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Diagrammatic analysis of the two-state quantum Hall system with chiral invariance

S. Hikami and K. Minakuchi
Department of Pure and Applied Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153, Japan

~Received 30 October 1996!

The quantum Hall system in the lowest Landau level including the Zeeman term is studied by a two-state
model, which has a chiral invariance. Using a diagrammatic analysis, we examine this two-state model with
random impurity scattering and obtain the exact value of the conductivity at the Zeeman energyE5D. We
further study the conductivity at another extended stateE5E1 (E1.D). We find that the values of the
conductivities atE5D andE5E1 do not depend upon the value of the Zeeman energyD. We discuss also the
case where the Zeeman energyD becomes a random field.@S0163-1829~97!04112-X#
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I. INTRODUCTION

The critical behavior around the extended state in the t
dimensional quantum Hall system has been studied by v
ous methods. Recently, the spin-degenerate case ha
tracted interest. The spin-up state and the spin-down stat
almost degenerate when the Zeeman energy is small.
considered that these two states can be mixed by impu
scattering.

Hikami, Shirai, and Wegner1 considered a two-stat
model in the lowest Landau level, in which impurity scatte
ing occurs only between different spin states. This mo
corresponds to the strong spin-orbit scattering limit, in wh
the spin should be changed at each impurity scattering.
markably, there are three extended states in this model:
is at the band centerE50 and the other two atE56E1. The
conductivity atE50 has been obtained exactly by a di
grammatic analysis and iss5e2/2p2\. This model has chi-
ral invariance; the energy eigenvalues always appear in p
tive and negative pairs. The state atE50 becomes a specia
state whose wave functions at different points can be hyb
ized due to this chiral invariance.2 The density of states nea
E50 shows a resonating behavior; it is enhanced and co
be singular. AtE50, all higher-order scattering effects a
canceled out for the conductivity and the localization eff
is smeared out. This cancellation occurs not only for
Gaussian white-noise distribution but also for a general lo
non-Gaussian random distribution.1

This model has been examined further by numeri
method.3,4 The localization length exponent atE50 is dif-
ferent from the usual quantum Hall system and belongs
different universality class. Two other extended states
E5E1 belong to the conventional quantum Hall universal
class with the localization length exponentn.2.3.

The state atE50 in this model has been suggested to
relevant to the chiral Dirac-Fermi model with a random ve
tor potential,5 which gives a singularity for the density o
states. The value of the conductivity for this random vec
potential model agrees with the value of the Hikami-Shir
Wegner~HSW! model.

In previous numerical work,4 the effect of the Zeeman
term has been investigated. It has been shown that the
sity of state has a gap less than the Zeeman energyD and the
extended state shifts fromE50 to the Zeeman energ
550163-1829/97/55~11!/7155~5!/$10.00
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E5D. Note that the Zeeman term does not break the ch
invariance.

In this paper, we consider this extended HSW model w
the Zeeman term using a diagrammatic method. We eval
the exact value of the longitudinal conductivity atE5D.
Also we will discuss the extended state atE56E1
(E1.D), which may belong to the conventional quantu
Hall universality class. We show exactly that the inclusion
the Zeeman term does not alter the values of the conduc
ties of the extended state atE5D and E5E1. This result
may be expected, but we verify it by a diagrammatic exp
sion method. When the Zeeman energy becomes a ran
variable, the situation will change. We briefly discuss th
random Zeeman energy case using the diagramm
method.

II. DIAGRAMMATIC ANALYSIS OF THE TWO-STATE
QUANTUM HALL SYSTEM

The Hamiltonian for the two-spin state may be describ
by 232 matrix4

H5
1

2m
~p2eA!21S D v†~r !

v~r ! 2D D , ~2.1!

wherev†(r ) and v(r ) are random potentials at the spati
point r . The constantD represents the Zeeman energy.
Landau quantization, the up-spin state and the down-s
state acquire Zeeman energy6D, respectively. The matrix
of the second term of Eq.~2.1! acts on the spin state whos
eigenstates are represented by a vector of two compon
The distribution of the random potentialv(r ) is assumed to
be a Gaussian white-noise distribution, i.e.,

^v~r !&av5^v†~r !&av50, ~2.2!

