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Atom oscillations in the scanning tunneling microscope

M. Grigorescu, P. Budau,and N. Carjah
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The atom tunneling across the potential barrier separating the surface and the tip of the scanning tunneling
microscope is investigated by semiclassical methods, and by integrating numerically the time-dependent
Schralinger equation. It is shown that the barrier crossing is explained by the resonance phenomenon of
guantum coherence oscillations, rather than by exponential decay. The occurrence of these resonances at the
variation of the bias voltage is studied for the first two isomeric states of a Xe atom in a surface-tip potential
of double-well shape. The resonant bias voltages for these two states practically coincide, and at the first
common resonance the effect of the environmental temperature is discussed. The results provide a useful frame
for understanding the mechanism of atom transfer in scanning tunneling microscopy.
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[. INTRODUCTION thermal noise is included by calculating the tunneling prob-
ability for a statistical mixing between these two states.

The reversible atom transfer in the tunnel junction of the In Sec. Il we present time scales relevant to the occur-
scanning tunneling microscog8TM) becomes increasingly rence of QCO or exponential decay. Section IlI contains nu-
important for molecular-level manipulations, surface merical results obtained by semiclassical calculations and by
quantum-chemical reactions, or microelectronic devicessolving the TDSE for a Xe atom in the pair plus dipole
This process is observed at application of a voltage ﬂ,u|sedouble—\{vell p_otential of the STM junction. Conclusions are
between the conducting surface and tip of the STM, and ha8Ummarized in Sec. IV.

a rate which increases as a power of the current. The present

models assume that atoms are trapped in the STM junction Il. CHARACTERISTIC TIME SCALES

by a surface-tip potential of double-well shapthough the OF THE TUNNELING PROCESS

switching mechanism between the two wells is not yet
known. In general, one assumes that transfer appears ta(]

heating-assisted electromigratibh,or the combined effect g ciassical regions, separated by a potential barrier. If the

of thermal activation at the ambient temperature and exCitazegions are isolated by an infinite barrier, then each is char-

tion by the inelastic scattering of the 'tunnellng e.lectrﬁns. acterized by its own set of eigenstates. When the barrier is

However, these models give only partial explanation of th&injte, these eigenstates become nonstationary wave packets.

experimental results. For a one-dimensional potential with a single metastable
A model based on atom tunneling through the potentiaininimum the tunneling of an isomeric states irreversible,

barrier was proposed in Ref. 4. Before tunneling the atom ignd its escape probabilifyincreases in time according to an
supposed to be in a statistical mixture of isomeric states logxponential law

calized on the surface, and the transfer rate is defined by the

thermal average of the corresponding WKB rates. p(t)=1—e M (1)
The isomeric states decay exponentially in open space,

but in a double-well potentiaDWP) they have an oscilla- where\ can be estimated using the Gamow formula

tory behavio For an arbitrary DWP, a metastable state

never tunnels complete_ly, and in pract'ice the irreversible )\_ﬂ 2% I Vo0 —E )

transfer across the barrier can be explained only by the ex- = Zwe X ' : )

istence of some external decoherence mechanism. However,

in special resonance conditions it is possible to observéiere w;/27 is the oscillation frequency in the isomeric well,

guantum coherence oscillatiofQCO’s) when the wave andxi andxo are the turning points at the barrier.

The tunneling represents a special case of decay, when the
antum system undergoes a transition between two differ-

packet is localized alternatively in each of the two wall. If the stable well is bounded, then in genegaremains
the decoherence factors could be reduced, then such oscilleenfined to the isomeric well, without tunneling. An excep-
tions might also be observed in the STM potertial. tion is the case of the QCO resonance, appearing whén

