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Perturbative approach to high-energy-electron surface-resonance scattering
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Recently, an exact expression has been developed to determine the elastic reflection coefficient for the
phenomenon of surface resonance in reflection high-energy-electron diffrg&tidn Dudarev and M. J.
Whelan, Phys. Rev. Letf72, 1032(1994]. Following this proposal, diagrammatic techniques are used to
obtain a series expansion for the resonant reflection coefficient with respect to an array of noninteracting
Breit-Wigner scatterers. Application to th@11) surface of platinum within the weak-potential scattering
regime reveals, within the uncertainty of the scattering parameters, that only the lowest-order result is required.
This disputes the contentidim this casgthat the Breit-Wigner scattering law is violated. From an analysis of
the convergence properties of the series, it is found that this is due primarily to incoherent resonant scattering
within the bulk between th¢l1l) planes. In turn, its origin is the off-Bragg scattering condition associated
with weak-potential scattering. On the other hand, for the case of strong-potential scattering in which the Bragg
condition is satisfied, the perturbation series breaks down and the exact solution is needed. We then develop a
renormalized perturbation expansion with respect to the Breit-Wigner scattering vertex in the intermediate
regime, where there is still strong-potential scattering. Correspondingly, a more general convergence criterion
is determined. We conclude by showing that the developed perturbation expansion and convergence criterion
retain their form for an arbitrary number of interacting resonant md&163-182607)02512-5

[. INTRODUCTION the transmission case, must be solved for, to fully take into
account the backscattered amplitudes so important to the re-
With improving experimental techniques, reflection highflection phenomenon.
energy electron diffractiofRHEED) and reflection electron A typical RHEED pattern contains a range of diffraction
microscopy(REM) have reemerged as methods capable ophenomena. The direct Bragg scattering spots arising from
providing information on surface structure and growflr a  the surface and bulk periodicity are compounded by second-
review, see Ref. )1 Owing to the strength of the interaction ary Bragg scattering of inelastically scattered electrons, the
potential, electron diffraction is inherently “dynamical,” as so-called Kikuchi lines and envelof&hese features prima-
opposed to say x-ray diffraction. That is to say, in generakily arise from potential scattering: the diffracted beam re-
there are many closely coupled diffraction states. Accordflecting back into the vacuum. Additionally, there is the case
ingly, the problem is computationally intensive with many where the scattered beam has a complex wave-vector com-
states closely coupled and hence dense matrices are requingednent perpendicular to the surface and is therefore an eva-
to be dealt with. This increases the difficulty of “inverting” nescent wave propagating parallel to the surface. In this case
results to determine crystallographistructura] data from the corresponding diffraction spot disappears from the
the combination of experimental data with computation.  screen. For certain incident electron energies and directions,
The elastic transmission case has, however, been aduch evanescent modes can be close in energy to bound elec-
equately dealt with for many yeafs.In this case only the tronic statés) within the crystal. This results in an increase
forward scattering amplitude is needed and thus the fulbf the coupling between the specular and evanescent compo-
three-dimensionalbulk) Schralinger equation is retained. nents, and therefore an associated increase in the intensity of
This gives a series of coupled algebraic equations over athe former. It is such an increase in the specular intensity that
reciprocal lattice vectors parallel to the direction of the sur-in the present context it is referred to as ‘“resonance
face. Great insight in the transmission case can be providestattering.”®~’ This appears on a RHEED pattern as a pa-
by the use of the so-called “two beam” approximation cor- rabola and is often referred to as a “resonance parabola.” In
responding to two scattering stat@se., the incident beam general a number of such parabolas exist, each correspond-
together with one diffracted beanilhe resulting 22 ma- ing to a two-dimensional reciprocal-lattice vector that forms
trix is essentially the simplest nearly free electron or pseudothe real part of the wave vector for tlievanescentpropa-
potential method of solution which can afford a simpler yetgation mode. When such resonance parabolas intersect hori-
greater insight than mere computation. zontal Kikuchi lines or, indeed, the first-order diffraction
For the case of RHEED, on the other hand, the surfacspots, there is a large increase in intensity in these directions,
geometry plays a greater role since it is a reflection techniqueorresponding to an improved contrast in the resulting sur-
and precludes such a simple approach. To gain a simildiace image.
physical insight into the diffraction phenomenon, the “two  There has been much debate as to the nature of the elec-
beam” approximation must be replaced by the “two rod” tronic stat¢s) that are involved in this resonance phenom-
approximation. In this, a pair of coupled differential equa-enon. Early theoretical wofR takes the view that surface
tions rather than a pair of coupled algebraic equations, as istates play the primary role. However, for the case of atomi-
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cally flat crystal surfaces it has been conjectdfédthat face to give a series of second-order coupled differential
such resonances arise from multiple scattering primarilyequations®
within the bulk of the solid. In an illuminating series of re-

