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Perturbative approach to high-energy-electron surface-resonance scattering

P. M. Derlet and A. E. Smith
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Recently, an exact expression has been developed to determine the elastic reflection coefficient for the
phenomenon of surface resonance in reflection high-energy-electron diffraction@S. L. Dudarev and M. J.
Whelan, Phys. Rev. Lett.72, 1032 ~1994!#. Following this proposal, diagrammatic techniques are used to
obtain a series expansion for the resonant reflection coefficient with respect to an array of noninteracting
Breit-Wigner scatterers. Application to the~111! surface of platinum within the weak-potential scattering
regime reveals, within the uncertainty of the scattering parameters, that only the lowest-order result is required.
This disputes the contention~in this case! that the Breit-Wigner scattering law is violated. From an analysis of
the convergence properties of the series, it is found that this is due primarily to incoherent resonant scattering
within the bulk between the~111! planes. In turn, its origin is the off-Bragg scattering condition associated
with weak-potential scattering. On the other hand, for the case of strong-potential scattering in which the Bragg
condition is satisfied, the perturbation series breaks down and the exact solution is needed. We then develop a
renormalized perturbation expansion with respect to the Breit-Wigner scattering vertex in the intermediate
regime, where there is still strong-potential scattering. Correspondingly, a more general convergence criterion
is determined. We conclude by showing that the developed perturbation expansion and convergence criterion
retain their form for an arbitrary number of interacting resonant modes.@S0163-1829~97!02512-5#
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I. INTRODUCTION

With improving experimental techniques, reflection hi
energy electron diffraction~RHEED! and reflection electron
microscopy~REM! have reemerged as methods capable
providing information on surface structure and growth~for a
review, see Ref. 1!. Owing to the strength of the interactio
potential, electron diffraction is inherently ‘‘dynamical,’’ a
opposed to say x-ray diffraction. That is to say, in gene
there are many closely coupled diffraction states. Acco
ingly, the problem is computationally intensive with man
states closely coupled and hence dense matrices are req
to be dealt with. This increases the difficulty of ‘‘inverting
results to determine crystallographic~structural! data from
the combination of experimental data with computation.

The elastic transmission case has, however, been
equately dealt with for many years.2,3 In this case only the
forward scattering amplitude is needed and thus the
three-dimensional~bulk! Schrödinger equation is retained
This gives a series of coupled algebraic equations over
reciprocal lattice vectors parallel to the direction of the s
face. Great insight in the transmission case can be prov
by the use of the so-called ‘‘two beam’’ approximation co
responding to two scattering states~i.e., the incident beam
together with one diffracted beam!. The resulting 232 ma-
trix is essentially the simplest nearly free electron or pseu
potential method of solution which can afford a simpler y
greater insight than mere computation.

For the case of RHEED, on the other hand, the surf
geometry plays a greater role since it is a reflection techni
and precludes such a simple approach. To gain a sim
physical insight into the diffraction phenomenon, the ‘‘tw
beam’’ approximation must be replaced by the ‘‘two rod
approximation. In this, a pair of coupled differential equ
tions rather than a pair of coupled algebraic equations, a
550163-1829/97/55~11!/7170~11!/$10.00
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the transmission case, must be solved for, to fully take i
account the backscattered amplitudes so important to the
flection phenomenon.

A typical RHEED pattern contains a range of diffractio
phenomena. The direct Bragg scattering spots arising f
the surface and bulk periodicity are compounded by seco
ary Bragg scattering of inelastically scattered electrons,
so-called Kikuchi lines and envelope.4 These features prima
rily arise from potential scattering: the diffracted beam
flecting back into the vacuum. Additionally, there is the ca
where the scattered beam has a complex wave-vector c
ponent perpendicular to the surface and is therefore an
nescent wave propagating parallel to the surface. In this c
the corresponding diffraction spot disappears from
screen. For certain incident electron energies and directi
such evanescent modes can be close in energy to bound
tronic state~s! within the crystal. This results in an increas
of the coupling between the specular and evanescent com
nents, and therefore an associated increase in the intens
the former. It is such an increase in the specular intensity
in the present context it is referred to as ‘‘resonan
scattering.’’5–7 This appears on a RHEED pattern as a p
rabola and is often referred to as a ‘‘resonance parabola.
general a number of such parabolas exist, each corresp
ing to a two-dimensional reciprocal-lattice vector that form
the real part of the wave vector for the~evanescent! propa-
gation mode. When such resonance parabolas intersect
zontal Kikuchi lines or, indeed, the first-order diffractio
spots, there is a large increase in intensity in these directi
corresponding to an improved contrast in the resulting s
face image.

There has been much debate as to the nature of the
tronic state~s! that are involved in this resonance pheno
enon. Early theoretical work8,9 takes the view that surfac
states play the primary role. However, for the case of ato
7170 © 1997 The American Physical Society
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55 7171PERTURBATIVE APPROACH TO HIGH-ENERGY- . . .
cally flat crystal surfaces it has been conjectured10,11 that
such resonances arise from multiple scattering prima
within the bulk of the solid. In an illuminating series of re
cent papers, Dudarev and Whelan12–15 have succeeded in
establishing analytic techniques to consider this aspect o
surface diffraction problem. In particular, by mapping t
resonance scattering process onto the one-dimensional s
infinite tight binding Hamiltonian, they determine an exa
analytical expression for the resonant reflection coeffici
for the case in which there is minimal potenti
scattering12–14and for the case of arbitrarily strong potenti
scattering15 corresponding to an intersection between a ho
zontal Kikuchi line and a resonance parabola. We note
in their calculation, as in the present work, the calcula
electron intensities are presented as a function of incid
electron direction. In a realisitic RHEED spectrum, the e
tent of the contribution of such a component will be a fun
tion of the electron distribution due to convergent be
RHEED ~CB-RHEED! conditions and/or inelastic scatterin
~i.e., thermal diffuse scattering or phonon scattering!. This
aspect is not considered in the present model: the calcul
intensities are decoupled from the inelastic processes
cannot be compared to theprimary Bragg-scattered peak in
tensities.

