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Band structure and optical anisotropy in V-shaped andT-shaped semiconductor quantum wires
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We present a theoretical investigation of the electronic and optical properties ofV- andT-shaped quantum
wires. Valence-band mixing as well as realistic sample geometries are fully included through an accurate and
efficient approach that is described here in detail. We investigate the resulting valence-band structure, which
shows some significant peculiarities, such as an anomalously large spin splitting in the lowest heavy-hole
subband ofT-shaped wires. For both classes of wires we obtain good agreement between calculated optical
absorption and recent experimental spectra, and we demonstrate that the analysis of optical anisotropy can be
used as an effective tool to extract information on valence states, which is usually very difficult to obtain
otherwise.@S0163-1829~97!01008-4#
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INTRODUCTION

In recent years, one-dimensional~1D! semiconductor
nanostructures have received increasing attention. The po
tial technological application of quantum wires~QWR’s!,
e.g., in laser devices, has fueled a search for new fabrica
techniques and improved sample quality.1 In this area, recen
investigations have focused on two classes of structures
so-calledV-shaped2–6 andT-shaped7–14 QWR’s ~V-QWR’s
and T-QWR’s!. Due to high control on growth condition
and strong confinement of the electron and hole wave fu
tions on the scale of a few nanometers,V-QWR’s and
T-QWR’s share desirable optical properties for device ap
cations, such as large exciton binding energy and a sm
linewidth.

V-QWR’s are obtained from a GaAs substrate gro
along the @001# crystallographic direction, patterned wit
@ 1̄10#-orientedV-shaped grooves obtained by chemical et
ing. The active region consists of a GaAs layer cladd
between two AlxGa12xAs regions2 or GaAs/AlAs
superlattices5 ~SL’s! overgrown on the patterned sub
strate. The confining potential~see Fig. 1! has a crescen
shape profile.T-QWR’s are obtained by first growing
GaAs/AlxGa12xAs SL on a~001! substrate. After cleavage
a GaAs quantum well~QW! is grown over the exposed~110!
surface, resulting in aT-shaped active region.7 In both cases,
the electron and hole wave functions are confined in
@001# and @110# crystallographic directions, while the QWR
free axis is parallel to the@ 1̄10# direction.

The optical spectroscopy of QWR’s is more compl
than for QW’s of similar lateral dimension, since in QWR
linewidths can be comparable to intersubband splittings.
the other hand, a remarkable peculiarity of QWR’s with
spect to QW’s is that the optical activity is strongly anis
550163-1829/97/55~11!/7110~14!/$10.00
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tropic when light is linearly polarized, with the electric fiel
directed parallel or perpendicular to the wire axis. This h
long been recognized to be a band structure effect due to
quasi-one-dimensional character of electronic state, c
bined with heavy- and light-hole~HH and LH! mixing.15 The
anisotropic absorption is therefore used as a simple too
reveal the 1D character of electronic states in nanostructu
materials.

In principle, the optical anisotropy can be exploited
single out detailed information on the electronic states, sin
as we will show, it is very sensitive to specific details of t
band structure. In practice, this approach has been so
limited by the lack of realistic calculations for complex g
ometries, as the presentV-QWR’s andT-QWR’s. Indeed,
common theoretical methods, even within semiempiri
schemes as the tight-binding or the envelope-function
proach, require a large scale computational effort. In orde
keep calculations tractable, up to now the optical proper
of QWR’s have been investigated theoretically only f
rather idealized structures,16–21 yielding results that canno
be directly compared with experimental spectra. Calculati
have been performed for realistic QWR geometries,22 but
they have so far neglected HH-LH mixing.

Recently, we have demonstrated, by a combin
theoretical-experimental study ofV-QWR’s,23 that accurate
band structure calculations for realistic structures prov
quantitative predictions of photoluminescence excitat
~PLE! spectra, and that detailed information on the valen
band states can be singled out of the PLE anisotropy, des
the dominant role of the light conduction electrons in t
optical spectra. Such calculations were based on a rece
devised method which provides the band structure
QWR’s of arbitrary geometry at a relatively small comput
tional cost. The accuracy and the short computer times m
such calculations a practical characterization tool in conju
7110 © 1997 The American Physical Society
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55 7111BAND STRUCTURE AND OPTICAL ANISOTROPY INV- . . .
tion with experimental results, as well as a predictive tool
new devices.

In this paper, we present a theoretical investigation of
electronic and optical properties ofV-QWR’s andT-QWR’s.
We focus on the relationship between optical anisotropy
band structure, and we show how the analysis of opt
anisotropy permits a detailed spectroscopy of valence sta
even when the large linewidth of the spectra does not al
an identification of the valence-to-conduction subband tr
sitions. ForT-QWR’s we also predict a huge spin splitting
the lowest valence subband, originating from the interact
between the lowest HH levels of the intersecting QW’s. F
both classes of wires, calculations are performed by the
merical method introduced in Ref. 23—described here
detail—thereby demonstrating its accuracy and flexibility

The main approximation that is still present in our a

FIG. 1. Confining potential profiles ofV-QWR’s andT-QWR’s,
with an indication of relevant crystallographic directions and ref
ence frame. ForV-QWR’s we show two potential profiles, profileA
~solid line! and profileB ~dotted line!, which are characterized by
different value of the confinement lengthL ~profile A:
L58.7 nm; profileB: L56.83 nm) and which will be investigate
in Sec. II; the supercell periodicity used in the calculations~see Sec.
I! is approximately 120 nm alongx and 37 nm alongy. For the
T-QWR, QW1 is truncated at the left-hand side atx5250 nm; the
supercell periodicity is approximately 55 nm alongx and 50 nm
alongy.
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proach is the neglect of excitonic effects. Indeed, recent
culations which fully include Coulomb interaction in realist
QWR profiles22 ~but do not include HH-LH mixing! demon-
strate that electron-hole interaction, besides giving rise
bound excitonic states below the band edge, also mod
the excitonic continuum above the band edge. However,
previous investigation inV-QWR’s ~Ref. 23! has shown that
quantitative agreement is obtained between the obse
PLE anisotropy, which probe the excitonic continuum, a
the anisotropy in absorption spectra calculated neglecting
citonic effects. We interpret this result as an indication th
the electron-hole Coulomb interaction, by mixing isotrop
cally the~optically anisotropic! electron and hole states, doe
not change the average anisotropy as obtained by single
ticle band structure calculations. This is of course compat
with the possibility that the relative intensity of the absor
tion peaks for a given polarization may be strong
affected.17 The above arguments suggest that the approxi
tion of neglecting electron-hole Coulomb coupling is a re
sonable one for our purpose of studying optical anisotrop
Of course, its accuracy for the presentV- and T-QWR’s
must be establisheda posterioriby comparison with experi-
ments, as we will do later on in this paper.