— . 2
cent papers, Dudarev and Whelfart® have succeeded in h? d? Rk
establishing analytic techniques to consider this aspect of the ~ 2m g2 Yo(@+ E Ug-g (Vg (2) =57 Wo(2).
surface diffraction problem. In particular, by mapping the 9 (1)

resonance scattering process onto the one-dimensional semi-
infinite tight binding Hamiltonian, they determine an exactUq(2) and¥ y(z) are the two-dimensional Fourier transforms
analytical expression for the resonant reflection coefficienff the three-dimensional crystal potentia(r) and the elec-
for the case in which there is minimal potential tronic wave functionW(z). The g constitute the two-
scattering® **and for the case of arbitrarily strong potential dimensional reciprocal-lattice vectors of the crystal structure
scattering® corresponding to an intersection between a hori-parallel to the surface, anki=k?—(k+g)?, the energy
zontal Kikuchi line and a resonance parabola. We note thahzk§/2m being associated with the motion of the electron
in their calculation, as in the present work, the calculatechormal to the surface. For a negative energy véammplex
electron intensities are presented as a function of inciderkty) this mode corresponds to an evanescent wave propagat-
electron direction. In a realisitic RHEED spectrum, the ex-ing in a direction parallel to the surface. We note that the
tent of the contribution of such a component will be a func-equation fork, defines the resonance parabola for a given
tion of the electron distribution due to convergent beamg and can be seen by plottirig versus|k|||.14
RHEED (CB-RHEED conditions and/or inelastic scattering ~ Within the “two rod” approximation where only two
(i.e., thermal diffuse scattering or phonon scatterinthis  “states” are considered, the Sclilinger equation decouples
aspect is not considered in the present model: the calculatedto the two equation¥’
intensities are decoupled from the inelastic processes and
cannot be compared to thpgimary Bragg-scattered peak in- h? d?
tensities. T 2mdZA
In this paper we will show how Dudarev and Whelan’s
approach can be recast and further clarified by the use of
diagrammatic techniques that have been applied to a wide
range of phenomend.In addition, we demonstrate how the
resonance reflection coefficient can be expressed as a seriesz?2 (2
expansion with respect to an array of noninteracting planes 5~ 52V ¢(2) T Uo(2)W(2)
(parallel to the surfageeach of which is of the Breit-Wigner

Vo(2)+Uo(2)¥o(2)

h2k3
+U (V¥ (2) =5 —Wo(2),

scattering form. In Sec. Il, we introduce the standard “two ﬁzké
rod” approximation in its integral form, and following Du-  +U¢(2)¥o(2)=— =V ((2), ()

darev and Whelan, we choose the form of the crystal elec-

tronic Green’s functions under the assumption of minimalthe integral form of which is
potential scattering. In Sec. lll, a discrete integral equation is

derived via an iterative process, the solution of which can be . , , 7Ky , ,

used to obtain the resonant reflection coefficient. Section IV \I'O(Z):\I’ko(z)_f dz'G| 2,2',5 = |U_((2')W((Z'),
contains the evaluation of the reflection coefficient for the ®)
simple cases of a single scattering plane and an array of

noninteracting scatterers, giving the standard Breit-Wigner 22

form. Using diagrammatic techniques, a perturbation expan- ‘I’g(Z)=J dZ’G( Z,Z’,z—mg) Ug(Z)Wo(2"), (4
sion with respect to the Breit-Wigner form is then developed

and its validity investigated. In Sec. V, we compare our perwhere G(z,z',E) is the 1D electron Green’s function con-
turbative calculation to the exact analytical result of Dudarevhectingz andz’ at an energg. In Eq.(3), the wave function

and Whelan for the case of tli¢11) surface of platinum. In " (7) is defined by the one-dimensional Sitliger equa-
Sec. VI we consider the perturbative approach in the strong °

potential scattering regime and develop a general conver-
gence criterion. Lastly, in Sec. VII, the more general inter- 2 g2 72K2

actingN-"rod” case is investigated. It is demonstrated that —— =V (2)+Uy(2)V} (2)= —Oqf:(z)_ (5)
if the underlying assumptions of the Dudarev and Whelan 2mdz "o 0 2m o

a_pproach are r(_atained, then th(_a_ perturbation expgnsion ﬁereUO(Z) is seen as the laterally averagekmi-infinite
simply renormalized by the additional many-beam '”terac'crystal potential.

tions, thus extending the developed convergence criterion “\within the present work, we primarily consider scattering

beyond the “two rod” approximation. geometries which are far away from the Bragg condition in

the direction perpendicular to the surface. Then scattering

directly from the 1D crystal potentiallo(z), is minimal and

the presence of the crystal can be represented simply by a
For a plane-wave electron with wave veckgiincident on  complex wave vectork (|« —Kko|<|«|), the imaginary part

a semi-infinite crystal, the full crystal Schiimger equation of which characterizes the attenuation due to the potential.

can be Fourier transformed in the plane parallel to the surThe solutions therefore obey the asymptotic conditions

#2K2

II. THE RESONANCE EQUATIONS
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W\ (2)=exp(ikoz) + RyoeXp —ikgz)  for z— —o im 1
(6) hk hiokgl2m—eq+il,/2

(14)

and We consider the structure of the solution of this integral

W (z)=explixz) for z—, @) equation via an iterative method and take the zeroth-order

0 solution as

where R, is the reflection coefficient due entirely to the . .
pot O = p( —

crystal potential. Under these circumstances the free 1D Vo' (2) = 0(=2)explikoz) + O(z)explix2), (15

