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Ab initio molecular-dynamics study of the structural and transport properties
of liquid germanium

R. V. Kulkarni, W. G. Aulbur, and D. Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 23 September 1996!

We describe the results ofab initio molecular-dynamics simulations of liquid Ge at five temperatures
ranging from 1250 to 2000 K. The electronic structure is calculated using the local-density approximation and
generalized norm-conserving pseudopotentials. The calculations yield the pair correlation function, the static
structure factor, the bond-angle distribution function, the electronic density of states, the atomic self-diffusion
coefficient, and finally the ac conductivity. Near melting, the structure factor has the experimentally observed
shoulder on the high-k side of the principal peak, which becomes progressively less distinct at higher tem-
peratures. The bond-angle distribution function indicates the persistence of covalent bonding for shorter bond
lengths in the liquid state. The electronic density of states is metallic at all the temperatures with a pseudogap
at a binding energy of 4.6 eV. The diffusion constant shows a sharp rise between 1250 and 1500 K
(1.231024–2.031024 cm2 s21! and increases less rapidly at higher temperatures, to only 2.331024 cm2 s21

at 2000 K.@S0163-1829~97!02711-2#
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I. INTRODUCTION

Liquid Ge (l -Ge! has a number of unusual propertie
which have prompted several experimental and theore
studies. In the crystalline phase, Ge is a diamond-struc
semiconductor with a direct band gap of about 0.9 eV. Up
melting, Ge undergoes a semiconductor-metal transition
companied by significant structural changes. The density
creases by about 4.7%, and its coordination number, as
termined by x-ray diffraction,1 grows from 4 in the solid
phase to about 6.8 in the liquid. Similarly, the electrical co
ductivity increases on melting by more than an order of m
nitude, to about 1.631024 V21 cm21,2 a range characteris
tic of metallic behavior.

Despite its metallic nature, however, the behavior
l -Ge is more complicated than that of a simple liquid me
Simple liquid metals usually have structure factors similar
that of a fluid of hard spheres, with a temperature-depend
packing fraction and a coordination number of abo
10212.3 Apart from having a lower coordination numbe
l -Ge also has a structure factor with a shoulder on the h
k side of the first peak, a feature that cannot be reprodu
by a hard-sphere model. These differences have been i
preted as indications that covalent bonding persists in
liquid state.2 This interplay between metallic and covale
bonding makesl -Ge of particular theoretical interest.

The properties of liquid semiconductors are also imp
tant from a technological point of view. Since most semico
ductors are grown from the melt, the transport coefficients
the liquid, such as the diffusion constant, are needed as i
in the fluid-dynamic equations used to model crystal grow
However, these properties are difficult to determine exp
mentally. Typical experiments to measure such diffus
constants are based on tracer diffusion through capil
tubes.4 Such experiments suffer from uncertainties aris
from the contributions of convection and of gravity. The
uncertainties can be overcome, in principle, by carrying
550163-1829/97/55~11!/6896~8!/$10.00
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the experiments in microgravity.
On the theoretical side, most numerical studies ofl -Ge

have been carried out using molecular-dynamics simulatio
One approach is to obtain the interatomic forces using e
pirical potentials that include three-body terms to model
covalent contributions. While such simulations5,6 can repro-
duce the observed structure factors for liquid semicond
tors, they tend to overestimate the degree of tetrahe
bonding in the liquid state. Also, the empirical potentia
used are independent of both density and temperat
whereas the actual many-body potential forl -Ge depends on
both.

An alternative approach is to derive the interatomic forc
by expanding the total energy to second order in
electron-ion pseudopotential, using the linear-response fu
tion of the electron gas.7 The pair correlation function and
structure factor obtained from this method agree fairly w
with experiment. But this method omits the many-body co
tributions to interatomic forces, which are important
l -Ge. Thus, to understand the effects of covalent bonding
l -Ge, one must treat the interatomic forces at a level bey
second-order perturbation theory.