In this paper we will show how Dudarev and Whelan
approach can be recast and further clarified by the us
diagrammatic techniques that have been applied to a w
range of phenomena.17 In addition, we demonstrate how th
resonance reflection coefficient can be expressed as a s
expansion with respect to an array of noninteracting pla
~parallel to the surface! each of which is of the Breit-Wigne
scattering form. In Sec. II, we introduce the standard ‘‘tw
rod’’ approximation in its integral form, and following Du
darev and Whelan, we choose the form of the crystal e
tronic Green’s functions under the assumption of minim
potential scattering. In Sec. III, a discrete integral equatio
derived via an iterative process, the solution of which can
used to obtain the resonant reflection coefficient. Section
contains the evaluation of the reflection coefficient for t
simple cases of a single scattering plane and an arra
noninteracting scatterers, giving the standard Breit-Wig
form. Using diagrammatic techniques, a perturbation exp
sion with respect to the Breit-Wigner form is then develop
and its validity investigated. In Sec. V, we compare our p
turbative calculation to the exact analytical result of Duda
and Whelan for the case of the~111! surface of platinum. In
Sec. VI we consider the perturbative approach in the str
potential scattering regime and develop a general con
gence criterion. Lastly, in Sec. VII, the more general int
actingN-‘‘rod’’ case is investigated. It is demonstrated th
if the underlying assumptions of the Dudarev and Whe
approach are retained, then the perturbation expansio
simply renormalized by the additional many-beam inter
tions, thus extending the developed convergence crite
beyond the ‘‘two rod’’ approximation.

II. THE RESONANCE EQUATIONS

For a plane-wave electron with wave vectork, incident on
a semi-infinite crystal, the full crystal Schro¨dinger equation
can be Fourier transformed in the plane parallel to the s
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face to give a series of second-order coupled differen
equations:16

2
\2

2m

d2

dz2
Cg~z!1(

g8
Ug2g8~z!Cg8~z!5

\2kg
2

2m
Cg~z!.

~1!

Ug(z) andCg(z) are the two-dimensional Fourier transform
of the three-dimensional crystal potentialU(r ) and the elec-
tronic wave functionC(z). The g constitute the two-
dimensional reciprocal-lattice vectors of the crystal struct
parallel to the surface, andkg

25k22(kuu1g)2, the energy
\2kg

2/2m being associated with the motion of the electr
normal to the surface. For a negative energy value~complex
kg) this mode corresponds to an evanescent wave propa
ing in a direction parallel to the surface. We note that t
equation forkg defines the resonance parabola for a giv
g and can be seen by plottingkz versusukuuu.

14

Within the ‘‘two rod’’ approximation where only two
‘‘states’’ are considered, the Schro¨dinger equation decouple
into the two equations,12

2
\2

2m

d2

dz2
C0~z!1U0~z!C0~z!

1U2g~z!Cg~z!5
\2k0

2

2m
C0~z!,

2
\2

2m

d2

dz2
Cg~z!1U0~z!Cg~z!

1Ug~z!C0~z!5
\2kg

2

2m
Cg~z!, ~2!

the integral form of which is

C0~z!5Ck0
1 ~z!2E dz8GS z,z8,\2k0

2

2m DU2g~z8!Cg~z8!,

~3!

Cg~z!5E dz8GS z,z8,\2kg
2

2m DUg~z8!C0~z8!, ~4!

whereG(z,z8,E) is the 1D electron Green’s function con
nectingz andz8 at an energyE. In Eq.~3!, the wave function
Ck0

1 (z) is defined by the one-dimensional Schro¨dinger equa-

tion

2
\2

2m

d2

dz2
Ck0

1 ~z!1U0~z!Ck0
1 ~z!5

\2k0
2

2m
Ck0

1 ~z!. ~5!

HereU0(z) is seen as the laterally averaged~semi-infinite!
crystal potential.

Within the present work, we primarily consider scatteri
geometries which are far away from the Bragg condition
the direction perpendicular to the surface. Then scatte
directly from the 1D crystal potential,U0(z), is minimal and
the presence of the crystal can be represented simply b
complex wave vector,k (uk2k0u!uku), the imaginary part
of which characterizes the attenuation due to the poten
The solutions therefore obey the asymptotic conditions
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7172 55P. M. DERLET AND A. E. SMITH
Ck0
1 ~z!5exp~ ik0z!1Rpotexp~2 ik0z! for z→2`

~6!

and

Ck0
1 ~z!5exp~ ikz! for z→`, ~7!

whereRpot is the reflection coefficient due entirely to th
crystal potential. Under these circumstances the free
Green’s functions can be used. That is,

GS z,z8,\2k0
2

2m D 52 i
m

\2k
exp~ ikuz2z8u! for z,z8→`

~8!

and

GS z,z8,\2k0
2

2m D 52 i
m

\2k
exp~2 ik0z1kz8!

for z→2` andz8→`. ~9!