Green'’s functions can be used. That is, where 6(z) is the unit step function. The zeroth-order ap-

proximation entails a semi-infinite crystal characterized by

clzz ’k; — explic|z—2'|)  for 2,2/ — its potential(through ) without the surface resonance phe-
' 2m 72k « : nomena. Inserting this into the right-hand side of Etp),
(8) we obtain the first-order solution
and
Wi (z)=explixz)—a, fdz’exp(ix|z—z’|)
| 112K3 m _ , n
G| z,z om ——|mexp(—|koz+f<z) , , , o o
XU_q(Z") pn(z )f dZ'exp(ikz")Uy(Z") pn(2"),
for z——o andz’'—w. 9

(16)

If we assume that thebulk or surfacg electronic state  ang inserting this back into E413), the second-order solu-
which contributes to the resonance phenomenon is approxjion is obtained in a similar manner:

mately dispersionless, that is, the states are strongly localized

at the their sites, then the resonant part of the Green'’s func- 2 (1 ) ) ) ,
tion can be given by a linear sum over the sitése., Y5'(2)=¥5'(2)+a 2 f dz'exp(ik[z—2'])
1i%kg $n(2) Bi(2)
’ 9| _ n n ’ ’ ’ " "

G(Z’Z ! 2m) > PK2m— et T2 O XU o2 9n(2) 2 fdifdz Vol
where ¢,,(2) is the localized state at site e, is the on-site X Mz explik|Z" —2"|)U_y(2") ¢ (Z")
energy, and’;, the inelastic width of the “flat” dispersion-
less band?

XJ' dZ’”’quiKZW)Ug(ZW)(}5:;(2””). (17)

Ill. DERIVATION OF THE RESONANT SCATTERING

Inspection of the above equation reveals that to all orders the
REFLECTION COEFFICIENT

series can be constructed by the two factors
Substitution of Egs(6)—(10) into the integral equations

(3) and(4) gives f dz'explik|z—2'[)U_(2") ¢n(2') (18)
im . . . . .
W o(7)=exn(ixz)— (and its conjugate; with a real potential, the conjugate of
ol2)=explinz) = 3 U_gis Uy and

XfdZ’eXF(iK|Z_Z'|)U—Q(Z')‘Pg(2,), (11) f dZJ dZ,Ug(Z)(Z):l(Z)quiK|Z_Z,|)U,g(z,)¢)nr(z,).
(19

Since¢,(2) is localized at the plane,=nd we assume that
explx|z—Z2'|) is approximately constant over the range of

\I,g(z) =

h2k5/2m— eq+iT /2

¢n(z) and factor it out of thez’ integration in Eq.(18),
xS 9u(2) [ 42942 U(Z), (12 reducing a1 to
n
and combining these to form an integral equation for expli k|z—nd)A,. (20
WVo(2), we have Here we have defined following Dudarev and Whéfan
\1’0(2)=e><p(i:<2)—af dz'explix|z—2'|)U_¢(2') An=fdz’U,g(z’)¢>n(z’) (21)

and the corresponding conjugate as

xS g(2) f A2 SN2 o), (13)
where Ang dz’Uy(z) ¢l(2). (22
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HereA, (A]) is interpreted as the amplitude for the captureWith A, andM, taken as being the same for each lattice site,

(emission of the scattering electron by the localized Bloch Eq. (27) reduces to a discrete version of the Weiner-Hopf

state. integral equatiort? indicating that there indeed exists an ana-
Following this viewpoint Eq.(19) can be viewed as the lytical solution to the problem at hand. In the present work

emission of the electron atby thenth site, its propagation this assumption is retained and the substitutiphg?= A2

fromztoz’, and its subsequent capturezaby then’th site. ~ andM,=M are madé? giving

Again due to the localized nature of the Bloch stateq) if

2
#n’, Eq. (19) reduces to expﬂn—n’|d)AlAn/. For n=n’ f aA ext(iknd) — ext(ikln—n.ld)f
such an approximation is an oversimplification and we retain " 1—aM Rixnd) nl(n§1:¢n) Pi ] 1/d) M|’
the form of Eq.(19), labeling it asM,. Thus to second (28

order, the wave function can be written as Apart from a factor, this is essentially identid@lbeit in a

slightly different form to the discrete integral equation de-
W2(z)=explixz)—a, |An|%explik|z—nd|)exp(i knd) veloped by Dudarev and Whelan.
n Note that in Eqs(11)—(24), we have assumed that>0
and thus used the Green'’s function defined in @By.For the
+a2>, |A,|2expi K|z—nd|)( M exp(i knd) scattering problem at hand, we are concerned with the solu-
" tion of ¥(2) in the regionz<0, and Eq(24) can be rewrit-
ten as
+ |An,|2exp(iK|n—n’|d)exr(i;<n’d)).

n’(n’ #n)

W o(z) = explikoz) — Re£XP —iko2), (29)
(23)  whereR,is the elastic reflection coefficient given by
To all orders, a solution foWy(z) can be written as