Since the pioneering work of Car and Parrinello,8 several
molecular-dynamics schemes have been developed that
the interatomic forces in a microscopic, fully quantum
mechanical manner. The feature common to all is that
electronic degrees of freedom are treated quantum mech
cally to determine the forces on the ions, after which t
ionic motion itself is handled using classical dynamics. T
approach, usually calledab initio molecular dynamics, has
recently been applied by several groups to study liquid se
conductors, includingl -Ge.9–11 Most of these studies, how
ever, have emphasized the properties at only one tempera
in the liquid state and thus omit possibly importa
temperature-dependent changes in the atomic and the
tronic structure.

In this paper we carry outab initio simulations for liquid
6896 © 1997 The American Physical Society
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Ge at five temperatures ranging from 1250 to 2000
thereby obtaining information about the temperature dep
dence of various observables in the liquid state. At each t
perature, we study a range of structural, electronic,
atomic properties of liquid Ge. Among these are the el
tronic density of states, the static structure factor, the ato
self-diffusion diffusion coefficient, and the dc and ac co
ductivities. Our simulations are carried out over a time int
val of more than 1.5 ps at each temperature.

Besides considering several temperatures, our simulat
also differ from previous work in various technical details.
particular, we avoid treating Fourier coefficients of electro
wave functions as fictitious dynamical variables, as is do
in the Car-Parrinello approach, and, in order to converge
electronic structure at each step, we use the so-ca
Williams-Soler algorithm instead of the conjugate-gradie
approach.

The rest of our paper is organized as follows. In Sec
we discuss the method and computational details. Our res
are presented in Sec. III. Section IV describes our results
gives some conclusions.

II. METHOD AND COMPUTATIONAL DETAILS

A. Method

Our simulation method proceeds as follows. First, fo
fixed ionic configuration, the electronic structure is co
verged to the Born-Oppenheimer surface, that is, the equ
rium electronic state is determined for the instantane
ionic configuration. Next, the forces on the ions are cal
lated using the Hellmann-Feynman theorem and the ions
moved according to these forces. For the new ionic coo
nates the electronic structure is again recalculated and
verged to the Born-Oppenheimer surface and this proce
is repeated for the duration of the simulation.

In calculating the electronic structure we use the fini
temperature version of electron density-functional theory
the electronic subsystem is assumed to be at a fictitious
peratureTel. Thus the variational quantity to be minimize
for a fixed configuration of the ions, is the free-energy fun
tional. Let f i be the occupation number of thei th single-
particle statec i . Then the free-energy functional is given b

F@$c i~r !%,$ f i%#5E@$c i~r !%,$ f i%#2TelSel@$ f i%#, ~1!

whereSel@$ f i%# is the electronic entropy, given by

Sel@$ f i%#522kB(
i

@ f i lnf i1~12 f i !ln~12 f i !#. ~2!

With this choice forSel@$ f i%#, minimizing the free-energy
functional with respect to the occupation numbers yields
Fermi-Dirac distribution

f i5FexpS « i2m

kBT
el D11G21

, ~3!

« i being the corresponding Kohn-Sham eigenvalue andm the
chemical potential. This finite-temperature procedure is n
essary to avoid numerical problems in the simulation aris
from discontinuous changes in the occupation numbers.12
n-
-
d
-
ic
-
-

ns

c
e
e
ed
t

I
lts
nd

-
b-
s
-
re
i-
n-
re

-
d
m-

-

e

c-
g

The minimization of the free-energy functional with re
spect to variations in the single-particle wave functionsc i
leads to the Kohn-Sham equations.13 The actual minimiza-
tion is carried out by expanding the single-particle wa
functions in plane waves and using the Williams-So
algorithm.14 Once the single-particle wave functions are se
consistently determined, the force on thei th ion is computed
using the Hellmann-Feynman theorem. A detailed desc
tion of the molecular-dynamics code used in the calculati
can be found in the literature.15,16