If we assume that the~bulk or surface! electronic state
which contributes to the resonance phenomenon is appr
mately dispersionless, that is, the states are strongly loca
at the their sites, then the resonant part of the Green’s fu
tion can be given by a linear sum over the sites,18 i.e.,

GS z,z8,\2kg
2

2m D 5(
n

fn~z!fn
†~z8!

\2kg
2/2m2e01 iG in/2

, ~10!

wherefn(z) is the localized state at siten, e0 is the on-site
energy, andG in the inelastic width of the ‘‘flat’’ dispersion-
less band.12

III. DERIVATION OF THE RESONANT SCATTERING
REFLECTION COEFFICIENT

Substitution of Eqs.~6!–~10! into the integral equations
~3! and ~4! gives

C0~z!5exp~ ikz!2
im

\2k

3E dz8exp~ ikuz2z8u!U2g~z8!Cg~z8!, ~11!

Cg~z!5
1

\2kg
2/2m2e01 iG in/2

3(
n

fn~z!E dz9fn
†~z9!Ug~z9!C0~z9!, ~12!

and combining these to form an integral equation
C0(z), we have

C0~z!5exp~ ikz!2aE dz8exp~ ikuz2z8u!U2g~z8!

3(
n

fn~z8!E dz9fn
†~z9!Ug~z9!C0~z9!, ~13!

where
D

xi-
ed
c-

r

a5
im

\2k

1

\2kg
2/2m2e01 iG in/2

. ~14!

We consider the structure of the solution of this integ
equation via an iterative method and take the zeroth-or
solution as

C0
~0!~z!5u~2z!exp~ ik0z!1u~z!exp~ ikz!, ~15!

whereu(z) is the unit step function. The zeroth-order a
proximation entails a semi-infinite crystal characterized
its potential~throughk) without the surface resonance ph
nomena. Inserting this into the right-hand side of Eq.~13!,
we obtain the first-order solution

C0
~1!~z!5exp~ ikz!2a(

n
E dz8exp~ ikuz2z8u!

3U2g~z8!fn~z8!E dz9exp~ ikz9!Ug~z9!fn
†~z9!,

~16!

and inserting this back into Eq.~13!, the second-order solu
tion is obtained in a similar manner:

C0
~2!~z!5C0

~1!~z!1a2(
n
E dz8exp~ ikuz2z8u!

3U2g~z8!fn~z8!(
n8

E dz9E dz-Ug~z9!

3fn
†~z9!exp~ ikuz992z-u!U2g~z-!fn8~z-!

3E dz99exp~ ikz99!Ug~z99!fn
†~z99!. ~17!

Inspection of the above equation reveals that to all orders
series can be constructed by the two factors

E dz8exp~ ikuz2z8u!U2g~z8!fn~z8! ~18!

~and its conjugate; with a real potential, the conjugate
U2g is Ug) and

E dzE dz8Ug~z!fn
†~z!exp~ ikuz2z8u!U2g~z8!fn8~z8!.

~19!

Sincefn(z) is localized at the planezn5nd we assume tha
exp(ikuz2z8u) is approximately constant over the range
fn(z) and factor it out of thez8 integration in Eq.~18!,
reducing Eq.~18! to

exp~ ikuz2ndu!Ln . ~20!

Here we have defined following Dudarev and Whelan12

Ln5E dz8U2g~z8!fn~z8! ~21!

and the corresponding conjugate as

Ln
†5E dz8Ug~z8!fn

†~z8!. ~22!



re
ch

f

ai

ite,
pf
a-
rk

-

olu-

n

f-

re-
ay

55 7173PERTURBATIVE APPROACH TO HIGH-ENERGY- . . .
HereLn (Ln
†) is interpreted as the amplitude for the captu

~emission! of the scattering electron by the localized Blo
state.

Following this viewpoint Eq.~19! can be viewed as the
emission of the electron atz by thenth site, its propagation
from z to z8, and its subsequent capture atz8 by then8th site.
Again due to the localized nature of the Bloch states, in
Þn8, Eq. ~19! reduces to exp(kun2n8ud)Ln

†Ln8. For n5n8
such an approximation is an oversimplification and we ret
the form of Eq. ~19!, labeling it asMn . Thus to second
order, the wave function can be written as

C0
~2!~z!5exp~ ikz!2a(

n
uLnu2exp~ ikuz2ndu!exp~ iknd!

1a2(
n

uLnu2exp~ ikuz2ndu!SMnexp~ iknd!

1 (
n8~n8Þn!

uLn8u
2exp~ ikun2n8ud!exp~ ikn8d!D .

~23!

To all orders, a solution forC0(z) can be written as

C0~z!5exp~ ikz!2(
n

exp~ ikuz2ndu! f n , ~24!

where

f n5auLnu2Fexp~ iknd!2aSMnexp~ iknd!

1 (
n1~n1Þn!

exp~ ikun2n1ud!exp~ ikn1d!uLn1
u2D

1a2SMnexp~ iknd!1 (
n1~n1Þn!

3exp~ ikun2n1ud!exp~ ikn1d!uLn1
u2D

3SMn1
exp~ iknd!1 (

n2~n2Þn1!

3exp~ ikun12n2ud!exp~ ikn2d!uLn2
u2D 1 •••G .

~25!

Inspection of the above equation reveals thatf n satisfies the
recurrence equation

f n5auLnu2Fexp~ iknd!2 (
n1~n1Þn!

exp~ ikun2n1ud! f n1G
1aMnf n , ~26!

that is,

f n5
auLnu2

12aMn
Fexp~ iknd!2 (

n1~n1Þn!
exp~ ikun2n1ud! f n1G .

