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Energy states of a hydrogenic atom placed between two metal slabs
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We have derived expressions for the self-energy of a hydrogenic atom placed in the cavity formed by two
semi-infinite metal slabs. The excitations of the metal surfaces are described in terms of the surface plasmon
modes and the atom is assumed to interact with these modes. The self-energies are obtained for the 10S and
14S excited states of the atom. The earlier calculations of the self-energy are based on the dipolar approxima-
tion but we show in this paper that when the gap size is sufficiently small, the multipolar interactions can
exceed the dipolar contribution. We consider the case when the atom is placed at the center of the gap and
obtain the variations in the self-energy when the gap size is varied.@S0163-1829~97!05008-X#
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I. INTRODUCTION

For the understanding of various processes such as
scattering of atoms by a surface, surface catalysis, or
atomic adsorption, it is important to know the variation in t
interaction energy of the atom as a function of the dista
between the atom and the surface. Although the subject
been studied both experimentally and theoretically over
past century, there is a renewed interest in the field in
past decade as a result of advances in the mapping of a
surface by means of the scanning tunneling and the ato
force microscopes. These advances have made it possib
make more detailed measurements than possible before
cerning the growth, orientation, and motion of atoms nea
surface. With the increase in the quality of experimen
there is now a greater need to obtain numerical estimate
the self-energies of the atom near surfaces. It is the objec
the present paper to propose an approximate method for
taining the self-energy of a hydrogenic atom placed betw
two parallel metal plates. Numerical estimates of the s
energy of the atom are obtained when the atom is at
center of the gap and when gap width is varied. We a
obtain the self-energy of the atom near the center of the g

A charge neutral atom is attracted to a metal surf
through a force known as the van der Waals force. The
tential energy that leads to this attraction is a consequenc
correlated electronic polarizations induced in the atom an
the metal surface. The calculation of the interaction energ
a many-body problem because of the presence of a l
number of electrons in the metal. It is convenient and usu
sufficient to study the many-body aspects of the interac
by describing the excitations of metal electrons in terms
their collective motion called the ‘‘plasmons.’’ Making us
of this description, Manson and Ritchie1 have developed a
self-energy formalism that allows one to obtain the positio
dependent self-energy of a charged particle near a metal
face. The significant feature of this formalism is that t
550163-1829/97/55~11!/7227~6!/$10.00
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calculation of the self-energy takes into account the effec
the recoil of the electron as it emits a virtual plasmon. T
effect that is strong near a metal surface makes the elec
self-energy dependent on its velocity. Manson and Ritch1

were the first to propose this direct and relatively simp
method for calculating the self-energy. Several authors h
extended Manson and Ritchie’s1 approach to calculate th
self-energies for specific situations. For example, Mahan
Pathak, and Paranjape2,3 have considered the effect of pla
mon dispersion on the electron self-energy while others h
applied the formalism to calculate the self-energy of the
drogenic atom4–7 in the vicinity of a metal surface. Manso
and Ritchie’s1 method, although elegant, is based on t
plasmon model, which treats the electron gas as a ch
continuum. Hence the self-energy obtained using this
proach is valid when the distance between the charged
ticle ~or the atom! and the metal surface is greater than t
interelectron distance of the metal electrons. The method
provided excellent results for the self-energy for distan
greater than a few angstroms from the surface and provid
reasonable estimate for the self-energy at closer distan
Although we continue to use the plasmon model in this pa
we propose a simpler and approximate method to calcu
the self-energy than given by the Manson-Ritchie1 formal-
ism. Our approach does not take into account the ato
recoil and therefore the velocity-dependent effects are
glected. In spite of its approximate nature, our method gi
the essential features of the self-energy reasonably well.

We select for our investigation a hydrogenic atom sinc
represents the simplest atomic system in which numer
calculations are relatively easy. We describe the atom
terms of a valence electron in the presence of a single p
tive charge comprised of the charge of the nucleus and
charge of the core electrons. We also assume that the m
interaction of the hydrogenic atom is with the surface pl
mons and its interaction with the bulk plasmons is neglec
on the assumption that the atomic wave functions would
7227 © 1997 The American Physical Society



to
e
ct
x
ic

w

nd
ge
or
-
e
ec
Th
i
n

su
g
b
lf
le
th
o

si
s
th
th
rb
y
o

t
im
o

tr
pl
a

a
te
n
s

th
lle
se
O
f t
u
b
p
to
es
als
m
n

to
m is
ex-
ium
are
the

e of
the
rted

op
ed
ary
en
the
es-
ing
ec.
he
of

sed.