The aim of this paper is to determine the characteristica linear combination of two quasidegenerate eigenstates hav-
time scale of atom tunneling in STM starting from the exacting energies separated by a gAE,.s, very small in com-
treatment of the quantum dynamics in DWP. Therefore, theyarison with the average level spacing in the stable well,
tunneling of the first two isomeric states of a Xe atom local-# w; . In this case
ized initially on the surface is investigated by numerically
solving the time-dependent Schiinger equation(TDSE). p(t)=(1—cog 7t/ Tmaw)/2, 3)
Resonant bias voltages and QCO periods are obtained, and
compared with semiclassical estimates. The effect of thescillating between 0 and 1 with the half-period
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FIG. 1. Time scales for atom tunneling. Semiclassical estimateg ¢A) and T,,,, (B), as functions of the bias voltage.

b For a fixed surface-tip geometry and zero bias, this potential
Tmax:F- 4 may be approximated by the fourth-order polynomial
res

In the WKB approximationAE, &~ 2Vs;, with Vp(X) = Co+ Cyx+ Cox?+ Cax3+ Cyx?. (8)
% ‘o 5 The coefficients have been obtained by interpolation, such

Vfi:ﬂ\/wiwfe_fﬂ ZM(V(X) ~E)/hTdx (50 that Cy=0.45 meV, C;=0.77 meV/A, C,=-55.64

meV/A? C;=—11.59 meV/~, andC,=44.51 meV/X. For

denoting the tunneling matrix element. a bias voltagel applied on the surface, the potential be-

The average level spacing is related to the recurrence timeomesV(x) =V, (x) +V4(X), with

(B)= ®) Va(x)=—U 0 !

TR w¢(E)’ «0="Uz 105+ 0.7(w+x)%/L4

which is the period of the closed orbit with the eneiyn 1

the stable well. In other words, this is the total time required 0350 7(w—x)4/L4] (9

for a particle to travel from the barrier to the outer wall of the

stable well, to be reflected, and to come back to the barriedenoting the dipole term. Hereuy,=0.3D (1D

As was shown in Ref. 8, during this time interval the decay=3.335<10 %° Cm), w=2.2 A, andL=1.56 A.

follows the exponential law of Ed1). The characteristic timeB,,,, and 7 calculated using Egs.
The time scale of the tunneling phenomena discussed he(@) and(6) are represented as a functionWwfin Fig. 1. The

is given byT ey, 7r, and\ ™% These time intervals are not values obtained forrg [Fig. 1(A)] indicate that, indepen-

independent, but related by the equation dently of bias, the stage of exponential decay, if it appears,
) cannot exceed a few picoseconds. This is too small to ensure
)\:(Z) R 7 @ significant transfer probability, though during this time it
2 szax' is possible to define the average transfer rate proposed in
Ref. 4,

The pure QCO described by E() appears when the den-
sity of states in the stable well is very low, and—0. In

this limit, the time evolution at resonance is periodic, but 2 e EilkeTy,
slow, with a period (Z a9, much greater than the “classi- P (10)
cal” expected valuerg. The exponential decay of the iso- 2 o—EilkgT
meric state occurs wherh>)\‘1 (the irreversibility condi- 7
tion), because in this casey is long enough to allow a ) i i
complete tunneling. whereT is the temperaturel;; are the energies of the iso-
meric levels, and; the corresponding escape rates given by
IIl. RESONANT ATOM TRANSFER Ea. (2). . . . . .
IN THE STM POTENTIAL The semiclassical estimates obtained Tgy,, using Eq.

(4) have values depending continuously dnin a wide in-
The present numerical estimates concern the tunneling dérval, ranging over ten orders of magnitude, from millisec-
a Xe atom in the biased STM double-well potential of Ref. 2.onds to picoseconds, as it is shown in FigBJL However,
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FIG. 2. Resonances in atom tunneling. The energde¢sand the maximum attained ywithin 20 ps(B) for the first two isomeric states
as a function of the bias voltage.