Re= — 2, explixnd)f,. (30)
n
Vo(z)=expikz)— >, explic|z—nd)f,, (24
n
IV. DEVIATIONS FROM THE BREIT-WIGNER
where SCATTERING FORMULA
. . For a single scatterer at=0, the resonance reflection
fn=a|A|? expli Knd)—a( M pexpli knd) coefficient reduces to
_ _ —aA?
+ > exp(|f<|n—n1|d)exp(|Knld)|Anl|2) Ries=Tam (32)
ni(ny#n)
giving
+a? Mqexpiknd)+ >,
ni(ny#n) im A?
Ries— — - ,
. . €S hPko A2KGI2m— e+ Iin/2+ —im/f?koM
X exp(i k|n—ny|d)exp(i knyd)| A, |? (32
which is of the Breit-Wigner form, with the on-site self-
x| M, expli knd) + 2 energy termM due to thg self-spattering mechanism. _
1 ny(Ny#n;) In the strong attenuation limii.e., Im «>1/d), the dis-
crete integral equation fdr, reduces to
X exp(i k|ng—np|d)exp(i knpd)| Ay |7 | + } aA?
f.= expi knd) (33
(25) " 1-aM

Inspection of the above equation reveals thasatisfies the ~ 9iving the reflection coefficient as
recurrence equation

. —aA2E di2wnd) —aA? 1
=——> expi2xnd)= -
. . s 1—aM 1-aM 1—expi2«d
fo=alAq? expliknd)— >, exp(|;<|n—n1|d)fn} " Xp(i2rcd)
ny(ny#n) 1 _ 2
~ aA 34)
+aMyfy, (26) “1cam- (
that is, Thus, as expected, an array of noninteracting scatterers re-
alA,? duces to the Breit-Wigner law. To consider deviations away
_ n ; ; from this simple form for(arbitrarily) weak attenuation, we
=——F— expixnd)— explix|n—nq|d)f, |. : . . .
" 1—aM, Hiknd) nl(%en) Ri«d 1/d) ”1} generate the series solution &, by iterating Eq.(28),

(27 giving
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—aA? Surface Layer
R = 2 Gnn,exp(| k(n+n’)d) ol
l1-aMy
A2 R I esessseseees First Order Term
—a
= 1= aMZ GonGnnGnro, (35
’i""X""E"")"""""' Second Order Term
where > >
G e i om0y ThidOrderTem
Ghn=0nn—b z Gnnl[ nyn’ —b 2 > R g R > )
ny(ni#n) Na(Ny#ny)
xXG 1n2( nyn’ —b Z anng T ” (36) » Lattice Plane
n3(n3¢ n2)
Here G, = exp( Kln—n’|d) andb= aAZ/(l— aMm). —p»——  Electron Greens Function: G,
Thus the reflection coefficient can be expressed as a per-
turbation expansion with respect to the Breit-Wigner scatter- e Breit-Wigner Scattering Vertex
ing vertex. To first order then, the reflection coefficient re-
duces to FIG. 1. A diagrammatic representation of the surface resonance
5 reflection coefficient to third order in the Breit-Wigner scattering
R.— —aA 1 vertex. The first-order term consists of a “free” propagation from
ST 1—aM 1—exp(i2«d)’ 37 the surface toa particular lattice plane, followed by a Breit-Wigner

scatter, and then a propagation back to the surface; the Breit-
which is precisely the strong attenuation limit obtained earyvigner scattering vertex contains all possible self-scattering events
lier, Eq.(34). Thus, iflaA?/(1—aM)| is within the radius of  within the intermediate plane. The first-order reflection coefficient
convergence of the series in EQq(36), to order is then given by a summation over all such lattice planes. The
|aA?/(1—aM)|?, the reflection coefficient exhibits simple second- and third-order terms have a similar interpretation where
Breit-Wigner scattering modified by the constant now each summation excludes the starting lattice plane, which has
1[1—exp(2«d)]. already been taken into account via the Breit-Wigner scattering ver-

Higher-order contributions to the resonant reflection coefi€x.

ficient can also be easily evaluated. For example, the next-
order term can be found by evaluating the second term in Ecgcattering vertices. Using the straightforward Cauchy defini-
(35) and inspection of Eq.36) reveals the second-order con- tion for the radius of convergence, the radius of convergence
tribution to the reflection coefficient to be for Eq. (36) will scale as|1—exp(2«d)| indicating noncon-
vergence of the developed representatiordt N7 (where
N=1,2,3...), that is, at Bragg scattering angles perpen-
dicular to the surface. An underlying assumption of the
present model is that the scattering geometry is such that the
><exp(if<|n—n |d)exp(ixn’d). (38  scattering angle along this direction is in the off-Bragg re-
gime; kd=(N+1/2)7 (whereN=1,2,3...). Thus in the
present context, we expect E¢36) to be convergent if
2exp(i2«d) ) |aA?/(1—aM)|<|1—exp(2«d)|.

[1—exp(i2«d)]? (39

aAZ 2

1-aM

2 exp(i knd)

(n"#n)

Rres

This can also be easily evaluated giving
aA2 2

1-aM

res

. _ L V. APPLICATION TO PLATINUM
The reflection coefficient in its present fofffag. (35)] has

