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Diagrammatic analysis of the two-state quantum Hall system with chiral invariance
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The quantum Hall system in the lowest Landau level including the Zeeman term is studied by a two-state
model, which has a chiral invariance. Using a diagrammatic analysis, we examine this two-state model with
random impurity scattering and obtain the exact value of the conductivity at the Zeeman EnrerfgyWe
further study the conductivity at another extended stateE; (E;>A). We find that the values of the
conductivities aE=A andE=E,; do not depend upon the value of the Zeeman enargy/e discuss also the
case where the Zeeman enetyybecomes a random fiellS0163-182607)04112-X

I. INTRODUCTION E=A. Note that the Zeeman term does not break the chiral
invariance.

The critical behavior around the extended state in the two- In this paper, we consider this extended HSW model with
dimensional guantum Hall system has been studied by varthe Zeeman term using a diagrammatic method. We evaluate
ous methods. Recently, the spin-degenerate case has #te exact value of the longitudinal conductivity B&=A.
tracted interest. The spin-up state and the spin-down state afdso we will discuss the extended state &= +E;
almost degenerate when the Zeeman energy is small. It iE,;>A), which may belong to the conventional quantum
considered that these two states can be mixed by impuritidall universality class. We show exactly that the inclusion of
scattering. the Zeeman term does not alter the values of the conductivi-

Hikami, Shirai, and Wegnérconsidered a two-state ties of the extended state Bt=A and E=E,. This result
model in the lowest Landau level, in which impurity scatter-may be expected, but we verify it by a diagrammatic expan-
ing occurs only between different spin states. This modekion method. When the Zeeman energy becomes a random
corresponds to the strong spin-orbit scattering limit, in whichvariable, the situation will change. We briefly discuss this
the spin should be changed at each impurity scattering. Reandom Zeeman energy case using the diagrammatic
markably, there are three extended states in this model: onmaethod.
is at the band cent&=0 and the other two &= *E;. The
conductivity atE=0 has been obtained exactly by a dia- || pAGRAMMATIC ANALYSIS OF THE TWO-STATE
grammatic analysis and is=e?/27%4. This model has chi- QUANTUM HALL SYSTEM
ral invariance; the energy eigenvalues always appear in posi-
tive and negative pairs. The stateEat: 0 becomes a special The Hamiltonian for the two-spin state may be described
state whose wave functions at different points can be hybridby 2x2 matrix
ized due to this chiral invarianéThe density of states near
E=0 shows a resonating behavior; it is enhanced and could
be singular. AtE=0, all higher-order scattering effects are
canceled out for the conductivity and the localization effect
is smeared out. This cancellation occurs not only for th
Gaussian white-noise distribution but also for a general Ioc%/
non-Gaussian random distribution.

This model has been examined further by numerica
method®* The localization length exponent Et=0 is dif-
ferent from the usual quantum Hall system and belongs to
different universality class. Two other extended states
E=E, belong to the conventional quantum Hall universalityb
class with the localization length exponent2.3.
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herev™(r) andv(r) are random potentials at the spatial

oint r. The constantA represents the Zeeman energy. In
andau quantization, the up-spin state and the down-spin
tate acquire Zeeman enerdgyA, respectively. The matrix

of the second term of Eq2.1) acts on the spin state whose

igenstates are represented by a vector of two components.
he distribution of the random potentia(r) is assumed to

e a Gaussian white-noise distribution, i.e.,

The state aE=0 in this model has been suggested to be (W(r))a={®T(r))a=0, (2.2
relevant to the chiral Dirac-Fermi model with a random vec-
tor potential® which gives a singularity for the density of T Nv(r))a=ws(r—r"). 2.3

states. The value of the conductivity for this random vector

potential model agrees with the value of the Hikami-Shirai- The diagrammatic expansions for the one-particle Green

Wegner(HSW) model. function and the two-particle Green function for the lowest
In previous numerical work,the effect of the Zeeman Landau level have been investigafe.in the case of no

term has been investigated. It has been shown that the deBeeman term, a useful expansion for the diffusion constant

sity of state has a gap less than the Zeeman enkrgyd the D was derived, by which the exact value of the conductivity

extended state shifts frolE=0 to the Zeeman energy was obtained.Note that, although we mainly consider the
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Gaussian white-noise ditribution in this paper, the same ar-
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By=m(E+A). (2.12

gument can be extended to any local non-Gaussian random

potential, as shown in Ref. 1.

