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Nonparabolicity effects in the bipolar quantum-well resonant-tunneling transistor
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A numerical calculation of quantum-well resonant electron-state energies in the bipolar quantum-well
resonant-tunneling transistgBiQuaRTT) is compared with experimental results. From the multiple-peak
resonant-tunneling characteristics, the energies of resonant quasibound states of the BiQuaRTT’s triangular
guantum well are determined. The electron-state energies can be over 1 eV above the conduction-band edge,
and are strongly influenced by conduction-band nonparabolicity, producing nearly equally spaced resonances
in the BiQuaRTT[S0163-182607)00511-0

I. INTRODUCTION term, is often used. Herey* is the electron effective mass at
the conduction-band edgg, is the energy above the band

The bipolar quantum-well resonant-tunneling transistoredge, andy is the nonparabolicity parameter calculated from
(BiQuaRTT) evolved from the resonant-tunneling diode, k-p theory. A two-band approximation yieldsy=(1
with a third terminal added to contact a heavilydoped ——m*/mg)?/Eg, wherem, is the free-electron mass and
quantum well This allowed separate control of the potential Eg is the band gap. For J&a ,As (m*/my=0.041, Eg
in the quantum well, the base of the transistor, and negatives 0.812 eV at 4.2 K this yieldsa=1.13 eV ™. This value is
differential transconductance characteristics. A later variaclose to the valuer=1.3 eV ! found from fitting quantum
tion of the BiQuaRTT, which we will discuss here, usesinterference effects in experiments on ,@&&_,As
quasithermalized minority carriers injected into the states ofnicrostructured.The highest BiQuaRTT resonances involve
a nearly triangular quantum wélt? This resulted in multiple ~ energiesE>1 eV, where the energy effective mass more
negative differentialdirect conductance effects with current than doubles. Thus nonparabolicity effects can be expected
gain at room temperature. In this paper, we compare result® reduce the energies of the higher resonances strongly.
of a numerical model of the BiQuaRTT resonances with ex-
perimental results from devices with different quantum-well 3 ————————————
widths. A simple model of effective mass nonparabolicity in I
the numerical model provides good agreement with experi-
ment.

The band profile of a typical BiQuaRTT is shown in Fig.

1 (the BiQuaRTT transistor action has been detailed in Refs.
2 and 3. A quantum well is formed by the built-in electric
field in the base-collector junction adjacent to the collector
tunnel barrier, shown by the inset of Fig. 1. Quantum states
of this nearly triangular base-collector quantum well produce
multiple negative differential resistance effects. This is
shown in thel-V characteristics of Figs. 2 and 3 for two
different base-collector well widths. As the collector-base
voltageV g increases, the quantum well becomes deeper and
the electron states move to lower energies. Transmission
resonances occur as each quasibound state aligns with the
top of the well, at the energy of the conduction band in the
guasineutral base. At low temperatufds2 K) (see Figs. 2

and 3 the incident thermalized electron energy distribution T 10 a0 a0 200
in the base is sharply peaked at low enerdgied meV), POSITION (nm)
allowing sharp resonances.

Nonparabolicity ~ effects (energy-dependent effective £ 1. Schematic energy-band profile of a BiQuaRTT with a
mass$ play a large role in the BiQuaRTT due to the high pase-emitter bias of 0.82 V and a collector-base bias @fL1 V.
energies of the resonant states. Several methods have begR expanded view of the quantum well shows probability density
used to treat nonparabolicity’. The energy effective mass corresponding to a quantum-well resonant state for both hard-wall
mg (E)=m*(1+«E), containing a first-order correction (solid line) and soft-wall(dashed ling boundary conditions.
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has also been implemented in GaAs®& _,As hetero-
structure bipolar transistof$iBTs) with resonant-tunneling
double barriers in the collect8® In the BiQuaRTT, the
base/collector quantum well is simply triangular to first or-
der, formed by the applied base-collector electric field be-
tween a single heterobarrier and the edge of the base. Eigen-
states and eigenenergies of this triangular well, including
nonparabolicity, were obtained numerically. The numerical
approach follows a method previously developed for quan-
tum wells with an applied electric fief§~'? Results for the

— 1
< . ) . .
2 : 079V 1 experimental and simulated quantum-well eigenenergies are
= i ] compared. We find nonparabolicity effects can account for
. 078V the approximately equal spacing of the resonant peak volt-
3 I =10pA ] ages seen in the BiQuaRTT. Also of interest is the effect of
F 8pA ] the disorder potential in the base depletion layer adjoining
I Gua the quantum well. This is probed in the calculation by two
001 L 2oA - different quantum-state boundary conditions.
; [l (] 1 1 1 ]
0 1 2 3 4 Il. EXPERIMENT