B. Computational details

We carry out the electronic-structure calculations in t
local-density approximation~LDA !, together with the
Ceperley-Alder exchange-correlation functional as para
etrized by Perdew and Zunger.17 We use generalized norm
conserving pseudopotentials18 in the Kleinman-Bylander
form,19 choosing thed-wave part of the pseudopotential a
the local component. We take the 4s and 4p states of Ge as
the valence states and we apply non-linear core-vale
corrections.20 To check this pseudopotential, we determin
the ground-state properties of crystalline Ge, using an ene
cutoff of 20 Ry and a set of sixk points in the irreducible
wedge of the Brillouin zone. The resulting zero-temperat
lattice constant, bulk modulus, and binding energy of Ge
in reasonably good agreement with experiment~cf. Table I!.
~The binding energy is somewhat larger than experiment
is characteristic of LDA calculations.!

To generate the initial configurations in the liquid sta
we use a classical molecular-dynamics code21 based on em-
pirical potentials of the Stillinger-Weber form.5 Our simula-
tions are carried out in a 64-atom supercell with simple cu
periodic boundary conditions. Note that such a cell size
commensurate with a possible diamond-structure gro
state. The densities for the different temperatures are cho
to match published experimental data.2 The plane-wave en-
ergy cutoff in the liquid state is 10 Ry, and we useG-point
sampling for the supercell Brillouin-zone integration. Th
ionic equations of motion are integrated by means of
Verlet algorithm, using an ionic time step of 125 a.u. (;3
fs!. The ionic temperature is controlled by means of t
Nosé-Hoover thermostat,22,23using a thermostat mass param
eterQ of about 13106 a.u. The fictitious temperature for th
electronic subsystem iskBT

el 5 0.1 eV and we calculate the
electronic wave functions for the lowest 134 bands, i.e.,
cluding six empty bands.

Using this approach, we converge the total energy u
the change in the energy in successive steps falls be
531026 eV/atom. Since our starting ionic configurations a

TABLE I. Lattice constantalat , bulk modulusB, and binding
energy per atomEB for diamond-structure Ge at temperatu
T50, as calculated in the present work and as obtained experim
tally ~quoted by Ref. 9!.

Property Calculated Experiment

alat ~bohrs! 10.63 10.68
B ~GPa! 69.4 76.5
EB ~eV! 5.01 3.85
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already close to equilibrium at the temperature conside
we find that simulations of only 1.5 ps are adequate to
tract the self-diffusion coefficients at these temperatures

III. RESULTS

A. Structural properties

We begin by describing our results for the pair correlat
functiong(r ). Figures 1 and 2 showg(r ) at the temperature
T51250 and 2000 K. As can be seen from Fig. 1, the res
agree with experiment. At this temperature, the princi
peak in the calculatedg(r ) occurs atr52.63 Å, in good
agreement with the experimental values of 2.70 and 2
Å.1,24 An effective coordination numberNc can be obtained
by integratingn34pr 2g(r ) from r50 to the first minimum
rm , wheren is the number density. If we chooserm to be 3.2
Å, which is the experimentally observed value for the fi
minimum, we getNc56.0. In our simulation, however, th
first minimum falls between 3.35 and 3.45 Å. If we therefo
choose as a cutoffrm53.4 Å, we obtainNc57.1. Clearly,
Nc is rather sensitive to the choice ofrm , a quantity that is
not sharply defined for liquid Ge. Bearing this ambiguity

FIG. 1. Pair correlation functiong(r ) for liquid Ge at
T51250 K. Dashed lines, calculatedg(r ) as obtained from presen
simulations; circles, experiment~Ref. 1!.

FIG. 2. Calculatedg(r ) for T52000 K.
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-
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mind, we can still see that bothrm andNc grow with increas-
ing T. At T52000 K, for example, usingrm53.6 Å, we
obtain a coordination number ofNc58.0. By comparison,
Nc is 4 in diamond-structure Ge, 12 in a close-packed so
and about 10 in a typical hard-sphere liquid.