The theoretical background and the numerical meth
used in our calculations are outlined in Sec. I. Sections II a
III report the results of our calculations, focusing on the ba
structure and optical anisotropy, forV-QWR’s and
T-QWR’s, respectively.

I. MODELING THE BAND STRUCTURE IN WIRES
OF ARBITRARY GEOMETRY

In this section we describe the theoretical framework
our calculations. As we are interested in optical transitio
near the direct band gap of GaAs, and because QWR e
tronic states are extended over several nanometers, we
within the envelope function approximation. For the wires
interest in this paper, we choose the following Cartesian
erence frame~see also Fig. 1!: x along the@110# direction,
y along the@001# direction, andz along the@110# direction.
Therefore, for both classes of wires, the QWR section
tends in thex2y plane, while its free axis is parallel to th
z direction. Due to translational invariance, along this dire
tion it is possible to define a 1D wave vectorkz . In thex and
y directions we assume a supercell periodicity, i.e., we
scribe arrays of QWR’s. The size of the supercell can
taken large enough to describe effectively isolated wi
when needed.

Electron and hole states will be described separately
different effective mass equations. For conduction electro
we assume a single-band approximation, which implie
parabolic energy dispersion in the free direction; the wa
functions of the electron subbands are

Cn
e~r !5Fn

e~r !us,s&, ~1!

where us,s& is the atomics state with spinsP$↑,↓%, n is
the subband index, andFn

e(r ) is the nth solution of the
envelope-function equation. Since we deal with a tw
dimensional confinement potentialV(x,y), we can factorize
Fn
e(r )5eikzzcn

e(x,y), wherecn
e is thenth solution of

-
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Ĥecn
e~x,y!5En,kz

e cn
e~x,y!, ~2!

with the electron effective mass Hamiltonian

Ĥe5F \2

2me
~ k̂x

21 k̂y
21kz

2!1V~x,y!G ; ~3!

hereme is the electron effective mass, andk̂x52 i ]/]x,
k̂y52 i ]/]y. Of course, in this one-band description, t
electron subbandsEn,kz

e depend quadratically onkz :

En,kz
e 5en

e1
\2kz

2

2me
, ~4!

where theen
e’s are the confinement energies~i.e., the sub-

band edges!. The subbandsEn,kz
e are spin degenerate, and th

cn
e’s arekz independent.
Conduction-band states do not directly contribute to o

cal anisotropy, being mainly of isotropics-type character,
and in this case the above one-band description is suffic
Conversely, it is essential to give an accurate accoun
p-type valence states by a multiband description, in orde
investigate optical anisotropy. Due to mixing between H
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o
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and LH subbands, both eigenvalues and envelope funct
depend nontrivially on the wave vectorkz and the hole sub-
band indexm. Using the compact notationa5(kz ,m), we
write the hole wave functions

Ca
h~r !5(

Jm
FJm ,a
h ~r !u3/2,Jm&, ~5!

where u3/2,Jm& are the four atomic states with total ang
lar momentum J53/2 and projection Jm513/2,
11/2, 21/2, 23/2 of J along a quantization axis. Again
each envelope functionFJm ,a

h (r ) can be factorized as

FJm ,a
h (r )5eikzzcJm ,a

h (x,y), and the four-component vecto

ca
h(x,y)5(c13/2,a

h ,c21/2,a
h ,c11/2,a

h ,c23/2,a
h ) is themth so-

lution at pointkz of the multiband effective mass equation,
24

ĤL ca
h5Ea

h ca
h , ~6!

where ĤL is the Luttinger Hamiltonian.25 With the above
choice of coordinate axes and the quantization axis oJ
along the@110# direction, following Ref. 26 the Luttinger
Hamiltonian reads
ĤL5
\2

2m0 S P̂11V~x,y! R̂ Q̂ 0

R̂† P̂21V~x,y! 0 2Q̂

Q̂† 0 P̂21V~x,y! R̂

0 2Q̂† R̂† P̂11V~x,y!

D u3/2,13/2&

u3/2,21/2&

u3/2,11/2&

u3/2,23/2&

, ~7!
be
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where

P̂15S g12
g213g3

2 D k̂x21~g11g2!k̂y
21S g12

g223g3

2 D kz2 ,
~8a!

P̂25S g11
g213g3

2 D k̂x21~g12g2!k̂y
21S g11

g223g3

2 D kz2 ,
~8b!

R̂52A3F2
g22g3

2
k̂x
21~g2k̂y22ig3kz!k̂y2

g21g3

2
kz
2G ,
~8c!

Q̂522A3~g3k̂y2 ig2kz!k̂x . ~8d!

This Hamiltonian provides the~positive definite! hole sub-
bands, referred to the bulk valence-band edge, as a func
of the in-wire wave vectorkz , including HH-LH mixing.
The hole Hamiltonian for structures grown along crystal
graphic directions different from the present ones can be
tained along the lines of Ref. 26. In the above electron
hole effective mass Hamiltonians we neglect the mate
dependence of the electron effective massme and the Lut-
tinger parametersg1, g2, andg3, and we always use the bul
on

-
b-
d
l

GaAs values listed in Table I. Although our approach can
extended to account for the material dependence, this wo
be a small effect in our calculations.

One possible approach to solve the multiband equation~6!
is to split the problem in two parts: the first step is to sol
the two Schro¨dinger-like equations arising from the diagon
terms of~7!,

@ P̂11V~x,y!#f i
1~x,y!5e i

1f i
1~x,y!, ~9!

@ P̂21V~x,y!#f i
2~x,y!5e i

2f i
2~x,y!. ~10!

The second step is to use the setf i
1 as a basis to expand th

components63/2 of the vectorca
h , and the setf i

2 as a
basis for the components61/2. In this representation, th
diagonal matrix elements of theHL are given by the two sets
of scalar numberse i

1 , e i
2 , and matrix elements need only t

be calculated for off-diagonal terms, using the functio
f i
1 , f i

2 . This approach has the following drawback: sin

TABLE I. Bulk GaAs band parameters used in the calculation

me g1 g2 g3 Eg ~eV!

0.067 6.85 2.1 2.9 1.519
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the effective masses appearing inP̂1, P̂2 ~the so-called HH
and LH effective masses! are very different, the two sets o
eigenvaluese i

1 , e i
2 span different energy ranges. The s

e i
2, being the spectrum of a light particle, will have larg
gaps, and the ground state will be higher in energy than
the sete i

1. Since we are mainly interested in the low-lyin
hole subbands neare1

1, this representation, although exact
principle, is poorly convergent with respect to the number
statesf i

1 , f i
2 included in the basis, and it is not practical

numerical calculations.
To solve this problem, we propose a scheme in which

expand the components ofca using the solutions of two
Schrödinger-like equations with two fictitious, arbitrar
massesm1, m2, which we then tune in order to improve th
convergence:

F \2

2m1 ~ k̂x
21 k̂y

2!1V~x,y!Gfn
1~x,y!5en

1fn
1~x,y!, ~11a!