bs

ize.
so
rlap

om

the

the

di-
be
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overlap significantly with the metal electrons. In order
establish the theoretical framework for this paper we expr
the interaction Hamiltonian for a hydrogenic atom intera
ing with two parallel metal surfaces by straightforward e
tension of the Hamiltonian used for a single charged part
used in the previous publications.8–11 The Manson and
Ritchie1 approach is mainly useful for atoms with a lo
atomic mass such as the positronium~or for an electron! in
which the recoil effects are significant. On the other ha
the atoms considered in this work have significantly lar
mass in comparison with a positronium atom and theref
the velocity-dependent effects4 are weak and therefore ne
glected. In spite of the differences in the two approach
both have many common features and when the recoil eff
are neglected they would give the same self-energy.
main features of our approach are as follows: We show
this paper that the Coulomb energy between the vale
electron and the positively charged atomic core is altered
a result of the interaction between the atom and the
face. We derive the renormalized Coulomb energy usin
unitary transformation. The transformation, introduced
Platzman,12 was used earlier by him to evaluate the se
energy of a bound polaron in which the electron is coup
simultaneously to an attractive Coulomb potential and to
potential induced by the three-dimensional polar modes
the lattice. The situation considered by Platzman12 is similar
to ours. In the present calculations the polar modes con
ered by Platzman12 are replaced by the plasmon modes. U
ing Platzman’s transformation, we are able to express
changes in the potential energy of the atom. Treating
change as a perturbation and using the first-order pertu
tion theory, we obtain the shifts in the self-energy of a h
drogenic atom as a function of position and as a function
the gap size.

The presence of two surfaces requires a change in
usual plasmon model. The surfaces that are in close prox
ity introduce a coupling between the uncoupled plasm
modes present in each of the surfaces.8–11The coupled plas-
mon excitations can now be expressed in terms of symme
and antisymmetric plasmon modes. The use of the cou
modes in the calculation of the self-energy of a charged p
ticle was reported in earlier publications.8,9 The calculation
of the self-energy of an atom, proposed in this paper, is
extension of this work. The proposed research is motiva
by the intense research interest in the study of an electro
an atom, enclosed in restricted spaces such as cavitie
placed in various heterostructures.

When the gap between the metals is large, an estimate
the self-energy of the atom is obtained, by assuming that
spread in the atomic wave functions is significantly sma
than the gap size. In this case, it is reasonable to make u
the dipolar interaction between the metal and the atom.
the other hand when the gap is comparable to the size o
atom, the dipolar approximation is inadequate and the m
tipolar interaction of the atom with the surfaces must
taken into account. It is the main feature of the present pa
to obtain the self-energy of a hydrogenic atom taking in
account multipolar interaction of the atom with the surfac

A first direct experimental observation of van der Wa
interaction between a sodium atom moving between two
tallic plates was achieved recently by Sandoghdar, Suke
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Hinds, and Haroche.13 The two metal plates are assumed
be parallel to each other and the separation between the
taken to be a few micrometers. These authors estimate
perimentally the changes in the energy states of a sod
atom placed at the center of the gap. The energy shifts
obtained for excited states of the sodium atoms with
radial quantum numbers varying fromn510 to n513. The
experimental results analyzed by these authors make us
the dipolar approximation, which is adequate because of
large size of the gap considered in the experiments repo
by Sandoghdaret al.13

The plan of the paper is as follows. In Sec. II, we devel
the interaction Hamiltonian for a hydrogenic atom enclos
between two parallel metal surfaces. We introduce a unit
transformation in which the Coulomb interaction betwe
the two charges is transformed to include the effect of
interaction of the atom to the surface. We derive the expr
sion for the self-energy of the hydrogenic atom by treat
the renormalized potential energy as a perturbation. In S
III, we apply the theory of the previous section to obtain t
numerical values for the self-energy of the excited states
the sodium atom. The numerical results are also discus
Concluding remarks are made in Sec. IV.

II. THEORY

We describe our system as follows. Let the metal sla
occupy the regions defined byuzu.L, where the center of the
gap is selected as the origin of thez coordinate. The gap is
therefore 2L and is assumed to be larger than the atom s
The center of mass of the atom is kept well within the gap
that the electron wave function does not excessively ove
the metal electrons.

We write the Hamiltonian representing a hydrogenic at
placed within the gap as follows:

H5
pn
2

2mn
1

pe
2

2me
1Hmetal1H int2

e2

ur12r2u
, ~1!

where

Hmetal5(
a,k

\va,k@aa,k
† aa,k1~1/2!#. ~2!