~27!
n

With Ln andMn taken as being the same for each lattice s
Eq. ~27! reduces to a discrete version of the Weiner-Ho
integral equation,19 indicating that there indeed exists an an
lytical solution to the problem at hand. In the present wo
this assumption is retained and the substitutionsuLnu25L2

andMn5M are made,20 giving

f n5
aL2

12aM Fexp~ iknd!2 (
n1~n1Þn!

exp~ ikun2n1ud! f n1G .
~28!

Apart from a factor, this is essentially identical~albeit in a
slightly different form! to the discrete integral equation de
veloped by Dudarev and Whelan.

Note that in Eqs.~11!–~24!, we have assumed thatz.0
and thus used the Green’s function defined in Eq.~8!. For the
scattering problem at hand, we are concerned with the s
tion of C0(z) in the regionz,0, and Eq.~24! can be rewrit-
ten as

C0~z!5exp~ ik0z!2Rresexp~2 ik0z!, ~29!

whereRres is the elastic reflection coefficient given by

Rres52(
n

exp~ iknd! f n . ~30!

IV. DEVIATIONS FROM THE BREIT-WIGNER
SCATTERING FORMULA

For a single scatterer atn50, the resonance reflectio
coefficient reduces to

Rres5
2aL2

12aM
~31!

giving

Rres52
im

\2k0

L2

\2kg
2/2m2e01G in/212 im/\2k0M

,

~32!

which is of the Breit-Wigner form, with the on-site sel
energy termM due to the self-scattering mechanism.

In the strong attenuation limit~i.e., Im k@1/d), the dis-
crete integral equation forf n reduces to

f n5
2aL2

12aM
exp~ iknd! ~33!

giving the reflection coefficient as

R res5
2aL2

12aM(
n

exp~ i2knd!5
2aL2

12aM

1

12exp~ i2kd!

'
2aL2

12aM
. ~34!

Thus, as expected, an array of noninteracting scatterers
duces to the Breit-Wigner law. To consider deviations aw
from this simple form for~arbitrarily! weak attenuation, we
generate the series solution forRres by iterating Eq.~28!,
giving
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7174 55P. M. DERLET AND A. E. SMITH
R res5
2aL2

12aM(
nn8

Ḡnn8exp„ik~n1n8!d…

5
2aL2

12aM(
nn8

G0nḠnn8Gn80 , ~35!

where

Ḡnn85dnn82b (
n1~n1Þn!

Gnn1Fdn1n82b (
n2~n2Þn1!

3Gn1n2S dn2n82b (
n3~n3Þn2!

Gn2n3
••• D G . ~36!

HereGnn85exp(ikun2n8ud) andb5aL2/(12aM).
Thus the reflection coefficient can be expressed as a

turbation expansion with respect to the Breit-Wigner scat
ing vertex. To first order then, the reflection coefficient
duces to

Rres5
2aL2

12aM

1

12exp~ i2kd!
, ~37!

which is precisely the strong attenuation limit obtained e
lier, Eq.~34!. Thus, if uaL2/(12aM)u is within the radius of
convergence of the series in Eq.~36!, to order
uaL2/(12aM)u2, the reflection coefficient exhibits simpl
Breit-Wigner scattering modified by the consta
1/@12exp(i2kd)#.

Higher-order contributions to the resonant reflection co
ficient can also be easily evaluated. For example, the n
order term can be found by evaluating the second term in
~35! and inspection of Eq.~36! reveals the second-order co
tribution to the reflection coefficient to be

Rres5S aL2

12aM D 2 (
nn8~n8Þn!

exp~ iknd!

3exp~ ikun2n8ud!exp~ ikn8d!. ~38!

This can also be easily evaluated giving

Rres5S aL2

12aM D 2S 2exp~ i2kd!

@12exp~ i2kd!#2D . ~39!

The reflection coefficient in its present form@Eq. ~35!# has
a simple interpretation; see Fig. 1. The lowest-order con
bution is constructed from the sum over all sites
G0n(2b)Gn80, each of which represents the propagati
from the surface to the siten, a resonant scatter~of the Breit-
Wigner form! atn, and propagation back to the surface. C
respondingly the second-order contribution is then the s
of the site combinationsn and n8 (nÞn8) of the term
G0n(2b)Gnn8(2b)Gn80; the propagation from the surfac
to siten, a resonant scatter atn, propagation fromn to n8, a
resonant scatter atn8, and the propagation back to the su
face.

Inspection of Eqs.~37! and ~39! reveals that to secon
order, thenth-order coefficients in the expansion ofR con-
tain the factor@12exp(i2kd)#2n. It is not difficult to see that
this is also the case for all higher-order terms since e
internal summation will indirectly involve then50 to `
er-
r-
-

-

f-
t-
q.

i-
f

-
m

h

scattering vertices. Using the straightforward Cauchy defi
tion for the radius of convergence, the radius of converge
for Eq. ~36! will scale asu12exp(i2kd)u indicating noncon-
vergence of the developed representation atkd5Np ~where
N51,2,3, . . . ), that is, at Bragg scattering angles perpe
dicular to the surface. An underlying assumption of t
present model is that the scattering geometry is such that
scattering angle along this direction is in the off-Bragg r
gime; kd5(N11/2)p ~whereN51,2,3, . . . ). Thus in the
present context, we expect Eq.~36! to be convergent if
uaL2/(12aM)u,u12exp(i2kd)u.