F \2

2m2 ~ k̂x
21 k̂y

2!1V~x,y!Gfm
2~x,y!5em

2fm
2~x,y! ~11b!

~here and in the following we use the indexn for 1 states,
andm for 2 states!. In this way, we diagonalize exactly onl
part of the kinetic energy termsP̂1 and P̂2 of ĤL , but the
potentialV(x,y) is exactly diagonalized. Of course, in th
representationen

1 , em
2 arenot the diagonal elements of th

matrix representing the Hamiltonian, andP̂1, P̂2 give rise to
additional off-diagonal terms. However, the time spent
calculate the additional terms is more than compensated
the improved convergence which can be achieved by p
erly choosingm1 andm2. In the end, we shall find it con
venient to choosem15m2, and both equal to the heavy
hole effective mass along the@001# direction.

To implement this idea, we add and subtract a te
\2/2m1( k̂x

21 k̂y
2) to P̂1, and a term\2/2m2( k̂x

21 k̂y
2) to P̂2.

Then we obtain

P̂15 P̂15
1

m1 ~ k̂x
21 k̂y

2!1px
1k̂x

21py
1k̂y

2

1S g12
g223g3

2 D kz2 , ~12a!

P̂25 P̂25
1

m2 ~ k̂x
21 k̂y

2!1px
2k̂x

21py
2k̂y

2

1S g11
g223g3

2 D kz2 , ~12b!

where

px
15S g12

g213g3

2 D2
1

m1 , ~13a!

py
15~g11g2!2

1

m1 , ~13b!

px
25S g11

g213g3

2 D2
1

m2 , ~13c!
t

r

f

e

by
p-

py
25~g12g2!2

1

m2 . ~13d!

Then we solve the equations~11a! and ~11b! by a plane-
wave expansion, as outlined in Ref. 22. Typically, we fix tw
energy cutoffs,Ecut

1 andEcut
2 , and we find theN1 andN2

eigenstates which fall below the cutoffs. Using the eige
functionsfn

1 , fm
2 , we form the following basis set:

u1,n,↑&5S fn
1

0

0

0

D , u1,n,↓&5S 0

0

0

fn
1

D , ~14a!

u2,m,↑&5S 0

fm
2

0

0

D , u2,m,↓&5S 0

0

fm
2

0

D , ~14b!

with n51 . . .N1 andm51 . . .N2, and we expandca
h in

this basis:

ca
h5(

ns
Ca

1~n,s!u1,n,s&1(
ms

Ca
2~m,s!u2,m,s&.

~15!

The explicit matrix elements ofĤL in this basis are given in
Appendix B. The total dimension of the Hamiltonian matr
in this representation is 23(N11N2). All we need to com-
pute, in order to evaluate the matrix elements, are integ
of the kind

E
V

@f i
g~x,y!#* k̂bf j

g8~x,y!dx dy, ~16a!

E
V

@f i
g~x,y!#* k̂bk̂b8f j

g8~x,y!dx dy, ~16b!

evaluated over the supercell volumeV, where b,b8
P$x,y% andg,g8P$1,2%; these are easily obtained give
the plane-wave expansions of thef i

1’s and f i
2’s. The

choice ofm1, m2, which is important in order to obtain a
efficient convergence, is discussed in detail in Appendix
here we only anticipate that in all our calculations we u
m15m25(g122g2)

21.
Once we have calculated the electron and hole subba

by the above method, we are in the position to evaluate
absorption spectrumae(\v) in the dipole approximation,
summing the dipole matrix element, with the appropriate p
larization of lighte, over all electron and hole states:

ae~\v!} (
a,n,s

uMa→n,s
e u2d~En

e1Ea
h1Eg2\v!, ~17!

where the optical matrix elementsMa→n,s
e are given in Ap-

pendix C, andEg is the bulk energy gap of GaAs; typically
a set of sixtykz points have been included in the summatio
The absorption spectra shown in this paper have been
tained by superimposing a Gaussian broadeningsb to
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ae(\v), in order to simulate the inhomogeneous broaden
due to structural imperfections of the samples. The bro
ened spectrum is obtained as

ae~\v!5E
2`

`

ae~\v8!e2\2~v2v8!2/2sb
2
dv8. ~18!

II. BAND STRUCTURE AND OPTICAL PROPERTIES
OF V-SHAPED WIRES

A. Samples

As a prototype ofV-QWR’s, we first consider a sampl
described in Refs. 5, 27. This consists of an active Ga
layer embedded in a~AlAs! 4/~GaAs! 8 SL, overgrown by
molecular beam epitaxy on the exposed surface of the etc
substrate. As in Refs. 23, 27, we use theV-shaped potentia
profile obtained by digitalizing a TEM micrograph of th
sample. We also adopt the same supercell geometry a
Refs. 23, 27. The complicated structure of the SL wh
provides the quasi-one-dimensional confinement is mod
by a homogeneous barrier with effective conduction- a
valence-band offsets,Veff

e and Veff
h , respectively. Based on

previous investigations27,23 for the same sample, we tak
Veff
e 5150 meV andVeff

h 585 meV. It should be noted tha
the effort of including exactly the confining SL in the calc
lations would not necessarily result in improved accuracy
the envelope-function approximation itself loses its valid
for such short-period SL’s.

In order to investigate the role of the confinement in t
optical properties, we shall consider two sample profil
which differ in the value of the confinement lengthL at the
bottom of the V-shaped region~see Fig. 1!: profile A
(L58.7 nm) and profileB (L56.83 nm). These SL-
embedded QWR’s will be labeledA/SL andB/SL.

A key issue which makes nm-scale QWR’s interesting
electro-optical applications are large confinement ener
which can be obtained with large band offsets in addition
geometric confinement. In view of this fact, we shall co
pare the samples described above with samples having
same profiles and barriers constituted by pure AlAs, that
will label A/AlAs and B/AlAs. The parameters of the fou
samples are summarized in Table II.

B. Band structure

A qualitative interpretation of the band structure of
V-QWR can be obtained by adding to a QW of widthL an
additional lateral confinement due to the crescent shap
the profile. In the lowest approximation, the latter can
thought of as a parabolic potential1 which splits each sub
band of the parent QW into a new set of subbands. Since

TABLE II. V-QWR’s sample parameters.

A/SL A/AlAs B/SL B/AlAs

L ~nm! 8.7 8.7 6.83 6.83
Barrier type ~AlAs!4/~GaAs!8 AlAs ~AlAs!4/~GaAs!8 AlAs
Veff
e (eV) 0.150 1.036 0.150 1.036

Veff
h (eV) 0.085 0.558 0.085 0.558
g
d-

s

ed

in
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s

,

r
s
o
-
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e
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additional confinement is less effective than the confinem
due to the original QW, the new sets of subbands h
smaller gaps with respect to the subband splittings of
parent QW. This simplified picture will serve as a guideli
for the discussion of numerical results obtained for the ac
samples.