Following Sols and Ritchie8 we expressH int , the Hamil-
tonian representing the interaction between the atom and
metal surfaces, as

H int52e(
a,k

Ga,k~z1!exp~ ik•R1!~aa,2k
† 1aa,k!

1e(
a,k

Ga,k~z2!exp~ ik•R2!~aa,2k
† 1aa,k!. ~3!

In Eqs.~1!–~3!, 2e is the charge of the valence electron,e is
the effective charge of the rest of the atom,a561 where the
plus sign refers to the symmetric and the minus sign to
antisymmetric mode of the surface plasmon,r1[~R1,z1! and
r2[~R2,z2! are, respectively, the three-dimensional coor
nates of the electron and the ion, which are assumed to
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55 7229ENERGY STATES OF A HYDROGENIC ATOM PLACED . . .
within the gap so that2L,z,1L wherez stands for both
z1 and z2 and the factorGa,k(z) is the coupling constan
defined as follows:

Ga,k~z!5ga,k~z!Na,k , ~4!

where

ga,k~z!5e2kz1~a!ekz, ~5!

Na,k
2 5p

\va,k

2Ak~e2kL1a!
, ~6!

and

2vk,a
2 5vp

2~11ae22kL!. ~7!

va,k represents the two coupled plasmon modes. W
2kL!1 the effect of the coupling is large and two distin
plasmon modes, one symmetric and the other antisymme
are given by Eq.~7!. The coupling decreases when 2kL@1
and the two coupled mode frequencies merge into the c
mon value~v p

2/2!1/2.
We now introduce the Platzman12 transformation to re-

write the Hamiltonian. The unitary transformation is defin
by

U5expS (
k,a

~ f a,kaa,k2 f a,k* aa,k
† ! D , ~8!

where f a,k is a parameter whose value is determined by
need that the transformed Hamiltonian can be given a sim
interpretation. It is straightforward to obtain the relationsh

U21aa,kU→aa,k1 f a,k . ~9!

The transformed HamiltonianHt is defined by

Ht5U21HU. ~10!

We now ascribe a value tof a,k such that in the transforme
Hamiltonian terms linear inaa,k and aa,k

† are eliminated.
This requires that the value off a,k be

f a,k5
e

\va,k
@exp~2 ik•R1!Ga,k~z1!

2exp~2 ik•R2!Ga,k~z2!#. ~11!

The transformed Hamiltonian contains two main chang
Hmetal is altered and the change can be expressed as a sh
the zero-point energy of the surface plasmons. The chan
in the kinetic energies of the electron and the nucleus a
occur but they lead to the velocity dependent effect on
self-energy which we neglect. The transformed Hamilton
is expressed by
n

ic,
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Ht5
pn
2

2mn
1

pe
2

2me
2

e2

ur12r2u
1(

a,k
\va,k

3@aa,k
† aa,k1 f a,k* f a,k1~1/2!#. ~12!

Substituting the value off a,k from Eq. ~11! into Eq. ~12!
givesHt as

Ht5
pn
2

2mn
1

pe
2

2me
2

e2

ur12r2u
1(

a,k
\va,k@aa,k

† aa,k1~1/2!#

1V1~z1!1V2~z2!1V3~z1 ,z2 ,R1 ,R2!, ~13!

where

V1~z1!52e2(
a,k

uGa,k~z1!u2

\va,k
, ~14!

V2~z2!52e2(
a,k

uGa,k~z2!u2

\va,k
, ~15!

and

V3~z1 ,z2 ,R1 ,R2!52e2(
a,k

exp@ ik•~R12R2!#

3Ga,k~z1!Ga,k~z2!/\va,k . ~16!

V1(z1) andV2(z2) are respectively the self-energies of th
electron and of the nucleus arising from its interaction w
the metal surface.V1(z1), as expected, depends on the se
ration of the electron from the surface and is independen
its planar coordinate. It represents the self-energy of the
lence electron obtained by summing the potential ene
arising from the infinite set of images formed by the electr
in the metal. SimilarlyV2(z2), for the nucleus, has the sam
interpretation asV1(z1). V3~z1 ,z2 ,R1,R2! corresponds to the
interaction energy of the electron interacting with the imag
of the nucleus and the energy of the nucleus interacting w
the images of the electron. It depends not only on the se
ration of the charges from the surface but also on their pla
separation. The effective potential energy of the atom
now be expressed asV~z1 ,z2 ,R1,R2! such that

V~z1 ,z2 ,R1 ,R2!5
2e2

ur12r2u
1V1~z1!1V2~z2!