^v†~r !v~r 8!&av5wd~r2r 8!. ~2.3!

The diagrammatic expansions for the one-particle Gr
function and the two-particle Green function for the lowe
Landau level have been investigated.6–8 In the case of no
Zeeman term, a useful expansion for the diffusion const
D was derived, by which the exact value of the conductiv
was obtained.1 Note that, although we mainly consider th
7155 © 1997 The American Physical Society
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7156 55S. HIKAMI AND K. MINAKUCHI
Gaussian white-noise ditribution in this paper, the same
gument can be extended to any local non-Gaussian ran
potential, as shown in Ref. 1.

In the two-dimensional case, the Green function for
lowest Landau level is simply expressed by

G~r !5K K rU 1

E2H1
i

2
eU r L L

av

5
1

A11 iA2
, ~2.4!

whereG(r ) is translationally invariant andA1 andA2 are
real numbers, which are independent ofr . The density of
stater(E) is expressed simply by2A2 /p(A1

21A2
2).

When the two-spin state model is considered, we h
two different Green functionsGA(r ) andGB(r ). A andB are
the spin-up state and the spin down state, respectively. U
the self-energyS for A andB, we obtain, by definition,

A152pSE2
1

2
\vc2D2

1

2p
ReSAD , ~2.5!

A252pS e

2
2

1

2p
ImSAD , ~2.6!

B152pSE2
1

2
\vc1D2

1

2
ReSBD , ~2.7!

B252pS e

2
2

1

2p
ImSBD . ~2.8!

The diagrammatic expansion follows the previous stud
and a convenient method for obtaining the coefficients
each order may be found in previous papers.6,7 First, let us
approximate the self-energyS by the Green function itself
Then we have SA52pw/(B11 iB2) and SB52pw/
(A11 iA2). It may be convenient to represent two Gre
functions by GA5CAe

iuA and GB5CBe
iuB, and

x5CACB (2pw). From Eqs.~2.6! and ~2.8!, in the limit
e→0, we obtainuA5uB andx51. We represent the energ

E2 1
2\vc simply byE.
From Eqs. ~2.5! and ~2.7!, using x254p2w2/

(A1
21A2

2)(B1
21B2

2)51, we obtain

A152p~E2D!2
1

2pw
B1~A1

21A2
2!

52p~E2D!2
1

w
~E1D!~A1

21A2
2!1A1 . ~2.9!

Thus we obtainA1
21A2

252pw(E2D)/(E1D). Similarly,
we getB1

21B2
252pw(E1D)/(E2D). Then Eq.~2.5! be-

comes

A152p~E2D!2B1

~E2D!

~E1D!
. ~2.10!

From Eq. ~2.6!, we have A252pwB2 /(B1
21B2

2)
5B2(E2D)/(E1D). Further, noting thatA1 /A25B1 /B2
and from Eq.~2.10!, we obtain the solution

A15p~E2D!. ~2.11!

Similarly, we get
r-
m

e

e

ng

s
f

B15p~E1D!. ~2.12!

The imginary partsA2 and B2 are obtained from
A1
21A2

252pw(E2D)/(E1D). They are

A25
1

2
AE2D

E1D
A4w2~E22D2!, ~2.13!

B25
1

2
AE1D

E2D
A4w2~E22D2!. ~2.14!

The densities of statesrA and rB are given by
rA52A2 /p(A1

21A2
2) and rB52B2 /p(B1

21B2
2). Since

A1
21A2

252pw(E2D)/(E1D) andB1
21B2

252pw(E1D)/
(E2D), the density of statesr(E) has a gap between
2D,E,D and the inverse square root singularity
E56D. This behavior resembles the density of state of
superconductor. Note that we fix the Zeeman energy par
eterD. Later we will consider the average over thisD for the
density of state.