In the two-dimensional case, the Green function for the The imginary partsA, and B, are obtained from

lowest Landau level is simply expressed by

1
G(r)= rf————|r

|
E—H+§E

TALFIA, 24

av

where G(r) is translationally invariant and; and A, are
real numbers, which are independentrofThe density of
statep(E) is expressed simply by A,/ 7(A2+A3).

When the two-spin state model is considered, we hav

two different Green function&,(r) andGg(r). A andB are

the spin-up state and the spin down state, respectively. Usi

the self-energy, for A andB, we obtain, by definition,

1 1
A1:27T E—Ehwc—A—ER§A>, (25)
A,=2 S Im3, 2.6
2727 M) 29

1 1
Blz2w(E—§hwc+A—§Re25), 2.7

€ 1

B,=2m| 5 —5— Im3g|. (2.9

The diagrammatic expansion follows the previous studies

A2+ A2=27w(E—A)/(E+A). They are
—1\/E_A JAw— (EZ— A2 21
>NEFA w—(E“—A%), (2.13
B —1 E+a 4 E<—A 2.1
=5 VEZx VAW~ ( Z—A2). (2.14

el'he densities of statespy, and pg are given by
— A,/ m(A2+A%) and pg=—B,/m(Bi+B3). Since

+A2 27wW(E—A)/(E+A) andB3+B3=27w(E+A)/
(E A) the density of stateg(E) has a gap between
—A<E<A and the inverse square root singularity at
E= = A. This behavior resembles the density of state of the
superconductor. Note that we fix the Zeeman energy param-
eterA. Later we will consider the average over thisor the
density of state.

We now go beyond this approximation by expanding the
self-energy in the power series wf In this two-state model
with the Zeeman term, the diagrams are the same as the
two-state model without the Zeeman term. Using the nota-
tion Ay/A;=—tand,, B,/By=—tanfg, x=C,Cg(27W),
Ga=Cre'’A, and Gg=Cge'’® and (—m/2<6,<0 and
—/2< 05<0) we have

and a convenient method for obtaining the coefficients of

each order may be found in previous pagetsirst, let us me__ Sindg 1 3 Sin(36g+26s)
approximate the self-energy by the Green function itself. Ay sind, 4 SN
Then we have 2,=27w/(B;+iB,) and Zg=2=mw/ 2 sin(46y+36,)
(A1 +iAj). It may be convenient to represent two Green _o BTN (2.15
functions by G,=Cxe'’4 and Gg=Cge'’s, and 5 SN
Xx=C,Cg(27w). From Egs.(2.6) and (2.8), in the limit
e—0, we obtainf,= 6z andx=1. We represent the energy me sing, 1 . Sin(36,+26g)
E—3hao. simply by E. B, ~ Zsingg 4~ sinfg

From Egs. (2.5 and (2.7, using x?=4mw?/

(A2+A2)(B7+B3)=1, we obtain

1
Aj=2m(E-A)—5— B1(A2+A3)

=2m(E— A)——(E+A)(A2+A)+A1 (2.9
Thus we obtainAZ?+A3=27w(E—A)/(E+A). Similarly,
we getBZ+B3=27w(E+A)/(E—A). Then Eq.(2.5 be-
comes

(E-A)

AlZZW(E_A)_BlM'

(2.10

From Eq. (2.6, we have A,=27wB,/(B2+B3)
=B,(E—A)/(E+A). Further, noting thatA,/A,=B,/B,
and from Eq.(2.10, we obtain the solution

A;=m(E—A). (2.1

Similarly, we get

2, sin(46,+365)

5% sindg (219
Up to orderx,'° the expansion coefficients are given by Eq.
(4.1) in Ref. 1.

At E=*A, the phase®, and 65 are equal to-#/2. This
is evident within the first-order approximatiai2.12) and
(2.19; A,/A;=tanf,=0 andB,/B;=tandg=0, which re-
main true beyond this order. We have evaluated the real part
of the Green function numerically by the same method as in
Ref. 4 and we indeed find that the real part vanishes at
E==A.