these estimates do not give the position of the resonances,  Jy(x,t) h? 9
and more precise calculations are necessary. if a | am (9_XZ+Vp(X)+Vd(X) H(x,t)
The isomeric levels are related to the eigenstates of the Xe (12)

atom in the modified potential

was solved with the initial condition/(x,0)=¢;(x), i=0
V(X) if Xx<x, and 1, by the iterated leap-frog metflagsing the time step
dt=6.58<10"° ps and the spatial grid Xmin Xmad=
[—1.2 A2 A] divided by 320 points. At each time step we
which is obtained by replacing the stable well\tfx) by a calculated the probability of f_inding the atom localized in
quadratic term rising up from the top of the barrier located atN® Stable well, close to the tip
Xp - The eigenstateg; of this potential have been calculated

Vimod X) = [

V(Xp)+a(Xx—xp)%2  if x>Xy,

by thg Runge-Kutta integration of the stationary Sclimger p(t)= jxmaxdx I (X0 (X, 1). (13)
equation Xp
52 g2 The maximump,, attained byp(t) within the time interval
oM O +Vinod X) | #i(X) = Ej 5 (X). (1)  [Oty], fort,,=20 ps, is represented as a function of the bias

voltage in Fig. 2B). The peaks indicate the resonances, and
for ¢y the first appears al = —1.141 V, the same as it was

a=100. The variation of the first two eigenvalugs and obtained befor® using initial wave packets of Gaussian

E, whenU decreases from O until the barrier disappearanc&naP€: This resonance hd%a=14.37 ps, and the peak
(~—1.2 V), is presented in Fig.(2). This shows that the value is 1. For the other resonances the peak valyeare

energy slopesr,=|dE,/dU|, k=0 and 1, are~12 meV/V lower, indicating thatTmay i larger thanty,. Trmay can be

for both states, and the energy gAE=E,— E, is ~1.8 estimated in this case using E®), and is given by

meV, independently dfJ. Therefore, if the atom is thermally

equilibrated with the environment whe#=0, then it will Tt 77

remain in this state during the voltage pulse-69.8 V ap- T2 arcsii Vo)

plied for switching. At the STM operation temperature of 4

K, the equilibrium occupation numbers of the first two statesThese values are represented in FiB)1lby star symbols,

have the ration; /ny=exp(~AE/ksT)~0.005, and thus the and a comparison with the semiclassical estimates shows a

contribution of ¢4 to the atom transfer is small. However, very good agreement.

n,/ny may increase above this value due to the excitation It is interesting to note that the resonances/gfand ¢,

produced by the inelastic scattering of the tunneling elecappear at almost the same bias voltages, separated by equal

trons, and a junction current of 200 nA can produce a ratiantervals of~80 mV. The first common resonance appears at

n;/ng~0.0152 U~—0.89 V, and inthis case the initial wave packets and
The values ofU corresponding to QCO’s have been de- the potential function are shown in Fig§A3 and 4A). The

termined by investigating the time evolution of the meta-corresponding dynamics of the localization probability on

stable wave packetg, and ¢, obtained from Eq(11). The the tip at the resonance and near resonance is represented in

time-dependent Schdinger equation Figs. 3B) and 4B), respectively.

Here M is the Xe mass, an¥f,,,q was defined by choosing

(14)
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FIG. 3. The resonance @f, atU=—0.8891 V. The potentiaV(x) in meV (solid) and the initial wave function multiplied by 1@ash
(A), andp as a function of time at resonan¢solid) and near resonangdash (B).

If the atom adsorbed on the surface is thermally equili-

brated, and only the first two isomeric levels are consideredstate of the Xe atom encounters about 10 resonances. Each
then the localization probability on the tip can be expressedesonance extends over

by the average

i:EOl e*Ei /kBTPi(t)
Pmix(t) = : J

S e EilkeT

i=0,1

(15

where p;(t) is given by Eq.(13) with ¢=4¢,;, i=0 and 1.
The calculations at =4 K indicate that at the first common
resonance,, closely follows the behavior gf,, excepting
the small times, whep,,y is slightly abovep, (Fig. 5.