Ve (V) The BiQuaRTT devices were fabricated at Texas Instru-

ments with a triple-layer mesa process similar to conven-
tional HBTs. The layer structure, yielding the data shown in
Fig. 2, was grown by molecular-beam epitaxy on an InP
substrate: a J#m In,Ga, _,As collector contact layern5
X 10%¥cm?), and 150-nm IpGa, _,As collector (undoped,
1.5-nm AlAs tunnel barrier, 30-nm JGa _,As quantum-
well (undoped, 60-nm InGa_,As base (p 1x 10

The BiQuaRTT structure allows the energy of the reso—cmz)’ 20-nm  InGa_,As setback (undoped,  2-nm

nant states in relation to the band edge to be determinel(ﬁlo-5(G"’bf’o‘l0-5)AS (undoped, 50-nm Iy $GaysAlo osAS

simply in a zero-temperature model, and space-charge eﬁecggmﬁter (0 1x10'%cnr’), 40-nm gradllr;g |r?13comp05|t|on and
can be avoided. The potential established ingiktgpe base 9°P\N9. o0-nm IgAl;_As (n 5x107/cnT), 40-nm com-
is nearly independent of the electron current through th 05|t|onal} grading, and 320-nm JB3_,As contact
resonant states. Minority-carrier injection into resonant state _5X 10%/cnr’) layers. We also took data on other de\{lces
with 20- and 40-nm base-collector quantum-well regions.
The 20-nm well-width layer structure differed slightly from
the above, principally in 75-nm base thickness
(p 5x 10%¥cm?), and 5-nm emitter-base setback layer. The
40-nm well-width samples had a 60-nm base thickness
(p 5x10*%¥cn?), and a 2-nm AlAs barrier thickness. All the
samples were bonded in ceramic dual in-line packages, and
cooled to 4.2 K for the measurements.

From thel -V curves, we determine the voltage position of
the current peakd/cgpk. The shift of theVegpi values
slightly to the right in the higher current curves in Figs. 2 and
3 is reasonable since higher currents increase electron space
charge in the well, changing the internal field, and increasing
the resonant energies. The lows%{z peaks in Fig. 3 do not
shift to higherV.g as the resonant current increases. This
may be due to hole space charge in the well at My,
which compensates for the increase of the electron charge.
However, theV g pk shift can be complicated by base resis-
tance effects. In data from two 20-nm well-width devices, of
emitter sizes X9 and 319 um?, Vs pk shifted to lower
voltages at higher currents. The lateral voltage drop in the
base layer causes the measuvkg py to be lower than the
intrinsic Vg pk, as reported for a HBT with a double-barrier

FIG. 3. BiQuaRTT current-voltage characteristics for 40-nmresonant-tunneling collectiin our devices, at low tempera-
well device at 4.2 K, for several base-emitter voltage-bias conditures, lateral electron diffusion dominates the base current,
tions. Results are shown for 2R5429 CE42D-um? emitter size  complicating calculation of the voltage drop. To minimize
sample. this parasitic resistance effect, and to minimize effects of

FIG. 2. BiQuaRTT current-voltage characteristics for a 30-nm
well-width device at 4.2 K. The emitter-base junction is biased with
a fixed applied voltagécurves in the upper part of figurer with a
fixed applied base current with emitter ground@drrves in the
lower part of figurg¢. Results are shown for 3R5660 HEX4
4X4-um? emitter size sample.
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space charge accumulation in the walkg px values were partto nonparabolic mass effects, which cause an increase in
found from averaging low biasl§<10 uA, 1c<1 wA) mass with energy, and reduces the energies of the higher
results. However, the lowesf.g peaks, and those forcg ~ resonance levels.
above about 3 V, required higher bias conditions to be ob- To account for the nonparabolic mass, numerical tech-
served. The peak voltages for the 30-nm well wicfig. 2) niques can be used. The electron envelope function in the
were Vg p=—0.74, —0.60, —0.36, 0.11, 0.67, 1.31, 1.95, Wwell satisfies
2.73, and 3.33 V. For the 40-nm well widtfFig. 3),
Ve pk=—0.68, —0.50, —0.14, 0.27 0.72, 1.20, 1.68, 2.18, h? 9 1
2.78, 3.34, 3.86, and 4.37 V. For 20-nm devices the average 2 9z
VCB,PK:_O'361 044, 133, 231, and 3.18 V.