The conductivity in the lowest Landau level is obtained
from the Kubo formula by diagrammatic expansfbAs an
alternative method, we can use the Einstein relation
o=e?Dp, whereD is a diffusion constant. Here we use this
Einstein relation, since a diagrammatic expansion is simpler
for the diffusion constarft.The diffusion constanb is de-
fined as the coefficient of? in the inverse of the two-
particle correlation functiofK(q),
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K(a)= J <<r
X < r' E-H-i0 may be discussed by a matrix model. A complex block ma-
trix model, analogous to the HSW model, has been
e iar-rg2 2.17) studied”*® This matrix model has chiral invariance and the
universal oscillation of the density of states n&+ 0 has
This K(q) is expanded in the power series wf The been obtained in the largedimit, whereN is the size of the
Feynman rule for this expansion may be seen in previoughatrix. The matrix that we are discussing is given by

1
E—H+i0 was similar. We find that the conductivity Bt=A is inde-
pendent of the value of the Zeeman energy

1 >> The effect of the Zeeman term on the density of states
r
av

> value was obscure, although the numerical value suggested
r./

literatures® We have for the small momentum A of
K(q=0) D M —( ) , (2.22
———=1+—0q% 2.1 v —A
K(Q) - d (2.18

where A is a unit matrix multiplied byA andv' is a
NXN complex matrix. It is a straightforward exercise to
evaluate the density of states for finkeusing the Kazakov
method'® The eigenvalues appear always in a positive and
negative pair. The effect of this Zeeman tefnis just a shift

fof the energyE. When we take the largl-limit first in this
model, the density of states coincides with E¢513 and
(2.14. However, there is a crossoveto the oscillatory be-

27D x3 i i -
B_q_ Z[cos(zeB+20A)+cos{ Oat O)]+ - - -, havior nearA in the small region of order N.

Since we have two different propagatds, and Gg, the
two-particle correlation functioK(q) is also divided into
two partsK A(g) andKg(q). The diffusion constarD also is
defined differently by Eq(2.18. The denominatoe in Eq.
(2.18 can be expressed by Eq2.15 and (2.16. Finally,
we obtain the following equations, which are modification o
the previous expressioh:

B
3 (219 Ill. EXTENDED STATE AT E=E;
27D X
A Ao 2[005(2034— 205)+cog O+ 60g) ]+ - . As pointed out by previous numerical work§there are
2 (2.20 extended states located Bt= = E;, which is greater than

A. It was suggested that the universality clasE atE; is the
The imaginary part oiG, and Gg are proportional to the same as the conventional one, with a localization exponent
density of statep. The conductivityo,, is given by the p=2.33% The shift of the conventional extended state from

Einstein relation E=0 to E=E; is due to the effective magnetic-field effect
1 of the off-diagonal random potential
O'XXZE(GZDApA-F e’Dgpg). (2.21) This shift of the conventional extended state at the middle

of the band tcE=E; has been observed using several mod-

At E=*A, we haveA,/A,=B,/B,=0, as explained be- els. The Chalker-Coddington network motfevas extended
fore. Thus we havéd,= 6= — /2. Remarkably, all correc- to include the spin scattering and the shift of the extended
tions cancel out in Eqg2.19 and(2.20 except one. These state is noticed with the same localization exporfdnt®
cancellations are essentially the same as the previous case Since the previous work for HSW modalid not discuss
without the Zeeman termThe conductivityo,, at E= = A this extended state &= E,, we first consider this state with-
become?/272#, which is the same value as for the case ofout the Zeeman term =0. The diagrammatic expansion for
no Zeeman term dE=0. D/A, was given up to ordex® and we rewrite the resdlt

Thus we have found the exact value of the longitudinalhere. The series for the diffusion constdhtwithout the
conductivity atE==*A. In previous numerical worfk,this  Zeeman term becomes

27D
Az

1
=1- Z(cos40+ c0s20)x3—(0.32 cos@+0.16 cosd+0.16)x*—(1.142 791 551 88 cosB

+0.715 564 738 292 cogbr 0.180 555 555 555 cogh+ 0.751 951 331 49 cos2+ 0.144 168 962 35Kk°
—(4.016 042 129 58 cosH3-2.107 802 167 29 cogBt+ 0.228 564 968 429 cosb