a simple interpretation; see Fig. 1. The lowest-order contri- Comparison between RHEED experiments and computa-
bution is constructed from the sum over all sites oftions have met with considerable success for the platinum
Gon(—b)G, 9, each of which represents the propagation(lll) surface?? Following Dudarev and Whelalr’r,we con-
from the surface to the sitg, a resonant scattéof the Breit-  sider incident 100 keV electrons on the platingb1l) sur-
Wigner form) atn, and propagation back to the surface. Cor-face at glancing angles satisfying the off-Bragg scattering
respondingly the second-order contribution is then the suncondition for the twog vectors (44) and (2®). In each
of the site combinationsm and n’ (n#n’) of the term case, for the range of azimuthal angles considered, the en-
Gon(—b)G,n (—Db)G,o; the propagation from the surface ergyﬁzké/Zm can be negative and therefdegan evanescent
to siten, a resonant scatter af propagation froomton’, a  wave propagating in a direction parallel to the surface. At
resonant scatter at’, and the propagation back to the sur- T=293 K, the relevant 1D Bloch stafin the laterally aver-
face. aged potential of th€111) planeg is the lowest band which
Inspection of Eqs(37) and (39) reveals that to second ranges in energy between 65.75 eV and 65.68 eV. This indi-
order, thenth-order coefficients in the expansion Rfcon-  cates an essentially dispersionless band that can be success-
tain the factof 1—exp(2«d)]™". It is not difficult to see that fully parametrized by a 1D nearest-neighbor tight-binding
this is also the case for all higher-order terms since eackamiltonian with an on-site energg{) of —65.72 eV and a
internal summation will indirectly involve th@=0 to « bandwidth of 0.037 eV. The inelastic bandwidth of this state
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0.05 . T . T : : , 0.20 : "
= 3 Exact Solution |6§
5 004} L Perturbative Result i b4

(-3 - c
< S o015
2 ]
= c
£ 0.03 5
=
3 o 010}
= 0.02 2
o (1]
p §
2 o001 S oosl
£ £

- -
U=) 0.00 L 1 s 1 N 1 . 3
0 5 10 15 20 o 000 , 1 .
b od ) ' | \ ,
Azimuthal Angle i (mrad) n'-100 n'-50 n n'+50 n' +100

(111) Lattice Plane Index (from surface) n

G e e 1. & The magritde of th resonant Greis ncton, 6,
- 36), connectingn to n’ (set equal to 500 to remove the effect of
result. The parameters used wers1=2.3+i0.4 eV and (36 9 ( q —

(M/A2k)A2=0.6+10.6 V. the sgrfaob(lll) planes. This is evaluated for the4@) scattering
direction at resonancep~12 mrad).

(T") can be regarded as constant and equal to 18.85 eV. the 20 t th itude i .

The total reflection coefficient is the sum of the resonam.':or € case a resona(}nce, € magnitude 1S approxi-
part and the potential part. For the present scattering geo _3tely O.1€,bnd|catlng a 3.‘0/0 ?('::(;ura;y Wgesn using t?ﬁ ];'rtf]t
etry, the potential partprimarily a function of the glancing orderresuft. Lpon inspection ot Hgs. 2 and > we see that this

. a . "3 is indeed the case.
Egﬁ:eg '\;Q’eé?gresn 10 beRpor=(1.3032¢17.062 12)< 10" for What perhaps is surprising at first is that the perturbation

expansion gives such a result, that is, the presumed compli-

Figures 2 and 3 display the magnitude of the sum of the ated interference effect of the semi-infinite lattice produces
resonant and potential reflection coefficient, as a function of; o . L pr¢
ittle deviation of the reflection coefficient from the simple

azimuthal angl¢the zero azimuthal angle corresponds to the

i Breit-Wigner scattering law. Indeed the imaginary part of the
[112] azimuth of the(111) surfacg for theg vectors 40 and  .v.ta1 momentums, indicates that the scattering process is

220, respectively. We plot both the first-order result, usinghigmy nonlocal; in the present regime it ranges up to 50
Eqg. (37), and the exact result determined by Dudarev anqgattice planes from the surface.
Whelan!? For Fig. 2, the 40 case, the first-order perturba-  The origin of this phenomenon can be seen in the radius
tive result differs from the exact result by no more than 6%,of convergence scaling approximately |as- exp(2«d)|, in-
whereas in Fig. 3, theZD geometry, the perturbative result dicating a complete breakdown of the present expansion at
differs by up to 8%. We note that to second order, using EqBragg scattering angles, while on the other hand, a well-
(39), there is no discernible difference between the exacbehaved seriefprovided|aA?/(1—aM)|<|1—exp(2«d)|]
result and the perturbative result on the scale chosen. at off-Bragg scattering angles. This is simply due to the
Mathematically this is simply due to the smallness of the(111) component of the wave vectok not being a
magnitude of the simple Breit-Wigner scattering vertex. Forreciprocal-lattice vector for the scattering geometries chosen,
the 440 case it is approximately 0.04 at resonance, indicatingn inherent assumption of the present model in order to ig-
a 4-5% accuracy when using only the lowest-order termnore potential scatteringthe electron diffraction effegt
Nevertheless, since the resonance veiteperiodicin the
(111) direction, the interference effect occurring in the

0.14 T T ; T y T higher-order multiple scattering processes is largely incoher-
= o2 N e oo it ] ent, thus not co.ntributing significantly to deviations away
Eo ool = 1 from thg Breit-Wigner form. '
= The incoherent nature of the scattering between planes
S o008 becomes manifest upon inspection |&,,|, the square of
8 oosl which can be viewed as an unnormalized probability con-
T - necting planes andn’. Figure 4 displays$G,,| for a given
C 0.04 :

Py [ n far from the surface and a corresponding range rfbr
.gn 0.02 i Inspection reveals that at=n’, |G,,/|=1, due to the first
& 0.00 . L : L . L . Kroneckeré term in Eq.(36). Beyond this, there exists an
50 55 60 65 70 essentially smooth function, the limit of which, when ap-
Azimuthal Angle 1 (mrad) proachingn’=n, does not approach unity. This represents

the general effect of incoherent scattering—a dominant non-

FIG. 3. The surface reflectivity near resonance for theojz ~ Scattering term superimposed on a much smaller background

direction vector using the exact result and first-order perturbativ@Mplitude. Note that this essential feature remains when con-
result. The parameters used wefd=7.5+i0.84 eV and sidering|G,.| closer to the surface.