V. APPLICATION TO PLATINUM

Comparison between RHEED experiments and compu
tions have met with considerable success for the platin
~111! surface.21 Following Dudarev and Whelan,12 we con-
sider incident 100 keV electrons on the platinum~111! sur-
face at glancing angles satisfying the off-Bragg scatter
condition for the twog vectors (44̄0) and (22̄0). In each
case, for the range of azimuthal angles considered, the
ergy\2kg

2/2m can be negative and thereforekg an evanescent
wave propagating in a direction parallel to the surface.
T5293 K, the relevant 1D Bloch state@in the laterally aver-
aged potential of the~111! planes# is the lowest band which
ranges in energy between 65.75 eV and 65.68 eV. This in
cates an essentially dispersionless band that can be suc
fully parametrized by a 1D nearest-neighbor tight-bindi
Hamiltonian with an on-site energy (e0) of 265.72 eV and a
bandwidth of 0.037 eV. The inelastic bandwidth of this sta

FIG. 1. A diagrammatic representation of the surface resona
reflection coefficient to third order in the Breit-Wigner scatterin
vertex. The first-order term consists of a ‘‘free’’ propagation fro
the surface to a particular lattice plane, followed by a Breit-Wign
scatter, and then a propagation back to the surface; the B
Wigner scattering vertex contains all possible self-scattering eve
within the intermediate plane. The first-order reflection coefficie
is then given by a summation over all such lattice planes. T
second- and third-order terms have a similar interpretation wh
now each summation excludes the starting lattice plane, which
already been taken into account via the Breit-Wigner scattering v
tex.
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55 7175PERTURBATIVE APPROACH TO HIGH-ENERGY- . . .
(G) can be regarded as constant and equal to 18.85 eV.
The total reflection coefficient is the sum of the reson

part and the potential part. For the present scattering ge
etry, the potential part~primarily a function of the glancing
angle! is taken to beRpot5(1.30321 i7.062 12)31023 for
bothg vectors.

Figures 2 and 3 display the magnitude of the sum of
resonant and potential reflection coefficient, as a function
azimuthal angle@the zero azimuthal angle corresponds to
@112̄# azimuth of the~111! surface# for theg vectors 4̄40 and
2̄20, respectively. We plot both the first-order result, us
Eq. ~37!, and the exact result determined by Dudarev a
Whelan.12 For Fig. 2, the 4̄40 case, the first-order perturba
tive result differs from the exact result by no more than 6
whereas in Fig. 3, the 2̄20 geometry, the perturbative resu
differs by up to 8%. We note that to second order, using
~39!, there is no discernible difference between the ex
result and the perturbative result on the scale chosen.

Mathematically this is simply due to the smallness of t
magnitude of the simple Breit-Wigner scattering vertex. F
the 4̄40 case it is approximately 0.04 at resonance, indica
a 4–5% accuracy when using only the lowest-order te

FIG. 2. The surface reflectivity near resonance for the (44̄0)
direction using the exact result and first-order perturbat
result. The parameters used wereM52.31 i0.4 eV and
(m/\2k)L250.61 i0.6 eV.

FIG. 3. The surface reflectivity near resonance for the (22̄0)
direction vector using the exact result and first-order perturba
result. The parameters used wereM57.51 i0.84 eV and
(m/\2k)L251.51 i1.0 eV.
t
m-

e
f
e

g
d

,

.
ct
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g
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For the 2̄20 case at resonance, the magnitude is appr
mately 0.10, indicating a 10% accuracy when using the fi
order result. Upon inspection of Figs. 2 and 3 we see that
is indeed the case.

What perhaps is surprising at first is that the perturbat
expansion gives such a result, that is, the presumed com
cated interference effect of the semi-infinite lattice produ
little deviation of the reflection coefficient from the simp
Breit-Wigner scattering law. Indeed the imaginary part of t
crystal momentum,k, indicates that the scattering process
highly nonlocal; in the present regime it ranges up to
lattice planes from the surface.

The origin of this phenomenon can be seen in the rad
of convergence scaling approximately asu12exp(i2kd)u, in-
dicating a complete breakdown of the present expansio
Bragg scattering angles, while on the other hand, a w
behaved series@provided uaL2/(12aM)u,u12exp(i2kd)u#
at off-Bragg scattering angles. This is simply due to t
~111! component of the wave vectork not being a
reciprocal-lattice vector for the scattering geometries chos
an inherent assumption of the present model in order to
nore potential scattering~the electron diffraction effect!.
Nevertheless, since the resonance vertexis periodic in the
~111! direction, the interference effect occurring in th
higher-order multiple scattering processes is largely incoh
ent, thus not contributing significantly to deviations aw
from the Breit-Wigner form.

The incoherent nature of the scattering between pla
becomes manifest upon inspection ofuḠnn8u, the square of
which can be viewed as an unnormalized probability co
necting planesn andn8. Figure 4 displaysuḠnn8u for a given
n far from the surface and a corresponding range forn8.
Inspection reveals that atn5n8, uḠnn8u51, due to the first
Kroneckerd term in Eq.~36!. Beyond this, there exists a
essentially smooth function, the limit of which, when a
proachingn85n, does not approach unity. This represen
the general effect of incoherent scattering—a dominant n
scattering term superimposed on a much smaller backgro
amplitude. Note that this essential feature remains when c
sideringuḠnn8u closer to the surface.

Thus for platinum and the scattering geometry used,

e

e

FIG. 4. The magnitude of the resonant Green’s function,
~36!, connectingn to n8 ~set equal to 500 to remove the effect
the surface! ~111! planes. This is evaluated for the (44̄0) scattering
direction at resonance (h'12 mrad).
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7176 55P. M. DERLET AND A. E. SMITH
present form of resonant scattering can be regarded as
proximately arising from a semi-infinite array of nonintera
ing Breit-Wigner scatterers. Indeed since the vertex am
tudesM andL ~as well ask) are only known to within 10%
and, moreover, are varied to achieve an adequate fit, it ca
said that the underlying physics still remains that of t
Breit-Wigner form, since our first-order result is also
within less than 10% of the exact result.