The calculated energies atkz50 of the lowest conduction
and valence states are listed for reference in Table III for
four samples. In the following we shall focus on hole su
bands, which are shown in Fig. 2~right panel! for sample
A/SL. First, we note that atkz50 each subband is doubl
degenerate, while at finitekz the subbands are spin split, du
to the lack of inversion symmetry of the confinin
potential.28 Splittings are in the range of few meV. Second
strongly nonparabolic energy dispersion is evident. This fa
familiar from QW’s, is due to mixing of states with HH
(Jm563/2) character and LH (Jm561/2) character.

The HH/LH character of hole states influences the opti
properties of the sample, since different atomic orbital co
ponents have different oscillator strengths; of particular
terest from this point of view are thekz50 states which, due
to the large density of states~DOS! stemming from their
quasi-one-dimensional character, mainly contribute to

TABLE III. Confinement energies~in meV! of the lowest con-
duction and valence states atkz50 for theV-QWR’s. Note that at
kz50 spin degeneracy holds. Therefore, subbandm51 is degener-
ate tom52, etc.~Ref. 24!.

Electrons
n A/SL A/AlAs B/SL B/AlAs

1 43.3 68.3 55.5 98.8
2 57.3 91.9 63.2 117.0
3 65.3 112.5 67.0 124.0
4 69.8 126.1 72.4 132.2

Holes
m A/SL A/AlAs B/SL B/AlAs

1,2 10.7 14.4 13.1 18.7
3,4 13.1 18.1 13.8 19.5
5,6 14.4 20.0 15.6 21.7
7,8 15.8 21.8 17.1 23.7

FIG. 2. Right panel: hole band structure along the free a
@110# of the V-QWR labeledA/SL. Black triangles indicate the
eigenvalues used in the later Fig. 11 to analyze the converge
Left panel: LH character of thekz50 states; theJ quantization axis
is taken along@001#.
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55 7115BAND STRUCTURE AND OPTICAL ANISOTROPY INV- . . .
FIG. 3. Total charge density~left panels!, and HH- and LH-projected charge densities~center and right panels! of selected hole subbands
according to the labels, atkz50 for the sameV-QWR of Fig. 2. Full lines indicate the GaAs/SL interfaces. For clarity, some charge de
maps have been magnified by a factor of 5 or 10, as indicated by labels. Note that the hole subbandsm51,3,5, . . . atkz50 are degenerate
with the subbandsm52,4,6, . . . , ~Ref. 24! and the total and projected charge densities are equal for degenerate states.
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absorption intensity. Contrary to the case of QW’s, hole s
bands cannot be strictly classified as HH and LH states e
at kz50. To define the HH/LH character in the prese
samples, we note that the direction of strongest confinem
is the @001# direction, as demonstrated by charge dens
maps of the lowest-lying states which we will show later
Fig. 3. It is therefore meaningful to calculate the HH/L
character along this direction, because this would be
quantization axis ofJ in an equivalent@001#-grown QW of
width L. To do this, we calculate the rotated vect
ca,R
h (x,y)5R21

• ca
h(x,y), where

R5
1

2A2 S 1 2A3 A3 1

A3 1 21 A3
A3 1 1 2A3
1 2A3 2A3 21

D . ~19!

R is obtained by diagonalizing the matrixJy written in the
representation in whichJx is diagonal, with eigenvalue
Jm . Then we define the HH- and LH-projected charge d
sities
-
en
t
nt
y

e

-

ra
HH~x,y!5 (

Jm563/2
uca,R,Jm

h ~x,y!u2, ~20a!

ra
LH~x,y!5 (

Jm561/2
uca,R,Jm

h ~x,y!u2. ~20b!

Finally, the HH and LH character is obtained by integrati
the above charge densities over all space.~In the above equa-
tions, the real-space representation is chosen for clarity.
corresponding expressions in Fourier space, which we us
the numerical implementation, are very easy to obtain a
are not explicitated here.!

In the left panel of Fig. 2 we show the calculated L
character of the hole subbands atkz50. This is best analyzed
in connection with Fig. 3, where we show the total and p
jected charge densities of the hole states atkz50 for the
sameA/SL sample. In the ground state, the LH componen
rather small (;8%), but it increases rapidly for the excite
subbands. Correspondingly, the ground state is well locali
@Fig. 3~a!#, while the lowest excited states@Figs. 3~b!, 3~c!#
have wave functions which increasingly extend along
V-QWR sidewalls. The regular increase of the LH comp
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nent is interrupted by them525, 26 levels~13th doublet:
recall that each point atkz50 is doubly degenerate! at
;27 meV which is mainly of LH character (56%). This ca
be interpreted as the reminiscent of the LH state of a Q
with confinement lengthL. The wave function of this leve
@Fig. 3~d!#, in fact, is again well localized, analogously to th
ground state, and in contrast to the wave functions of nea
states. We shall comment later on the fingerprints of t
strongly LH-like state in the optical spectra, and, partic
larly, in the optical anisotropy. Note also that in Fig. 2 the
are other ‘‘jumps’’ in the LH character at higher energie
these correspond to energies where ladders of levels of
ferent symmetries, like an additional nodal plane paralle
the @110# direction, begin.

In Fig. 4 we compare the LH character vs subband ene
at kz50 for samples with different barriers~SL and pure
AlAs!. For both profilesA andB, the strong confinement du
to AlAs barriers induces not only the expected blueshift
the subbands, but also reduces the LH character of the lo
LH-like state, as compared to SL barriers: in sampleA/SL,
them525, 26 doublet is 56% LH, while its counterpart
sampleA/AlAs, them527, 28 doublet, is only 42% LH. In
sampleB/SL, them535, 36 doublet is 75% LH, while its
counterpart in sampleB/AlAs, the m537, 38 doublet, is
only 52% LH.

C. Optical properties

In Fig. 5 we show the calculated absorption intensity
the four samples of Table II and for light linearly polarize
parallel to the wire axis,I i , and perpendicular to it along th
@110# direction, I' . A Gaussian broadening ofsb
564.5 meV has been included.23 For all samples, we also
report the relative optical anisotropy~thick lines in Fig. 5!,
defined as 100*(I i2I')/I i . The optical absorption spectr
are obtained integrating over the whole band structure~i.e.,
integrating overkz and summing over electron and hole su
bands and spin!; however, for illustration we show the stron
gest optical transitions due tokz50 states, and for one spi
orientation of the conduction electrons, for light polarizati
perpendicular to the QWR axis~histograms in Fig. 5!. To
identify the electron and hole states involved in each tra
tion, we use the labeln/m, wheren andm are, respectively,
the indices of the conduction and valence states.