)
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During a voltage pulse of-0.8 V the isomeric ground

an energy intervalAE, .
=hml/Tx Which corresponds to an interval of the bias
voltage of AU,.—~AE, ¢/ dp. Thus for a linear pulse with a
constant slopg.=|dU/dt| the isomeric stat@y, remains in
the resonance region during a time

AUps i
M 1o T max

c (16)
For a linear pulse decreasing from 0+t®.8 V in 64 ms, the
crossing timeT. becomes comparable 6,,,/2 whenU
~—0.49 V. The resonances crossed while>—0.49 V
have T.<T,.x and therefore the tunneling probability re-
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FIG. 4. The resonance @f;, atU= —0.89 V. The potential/(x) in meV (solid) and the initial wave function multiplied by 1@ash (A),
andp as a function of time at resonan¢lid) and near resonanddash (B).
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age, ranging from tens of picoseconds to tens of millisec-
onds. For the first resonances the agreement with the TDSE
calculations is very goodFig. 1(B)], indicating that these
estimates are reliable. Therefore, they can be used for pre-
dictions near zero bias, where the numerical integration of
the TDSE would require a large amount of computer time.

The energy of the two isomeric states depends linearly on
the bias voltage with the same slggeg. 2(A)], and the two
sets of resonant bias voltages almost coindifig. 2(B)].

The first common resonance appeardJat —0.89 V, and

the others at bias voltages increasing in equal steps of 0.08
V. The ¢, resonance which could have the main contribution
to the atom transfer was selected introducing the notion of
crossing time T), discussed for the case of a linear voltage
pulse.

The equality of the energy slopés,=0,) ensures that
the voltage pulses do not change the thermal equilibrium
population of the initial state. The effect of the thermal mix-

FIG. 5. Small-time behavior for tunneling at=—-0.89 V.p, ing in the metastable well was investigated at an environ-
(solid) and pix at T=4 K (dash are given as functions of time.  mental temperature of 4 K. This temperature effect proves to

be small, and the main contribution to the tunneling comes
mains small. The opposite situation appears for the resdrom the isomeric ground stai&ig. 5. However, the heat-

0.03 3

o

o

=
v bl

0.02

0.01

pea v bl

0.00

nances encountered wheh< —0.49 V, becaus@>Tma,  iNg produced by the tunneling electrohsiot considered
and in principle the atom may oscillate many times betweerhere, may lead to higher effective temperatures, which could
surface and tip during the resonance crossing. increase the contribution of the excited isomeric states.
In the atomic switch transfer experiments the Xe atom is
IV. SUMMARY AND CONCLUSIONS always directed toward the positively biased electrode. This

fact can be explained by theséesonance of X&° which can

In this work we have investigated the oscillatory behaviorstabilize some extra negative charge. The QCO of a negative
of the atom transfer in STM, using both semiclassical methion can influence the electron tunneling current, according to
ods, and solving exactly the quantum tunneling problem byts effective lifetime and the oscillation period between sur-
numerically integrating the TDSE. Two initial wave packetsface and tip. Thus such atom oscillations could be observed
have been used, the isomeric ground and first excited stat®y accurate measurements of the junction current.
obtained by solving the stationary Sctimger equation in When the decoherence produced by the electron current
the metastable well. or the environmental temperature suppress the oscillations,

In a static potential, the transition across the barrier carthe atom can be trapped on the tip. Therefore, further work
follow an exponential law only during times comparable tofor understanding the QCO decoherence in STM could shed
the period of classical oscillations in the stable wet,. some light on the atom transfer mechanism too.
However, this time interval is too shdifig. 1(A)], and can- The calculations presented in this work on the atom dy-
not explain a complete tunneling. For certain resonant valuesamics in the STM junction emphasize the oscillatory, rather
of the bias voltagdFig. 2(B)], the probability of localiza- than exponential, behavior of the localization probability. It
tions in the stable well may increase to 1 by quantum coherean also be seen as providing a basis for understanding the
ence oscillations. The semiclassical estimates show that theechanism of atom transfer, or giving practical recipes in
QCO period depends almost exponentially on the bias volteonstructing new quantum microelectronic devices.
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