We now go beyond this approximation by expanding t
self-energy in the power series ofw. In this two-state model
with the Zeeman term, the diagrams are the same as
two-state model without the Zeeman term. Using the no
tion A2 /A152tanuA , B2 /B152tanuB , x5CACB(2pw),
GA5CAe

iuA, and GB5CBe
iuB and (2p/2,uA,0 and

2p/2,uB,0), we have

pe

A2
512x

sinuB
sinuA

2
1

4
x3

sin~3uB12uA!

sinuA

2
2

5
x4

sin~4uB13uA!

sinuA
1•••, ~2.15!

pe

B2
512x

sinuA
sinuB

2
1

4
x3

sin~3uA12uB!

sinuB

2
2

5
x4

sin~4uA13uB!

sinuB
1•••. ~2.16!

Up to orderx,10 the expansion coefficients are given by E
~4.1! in Ref. 1.

At E56D, the phasesuA anduB are equal to2p/2. This
is evident within the first-order approximation~2.12! and
~2.14!; A2 /A15tanuA50 andB2 /B15tanuB50, which re-
main true beyond this order. We have evaluated the real
of the Green function numerically by the same method as
Ref. 4 and we indeed find that the real part vanishes
E56D.

The conductivity in the lowest Landau level is obtain
from the Kubo formula by diagrammatic expansion.8 As an
alternative method, we can use the Einstein relat
s5e2Dr, whereD is a diffusion constant. Here we use th
Einstein relation, since a diagrammatic expansion is simp
for the diffusion constant.6 The diffusion constantD is de-
fined as the coefficient ofq2 in the inverse of the two-
particle correlation functionK(q),
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55 7157DIAGRAMMATIC ANALYSIS OF THE TWO-STATE . . .
K~q!5E K K rU 1

E2H1 i0 Ur 8L
3 K r 8U 1

E2H2 i0 Ur L L
av

3e2 iq~r2r 8!d2r 8. ~2.17!

This K(q) is expanded in the power series ofw. The
Feynman rule for this expansion may be seen in previ
literatures.6 We have for the small momentumq

K~q50!

K~q!
511

D

e
q2. ~2.18!

Since we have two different propagatorsGA andGB , the
two-particle correlation functionK(q) is also divided into
two partsKA(q) andKB(q). The diffusion constantD also is
defined differently by Eq.~2.18!. The denominatore in Eq.
~2.18! can be expressed by Eqs.~2.15! and ~2.16!. Finally,
we obtain the following equations, which are modification
the previous expression :1

2pDB

B2
512

x3

4
@cos~2uB12uA!1cos~uA1uB!#1•••,

~2.19!

2pDA

A2
512

x3

4
@cos~2uB12uA!1cos~uA1uB!#1••• .

~2.20!

The imaginary part ofGA andGB are proportional to the
density of statesr. The conductivitysxx is given by the
Einstein relation

sxx5
1

2
~e2DArA1e2DBrB!. ~2.21!

At E56D, we haveA1 /A25B1 /B250, as explained be
fore. Thus we haveuA5uB52p/2. Remarkably, all correc
tions cancel out in Eqs.~2.19! and ~2.20! except one. These
cancellations are essentially the same as the previous
without the Zeeman term.1 The conductivitysxx at E56D
becomese2/2p2\, which is the same value as for the case
no Zeeman term atE50.

Thus we have found the exact value of the longitudi
conductivity atE56D. In previous numerical work,4 this
s

f

se

f

l

value was obscure, although the numerical value sugge
was similar. We find that the conductivity atE5D is inde-
pendent of the value of the Zeeman energyD.