1V3~z1 ,z2 ,R1 ,R2!, ~17!

where the first term on the right-hand side is the bare C
lomb energy between the two charges and the last th
terms arise as a result of the interaction of the charges w
the two surfaces.

We now define thez coordinate of the nucleus asz25Z,
which corresponds to the approximate position of the cen
of mass of the atom and define the electron coordinate w
respect to the nucleus asz15Z1z.
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FIG. 1. The variation of the self-energy ex
pressed in terms of a frequency shift as a functi
of the gap width for the 10S state of the sodium
atom placed at the center of the gap. The se
energy given by the full line uses the dipolar a
proximation while the dashed line contains a
multipolar interactions.
in
on
is
e

Substituting Eqs.~4!–~7! into Eqs. ~14!–~16! and com-
pleting the angular integration, we write

V1~Z81z8!5
2e2

L E
0

`Fcosh2$~k8L8!@~Z81z8!/L8#%

2 cosh~k8L8!

1
sinh2$~k8L8!@~Z81z8!/L8#%

2 sinh~k8L8! G
3exp~2k8L8!d~k8L8!, ~18!

wherek8, L8, andz8 are dimensionless quantities defined
terms of a, which is related to the spread of the electr
wave function and has the dimension of length. The prec
value ofa will depend on the state of the atom and will b
defined later. Thusk85ka, L85(L/a), Z85(Z/a), and
z85(z/a). Similarly
e

V2~Z8!5
2e2

L E
0

`Fcosh2@~k8L8!~Z8/L8!#

2 cosh~k8L8!

1
sinh2@~k8L8!~Z8/L8!#

2 sinh~k8L8! G
3exp~2k8L8!d~k8L8! ~19!

and

V3~z18 ,z28 ,uR12R2u!

5
2e2

L E
0

`

J0@~k8L8!~ uR12R2u/L8!#

3H cosh@~k8L8!~z18/L8!#cosh@~k8L8!~z28/L8!#

2 cosh~k8L8!
-
the

gy
-
r

FIG. 2. The variation of the self-energy ex
pressed as a frequency shift as a function of
gap width for the 14S state of the sodium atom
placed at the center of the gap. The self-ener
given by the full line uses the dipolar approxima
tion while the dashed line contains all multipola
excitations.
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FIG. 3. The variation for the self-energy ex
pressed in terms of a frequency shift for the 14S
state of the sodium atom as a function of the d
tance near the center of the gap.
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1
sinh@~k8L8!~z18/L !#sinh@~k8L8!~z28/L8!#

2 sinh~k8L8! J
3exp~2k8L8!dk8L8. ~20!

In Eq. ~20!, J0 is the Bessel function of order zero.
As remarked earlier,V2(Z8) is the self-energy of the

nucleus and hence corresponds to the result obtained by
and Ritchie8 when the dynamical effects from their work a
removed. For confirmation, we perform the integration in E
~19! to get

V2~Z!52~e2/8L !@2c$1%2c$~1/2!1~Z/2L !%

2c$~1/2!2~Z/2L !%#, ~21!

where

c~y!52E
0

` e2yt

12e2t dt. ~22!

We can also obtain the corresponding expression
V1(Z1z), the self-energy of the electron.

The shift DE in the energy of the atom is obtained b
using the first-order perturbation theory. We note that
self-energy contains second-order contributions in the in
action potential but our use of the transformed Hamilton
allows us to express the self-energy as a first-order chang
the perturbation. For thenth radial quantum state of the ato
the shift in the energy is given by

DEn5^nuV~z1 ,z2 ,R1 ,R2!un&. ~23!

For a givennS state, the exponential decrease in the wa
function is proportional to exp~22r /na0! where a0 is the
Bohr radius. The value ofa that was introduced in Eqs
~18!–~20! can now be specified asa5na0/2. The definition
of a is made purely for computational purposes in obtain
the average value of the self-energy in Eq.~23! for a given
state of the atom.
ols
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We now consider the limiting case for the self-ener
using the dipolar approximation. Assume that the nucleu
at the center of the gap so thatZ50. In the dipolar approxi-
mation, we expandV’s in Eqs.~18!–~20! in powers ofz and
and of uR12R2u and retain up to quadratic terms inz and
uR12R2u. Substituting the approximated expressions into E
~23! and after some lengthy algebra we get the well-kno
result11 used in the analysis of Sandoghdaret al.,13