(M/A2k)A2=1.5+i1.0 eV. Thus for platinum and the scattering geometry used, the
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present form of resonant scattering can be regarded as ap- gAZ2rv

proximately arising from a semi-infinite array of noninteract-  9n=7_ 7| €XPlixnd)— > expglik|n— ny|d)gn, |,
ing Breit-Wigner scatterers. Indeed since the vertex ampli- MMy #n)

tudesM andA (as well as«) are only known to within 10% (44)
and, moreover, are varied to achieve an adequate fit, it can be

said that the underlying physics still remains that of thewhich is of a similar form to Eq(28). Such a result also
Breit-Wigner form, since our first-order result is also to follows naturally from the exact solutioh.Thus the effect of

within less than 10% of the exact result. potential scattering on the resonance scattering reflection co-
efficient can be dealt with exactly, with or without knowl-
edge of the exact solution of the “purely” resonance contri-
VI. EXTENSION TO THE STRONG POTENTIAL bution. We note that the so-called “purely” resonance term,
SCATTERING REGIME contained in Eq(44), does also depend on the potential scat-

The present perturbation expansion breaks down fof€"ing in @ simple way, via the renormalized vertiddsand

strong Bragg potential scattering perpendicular to the surfac® 7V- . . -

and the exact solution for the reflection coefficient is needed. W€ thus have an expression for the reflection coefficient
In this regime where a horizontal Kikuchi line intersects aWhich is essentially exact with respect to the potential scat-
resonance parabola, the potential scattering must now H§MNg mechanism, and in the present context, perturbative
treated on an equal footing. In a subsequent paper, Dudard¥ith respect to resonant scattering. This immediately sug-

and Whela® employ a more realistic electron Green’s func- gests that a suitable criterion_in Which a perturbation expan-
tion derived from 1D bulk Bloch wave functions. In this Sion in terms of therenormalized! Breit-Wigner scattering

case, the discrete integral equation forbecomes vertex remains valid for arbitrarily large potential scattering
is

B aA?rv
" 1—aM

; _ ; _ aA?rv )
explixnd) nl(%&m(exm"m ny/d) 1_aM<|1—eXp(2|Kd)|. (45)

, (40) Here the scattering vertices are now given by Ed4) and
(42.

—%exp(i,«mnl)d))fnl

where now VIl. BEYOND THE “TWO ROD” APPROXIMATION

In the present section we investigate the application of the
convergence criterion beyond the “two rod” approximation.
A:f dzb(z,k)U_y(2) du(2) (41  To generalize the present formalism Norods we must re-
turn to the full Schrdinger equatiodEq. (1)] from which a

d series of coupled integral equations can be obtained:
an

12k5

Wdazwguy—E dfGPzp;—)

)Ug<z'>¢nf(z'>. g'#0 m
(42) XU_gr(Zl)\I,gr(Z,), (46)

H2K?2

f dzf dz’Ug(z)¢;§(z)G(z,z’,2—

0
m

Here Eqs(41) and(42) (via the Green'’s functionuse the 1D 21,2
Bloch functionb(z, «) corresponding to an electron with en- W (z)= > dz’G( z,7' 2—9) Ugg(Z)¥g(2),
ergy ﬁZKS/Zm, the solution to Eq.(5). In Egs. (40)—(42) g'#g m

there exist the parameters v, andp, all of which charac-

terize the surface region and bulk potential proper{sese g#0. 47
Dudarev and Wheldn) of the semi-infinite crystal.

Inspection of Eq(40) reveals that exjpknd) can be fac- From the procedure outlined at the beginning of Sec. lll,

tored out of the second term in thg summation. Using these equations must be transformed to a single integral

standard resummation techniques, the resulting series expa guation in terms of the specular wave functmrd(z)._ln-
spection of the above reveals that for ldrrod approxima-

sion for the total reflection coefficient can then be written as’ .
tion, whereN>2, the lowest order of such an integral equa-
) tion will be infinite. This can be demonstrated for the case of
R — — 72qexpliknd)g, (43) N=3 in which Egs.(46) and (47) reduce to three coupled
S v+ pSexpliknd)g,’ integral equationgfor notational brevity, we now write the
electron Green’s function &,(z,z'), whereh can be zero

where or an arbitrary two-dimensional reciprocal-lattice vegtor
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\I’O(z)=‘If§o(z)+J dz’GO(z,z’)U,gl(z’)\lfgl(z’) \I’gz(z)=f dz’ng(z,z’)ng(z’)\IfO(z’)

+f 42'Go(2,2')U-g,(2')W,(2), (49 +f 42 Gy (2,2')Ug, g (2 )W (2)). (50)

\Ifgl(z)zf dz’Ggl(z,z’)Ugl(z’)‘Po(z’)
Here‘lfgz(z) can be eliminated by substituting E&QO) into