+1.658 373 906 74 cogh+ 0.613 624 866 859 cogl+ 1.092 055 890 8%k°— (16.893 859 425 2 cosh?2
+8.856 696 127 84 cosB3> 1.347 981 581 41 cogBt+5.491 807 258 09 cogbt+ 1.751 176 105 91 cos#
+6.748 550 192 06 cog2+ 1.104 036 465 47K’ —(79.791 511 842 0 cosh4 40.555 240 802 6 cosh2
+5.999 393 350 79 cosH3-20.196 866 445 487 co#d+4.421 537 815 874 7 co#b

+23.475 132 715 585 cog4 6.492 652 058 833 1 cog2-12.477 855 103 8995+ - - -, (3.9
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where the variable is solved by the asymptotic expansion ergy model using a diagrammatic expansion method.

of Eqg. (2.15. Setting9,=6g and e=0 in Eg. (2.15, we
solvex using the series up to the third order,
1 sin56

4 sing -

x=1 (3.2

This approximation shows the maximum wfat 6=—0.9.

Instead of the Zeeman enerdy we represent it now by a
random fieldu(r). Then the second term of E¢R.1) be-
comes

u(r) o'(r)
—u(r) |

V(r)= 4.1

v(r)

The maximum value ot becomes approximately 1.3 and the wherer is the place of impurity scattering. This model rep-

value ofx becomes zero fo6— 0.

resents the spin flip at due to the random field and the

This is quite similar to the case of the conventional quantandom Zeeman energy lr). There is no correlation be-
tum Hall case: the exact valtfeof x at the band center is tweenuv(r) andu(r). The matrixV(r,) does not commute

x=4/7=1.2732 andx becomes zero fo®—0. Thus the

point §=—0.9 for this two-state quantum Hall system cor- operation of the random scattering rat,r,, . .

with the matrixV(r,). We have to consider the successive
. ,Fy on the

responds to the band center of the one-state quantum Hadpin eigenstate. The spin eigenstate i_s represented by a vector
system. The shift appears due to the off-diagonal two-statef two components. The random variahiéhas the average

random potential. We insert the value of BE§.2) in Eq.
(3.1,

27D
Az

1 1 0 ool 1 1 sin56
= Z(cos +co0s29) 2 sin0

3
) . (33

The maximum of ZrD/A, is 1.6 atd=—0.9. The conduc-
tivity o is obtained by multiplying a facte?sirfé@/27%4 by

u(ryu(r"))a=w'8(r—r"). (4.2

The diagrammatic expansions of Eq2.15 and (2.16) be-
come a series of scattering strengthsand w'. Note that
some terms have a negative sign due to the minus sign in Eq.
(4.1) in the matrix element.

In this random Zeeman energy model, the chiral invari-
ance is broken. The scattering appears between Ataied

the value 2rD/A,, due to the Einstein relation. We have state B and also between the same spin state due to the
analyzed here up to order®. We think that the maximum diagonal random fieldi(r).

peak of the conductivity remains finite for the higher-order

analysis; namely, we expect that the stat®at—0.9 corre-

We find that after averaging the multiplication of the ma-
trix V(r;) over the random distribution, the nonvanishing

sponds to the band center of the one-state quantum Hall sygiagrams can be expressed by assigning the indicasdB
tem and becomes extended. This is consistent with the préor the Green function. The self-energy b, becomes, by
vious numerical resuft, which shows that there is an diagrammatic expansion,

extended state &=E, exceptE=0. The states of energy A=W Ga+WGg—WwW' G,Gj

0<E<E; andE>E; are considered to be localized. For the
investigation of localization, we need the renormalization-

group analysis via the Il expansiorf, which we do not dis-
cuss here.

For the Zeeman cas@§0), the serie$3.1) is modified
as Egs. (2.19 and (2.20, where 2 is replaced by

0+ 05 . In general,6,# 6. The range of these angles is

- Z(W’3G2+ W3GZG3+3ww/ 2GaG3)

1
- §(3W362+ 3ww’2GAG3E — 2ww' GAGp

+ W' W2GAGp— AW 2WGSGE+ 2w W2G3GE) + - - - .