FIG. 4. LH character vs subband energy atkz50 for samples
with profileA ~left panel! andB ~right panel!, and with SL or AlAs
barriers~full circles and triangles, respectively!.
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We first focus on sampleA/SL, for which experimental
data are available.23 The calculated anisotropy in the low
energy part (&1.62 eV) is 10–20 %, with a deep minimum
at ;1.59 eV, where the anisotropy is almost suppress
Both the average anisotropy and the position of the minim
are inquantitativeagreement with experimental data.23 The
agreement worsens at higher energies (*1.62 eV), where
the calculated anisotropy drops rapidly and finally chan
sign, while experimental data23 show an increase. We believ
that this discrepancy is due to our ‘‘effective’’ description
the barriers which affects particularly the higher-lying ho
states.

By comparing the calculated anisotropy of the fo
samples, it appears that a more or less pronounced dip o
range of;10 meV ~i.e., the linewidth of the broadene
spectra! is always present in the low-energy range of t
spectrum, superimposed onto a background of an otherw
large and positive anisotropy. Additional structure, partic
larly for sampleA/AlAs, is also present in the high-energ
range. Note also that the maximum anisotropy is in the ra
15–25 %, and does not change dramatically in the differ
samples.

By studying the optical matrix elements, it can be sho
that the dips in the anisotropy are due to states with a la
LH character,17 e.g., them525 subband in sampleA/SL.
Since this is a localized state and has a large spatial ove
with the first conduction subband, it contributes to the lo
energy part of the spectrum. This is true, in general: as
be seen from Fig. 5, for all samples the anisotropy dip c
responds to akz50 transition~highlighted as black bars in
the histograms! between the electron ground state (n51)
and an excited hole state which is them525, them527, the
m536, and them537 level forA/SL, A/AlAs, B/SL, and
B/AlAs, respectively. For sampleA/SL, comparison with

FIG. 5. Optical absorption intensity for linearly polarized lig
parallel~thin solid lines! and perpendicular~thin dotted lines! to the
wire axis for the four samples listed in Table II. The relative a
isotropy is also shown~thick lines! in the scale on the right-hand
side of each panel. A Gaussian broadening ofsb564.5 meV is
included. For each sample, we show a histogram of the stron
optical transitions atkz50 and for one spin orientation, for ligh
polarizion perpendicular the QWR axis. Each bar is proportiona
height to the oscillator strength, and it is labeled withn/m, where
n is the index of the conduction state andm the index of the valence
state involved in the transition~Ref. 24!.
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Fig. 2 shows that the involvedm525 hole state has a strong
LH character and its wave function@Fig. 3~d!# is strongly
localized. The large LH component assumes that the int
sity for the two polarizations is reversed with respect to t
strongly HH-like ground state, causing the dip in the anis
tropy at 1.59 meV. A similar correspondence between t
dip and a localized LH-like state applies also to the oth
samples.

An immediate consequence of the above result is th
since both the ground HH state and the LH-like state cou
with the lowest electron subband,the difference in energy
between the onset of the continuum and the position of
dip in the anisotropy is a direct measure of the energy sp
ting between the ground HH and the first LH state, indepe
dently of the electron confinement. Note that such informa-
tion cannot be extracted from the absorption spectra alone
the large broadening prevents the identification of any sin
transition apart from the fundamental one.

The HH/LH splitting obtained in the above manner can b
used to extract band structure parameters as, for example
effective hole confinementVeff

h . In the measured PLE spectr
for sampleA/SL,23 the anisotropy dip lies;16 meV above
the onset of the continuum; in Fig. 6 we report the HH/L
splitting calculated for several values ofVeff

h ~full dots! for
this sample. We also show, for comparison, the HH/LH spl
ting calculated by a simple square well model for a QW
width L ~empty dots!, using the bulk HH and LH effective
mass along@001# . It can be seen that the splitting is quit
sensitive toVeff

h , and that the experimental value is compa
ible with Veff

h ;80 meV. This observation provides a goo
criterion for choosing the confinement energy of hole
which would otherwise be rather arbitrary. Using this proc
dure,Veff

h was finally taken equal to 85 meV in Ref. 23. Not
that a variation of the valence-band offset of615 meV
shifts the HH/LH splitting of61.3 meV, well within the
experimental accuracy for the determination of the HH/L
splitting.23 Note also that, for a rough estimation ofVeff

h ,
calculations using a simple square well model may be su
cient.

FIG. 6. Energy gap between the hole ground state and the
localized state with a strong LH character for theV-QWR sample
labeledA/SL as a function of the effective valence-band offs
Veff
h . Full dots: full calculation. Empty dots: square well model for

QW of width L and barrier heightVeff
h , the HH and LH levels are

obtained withmHH50.377 andmLH50.090, respectively. The ex-
perimental value is obtained as explained in the text.
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The comparison with the absorption spectra demonstr
that kz50 transitions alone give a poor estimate of the in
grated spectrum. This is due to the DOS contribution of
hole subbands which are strongly nonparabolic, and hav
large DOS also forkz points away fromkz50 ~see Fig. 2!.
Finally, note the relaxation of selection rules forkz50 tran-
sitions shown in Fig. 5. Indeed, if the envelope-functi
parity-conserving selection rule would be obeyed, only tra
sitions of the typen/(m52n) or n/(m52n21) ~depending
on electron spin orientation! would be allowed.

III. BAND STRUCTURE AND OPTICAL PROPERTIES
OF T-SHAPED WIRES

A. Samples

We investigate aT-QWR with the geometry sketched i
Fig. 1. In our calculation, the SL grown along the@001#
direction is constituted by 5.3 nm wide QW’s~QW1!, sepa-
rated from each other by 50 nm wide AlAs barriers, wh
the QW grown along the@110# direction ~QW2! is 4.8 nm
wide. These parameters correspond to a sample for w
polarization-dependent PLE spectra are available.12

Note that theT-QWR’s which form at the intersection
between QW1 and QW2 are not uncoupled in the@001# di-
rection, due to the SL structure of QW1’s, a fact which w
fully take into account in the supercell representation use
our calculations. On the other hand, theT-QWR’s are iso-
lated along the@110# direction; in our calculations, this is
simulated by truncating QW1 with a AlAs barrier 50 nm o
the left-hand side.

B. Band structure

The nature of the 1D confinement inT-QWR’s is rather
different with respect to theV-QWR’s case. There, we use
the picture of a lateral confinement added on a QW struc
which, therefore, localizes all states in thex-y plane. Con-
versely,T-QWR states can be better interpreted as the re
of the coupling between 2D states of the QW’s, QW1, a
QW2. Beside perturbing the 2D states, this coupling a
induces localized states or resonances; these can be also
as due to a 1D defect in the otherwise translationally inva
ant~in the QW plane! 2D states of a QW, due to the couplin
with the other QW. This picture has nontrivial consequenc
particularly for hole states, which we analyze in the follow
ing.