DEn>2S 7

48D S e
2

L3D z~3!^nur 2un&, ~24!

wherez~3!>1.2 is the Riemann zeta function. In Eq.~24! the
effect of the quantum defect is introduced by replacingn by
n*5(n11.35). The expression~24! is a reasonable approxi
mation if the gap is much larger than the size of the atom
the experiments reported by Sandoghdaret al.13 the gap is of
the order of a micrometer, which is more than 500 times
size of the tenth quantum state of the sodium atom. Thus
use of the approximate result given by Eq.~24! is appropriate
in the work of Sandoghdaret al.13

We have obtained the changes in the self-energy of
electron without making the dipolar approximation in E
~23!. The theoretical expression is therefore valid even wh
gap widths are comparable to but approximately greater t
the atomic size. The numerical results with and without
dipolar approximation for the excited states of the sodi
atom at presented and discussed in the following section

III. RESULTS AND DISCUSSION

We have evaluated numerically the changes in the s
energy of the electron using Eq.~23!, which includes multi-
polar interaction of the atom with the surface for the tw
excited states of the sodium atom corresponding to the ra
quantum numbersn510 and 14. We have considered th
case in which the center of mass of the atom is located at
center of the gap. The gap width between the two metal s
is allowed to vary. The changes in the self-energy expres
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7232 55V. V. PARANJAPE, P. V. PANAT, AND K. N. PATHAK
as a change in the frequency shiftDn5(DE/h) are shown in
Fig. 1 forn510 and in Fig. 2 forn514 with the doted lines
using Eq.~23! and the full lines using the dipolar approx
mation. Forn510 the changes in the self-energy using t
dipolar approximation and considering the multipolar int
actions are close to each other when the gap width exc
40 nm but when the gap is smaller than 40 nm the s
energy given by multipolar interaction exceeds significan
the value obtained using the dipolar approximation. F
n514 the departures between the two results occur when
gap is below 60 nm. Clearly these results follow from t
fact that the effect of the multipolar excitations would
stronger for the atom at then514 excited state than for th
n510 excited state. It should be noticed that the size of
atom for n510 or for n514 is still smaller than the gap
widths considered in Figs. 1 and 2. Although the figu
show the self-energy for extremely small gaps, we should
cautious with the use of perturbative theory for widths bel
15 nm for the case of the 10S state of the atom and fo
widths less than 30 nm for the 14S state. For these sma
gaps the perturbation theory may not be fully justified.
Fig. 3, we have plotted the variation of the self-energy as
position of the center of the atom is varied within 2 nm fro
the midpoint position, for the gap of 42 nm and for the 1S
state of the sodium atom. The potential energy is nearly c
stant within a distance of about 1 nm on both sides of
center. This feature is similar to the one obtained by S
doghdaret al.13 for the 10S state of the sodium atom for th
gap of a micrometer with the important difference that t
region of approximately constant potential energy in the c
culation of Sandoghdaret al. is spread over 0.1mm, which is
considerably larger than the values obtained in our calc
tions. The ratio of the flat potential energy region to the to
gap width is approximately~1/10! in the calculation of San-
doghdaret al.13 while in our calculations the flat region i
only approximately~1/20! of the total width.
om
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IV. CONCLUDING REMARKS

Our numerical results show that the potential energy
the atom is attractive toward the surface and that it decre
as the width of the gap is reduced. The decrease in the
energy follows theL23 dependence on the gap based on
dipolar approximation but the dependence is much stron
at smaller widths when multipolar interactions become i
portant. The expression for the potential energy given by
~17! contains in addition to the Coulomb energy three mo
terms. The first two terms refer to the potential energies
the electron and the nucleus in the presence of the sur
and depend on the separation of each from the surface. B
these terms give rise to an attractive force towards the
face. As the gap is decreased the binding potential energ
the surface could exceed the binding potential between
electron and the nucleus. The third term in Eq.~17! depends
on the separation between the electron and the nucleus in
plane parallel to the surface and also on the separation
the charges from the surface. The latter potential-energy t
can produce a repulsion between the electron and the nuc
and the repulsion increases as the width is decreased.
sufficiently small width the force of repulsion can in prin
ciple exceed the Coulombic attraction. This will cause t
atom to ionize within the gap. This qualitative picture m
be approximately correct but such conclusions are not
dent in our calculations since the ionization is expected
occur at extremely small gap widths where our theory wo
break down mainly because the perturbative treatment
not hold.
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