between— 7/2 and 0. We assume that there is an extended

state aE=E, for the Zeeman case. We find thavif + 6y is 4.3

the same as the critical valug in Eqg. (3.1), we have the From this equation, we have

same expression for Eq§2.19 and (2.20. Since there is e D ,

one extended state, we ha#g= g atE=E,. Ifwe havean A, ~ 1- sinaA(W Casinda+wCgCasinds)

extended state fofi,# 65, it may contradict the assumption _

that there is only one extended stateEat E;. There is a ! C2C2 Sin(Op+26g)

duality between theA state andB state. We find that the ATB  sing,

same conductivity as in the case of no Zeeman term at )

E=E;, since O,=0g= Hq. The conductivi'gy is optained _ E(W’3C28|h50A+(w3+3w’2W)

from Eq. (2.19 by multiplying a factor sifg, which is 4 Sinfa

A%/(A2+A3) for the caseA;#0. Indeed our previous nu- Sin(20,+30y)

merical result shows this behavior. This argument of the XCngI,A—B

equivalence does not determine the absolute value of the Sinda

conductivity, but it verifies that the value of the conductivity ; ;

at E=E, does not depend upon the Zeeman enexgy — %<3W3C,§SS|?”5:A +3ww’zcicgw

A A
IV. RANDOM ZEEMAN ENERGY MODEL +(W’W2—2WW’2)Cng sin( 0-A+4HB)
In the previous sections, we assumed that the Zeeman SINBA
energ_yA is a.fixed constant. WheA in Eq. (2.1 is_a ran- SiN(30,+205)
dom field, which depends upon the spatial coordinatthe +(2w’w2—4w’2w)CiC§T +
A

situation is different. The distribution of this random field
A(r) is Gaussian. We will discuss this random Zeeman en-

4.4
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By the symmetry betweeA andB states, we are able to set mic terms in the diffusion constant of ordefN®/ are can-
05 = 0z andC,=Cg. Then, Eq.(4.4) becomes simpler. celed by the vertex corrections and the conductivity remains
It may be interesting to consider three different caggs: finite. Indeed, each diagram for the higher-order term cancels
w’'<w, (i) w' ~w, and(iii) w’'>w. Case(i) corresponds to completely, not just the logarithmically divergent part, as we
the two-state model, which we have discussed previously fohave seen in Eq3.1). Whenw’ #0, this cancellation does
A=0. The perturbation of the parametef can be obtained. not occur aE=0 and the logarithmic term exists. This loga-
Case(ii) shows the strong effect of the random fiel@r).  rithmic term leads to the decrease of the diffusion constant
When, for examplew’ = 3w, the series of Eq2.15 has an  and eventually the state becomes localized. Thus there is a

alternative sign, and whefi,= 6= — /2 atE=0, the den-  0calization forE=0 whenw’ 0.
sity of states is suppressed. This behavior is similar to that

for the gap state for the nonvanishing Zeeman enexgy V. CONCLUSION

which we have discussed in Sec. II. C&isig is similar to the

conventional guantum Hall sysytem since two staieand In this paper, we have evaluated the exact value of the
B can be decoupled completely in the limit—0. The ex-  conductivity of the two-state model including the fixed Zee-
tended energ¥=E, approache&=0. man term at the Zeeman energyA and we find the value

Case(i) can be studied in the perturbation ofNl/We o =€?/2m?h, which is independent ak. We also observed
need to generalize the model to theorbital model. The that this result is consistent with a previous numerical résult.
random fieldu(r) in Eq. (4.1) changes tai(r)l, wherel is  We have discussed that the conductivityEatE, for the
anNXN unit matrix.v is also a compleN X N matrix. The ~ case of nonvanishing Zeeman energy is the same as the con-
density of states in the [/ expansion shows the logarithmic ductivity at E=E; without the Zeeman energy. Thus the
singularity* at order 1N2 for w'=0. In the lowest order of effect of the Zeeman term does not alter the values of the

w’ and for the largeN, Eq. (2.15 becomes, aE=0, conductivities aE=A andE=E;. 3
e w' [ we2 d We discussed how the situation is modified when the Zee-
= 1-wC2— _(_2 +_12 IN2(1—wC?)+--- . man energy becomes a random field, which obeys the Gauss-
Az N1l-wC N ian white-noise distribution. Then, the diagrammatic expan-

(4.5 sion has two parametevs andw’. We find, in the first order
Up to order 1N, solving Eq.(4.5), we obtain of w’, the cut-off of the singularity of the density of states,
; which leads to the localization &=0.

!

WC=14 ot [ (4.6)
ST U 2NwT VNw '
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