The effect of the Zeeman term on the density of sta
may be discussed by a matrix model. A complex block m
trix model, analogous to the HSW model, has be
studied.9,10 This matrix model has chiral invariance and th
universal oscillation of the density of states nearE50 has
been obtained in the large-N limit, whereN is the size of the
matrix. The matrix that we are discussing is given by

M5S D v†

v 2D
D , ~2.22!

where D is a unit matrix multiplied byD and v† is a
N3N complex matrix. It is a straightforward exercise
evaluate the density of states for finiteN using the Kazakov
method.10,11The eigenvalues appear always in a positive a
negative pair. The effect of this Zeeman termD is just a shift
of the energyE. When we take the large-N limit first in this
model, the density of states coincides with Eqs.~2.13! and
~2.14!. However, there is a crossover10 to the oscillatory be-
havior nearD in the small region of order 1/N.

III. EXTENDED STATE AT E5E1

As pointed out by previous numerical works,3,4 there are
extended states located atE56E1, which is greater than
D. It was suggested that the universality class atE5E1 is the
same as the conventional one, with a localization expon
n.2.3.3,4 The shift of the conventional extended state fro
E50 to E5E1 is due to the effective magnetic-field effe
of the off-diagonal random potentialv.

This shift of the conventional extended state at the mid
of the band toE5E1 has been observed using several mo
els. The Chalker-Coddington network model12 was extended
to include the spin scattering and the shift of the extend
state is noticed with the same localization exponent.13–15

Since the previous work for HSW model1 did not discuss
this extended state atE5E1, we first consider this state with
out the Zeeman termD50. The diagrammatic expansion fo
D/A2 was given up to orderx8 and we rewrite the result1

here. The series for the diffusion constantD without the
Zeeman term becomes
2pD

A2
512

1

4
~cos4u1cos2u!x32~0.32 cos6u10.16 cos4u10.16!x42~1.142 791 551 88 cos8u

10.715 564 738 292 cos6u10.180 555 555 555 cos4u10.751 951 331 49 cos2u10.144 168 962 351!x5

2~4.016 042 129 58 cos10u12.107 802 167 29 cos8u10.228 564 968 429 cos6u

11.658 373 906 74 cos4u10.613 624 866 859 cos2u11.092 055 890 84!x62~16.893 859 425 2 cos12u

18.856 696 127 84 cos10u11.347 981 581 41 cos8u15.491 807 258 09 cos6u11.751 176 105 91 cos4u

16.748 550 192 06 cos2u11.104 036 465 47!x72~79.791 511 842 0 cos14u140.555 240 802 6 cos12u

15.999 393 350 79 cos10u120.196 866 445 487 cos8u14.421 537 815 874 7 cos6u

123.475 132 715 585 cos4u16.492 652 058 833 1 cos2u112.477 855 103 819!x81•••, ~3.1!



n

e

an

r-
H
ta

e

e

sy
pr
n
y
e
n

is
de

n

-
th
t
ty

m

ld
en

p-

-

ve

ector

Eq.

ri-

the

a-
g

7158 55S. HIKAMI AND K. MINAKUCHI
where the variablex is solved by the asymptotic expansio
of Eq. ~2.15!. SettinguA5uB and e50 in Eq. ~2.15!, we
solvex using the series up to the third order,

x.12
1

4

sin5u

sinu
. ~3.2!

This approximation shows the maximum ofx at u.20.9.
The maximum value ofx becomes approximately 1.3 and th
value ofx becomes zero foru→0.

This is quite similar to the case of the conventional qu
tum Hall case: the exact value16 of x at the band center is
x54/p51.2732 andx becomes zero foru→0. Thus the
point u520.9 for this two-state quantum Hall system co
responds to the band center of the one-state quantum
system. The shift appears due to the off-diagonal two-s
random potential. We insert the value of Eq.~3.2! in Eq.
~3.1!,

2pD

A2
512

1

4
~cos4u1cos2u!S 12

1

4

sin5u

sinu D 3. ~3.3!