First, we focus on the lowest-lying states atkz50. Elec-
trons and holes are very different from this point of vie
contrary to the electron effective mass which is isotropic
GaAs, the HH effective mass is strongly anisotropic betwe
the @001# direction (mHH50.377) and the@110# direction
(mHH50.69). The effect of this difference is shown in Fig.
where we report the total charge densities for the low
electron and hole states atkz50. For the present structure
being QW1 and QW2 of comparable width, the electr
ground state@Fig. 7~a!# is a quasi-one-dimensional state e
tending both in QW1 and QW2; the lowest excited subba
@Figs. 7~b!, ~c!, ~d!# belong to the continuum of 2D states o
QW1, since QW1 is wider~actually, discrete levels are ob
tained here, due to the supercell method!; the localized
quasi-one-dimensional electron lies 15 meV below the Q
continuum.

st

t
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7118 55G. GOLDONI, F. ROSSI, E. MOLINARI, AND A. FASOLINO
On the contrary, for holes the larger mass along@110#
more than compensate for the smaller width of QW2, and
hole ground state@Fig. 7~a!#, although localized in the cente
of the T, is much more a QW2-like state, only weakly pe
turbed by coupling to QW1; accordingly, the lowest excite
hole subbands@Fig. 7~b!, ~c!# are basically 2D states belong
ing to QW2, up to the fourth level@Fig. 7~d!#, which is a
QW1 state. The quasi-one-dimensional ground state is pr
tically degenerate with the QW2 continuum; note, howeve
that in contrast to conduction electrons, there is a seco
hole level @Fig. 7~b!# with a significant component along
QW1.

The full band structure of holes is shown in the right-han
panel of Fig. 8. In the rather complex dispersion of the su
bands, we can distinguish a peculiar feature ofT-QWR,
namely, a huge spin splitting of the lowest doublet at fini
kz which, at kz.0.035 Å21, is ;15 meV for the present
structure.

FIG. 7. Total charge density of electrons~left panels! and holes
~right panels! of the lowestkz50 subbands for theT-QWR.
e

c-
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Before discussing the origin of such a large spin splittin
it is useful to examine the actual localization of the calc
lated states in the QWR. To this aim, we need to discrimin
the states peaked around the center of theT from states that
are typical of one of the parent QW’s and are left essentia
unchanged by the interaction with the other one. This is p
ticularly useful because we expect that most of the state
Fig. 8 simply arise from folding of QW states induced by t
supercell periodicity and to the truncation of theT along the
@110# direction. Therefore, in Fig. 8 we identify by ful
circles those states which, by direct inspection of the wa
function, show a strong localization in the center of theT.
Indeed, it appears that only a limited subset has predo
nantly a localized character, and can therefore be assigne
quasi-one-dimensional QWR-like states or resonanc
These include the localized states arising from the low
two doublets, already discussed above, as well as the r
nant states falling around 40 meV. The remaining states
similar to 2D QW-like states, with the charge density loc
ized mostly in QW1 or QW2.

To clarify the origin of the large spin splitting, it is usefu
to compare the band structure of theT-QWR with the hole
subbands of the parent isolated QW1 and QW2. In Fig. 8
show with open squares and open circles the lowest HH s
band of QW1 and QW2; the LH subbands, for these thi
nesses, lie high in energy (.80 meV in QW1 and
.100 meV in QW2!.29 A small gap of;8 meV separates
the two levels atkz50; as already noted above, the lowe
state is QW2, due to the larger HH mass. Owing to differ
HH-LH mixing in each QW separately, the HH subbands
the two parent QW’s have different energy dispersion a
function of kz and cross at some finitekz .

Large spin splittings are, in general, an effect of HH-L
mixing in asymmetric structures.30 In the present case, how
ever, the energy difference between the HH and LH levels
each isolated QW is too large to explain the huge splitt
that we have found in the lowest-energy subbands of

FIG. 8. Right panel: hole band structure along the free a
@110# of the T-QWR. Solid lines show the dispersion of all stat
resulting from the full calculation for our supercell geometry. T
full circles identify the states that, from direct inspection of t
wave function, exhibit a predominantly localized character at cen
of the T, and are therefore assigned to quasi-one-dimensio
QWR-like states or resonances. As explained in the text, the
maining states are similar to 2D QW-like states, with the cha
density localized mostly in QW1 or QW2. Open squares and circ
show the lowest-hole subbands of the parent isolated QW1
QW2, respectively. Left panel: LH character~with J quantization
axis along@110#! of the kz50 states.
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FIG. 9. Total charge density of the lowest tw
hole states of theT-QWR atkz50.035 Å21. The
HH- and LH-projected charge densities of ea
state are also shown separately in the center
right-hand panels. Full lines indicate the GaA
AlAs interfaces.
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QWR. Naively, one would rather expect small gaps~induced
only indirectly by coupling to the far-lying LH states! to
open at the crossing of the QW1 and QW2 subbands. N
however, that the HH states of the parent QW’s are eig
states ofJ with Jm563/2, butwith the quantization axis
along different directions. Taking, for example, theJ quan-
tization axis along @110#, a HH state of QW2 is
uQW2&5u3/2,13/2& ~for one of the degenerate spin orient
tions!. A HH state of QW1written in the same basis, is

uQW1&5
1

2A2
~ u3/2,13/2&1A3u3/2,11/2&1A3u3/2,21/2&

1u3/2,23/2&). ~21!

In words, a HH state of QW1 has a strong LH compon
from the point of view of QW2. Therefore, the lowest H
subbands arising from QW1 and QW2 are strongly coup
which results in a strong avoided-crossing behavior an
very large spin splitting.

This interpretation is supported by our calculation of t
LH character, which is shown in the left panel of Fig. 8.
view of the fact that the hole ground state is rather QW2-li
we have computed the LH character with the quantizat
axis along@110#, i.e., it is obtained, as in Sec. II, by integra
ing the projected charge densities@see Eqs.~20a!–~20b!#, but
using theca

h instead of the rotatedca,R
h . As expected, the

lowest subbands are nearly pure HH, being localized in Q
~see Fig. 7!, while them57,8 subbands are more than 60
LH. This should not be interpreted as a mixing with L
states of QW2; rather, it is a manifestation of the fact t
this state is localized in QW1 and, therefore, does not ha
well-defined orbital character along@110#.

We conclude our analysis of the lowest spin-split doub
by noting that, askz increases, only the lowest level remai
a well localized, quasi-one-dimensional state, while its s
companion gradually merges into the QW1 quasicontinu
~at large wave vectors, QW1 becomes the ground state!. For
illustration, we show in Fig. 9 the charge density of the tw
lowest levels atkz50.035 Å21 ~close to the wave vecto
where the QW2 and QW1 dispersions cross!. The lowest
e,
n-

t

d,
a

,
n

2

t
a

t

n

state ~labeled↑), which falls far in energy from the QW
bands, is strongly localized at the intersection of the QW
The higher state~labeled↑) is peaked at the center of theT
but it also extends quite far into QW1.

