction el
tron relaxation timete at theG ~Ḡ! point. The lifetimes of the
modes as functions of the wave vectork (ki) resemble the
behavior of the associated real part of the photonic b
structures, and display the strongest attenuation for the l
est frequency band at theG ~Ḡ! point. The difference be-
tween the lifetimes of the modes of the lowest frequen
band and the lifetimes of the modes with frequenciesv
abovevp decreases as the filling fraction of the slabs~cyl-
inders! increases. A quite different dependence is obser
for the attenuation of the modes as a function of the w
vectorki for H-polarized EM waves propagating through
2D array of lossy metal rods. The attenuation of the flatba
also exhibits nearly dispersionless behavior, and the co
sponding lifetimes of these modes are found to be clos
the electron relaxation timete , which corresponds to the
bands at the plasma frequencyvp . The lifetimes of the
modes in the dispersive part of the photonic band struc
with frequencies abovevp are proportional to the wave vec
tor ki , while the lifetimes associated with the modes w
frequencies belowvp are inversely proportional to the wav
vectorki . Thus the lifetimes of the modes with frequenci
from both regions are larger than those associated with
flatbands.

Rather more striking behavior is revealed by the res
for the lifetimes of both theE- andH-polarized modes in 2D
systems obtained by using the linearization technique. T
agree qualitatively with those obtained by using our pert
bative plane-wave approach. However, they display ad
tional features such as an asymmetric behavior near
o
g
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Brillouin-zone boundaries and the splitting of the lifetime
associated with the twofold-degenerate modes along h
symmetry directions in the Brillouin zone. The origin of th
former effect was identified as the redistribution of the ele
tromagnetic field in the modes at the bottom and top o
gap. The existence of the different lifetimes associated w
degenerate modes can be understood in terms of the inte
tion of the modes, which removes the degeneracy in
imaginary part of the complex frequency. A detailed exp
nation of this effect, however, requires further theoretic
investigation.

Studies in progress focus on the photonic band structu
of a periodic array of slabs~rods! fabricated from a lossy
polar semiconductor whose dielectric function has the for

e~v!5e i1~e02e i !
vT
2

vT
22v22 iGv

, ~5.1!

where e0 is the static dielectric constant,e i is the optical
frequency dielectric constant,vT is the frequency of the
transverse optical mode of infinite wavelength, andG is a
damping constant. In this case the Maxwell equations can
transformed into a generalized eigenvalue problem. T
problem can be solved by using the linearization schem
based on the construction of an equivalent enlarged ma
and, for structures with small filling fractions, the approa
requiring the solution of sets of nonlinear equations dev
oped in this paper can also be used.

We also plan to study the distribution of the electroma
netic field in terms of the eigenmodes which correspond
the individual frequency bands. By evaluating the group v
locity of each eigenmode, the flow of energy will be exam
ined. Then we intend to study the symmetry of the mod
found by diagonalizing a complex, non-Hermitian matrix.
particular, the symmetry of the photon waves which cor
spond to the lower and upper edges of the band gaps
those associated with the degenerate bands in t
dimensional photonic band structures will be studied to
quire deeper physical insight into the nature of the pheno
ena associated with the imaginary component of the comp
photonic band structures.
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