At T51250 K, g(r ) has a weak intermediate peak a
r54.1 Å lying between the two principal peaks. This pea
flattens with increasingT, disappearing completely a
T52000 K ~cf. Fig. 2!. The height of the first peak ofg(r )
also diminishes with increasingT, but occurs at roughly the
samer , which is in good agreement with experiments do
by Filipponi and DiCicco.25

Figures 3 and 4 show the calculated static structure fac
S(k) for the same temperatures.S(k) is defined by the rela-
tion

S~k!5
1

N
^rkr2k&2Ndk,0 . ~4!

Here rk is a Fourier component of the atomic density, d
fined by

FIG. 3. Static structure factorS(k) as a function of wave vector
k ~in Å21) for liquid Ge atT51250 K. Dashed lines, present ca
culations; circles, experiment~Ref. 1!.

FIG. 4. CalculatedS(k) for T52000 K.
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r~k!5(
n

e2 ik•Rn, ~5!

whereRn is the position of thenth atom andN is total
number of atoms. In calculatingS(k), we average over the
last 450 simulation time steps and also over allk vectors of
equal magnitude.

At the lowest temperatures, our calculatedS(k) shows the
characteristic feature of the structure factor for liquid G
observed in neutron diffraction studies: a distinct shoulder
the high-k side of the principal peak that occurs atk53.45
Å 21. The results are in excellent agreement with the m
suredS(k) atT51250 K. AsT increases, the principal pea
is reduced in height and the shoulder becomes less dist
By T52000 K, the shoulder has completely disappeared~cf.
Fig. 4! and the structure factor resembles that of a sim
liquid metal well above melting.

As T increases, our calculations also predict an incre
in small-anglex-ray or neutron scattering, as measured
lim k→0S(k). In turn,S(0) is related to the isothermal com
pressibilityxT by the compressibility sum rule

lim
k→0

S~k!5S~0!5nkBTxT, ~6!

wheren is the ionic number density. Now Egelstaffet al.26

have shown that in practice, for liquid metal
S(0)'S(k1/4), wherek1 corresponds to the principal pea
of S(k). Using this estimate, we can calculate the isotherm
compressibility of l -Ge at T51250 K as
xT56.4310211m2N21. Table II lists the calculated
S(0)’s, as obtained from the Egelstaff estimate, along w
the correspondingn(T) and the height of the first peak i
g(r ).

More information about the structural properties can
obtained from the bond angle distribution function
g(3)(u,r c). g

(3) gives the distribution of the angle formed b
pairs of vectors drawn from a reference atom to any t
other atoms within a cutoff radiusr c of that atom. Figures 5
and 6 showg(3)(u,r c) for T51250 and 2000 K. Ifr c is
chosen as the first minimum ing(r ), g(3)(u,r c) shows two
peaks atT51250 K: one atu;60° and a second broade
peak centered at 98°. If insteadr c52.8 Å ~roughly equal to
the covalent bond length in crystalline Ge!, the 60° peak
disappears while that near 98° persists.

As T increases, we observe several changes
g(3)(u,r c). ~a! For the larger cutoff radiusr c , the 60° peak
becomes slightly more pronounced, while that at;98° be-
comes slightly less so.~b! For the smaller cutoff radius

TABLE II. Structure factorS(0)[ limk→0S(k) ~see text!, ionic
number densityn, and height of the principal peak ing(r ), calcu-
lated at five temperatures.

T ~K! S(0) n ~Å23! g(rmax)

1250 0.05 0.04526 2.39
1400 0.11 0.04457 2.23
1500 0.12 0.04413 2.13
1600 0.12 0.04370 2.08
2000 0.18 0.04250 2.00
n
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(r c52.8 Å!, there is a change from a single broad peak n
98° atT51250 K to an almost uniform distribution in th
bond angles atT52000 K, slightly peaked near 60°. Th
98° peak suggests a ‘‘flattened’’ tetrahedral arrangemen
the atoms, similar to the so-calledb-tin structure,27 whereas
that at 60° is typical of metallic bonding and represents
more closely packed structure. In short, the structure gra
ally changes from an open structure, with tetrahedral bo
ing for shorter bond lengths, just above melting, to a m
closely packed structure with very little tetrahedral bondi
at very high temperatures (T52000 K!.