The maximum of 2pD/A2 is 1.6 atu520.9. The conduc-
tivity s is obtained by multiplying a factore2sin2u/2p2\ by
the value 2pD/A2, due to the Einstein relation. We hav
analyzed here up to orderx3. We think that the maximum
peak of the conductivity remains finite for the higher-ord
analysis; namely, we expect that the state atu520.9 corre-
sponds to the band center of the one-state quantum Hall
tem and becomes extended. This is consistent with the
vious numerical result,4 which shows that there is a
extended state atE5E1 exceptE50. The states of energ
0,E,E1 andE.E1 are considered to be localized. For th
investigation of localization, we need the renormalizatio
group analysis via the 1/N expansion,6 which we do not dis-
cuss here.

For the Zeeman case (DÞ0), the series~3.1! is modified
as Eqs. ~2.19! and ~2.20!, where 2u is replaced by
uA1uB . In general,uAÞuB . The range of these angles
between2p/2 and 0. We assume that there is an exten
state atE5E1 for the Zeeman case. We find that ifuA1uB is
the same as the critical valueuc in Eq. ~3.1!, we have the
same expression for Eqs.~2.19! and ~2.20!. Since there is
one extended state, we haveuA5uB atE5E1. If we have an
extended state foruAÞuB , it may contradict the assumptio
that there is only one extended state atE5E1. There is a
duality between theA state andB state. We find that the
same conductivity as in the case of no Zeeman term
E5E1, since uA5uB5uc . The conductivity is obtained
from Eq. ~2.19! by multiplying a factor sin2u, which is
A2
2/(A1

21A2
2) for the caseA1Þ0. Indeed our previous nu

merical result shows this behavior. This argument of
equivalence does not determine the absolute value of
conductivity, but it verifies that the value of the conductivi
at E5E1 does not depend upon the Zeeman energyD.

IV. RANDOM ZEEMAN ENERGY MODEL

In the previous sections, we assumed that the Zee
energyD is a fixed constant. WhenD in Eq. ~2.1! is a ran-
dom field, which depends upon the spatial coordinater , the
situation is different. The distribution of this random fie
D(r ) is Gaussian. We will discuss this random Zeeman
-

all
te

r

s-
e-

-

d
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ergy model using a diagrammatic expansion method.
Instead of the Zeeman energyD, we represent it now by a

random fieldu(r ). Then the second term of Eq.~2.1! be-
comes

V~r !5S u~r ! v†~r !

v~r ! 2u~r !D , ~4.1!

wherer is the place of impurity scattering. This model re
resents the spin flip atr due to the random fieldv and the
random Zeeman energy byu(r ). There is no correlation be
tweenv(r ) andu(r ). The matrixV(r 1) does not commute
with the matrixV(r 2). We have to consider the successi
operation of the random scattering atr 1 ,r 2 , . . . ,r N on the
spin eigenstate. The spin eigenstate is represented by a v
of two components. The random variableu has the average

^u~r !u~r 8!&av5w8d~r2r 8!. ~4.2!

The diagrammatic expansions of Eqs.~2.15! and ~2.16! be-
come a series of scattering strengthsw andw8. Note that
some terms have a negative sign due to the minus sign in
~4.1! in the matrix element.

In this random Zeeman energy model, the chiral inva
ance is broken. The scattering appears between stateA and
stateB and also between the same spin state due to
diagonal random fieldu(r ).

We find that after averaging the multiplication of the m
trix V(r i) over the random distribution, the nonvanishin
diagrams can be expressed by assigning the indicesA andB
for the Green function. The self-energy ofSA becomes, by
diagrammatic expansion,
SA5w8GA1wGB2ww8GAGB

2

2
1

4
~w83GA

51w3GA
2GB

313ww82GA
2GB

3 !

2
1

3
~3w3GA

513ww82GA
2GB

322ww8GAGB
4

1w8w2GAGB
424w82wGA

3GB
212w8w2GA

3GB
2 !1••• .

~4.3!