VI. EXTENSION TO THE STRONG POTENTIAL
SCATTERING REGIME

The present perturbation expansion breaks down
strong Bragg potential scattering perpendicular to the sur
and the exact solution for the reflection coefficient is need
In this regime where a horizontal Kikuchi line intersects
resonance parabola, the potential scattering must now
treated on an equal footing. In a subsequent paper, Dud
and Whelan15 employ a more realistic electron Green’s fun
tion derived from 1D bulk Bloch wave functions. In th
case, the discrete integral equation forf n becomes

f n5
aL2ty

12aM Fexp~ iknd!2 (
n1~n1Þn!

S exp„ikun2n1ud…

2
r

y
exp„ik~n1n1!d…D f n1G , ~40!

where now

L5E dzb~z,k!U2g~z!fn~z! ~41!

and

E dzE dz8Ug~z!fn
†~z!GS z,z8,\2K0

2

2m DU2g~z8!fn8~z8!.

~42!

Here Eqs.~41! and~42! ~via the Green’s function! use the 1D
Bloch functionb(z,k) corresponding to an electron with en
ergy \2K0

2/2m, the solution to Eq.~5!. In Eqs. ~40!–~42!
there exist the parameterst, y, andr, all of which charac-
terize the surface region and bulk potential properties~see
Dudarev and Whelan15! of the semi-infinite crystal.

Inspection of Eq.~40! reveals that exp(iknd) can be fac-
tored out of the second term in then1 summation. Using
standard resummation techniques, the resulting series ex
sion for the total reflection coefficient can then be written

Rres5
2t(nexp~ iknd!gn

y1r(nexp~ iknd!gn
, ~43!

where
p-

i-

be

r
ce
d.

be
ev

an-
s

gn5
aL2ty

12aM Fexp~ iknd!2 (
n1~n1Þn!

exp~ ikun2n1ud!gn1G ,
~44!

which is of a similar form to Eq.~28!. Such a result also
follows naturally from the exact solution.15 Thus the effect of
potential scattering on the resonance scattering reflection
efficient can be dealt with exactly, with or without know
edge of the exact solution of the ‘‘purely’’ resonance cont
bution. We note that the so-called ‘‘purely’’ resonance ter
contained in Eq.~44!, does also depend on the potential sc
tering in a simple way, via the renormalized verticesM and
Lty.

We thus have an expression for the reflection coeffici
which is essentially exact with respect to the potential sc
tering mechanism, and in the present context, perturba
with respect to resonant scattering. This immediately s
gests that a suitable criterion in which a perturbation exp
sion in terms of the~renormalized! Breit-Wigner scattering
vertex remains valid for arbitrarily large potential scatteri
is

aL2ty

12aM
,u12exp~2ikd!u. ~45!

Here the scattering vertices are now given by Eqs.~41! and
~42!.

VII. BEYOND THE ‘‘TWO ROD’’ APPROXIMATION

In the present section we investigate the application of
convergence criterion beyond the ‘‘two rod’’ approximatio
To generalize the present formalism toN rods we must re-
turn to the full Schro¨dinger equation@Eq. ~1!# from which a
series of coupled integral equations can be obtained:

C0~z!5Ck0
1 ~z!2 (

g8Þ0
E dz8GS z,z8,\2k0

2

2m D
3U2g8~z8!Cg8~z8!, ~46!

Cg~z!5 (
g8Þg

E dz8GS z,z8,\2kg
2

2m DUg2g8~z8!Cg8~z8!,

gÞ0. ~47!

From the procedure outlined at the beginning of Sec.
these equations must be transformed to a single inte
equation in terms of the specular wave functionC0(z). In-
spection of the above reveals that for anN-rod approxima-
tion, whereN.2, the lowest order of such an integral equ
tion will be infinite. This can be demonstrated for the case
N53 in which Eqs.~46! and ~47! reduce to three coupled
integral equations@for notational brevity, we now write the
electron Green’s function asGh(z,z8), whereh can be zero
or an arbitrary two-dimensional reciprocal-lattice vector#,
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C0~z!5Ck0
1 ~z!1E dz8G0~z,z8!U2g1

~z8!Cg1
~z8!

1E dz8G0~z,z8!U2g2
~z8!Cg2

~z8!, ~48!

Cg1
~z!5E dz8Gg1

~z,z8!Ug1
~z8!C0~z8!

1E dz8Gg1
~z,z8!Ug12g2

~z8!Cg2
~z8!, ~49!
Cg2
~z!5E dz8Gg2

~z,z8!Ug2
~z8!C0~z8!

1E dz8Gg2
~z,z8!Ug22g1

~z8!Cg1
~z8!. ~50!

HereCg2
(z) can be eliminated by substituting Eq.~50! into

Eqs.~48! and ~49!, giving
l

ion modes
ing
must in
ontained

ir mutual
ion
C0~z!5Ck0
1 ~z!1E dz8G0~z,z8!U2g1

~z8!Cg1
~z8!1E dz8G0~z,z8!U2g2

~z8!E dz9Gg2
~z8,z9!Ug2

~z9!C0~z9!

1E dz8G0~z,z8!U2g2
~z8!E dz9Gg2

~z8,z9!Ug22g1
~z9!Cg1

~z9!, ~51!