B. Atomic self-diffusion

We now turn to our results for the atomic self-diffusio
coefficientD(T) in liquid Ge. To studyD(T), we first fol-
low the time-dependent mean-square ionic displacemen
the liquid. We start from the equilibrium liquid configuratio
generated by classical molecular dynamics. For sufficien
long time intervals,D(T) can be extracted from the equatio

D~T!5 lim
t→`

^uRI~ t !2RI~0!u2&
6t

, ~7!

FIG. 5. Calculated bond angle distribution functiong3(u,r c) for
liquid Ge atT51250 K for r c52.8 and 3.4 Å.

FIG. 6. Same as Fig. 5, but forT52000 K.
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whereRI(t) denotes an ionic position at timet. The angular
brackets denote an average over all the ions and also ove
time origins. In our calculations we have computed the
erage, taking the beginning of each time step as a diffe
time origin.

Our calculated mean-square displacements are show
Fig. 7 for two representative temperatures:T51250 and
2000 K.D(T) is obtained from a linear-regression fit of th
last 0.6 ps of data to a straight line. Table III shows t
resultingD(T) for all temperatures considered, along wi
the experimental results of Pavlov and Dobrokhotov28 and
results from previousab initio and empirical simulations. As
expected,D(T) is a monotonically increasing function. Ou
results agree well with experiment and also with theab initio
calculations of Kresse and Hafner forT51250 K,9 but at the
other temperatures are somewhat higher than otherab initio
predictions.10,11 Possibly some of these differences ar
from the fact that the densities chosen in the various sim
tions are different. Previous calculations at elevated temp
tures have used the density of liquid Ge at melting, wher
we choose a lower density appropriate to the temperat

FIG. 7. Mean-square atomic displacemen
^r 2&[^uRI(t)2RI(0)u2& ~in Å 2) versus timet ~in ps!, calculated at
T51250 K andT52000 K.

TABLE III. Calculated and measured atomic self-diffusion c
efficientsD(T).

T ~K!
D(T)

(1024 cm2/s!
D(T)

~other calculations!
D(T)

~experiment!

1250 1.2a 1.0b, 0.44c 1.21, 0.78f

1400 1.7a 1.0d 1.62f

1500 2.0a 1.2e 3.21f

1600 2.1a

2000 2.3a

aResults of the present calculations, carried out byab initiomolecu-
lar dynamics at five temperatures.
bKresse and Hafner~Ref. 9! ~at T 5 1230 K!.
cYu et al. ~Ref. 21! ~empirical potential!.
dGodlevskyet al. ~Ref. 11! ~at T 5 1350!.
eTakeuchi and Garzo´n ~Ref. 10!.
fP. V. Pavlov and E. V. Dobrokhotov~Ref. 28!.
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determined from experiment.2 In addition, of course, each o
the simulations uses a slightly differentab initio method.

D(T) may also be obtained from the velocity autocorr
lation functionc(t), defined by

c~ t !5
^vi~ t !•vi~0!&

^vi~0!•vi~0!&
. ~8!

Here the angular brackets again denote an average ove
the atoms and over different time origins. The diffusion co
stantD is then obtained from the relation

D5
kBT

M E
0

`

c~ t !dt. ~9!

A representative plot ofc(t) T51250 K is shown in Fig.
8. The resultingD(T) agrees to within 5–10 % with the
values extracted from the mean-square displacement;
are shown in Fig. 9.

FIG. 8. Velocity autocorrelation functionc(t) as defined in the
text, plotted versus timet ~in ps!, at T51250 K.