To find the quantum-well energy depth, for each where the masm* (E)=m*(1+ «E) implicitly depends on
Veepk, We first calculate the slope, of the conduction z throughE. For a numerical solution, the equation is con-

'
m*—(E)E +V(2)V=EV, 4

band in the well as given by verted into three coupled linear first-order equations
by the substitutiony,=¥, y,=(1/m*(E))o¥/dz, andy,
an,=e|E|=(eVegpkt+ Eg)/(LctLg+Lw). (1) =E.112ysing the relaxation method, the first-order equa-

tions for they; are discretized on a 1D uniform grid inside
Herea, is in units of eVum, E is the electric field in the the intervalz=0 (barrier side of we)l to z= L,+1q4 (doped
well, L¢, Lg, andLy are the thicknesses of the undopedpase side of well®® The transmission resonance occurs
collector, barrier, and well, anB is the effective band gap when a state is at the top of the triangular quantum well,
in the doped part of the base. A constant electric fieldaligned with the energy of the incident thermalized electrons.
throughout the undoped well, barrier, and collector is asin generaL for this virtual resonance, “open” boundary con-
sumed, as the thermal diffusion of carriers into the undopedjitions are needetf. However, the incident energies are only
regions is suppressed at low temperatures. We employ aflightly above kgT<~0.4 me\j the top of the well, and we
interesting technique for determinirig; by using magneto-  approximate the resonance as a purely bound state with an
oscillation measurements of the two-dimensional electroenergy just below0.1 me\j the top of the well. Outside the
gas (2DEG) formed at the emitter-base interfateThis  well, on each side the potential is taken as constant as in the
2DEG is shown on the left-hand side of the base in Fig. 1. ABardeen transfer Hamiltonian approach. This allows an ana-
low appliedVge, the 2DEG Fermi level is in equilibrium |ytical expression for the(exponentially decayingwave
with the emitter Fermi level, and the 2DEG density increasesunction outside of the well. In the barrier, a direct-gap
with Vge. However, asvge increases to a point where the conduction-band offset of 1.27 eV and the nonparabolic en-
2DEG Fermi level nearly aligns with the COﬂdUCtiOﬂ-bandergy effective mass is used. The wave-function boundary
edge in the base, emission into the base limits the 2DEGonditions az=0 andz=1,,+ |4 rely on the continuity of the
density. The crossover point is inferred from measurementgave function §;) and the first derivative divided by the
of the 2DEG density at 4.2 K which show a density maxi- effective massy(,). We obtain a boundary condition relating
mum atVge=780 mV; hence we estimate;=780 meV. the wave function at the barrigr;(z=0) to the derivative
Having obtaineda,,, the base-collector quantum-well depth y,(z=0). On the base side, the matching conditions were
is thenE,=a,l, wherel =(L,+14/2) is the effective well imposed with the eigenenergy 0.1 meV below the
width. The effective well width includes a small correction conduction-band edge in the base, y|e|d|ng a boundary con-
due toly, the simple depletion length of the base, wheredition relatingy,(z=L,,+14) andy,(z=L,+14). Given an
apl¢/2 is the potential energy drop across the depletion remitial value for a,, the initial guess for the wave function
gion. was provided by an Airy function. After solving for, the

boundary conditions were adjusted to relax to the correct

IIl. NUMERICAL CALCULATION values, and the solution was repeated. This entailed changing
y1(z=0), yi(z=L,+1y), l4, and a self-consistently, so

_ An analytical estimate for the BiQuaRTT resonance enerthe poundary conditions were satisfied with the eigenenergy
gies is provided by the eigenenergies of an infinite triangulagjigned with the top of the well.

well. These are approximately The exact potential at the interface between the quantum
5 13 o3 o3 well and the doped part of the base is not well known, and

E — (h_) 3may, ( " §) @) we used two opposite resonant state boundary conditions. In

"o\ 2m* 2 4) the basic model discussed above, the conduction band in the

doped base is assumed to be constant, and the resonant state

where m* is the effective masgassumed parabolicThe  energy is only slightly below this potential, which yields a
resonance condition of the BiQuaRTE,=a,l, then yields  |ong wave-function decay length into the doped base. This
the well depth at resonance, “soft-wall” boundary condition corresponds to the dotted

curve in the inset of Fig. 1. However, this model may break

down due to the high density of ionized impurities, and po-
3 tential fluctuations, in the depletion region at the edge of the

doped base. Each negatively charged ionized acceptor in the
This implies thatE,, and therefore th&/ g p¢ values will  base depletion region produces a very large repulsive poten-
vary as~n2. However, from Figs. 2 and 3 we observe nearlytial at short range, and presumably a node in the quantum-
equally spaced peaks. The discrepancy is attributed in largeell wave function. The envelope-function wavelength in

hZ 2

En:2m*|2

37 +3
2 \"*7
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——————————— T potential, which could lower the experimental0 peak
- energy'® Also, the lowest observed peak is partially cut off