Cg1
~z!5E dz8Gg1

~z,z8!Ug1
~z8!C0~z8!1E dz8Gg1

~z,z8!Ug12g2
~z8!E dz9Gg2

~z8,z9!Ug2
~z9!C0~z9!

1E dz8Gg1
~z,z8!Ug12g2

~z8!E dz9Gg2
~z8,z9!Ug22g1

~z9!Cg1
~z9!. ~52!

The right-hand side of Eq.~52! is still a function ofCg1
(z), which upon repeated substitution into Eq.~51! produces a integra

equation forC0(z) of infinite order.
In the present work we consider the coupling between resonance parabolas arising from two evanescent propagat

parallel to the surface characterized, in part, by the vectorsg and 2g. By virtue of such resonance parabolas appear
distinctly separate in typical experimental and numerical RHEED spectra, the coupling between two such modes
general be weak and therefore it seems, for now, a good approximation to consider only the linear coupling terms c
in Eqs. ~51! and ~52!. Substituting Eq.~52! into ~51!, with g15g andg252g, and discarding higher-order terms~beyond
linear! in Ug22g1

(z9)5U62g(z9), gives a third-order integral equation entirely in terms ofC0(z):

C0~z!5Ck0
1 ~z!1E dz8G0~z,z8!U2g~z8!E dz9Gg~z8,z9!Ug~z9!C0~z9!1E dz8G0~z,z8!Ug~z8!

3E dz9G2g~z8,z9!U2g~z9!C0~z9!1E dz8G0~z,z8!U2g~z8!E dz9Gg~z8,z9!U2g~z9!

3E dz-G2g~z9,z-!U2g~z9!C0~z!1E dz8G0~z,z8!Ug~z8!

3E dz9G2g~z8,z9!U22g~z9!E dz-Gg~z9,z-!Ug~z9!C0~z!. ~53!

Here the first three terms correspond to two independent resonance modes and the last two terms contain the
interaction. To consider the form of the interaction terms, we substitute the explicit form of the resonant Green’s funct@Eq.
~10!# into the last term~say! of Eq. ~53!:

E dz8G0~z,z8!
(nfn~z8!Ug~z8!

\2k2g
2 /2m2e01 iG in/2

(n8*dz9fn
†~z9!U22g~z9!fn8~z9!

\2kg
2/2m2e01 iG in/2

E dz-fn8
†

~z-!Ug~z-!C0~z-!. ~54!

It is the integral,*dzfn
†(z)U2g(z)fn8(z), which couples the two modes together and due to the localized nature offn(z) can

be approximated asdn,n8*dzufn(z)u2U2g(z), reducing Eq.~54! to

E dz8G0~z,z8!
(nfn~z8!Ug~z8!Tg,n

~\2k2g
2 /2m2e01 iG in/2!

E dz-fn
†~z-!Ug~z-!C0~z-!, ~55!

where we have defined



7178 55P. M. DERLET AND A. E. SMITH
Tg,n5
1

~\2kg
2/2m2e01 iG in/2!

E dzufn~z!u2U22g~z!. ~56!

Thus the integral equation forC0(z) @Eq. ~53!# reduces to

C0~z!5Ck0
1 ~z!1E dz8G0~z,z8!(

n
fn~z8!E dz9fn

†~z9!S U2g~z8!Ug~z9!

\2kg
2/2m2e01 iG in/2

1
Ug~z8!U2g~z9!

\2k2g
2 /2m2e01 iG in/2

1
U2g~z8!T2gU2g~z9!

\2kg
2/2m2e01 iG in/2

1
Ug~z8!TgUg~z9!

\2k2g
2 /2m2e01 iG in/2

DC0~z9!, ~57!
a
e
he

a
n-
r
t

n
ti
where Tg5Tg,n ; that is, each plane is again regarded
equivalent. We note that~both! the interaction terms becom
a maximum for an incident electron direction in which t
two resonance parabola intersect; i.e., when both\2kg

2/2m
and\2k2g

2 /2m are equal toe0.
From a diagrammatic perspective, Eq.~57! has a simple

interpretation. The first two terms@ignoring Ck0
1 (z)# corre-

spond to independent resonance modes (g and 2g) and
therefore involve the capture and release of an electron
particular plane. The remaining interaction terms will i
volve the capture by a mode, sayg, its transferral to the othe
mode,2g, via the amplitudeTg , and its release from tha
mode. Due to the approximation outlined between Eqs.~54!
and ~55!, these processes all occur on the same plane.

To investigate the perturbative solution, we setTg to zero
and note that Eq.~57! then corresponds to two independe
resonance modes. The solution for the resonant reflec
coefficient can then be immediately written down as

R res5
2~agLgLg

†1a2gL2gL2g
† !

12agMg,g2a2gM2g,2g
(
nn8

G0nḠnn8Gn80 ,

~58!
n
in
i-
fo
th
to
g
s
-
nd

tt
is
s

t a

t
on

whereḠnn8 is defined in an analogous manner to Eq.~36! of
Sec. IV ~with b suitably redefined!. In the above we have
used the following definitions:

ag5
im

\2k S 1

\2kg
2/2m2e01 iG in/2

D , ~59!

Lg5E dz8U2g~z8!fn~z8!, ~60!

and

Mg,g85E dzE dz8 Ug~z!fn
†~z!

3exp~ ikuz2z8u!U2g8~z8!fn8~z8!. ~61!

The generalization to nonzeroTg , for the resonant reflection
coefficient, then becomes clear:
Rres5
2~agLgLg

†1a2gL2gL2g
† 1agTgLgL2g

† 1a2gT2gL2gLg
†!