From this equation, we have
pe

A2
512

1

sinuA
~w8CA

2sinuA1wCBCAsinuB!

1ww8CA
2CB

2 sin~uA12uB!

sinuA

2
1

4 Sw83CA
6 sin5uA
sinuA

1~w313w82w!

3CA
3CB

3sin~2uA13uB!

sinuA
D

2
1

3 S 3w3CA
6 sin5uA
sinuA

13ww82CA
3CB

3 sin~2uA13uB!

sinuA

1~w8w222ww82!CA
2CB

4 sin~uA14uB!

sinuA

1~2w8w224w82w!CA
4CB

2sin~3uA12uB!

sinuA
D1••• .

~4.4!
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55 7159DIAGRAMMATIC ANALYSIS OF THE TWO-STATE . . .
By the symmetry betweenA andB states, we are able to se
uA 5 uB andCA5CB . Then, Eq.~4.4! becomes simpler.

It may be interesting to consider three different cases~i!
w8!w, ~ii ! w8;w, and~iii ! w8@w. Case~i! corresponds to
the two-state model, which we have discussed previously
D50. The perturbation of the parameterw8 can be obtained
Case~ii ! shows the strong effect of the random fieldu(r ).

When, for example,w85 1
2w, the series of Eq.~2.15! has an

alternative sign, and whenuA5uB52p/2 atE50, the den-
sity of states is suppressed. This behavior is similar to
for the gap state for the nonvanishing Zeeman energyD,
which we have discussed in Sec. II. Case~iii ! is similar to the
conventional quantum Hall sysytem since two statesA and
B can be decoupled completely in the limitw→0. The ex-
tended energyE5E1 approachesE50.

Case~i! can be studied in the perturbation of 1/N. We
need to generalize the model to theN-orbital model. The
random fieldu(r ) in Eq. ~4.1! changes tou(r )I , whereI is
anN3N unit matrix.v is also a complexN3N matrix. The
density of states in the 1/N expansion shows the logarithm
singularity1 at order 1/N2 for w850. In the lowest order of
w8 and for the largeN, Eq. ~2.15! becomes, atE50,

pe

A2
512wC22

w8

N S wC2

12wC2D1
d1
N2 ln

2~12wC2!1••• .

~4.5!

Up to order 1/N, solving Eq.~4.5!, we obtain

wC2511
w8

2Nw
6Aw8

Nw
. ~4.6!

Thus the logarithmic divergence of the density of state in
~4.5! is smeared out for smallw8 since ln2e changes to
ln2w8.

In the presence ofw8, the conductivitys5e2/2p2\ also
changes. Whenw850, at the band centerE50, the logarith-
s.

in,
or

at

.

mic terms in the diffusion constant of order 1/N2 are can-
celed by the vertex corrections and the conductivity rema
finite. Indeed, each diagram for the higher-order term can
completely, not just the logarithmically divergent part, as
have seen in Eq.~3.1!. Whenw8Þ0, this cancellation does
not occur atE50 and the logarithmic term exists. This loga
rithmic term leads to the decrease of the diffusion const
and eventually the state becomes localized. Thus there
localization forE50 whenw8Þ0.

V. CONCLUSION

In this paper, we have evaluated the exact value of
conductivity of the two-state model including the fixed Ze
man term at the Zeeman energyE5D and we find the value
s5e2/2p2\, which is independent ofD. We also observed
that this result is consistent with a previous numerical resu4

We have discussed that the conductivity atE5E1 for the
case of nonvanishing Zeeman energy is the same as the
ductivity at E5E1 without the Zeeman energy. Thus th
effect of the Zeeman term does not alter the values of
conductivities atE5D andE5E1.

We discussed how the situation is modified when the Z
man energy becomes a random field, which obeys the Ga
ian white-noise distribution. Then, the diagrammatic exp
sion has two parametersw andw8. We find, in the first order
of w8, the cut-off of the singularity of the density of state
which leads to the localization atE50.
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