+J dz'Gy (2,2')Ug (2 )V, (2"), (49  Egs.(48) and(49), giving

\Po(z):\If,fO(z)JrJ’ dz’Go(z,z’)U,gl(z’)\lfgl(z’)Jrj dz’GO(z,z’)U,gz(z’)j dz”ng(z’,z”)ng(z”)\Ifo(z”)

+f dz’GO(z,z’)U_gz(z’)f dz”ng(z’,z”)ng_gl(z”)‘Ifgl(z”), (52

\Ifgl(z)zf dz’Ggl(z,z’)Ugl(z’)\Ifo(z’)+f dz’Ggl(z,z’)Ugl,gz(z’)f dz”ng(z’,z”)ng(z”)\Ifo(z”)

+f dz’Ggl(z,z’)Ugl,gz(z’)J' dz”ng(z’,z”)ng,gl(z”)\Ifgl(z”). (52

The right-hand side of Eq52) is still a function of‘lfgl(z), which upon repeated substitution into E§1) produces a integral

equation for¥y(z) of infinite order.

In the present work we consider the coupling between resonance parabolas arising from two evanescent propagation modes
parallel to the surface characterized, in part, by the veaoasd —g. By virtue of such resonance parabolas appearing
distinctly separate in typical experimental and numerical RHEED spectra, the coupling between two such modes must in
general be weak and therefore it seems, for now, a good approximation to consider only the linear coupling terms contained
in Egs. (51) and (52). Substituting Eq(52) into (51), with g;=g andg,= —g, and discarding higher-order terniseyond
linean in Ug,_q (2") =U.»4(2"), gives a third-order integral equation entirely in termsiaf(z):

\Ifo(z)=‘1';0(z)+f dz’Go(z,z’)U_g(z’)f dZ"Gg(Z/,Z',)UQ(Z”)‘PO(Z”)-Ff dz'Gy(z,2")U4(2")
XJ dz”G,g(z’,z”)U,g(z”)\Ifo(z”)+f dz’GO(z,z’)U,g(z’)J dZ'Gy(z',2")U,4(2")
Xf dz’”G_g(z”,z”’)U_g(z")\lfo(z)+f dz'Gy(z,2")Uy(2")

xf dz'G,g(z',z")u,zg(z")f dZ"Gy(Z",2")Uy(Z) ¥ (2). (53)

Here the first three terms correspond to two independent resonance modes and the last two terms contain their mutual
interaction. To consider the form of the interaction terms, we substitute the explicit form of the resonant Green’s fEqction
(10)] into the last term(say) of Eq. (53):

, . Zada(2)Ug(Z')  E0dZ' @2V 2g(Z") b
dz'Go(2,2') 152 _ : 20,2 1o :
2k J2m— e +il /2 h2kg/2m—eq+iT /2

(z')
f dzl!¢:/(21//)Ug(Z/II)\IIO(Z///)‘ (54)

It is the integralez¢§(z)Uzg(z) ¢n(2), which couples the two modes together and due to the localized natdng of can
be approximated a8, ,/ fdZ| ¢n(z)|2U29(z), reducing Eq(54) to

2¢n(2)U(Z2')Tgn
(h2k% J2m— e +iTy/2)

J dz'Gy(z,2') f dz’”¢>;(z’”)Ug(z”’)‘I’o(z”’), (55

where we have defined
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1
= 2
Tg,n (hzkglzm_60+irin/2)f dZ|¢n(Z)| U72g(z)- (56)

Thus the integral equation foF 4(z) [Eqg. (53)] reduces to

U_(2")Uy2") Ugy(z')U (2"
h2kgl2m—eo+il /2 h2K2 J2m—eo+il /2

Vo2 =¥+ [ 47652203 auiz) | dz'¢l<z">(

U*g(Z')T,gU,g(Z”) Ug(Z’)TgUg(ZH)
+ "
R2KE2m— o+ T2 K J2m—egiTpi2) | 0% (57)

where T;=Tg,; that is, each plane is again regarded aSNhereG_nn, is defined in an analogous manner to E2f) of

equivalent. We note thdboth) the interaction terms become Sec. IV (with b suitably redefined In the above we have
a maximum for an incident electron direction in which the used the following definitions:

two resonance parabola intersect; i.e., when lfo%hé/Zm
and#?k? J2m are equal toe. ,

From a diagrammatic perspective, E§7) has a simple a.— m ( 1
interpretation. The first two termisgnoring ¥ (2)] corre- 9 7%k | hAG2m— o +iTi2)
spond to independent resonance modgsafd —g) and
therefore involve the capture and release of an electron at a
particular plane. The remaining interaction terms will in- A :f dzZ’U_y(z") ¢, (2)), (60)
volve the capture by a mode, sgyits transferral to the other 9 g
mode, —g, via the amplitudeTy, and its release from that
mode. Due to the approximation outlined between EG4) and
and (55), these processes all occur on the same plane.