12agMg,g2a2gM2g,2g2agTgMg,2g2a2gT2gMg,2g
(
nn8

G0nḠnn8Gn80 , ~62!
o a

nd
so-
rise
h
oni-
the
sid-
ince
the
where Eqs.~59!–~61! still apply andb is again suitably re-
defined inḠnn8 @Eq. ~36!#.

Thus, under the linear coupling approximation, the co
vergence criterion developed in Secs. IV and VI rema
intact, albeit slightly modified. At first glance, the approx
mation of linearity in the coupling seems essential
this to be the case. This is in fact incorrect. Indeed,
underlying approximation for the convergence criterion
remain valid is entailed in the couplin
integral, *dzfn(z)U2g(z)fn8

† (z), being approximated a
dn,n8*dzufn(z)u2U2g(z); that is, allowing interactions be
tween modes to occur only on the same plane. Thus, u
this approximation, the inclusion of~higher-order! couplings
between modes simply renormalizes the fundamental sca
ing vertex at each plane; the interplane scattering mechan
-
s

r
e

er

er-
m

remaining unchanged. This result is easily generalized t
higher number of interacting ‘‘rods.’’

VIII. DISCUSSION AND CONCLUDING REMARKS

The present viewpoint, developed by Dudarev a
Whelan, indicates that in the regime considered, the re
nance parabolas encountered in the RHEED technique a
primarily from the interaction of the incident electron wit
bulk electronic states. Such a statement is of course can
cal in the present context due to the localized nature of
electronic states probed by the scattering geometries con
ered; the surface as such does not play a dynamical role s
it does not effect the electronic structure. Furthermore in
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present model the surface plane is indistinguishable fr
that of the bulk.

In the simplest case, the addition of surface structure
the present model would take the form of a modification
the Breit-Wigner scattering vertex for the surface plane~s!
~for example, the simplest case is atn50) and/or the lattice
spacing between the surface planes. The physical origin
be a true ‘‘reconstruction’’ of the localized surface state~al-
beit minor in the case of platinum!, a crude average due t
weak surface roughness or physisorption. Again for platin
such an effect would be minor due to the states~and indeed
the surface states22! near the Fermi level playing the primar
role in any surface chemistry phenomenon, whereas
states considered in the present work are tightly bound
high above the Fermi level. In any event, such a represe
tion for deviations from the atomically flat case can be
best regarded as a crude approximation, for it assumes
the resonant Green’s function retains its form at the surf
plane; a fortuitous assumption. Nevertheless, to deviate
little as possible from the present model, such an approxi
tion is briefly considered.

The perturbation expansion for the resonant reflection
efficient @Eq. ~35!; in these preliminary considerations w
only investigate the case of weak potential scattering# can be
easily modified to admit a different surface term. If we lab
the surface Breit-Wigner scattering vertex ass and the bulk
as b, it is not difficult to see that the first-order resona
reflection coefficient becomesRres5s1b exp(i2kd)/@1
2exp(i2kd)#, which is linear ins. It turns out that this lin-
earity in s is retained if we consider the next term in th
expansion ofR, an important result for platinum since w
needed only to go to second order to obtain a result alm
identical to the exact calculation; note we assume boths and
b are of similar order. Thus the effect of surface structure
the resonance reflection coefficient is linear in the pres
regime. The realization of such a relation in the experimen
realm would allow a simple ‘‘extraction’’ of the surfac
structure if the atomically flat case could also be experim
tally realized.

In the present formalism, the general problem of surfa
roughness~which may include stepped surfaces or surfa
islands! has been associated with the same difficulties
countered in the numerical approaches to calcula
RHEED spectra. If disorder occurs over a range of scale
simple average of the surface roughness will no longer
py
e,

-
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to
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fice; higher-order correlation functions are needed to
scribe the disorder and the mean of the surface become
ill-defined quantity due to strong fluctuations. Under the
circumstances, a straightforward two-dimensional Fou
decomposition of the Schro¨dinger equation@Eq. ~1! in Sec.
II # is no longer justified and any ensuing method of solut
is untenable. In this case, a new approach must be develo
such as a dynamical treatment of the fluctuating compon
of the crystal potential.23 We note, however, that even und
these conditions, if the localized nature of the in-plane sta
is still maintained, then the mechanism of coherent and
coherent scattering between the planes will still be of pre
lence. Thus the general structure of the perturbation theor
apart from the on-plane scattering vertex which could hav
significantly different form and vary from plane to plane—
developed here is retained.

In conclusion, the pioneering work of Dudarev an
Whelan has been reexpressed in terms of a perturbation
ries with respect to a simple Breit-Wigner scattering vert
For the case of weak potential scattering in platinum,
exact expression for the resonant reflection coefficient can
replaced by the lowest-order term to within the uncertaint
of the scattering parameters—the primary scattering mec
nism still being that of the Breit-Wigner form. From a
analysis of the convergence properties and the full interpl
resonant electronic Green’s function, this has been show
arise from incoherent scattering between the planes, a re
of the underlying assumption of the minimal potential sc
tering approximation. For these very reasons, in the cas
strong potential scattering, the perturbation expansion is
pected to break down and the exact expression for the r
nant reflection coefficient must be utilized. The intermedi
regime between weak and strong potential scattering
nevertheless been investigated from a perturbative pers
tive and a resulting convergence criterion developed. T
general formalism is also found to be applicable to the int
acting many-rod problem when the underlying assumption
strongly localized states is retained.
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