C. Optical properties

In Fig. 10 we show the calculated absorption intensity
the T-QWR and for light linearly polarized parallel to th
wire axis, I i , and perpendicular to it along the@001# direc-
tion, I' . A Gaussian broadening ofsb565 meV has been
included. We can identify four main structures, a pe
around 1.65 eV, another peak around 1.68 eV~with a minor
shoulder on the low-energy side!, a large composite structur
beginning above 1.7 eV, and another large structure at 1
eV. Of these, only the lowest peak involves essentially p
QWR-like localized states@Fig. 7~a!#. The second structure
involves transitions from the next electron state, extending
QW1 @see Fig. 7~b!#, to the first hole states with significan
spatial overlap@see Fig. 7~d!#. The structure above 1.7 meV

FIG. 10. Absorption intensity of theT-QWR for light linearly
polarized parallel~solid line! and perpendicular~dashed line! to the
wire axis along@001#, labeled with the main contributions to th
peak intensities. A Gaussian broadening of65 meV is included.
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7120 55G. GOLDONI, F. ROSSI, E. MOLINARI, AND A. FASOLINO
involves predominantly QW2 states, with a contributi
from higher QWR resonances which produce the hi
energy shoulder inI i . Finally, the large peak at 1.74 eV i
due to many subbands, with a significant contribution fro
LH states belonging to both QW’s. The lowest three str
tures are polarization dependent withI i.I' . The anisotropy
is maximum for the second structure, for whichI' is very
small, consistently with the expectation for a~001! QW. The
higher structure, on the other hand, is nearly polarizat
independent, due to the LH contributions.

These results can be compared with the experimental
spectra of Ref. 12. There, three main structures occur at 1
around 1.67–1.68, and above 1.7 meV. The agreement
the calculated spectra is again surprisingly good, taking
account that these neglect excitonic effects. The experim
tal assignment of the first structure to a QWR-like state a
the successive structures to QW1-like states, based on
comparison with reference QW’s, is fully consistent with o
picture. As concerns intensities, the agreement is also rea
ably good if one considers that the weight of the QWR pe
is sensitive to the relative volume occupied by the QW
which enters the calculation through the choice of the sup
cell. On the other hand, the reasons of an enhanced inte
of QW1-like features in the PLE experimental data are d
cussed in Ref. 12. Finally, we compare our results with
observed values of the anisotropy.12 From PLE, Akiyama
et al. estimate I'50.39I i for the QWR peak, and
I'50.14I i for the next structure assigned to QW1. The c
responding theoretical values from Fig. 10 are approxima
I'50.52I i and I'50.19I i ~the coefficients are slightly
larger, 0.57 and 0.17, respectively, if the broadening is
duced tosb561.5 meV). The very different anisotropy o
the two structures is therefore in qualitative agreement w
experiments, although further investigation would be
quired to understand the origin of the difference.

SUMMARY AND CONCLUSIONS

We have presented an accurate and efficient approach
allows us to calculate the electronic and optical propertie
quantum wires, taking into account valence-band mixing
fects together with realistic profiles of the confining pote
tials. We have studied specificallyV- andT-shaped quantum
wires, where the shape of the confinement region differs c
siderably from the model geometries assumed in most of
previous investigations. The two classes of wires differ s
nificantly in the structure of their energy spectra: while t
crescent shape ofV-QWR’s induces a series of localize
quasi-one-dimensional levels, only the lowest states
T-QWR’s are clearly localized in the wire because of t
subsequent onset of the continua of the parent QW’s.
consequences on the optical spectra have been discuss
detail. In particular, we have focused on the optical anis
ropy, and demonstrated that the analysis of anisotropy s
tra can be used as an effective tool to extract information
valence states, usually very difficult to obtain otherwise.

Comparison with very recent PLE spectra for both clas
of wires shows good agreement, in spite of our neglect
excitonic effects. As we discussed in the Introduction, t
agreement might be due to the symmetry properties of
Coulomb interaction and, therefore, might be a rather gen
-
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feature. However, while the approximation of neglecting e
citonic effects is very convenient from the computation
point of view, its accuracy for a given class of materia
should be establisheda posteriori from comparison to ex-
periments, as we have positively tested in this paper
V-QWR’s andT-QWR’s.

As a final remark, we stress that all our calculations ha
been performed by a numerical method which proved co
putationally very convenient. Furthermore, our method len
itself to include calculations of Coulomb correlation effec
on the linear and nonlinear optical properties of these w
which are currently implemented only for noninteracting v
lence bands,22 as well as to include external magnet
fields20,31 to interpret magnetoluminescence experiments.
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APPENDIX A: BASIS SET CONVERGENCE
AND THE CHOICE OF m1, m2

The fictitious massesm1, m2 entering Eqs.~11a! and
~11b! can be chosen arbitrarily. In this appendix we w
show that a judicious choice can lead to a significant i
provement in the basis set convergence and the lowerin
the computational cost of the calculation. Note that the c
vergence with respect to the number of functionsfn

1 , fn
2

included in the basis set, which we investigate below, i
separate problem from the convergence in the plane-w
expansion of thefn

1 , fn
2 themselves which, for a given

structure, must therefore be checked once and for allbefore
the diagonalization of the Luttinger Hamiltonian is started

In Fig. 11 we show the behavior of the lowest hole eige
values as a function of the number of basis functio
N11N2. The calculations have been performed for t
V-QWR A/SL, which is described in detail in Sec. II. Th
eigenvalues reported in Fig. 11 are highlighted by black
angles in the full band structure of the sameV-QWR shown
in Fig. 2: they are the doubly degenerate lowest eigenvalu
kz50 @panel~a!#, and the two spin-split lowest eigenvalue
at kz50.02 Å21 @panels~b! and ~c!#.

In each panel of Fig. 11 we show two sets of calculatio
both obtained withm15(g122g2)

21, but with different
choices of m2. The empty dots are obtained wit
m25(g112g2)

21. With this choice,m1 andm2 are the
HH and LH effective masses along the@001# crystallographic
direction; since this is the direction of strongest confinem
for theseV-QWR’s ~see next section!, these are the ‘‘physi-
cal’’ masses in the sense that, for example, they would
termine the HH and LH levels of a QW with comparab
confinement length grown in this direction. It can be note
however, that convergence is achieved only with
;1 meV withN11N2 as high as 280, which correspond
to Ecut

1 5120 meV and Ecut
2 5200 meV; these, in turn

should be compared with the low barrier height of th
sample, which is 85 meV. Therefore, one needs to re
energies high in the continuum to achieve convergence.
couples of empty dots atN11N25210 are obtained with
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two different choices of the pair (N1, N2): (125, 85) for
the upper points, and (97, 113) for the lower points. W
conclude that, with fixedN11N2, the convergence im
proves with increasingN2, suggesting that the2 states are
responsible for the slow convergence.