To investigate the perturbative solution, we $gtto zero
and note that Eq(57) then corresponds to two independent _ , +
resonance modes. The solution for the resonant reflection Mg’g’_f dzf dz' Uq(2) bn(2)
coefficient can then be immediately written down as .

xXexpik|z—z')\U_q(Z')ni(Z'). (61

(59

_—(aghgAjta_gA AT

res—

GonGnnGnro, o .
1-agMgg—a_gM_g_4 % on=nn"=n0 The generalization to nonzefly, for the resonant reflection

(58 coefficient, then becomes clear:

_—(aghghita A AT tagTAAT ta (T A (Al

= > GG Grros (62)
® 1-aMgg—a-gM_g_g—agTgMg_g—a 4T Mgy, o

nn’

where Eqs(59)—(61) still apply andb is again suitably re- remaining unchanged. This result is easily generalized to a
defined inG,, [Eq. (36)]. higher number of interacting “rods.”

Thus, under the linear coupling approximation, the con-
vergence criterion developed in Secs. IV and VI remains
intact, albeit S|Ight|y modified. At first glance, the approxi- VIIl. DISCUSSION AND CONCLUDING REMARKS
mation of linearity in the coupling seems essential for
this to be the case. This is in fact incorrect. Indeed, the The present viewpoint, developed by Dudarev and
underlying approximation for the convergence criterion toWhelan, indicates that in the regime considered, the reso-
remain  valid is entailed in the coupling nance parabolas encountered in the RHEED technique arise
integral, [dze¢,(2)U,4(2) ¢2,(z), being approximated as primarily from the interaction of the incident electron with
S fdZ] ¢n(2)|2Uzg(Z); that is, allowing interactions be- bulk electronic states. Such a statement is of course canoni-
tween modes to occur only on the same plane. Thus, und@al in the present context due to the localized nature of the
this approximation, the inclusion gdhigher-ordey couplings  electronic states probed by the scattering geometries consid-
between modes simply renormalizes the fundamental scatteered; the surface as such does not play a dynamical role since
ing vertex at each plane; the interplane scattering mechanisihdoes not effect the electronic structure. Furthermore in the
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present model the surface plane is indistinguishable fronfice; higher-order correlation functions are needed to de-
that of the bulk. scribe the disorder and the mean of the surface becomes an

In the simplest case, the addition of surface structure tdl-defined quantity due to strong fluctuations. Under these
the present model would take the form of a modification tocircumstances, a straightforward two-dimensional Fourier
the Breit-Wigner scattering vertex for the surface plahe decomposition of the Schdinger equatiodEq. (1) in Sec.
(for example, the simplest case isret 0) and/or the lattice 11] is no longer justified and any ensuing method of solution
spacing between the surface planes. The physical origin mag untenable. In this case, a new approach must be developed,
be a true “reconstruction” of the localized surface stk  such as a dynamical treatment of the fluctuating component
beit minor in the case of platinuma crude average due to of the crystal potentigd® We note, however, that even under
weak surface roughness or physisorption. Again for platinumhese conditions, if the localized nature of the in-plane states
such an effect would be minor due to the sta@sd indeed is still maintained, then the mechanism of coherent and in-
the surface statéd near the Fermi level playing the primary coherent scattering between the planes will still be of preva-
role in any surface chemistry phenomenon, whereas thkence. Thus the general structure of the perturbation theory—
states considered in the present work are tightly bound andpart from the on-plane scattering vertex which could have a
high above the Fermi level. In any event, such a representaignificantly different form and vary from plane to plane—
tion for deviations from the atomically flat case can be atdeveloped here is retained.
best regarded as a crude approximation, for it assumes that In conclusion, the pioneering work of Dudarev and
the resonant Green'’s function retains its form at the surfac&/helan has been reexpressed in terms of a perturbation se-
plane; a fortuitous assumption. Nevertheless, to deviate ages with respect to a simple Breit-Wigner scattering vertex.
little as possible from the present model, such an approxima-or the case of weak potential scattering in platinum, the
tion is briefly considered. exact expression for the resonant reflection coefficient can be

The perturbation expansion for the resonant reflection coreplaced by the lowest-order term to within the uncertainties
efficient [Eq. (35); in these preliminary considerations we of the scattering parameters—the primary scattering mecha-
only investigate the case of weak potential scattdraamn be  nism still being that of the Breit-Wigner form. From an
easily modified to admit a different surface term. If we labelanalysis of the convergence properties and the full interplane
the surface Breit-Wigner scattering vertexsaand the bulk  resonant electronic Green’s function, this has been shown to
as b, it is not difficult to see that the first-order resonant arise from incoherent scattering between the planes, a result
reflection coefficient becomesR,s=s+bexp(2«d)/[1  of the underlying assumption of the minimal potential scat-
—exp(2«d)], which is linear ins. It turns out that this lin- tering approximation. For these very reasons, in the case of
earity in s is retained if we consider the next term in the strong potential scattering, the perturbation expansion is ex-
expansion ofR, an important result for platinum since we pected to break down and the exact expression for the reso-
needed only to go to second order to obtain a result almogdiant reflection coefficient must be utilized. The intermediate
identical to the exact calculation; note we assume sahd  regime between weak and strong potential scattering has
b are of similar order. Thus the effect of surface structure ornevertheless been investigated from a perturbative perspec-
the resonance reflection coefficient is linear in the preserfive and a resulting convergence criterion developed. The
regime. The realization of such a relation in the experimentageneral formalism is also found to be applicable to the inter-
realm would allow a simple “extraction” of the surface acting many-rod problem when the underlying assumption of
structure if the atomically flat case could also be experimenstrongly localized states is retained.
tally realized.
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