FIG. 9. Calculated diffusion constantD(T) ~in cm2/s! versus
temperatureT. Points denoteds are obtained using the mean
square displacement, those denotedn from the velocity autocorre-
lation function.
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A notable feature of our results is that the diffusion co
stant rises sharply betweenT51250 and 1500 K and mor
slowly at higher temperatures. Possibly this is related t
corresponding behavior reported in the kinematic visco
h. Experimental data for theh(T) in liquid Ge shows a
sharp drop just above the melting point, followed by a mo
gradual decline at higher temperatures.2 D can be related to
h using the Stokes-Einstein relation

D5
kBT

2pah
, ~10!

which is quite successful in connecting the two coefficie
for a liquid of hard spheres of diametera. If a is assumed to
decrease only slightly with temperature, then a sharp
crease inh is connected to a corresponding increase inD.
Thus the sharp rise inD is in qualitative agreement with th
experiment forh.

C. Electronic properties

Next, we discuss the electronic density of statesN(E) at
the same five temperatures.N(E) is calculated from the ap
proximate expression

N~E!5 (
k,Ek

wkg~E2Ek!. ~11!

Here E(k) denotes the energy eigenvalues for the sing
particle wave functions at a particulark point of the supercell
Brillouin zone andwk is the weight of thatk point ~as de-
fined below!. g(E) is a Gaussian function of widths 5 0.2
eV, used in order to give better statistics to the density
states. To carry out the calculation we sampled the supe
Brillouin zone using the set of eight specialk points, with
equal weightswk , used by Holenderet al.

29 in their simula-
tion of liquid Ga and we have included the lowest 168
genvaluesEk for each k. For each temperature, the fin
results were then obtained by averaging over five repre
tative configurations in the liquid state.

Figure 10 shows the calculated density of states
T51250 and 2000 K. At these and all intermediate tempe
tures, we find thatN(E) is finite at the Fermi energy, indi
cating that liquid Ge is metallic. Another characteristic fe
ture ofN(E) is the presence of a pseudogap at -4.6 eV t
separates thes-like andp-like bands.30,31Even though there
is short-range covalent bonding in liquid Ge, this feature
not obviously reflected in the density of states. Furthermo
N(E) does not show any significant temperature variation
the range considered.

Another quantity of interest is the frequency-depend
electrical conductivitys(v) and its low-frequency limit, the
dc conductivity.s(v) can be calculated from the Kubo
Greenwood formula32

s~v!5
2pe2

3m2vV(
i

(
j

(
a

~ f j2 f i !z^c i u p̂auc j& z2

3d~Ej2Ei2\v!. ~12!

Herem is the electron mass andc i andc j are the single-
particle Kohn-Sham wave functions with occupanciesf i and
-
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f j and energy eigenvaluesEi andEj . p̂a is the component of
the momentum operator in the directiona.33 We have calcu-
lated the conductivity using the same set of eight speciak
points used forN(E) and again averaged over five represe
tative ionic configurations for each temperature. As in th
density-of-states calculation, we have included the lowe
168 eigenvalues; the highest of these lies;2.5 eV above the
Fermi energy.

The resultings(v) is shown for two temperatures in Fig.
11. At both temperatures,s(v) decreases monotonically
with v, showing no absorptive peaks in the observed fr
quency range. By extrapolating tov50, we estimate the dc
conductivity atT51250 K as 1.53104 V21cm21, in good
agreement with the measured value of 1.663104

V21cm21.2 The calculated temperature-dependent dc co
ductivity is shown in Table IV.

FIG. 10. Calculated electronic density of statesN(E) ~in states/
eV atom! for liquid Ge at 1250 and 2000 K. Each curve is obtaine
by averaging over five characteristic atomic configurations; the s
percell Brillouin zone is sampled using eight specialk points.

FIG. 11. Calculated ac conductivitys(v) for liquid Ge at
T51250 and 2000 K, as obtained by averaging over five typic
atomic configurations at each temperature. Line segments me
connect calculated points.
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IV. DISCUSSION AND CONCLUSIONS

We now turn to some possible interpretations of the
sults presented in the preceding section, especially the
usual temperature-dependent structure. It has been arg34

that the structural properties of liquid metals are basica
determined by two length scales: an effective hard-sph
diameters, which determines the position of the princip
peak ing(r ), and the wavelength of Friedel oscillations
the pair potential (l5p/kF), wherekF is the Fermi wave
vector. This picture has been successfully applied to exp
trends in the structural properties of liquid metals.35 In the
following, we use this view to offer some speculations ab
our own results.