In fact, lowering them2 mass improves the convergenc
In Fig. 11, the black dots correspond to the extremal cho
m25m1 which, as we anticipated in Sec. I, is our fin
choice, and has been used in all calculations presented in
paper. With respect to the previous case, the convergen
much faster: the well-converged values atN11N25150
~i.e., N15N2575) are obtained with Ecut

1 5Ecut
2

592.2 meV; indeed, we find that the convergence nea
saturates whenEcut

1 5Ecut
2 *85 meV, i.e., just above the

valence-band offset for this QWR. Note that, in addition
the improved convergence, the choicem25m1 implies that
only one of the two Eqs.~11a!–~11b! need to be solved.

As a final remark, we note that the convergence is slo
for the eigenvalues atkz50.02 Å21 than atkz50, due to
the strong HH-LH mixing for large wave vectors. An acc
rate convergence at these wave vectors, as it can be ach
by our method, is, e.g., necessary to calculate in-wire ef
tive mass at the Fermi wave vector. The slow convergenc
the in-plane effective mass at the Fermi edge is a well-kno
problem in QW’s.32

APPENDIX B: MATRIX ELEMENTS OF H ˆ
L

Once we have calculated the functionsfn
1(x,y),

fm
2(x,y), we compute the following integrals:

s~n,m!5E
V

@fn
1~x,y!#*fm

2~x,y!dx dy, ~B1a!

FIG. 11. Energy of the lowest eigenvalues for theV-QWR la-
beledA/SL ~see Sec. II! at ~a! kz50 ~spin degenerate! and ~b!, ~c!
at kz50.02 Å-1 for the two spin-split states. Empty dots: eigenva
ues calculated withm15(g122g2)

21, m25(g112g2)
21. Black

dots: eigenvalues calculated withm15m25(g122g2)
21. The

pairs of empty dots atN11N25210 are calculated with
(N1, N2)5(125, 85) ~upper dots! and (N1, N2)5(97, 113)
~lower dots!.
e

.
e
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of
n

wb~n,m!5E
V

@fn
1~x,y!#* k̂bfm

2~x,y!dx dy, ~B1b!

wbb8~n,m!5E
V

@fn
1~x,y!#* k̂bk̂b8fm

2~x,y!dx dy, ~B1c!

vb
1~n,n8!5E

V
@fn

1~x,y!#* k̂b
2fn8

1
~x,y!dx dy, ~B1d!

vb
2~m,m8!5E

V
@fm

2~x,y!#* k̂b
2fm8

2
~x,y!dx dy, ~B1e!

where b,b8P$x,y%. In our implementation, the function
fn

1 , fm
2 are expanded in plane waves. Although this is n

necessary, it makes it very easy to compute the above i
grals, where the operatorsk̂b are just substituted by scala
numberskb .

With the above definitions, and using the short notatio
s5s(n,m), vb

15vb
1(n,n8), vb

25vb
2(m,m8), wb5wb(n,m),

andwbb85wbb8(n,m), the only nonzero matrix elements o
ĤL in the basis set~14a! and ~14b! are

^1,n,↑uHLu1,n8,↑&5Fen
11S g12

g223g3

2 D kz2Gdnn8

1px
1vx

11py
1vy

1 , ~B2a!

^1,n,↓uHLu1,n8,↓&5^1,n,↑uHLu1,n8,↑&, ~B2b!

^2,m,↑uHLu2,m8,↑&5Fem
21S g11

g223g3

2 D kz2Gdmm8

1px
2vx

21py
2vy

2 , ~B2c!

^2,m,↓uHLu2,m8,↓&5^2,m,↑uHLu2,m8,↑&, ~B2d!

^1,n,↑uHLu2,m,↑&52
A3
2

@2~g2wyy22ig3kzwy!

2~g21g3!kz
2s2~g22g3!wxx#,

~B2e!

^1,n,↓uHLu2,m,↓&52
A3
2

@2~g2wyy12ig3kzwy!

2~g21g3!kz
2s2~g22g3!wxx#,

~B2f!

^1,n,↓uHLu2,m,↑&52A3~g3wxy1 ig2kzwx!, ~B2g!

^1,n,↑uHLu2,m,↓&522A3~g3wxy2 ig2kzwx!. ~B2h!

APPENDIX C: OPTICAL TRANSITION
MATRIX ELEMENTS

We define the electron-hole overlap integrals

t1~n,n!5E
V

@cn
e~x,y!#*fn

1~x,y!dx dy, ~C1!
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t2~n,m!5E
V

@cn
e~x,y!#*fm

2~x,y!dx dy. ~C2!

Then, the matrix elements for valence-to-conduction-ba
absorption, with light linearly polarized along the@110#,
@001#, and@110# directions, are the following.

Direction [110],

Ma→n,↑5(
Jm

^s,↑upxu3/2,Jm&E @cn
e~x,y!#*cJm

h ~x,y!dx dy

52
P

A2 F 2

A3(m Ca
2~m,↓ !t2~n,m!G , ~C3!

Ma→n,↓5(
Jm

^s,↓upxu3/2,Jm&E @cn
e~x,y!#*cJm

h ~x,y!dx dy

52
P

A2 F 2

A3(m Ca
2~m,↑ !t2~n,m!G . ~C4!

Direction [001],

Ma→n,↑5(
Jm

^s,↑upyu3/2,Jm&E @cn
e~x,y!#*cJm

h ~x,y!dx dy

5
P

A2 F(
n

Ca
1~n,↑ !t1~n,n!

2
1

A3(m Ca
2~m,↑ !t2~n,m!G , ~C5!
i-

s.

,

d

Ma→n,↓5(
Jm

^s,↓upyu3/2,Jm&E @cn
e~x,y!#*cJm

h ~x,y!dx dy

5
P

A2 F2(
n

Ca
1~n,↓ !t1~n,n!

1
1

A3(m Ca
2~m,↓ !t2~n,m!G . ~C6!

Direction [110],

Ma→n,↑5(
Jm

^s,↑upzu3/2,Jm&E @cn
e~x,y!#*cJm

h ~x,y!dx dy

5
iP

A2 F(
n

Ca
1~n,↑ !t1~n,n!

1
1

A3(m Ca
2~m,↑ !t2~n,m!G , ~C7!

Ma→n,↓5(
Jm

^s,↓upzu3/2,Jm&E @cn
e~x,y!#*cJm

h ~x,y!dx dy

5
iP

A2 F(
n

Ca
1~n,↓ !t1~n,n!

1
1

A3(m Ca
2~m,↓ !t2~n,m!G . ~C8!
s,

nd
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