121 e , m , A experiment . ot
A | at low Vg by the transistor turn-on characteristics, so the
hard wall calculation actual peak voltage could not be obtained.
104 ---- soft wall 40nm /A | . .
. analytical triangular well The 40-nm experimentdt, vs n results, plotted starting
A 1 atn=1, have a slope similar to that of the calculated results,
30 nm | but were all about 40 meV lower in energy. One possibility

that could account for this is residual doping in the collector
or barrier. For example, ionized donors mfl.4x 10'%cm®

T in the collector would produce a built-in field sufficient to
shift all the resonance energies by 40 meV.

The analytical mode{dotted curve shown for the 30-nm
data produced resonance energies in good agreement at low
energies, but diverge from the nearly linear experimental
s E, vs n results at high energies. Over a large energy range
above 200 meV, the experimental resonance energies are
nearly equally spaced. The linegy vs n dependence is seen
also in the numerical models which include nonparabolicity.
For energies above 200 meV, the experimental energies are
lower than the numerical results. The first-order nonpara-
bolic mass model cannot be expected to be accurate at these
FIG. 4. Quantum-well energ¥, vs resonance number for . L

energies. However, no very large deviation is seen from the

devices with 20-, 30-, and 40-nm base-collector well thicknesses: . ;
experimental data over the entire range of energy.

Experimentally derived data: solid points. Calculated results: ana- .
Xper y STV o pol - g For both 20- and 30-nm well widths, the hard-wall bound-

lytical (dotted ling, numerical with soft-wall(dashed lines and o A~
hard-wall (solid line§ boundary conditions. Lines connecting the &Y Conqmon(s‘)“d ling) produces somewnhat better agree-
calculated points are to guide the eye. ment with the data than the soft-wall boundary condition

(dashed ling at low energies. This supports the picture that

the plane of the quantum welh(y2m*kgT~300 nm at 4.2 ionized acceptors in the base depletion layer form the edge of
K) exceeds the separation of the ionized impurit@sproxi- the quantum well. This is important for transp_ort, since th_e
mately 10-60 nm for base-collector electric fields 0.4—25Mean free path cannot exceed the wave-function penetration
V/um). The nodes at ions may result in an overall minimumo©f a pot_enua! barrief! However, the current results are not
of the wave function in the depletion layer. This was in- conclusive since the different boundary value assumptions

cluded as an alternate boundary condition of a wave-functiof€nd to shift all the energies by nearly the same amount,

E (eV)

node in the depletion layer at=L,,+14. This “hard-wall” similar to experimental parasitics such as residual doping in
boundary condition corresponds to the solid curve in the inthe collector.
set of Fig. 1.

V. CONCLUSION

IV. RESULTS AND DISCUSSION .
The guantum-well resonance energies for 20-, 30-, and

The experimentally and numerically derived resonant40-nm width base-collector well BiQuaRTT’s were obtained
state energieg,, are shown in Fig. 4. The experimental val- from the corresponding measured resonant peak voltages. A
ues are shown as the solid points, while the theoretical valuegimple numerical model treating the resonant states in a
are connected by a line to guide the eye. The dotted lindound-state approximation produces results that fit the ex-
shows the analytical model results for the 30-nm well, with-perimental results well. The principal conclusion is that the
out corrections for nonparabolicity or base depletion. Thenonparabolic effective mass results in a nearly equal spacing
dashed lines are the numerical model results using the sofef BiQuaRTT resonance voltages corresponding to quantum-
wall boundary condition, while the solid lines embody thewell energies above 200 meV. Data from 20- and 30-nm
result of using the hard-wall boundary condition. devices also support a hard-wall model for the effect of the

The 30-nm experimental data had two peaks at the lowediase depletion layer on the wave function. Further work is
energies(7 and 30 meY, while the theoretical models pre- needed on the lowest-voltage peak and the influence of re-
dicted only one(~18 me\). We have plotted both experi- sidual doping.
mental low-energy peaks at=0 to allow a better fit for
peaks an=1-3. At present, it is not clear what causes the
presumed extra experimental peak at low energy. At low
Ve, the base-collector junction is nearly flatband, and the We gratefully acknowledge discussions with W. R. Fren-
constant electric-field model breaks down due to residuasley, R. E. Allen, and T. C. Zhou. This work was supported
impurities and carrier diffusion into the collector. Hole in part by the Texas Advanced Research Program under
charge diffusing into the well region contributes an attractiveGrant No. 999903-213.
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