For a simple liquid metal such as Na, the two leng
scales set bys andl are commensurate. Hence, in this p
ture, the behavior ofg(r ) can be explained as a consequen
of the constraints of hard-sphere packing. But for tetrava
liquid metals, it has been shown35 that the two length scale
are incompatible. In particular, the first maximum of t
hard-sphereg(r ) coincides with the repulsive part of th
effective pairwise interaction. Thus it becomes energetic
favorable to shift some atoms from the first shell to a nei
boring shell that corresponds to a minimum of the pair p
tential. This explains the low coordination numbers of t
ravalent liquid metals and also the intermediate pe
observed ing(r ) in both experiment and our simulation
without the necessity of invoking specifically three-body~or
bond-angle-dependent! forces. In the static structure facto
this shift is reflected in the appearance of a shoulder
q52kF , distinct from the primary peak ofS(q) that occurs
roughly atq52p/s.

As the temperature increases the following changes
place: ~a! because of the increased ionic kinetic energy
effective hard-sphere diameters decreases and~b! the low-
ering of the ionic number density leads to a correspond
decrease inkF . Thus the two peaks inS(q), corresponding
to 2p/s and 2kF , tend to approach each other. The i
creased thermal disorder also lowers and broadens the
peak inS(q) and makes it broader. These two effects co
ceivably combine to make shoulder in theS(q) disappear
with increasing temperature. In real space, this behavio
reflected in the disappearance or ‘‘flattening’’ of the interm
diate peak ing(r ) and a corresponding broadening of t
first peak. As the intermediate maximum disappears, the
shell gains atoms, so that the coordination number incre
at higher temperatures.

TABLE IV. dc conductivity at the five temperatures obtained
extrapolating low-frequency ac conductivity results.

T ~K! sdc (10
4 V21cm21)

1250 1.54
1400 1.45
1500 1.42
1600 1.35
2000 1.27
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There are other possible explanations for the shoulde
the structure factor. Three-body forces among the ions, s
as those predicted by the pseudopotential theory of in
atomic forces in metals, may conceivably produce suc
shoulder. A recent paper36 has shown that a shoulder can b
produced by a model in which several Ge ions are assu
to form a single tetrahedral dynamical entity that mov
through the liquid as a unit, at least over diffusive tim
scales. Our calculations, while they do produce the obser
shoulder, cannot easily discriminate between these expl
tions.

Finally, we mention briefly the recentab initio calcula-
tions of Stichet al.37 for l -Si. These authors find that th
explicit inclusion of spin in the density-functional theor
tends to enhance the diffusion coefficient inl -Si by about
50%. It seems likely, however, that inl -Ge, where the degree
of covalent bonding is significantly reduced,D(T) should be
less influenced than in Si.

In conclusion, we have carried outab initio molecular-
dynamics simulations for several properties ofl -Ge at five
different temperatures: 1250, 1400, 1500, 1600, and 2000
Our results are in very good agreement with available exp
mental data. They indicate that liquid Ge is a good metal,
with some special short-range order arising from resid
covalent bonding that persists into the liquid state. At t
highest temperatures, however, the liquid seems to ev
into a more conventional close-packed liquid metal. O
computed values of the atomic self-diffusion coefficie
D(T) are higher than those previously obtained using e
pirical potentials, but are in good agreement with resu
from otherab initio calculations.

Finally, the present approach suggests a number of p
sible applications. For example, it can be used to treat
diffusion coefficients of impurities such as Ga and Si
l -Ge. The same approach may be useful for treating liq
versions of technologically important compound semico
ductors, such asl -GaAs andl -CdTe, both on and off stoichi-
ometry. The latter materials might be especially worthwh
to study because the electronic structure here should
strongly dependent on both temperature and concentra
While these calculations would be rather demanding com
tationally, there appear to be few reliable alternatives
treating these rather complicated liquids in a manner t
properly includes the electronic structure.
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