
PHYSICAL REVIEW B 15 MARCH 1997-IVOLUME 55, NUMBER 11
Electronic-structure-based molecular-dynamics method for large biological systems:
Application to the 10 basepair poly„dG…–poly„dC… DNA double helix
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Combining several recently developed theoretical techniques, we have developed an electronic-structure-
based method for performing molecular-dynamical simulations of large biological systems. The essence of the
method can be summarized in three points:~i! There are two energy scales in the Hamiltonian and each is
treated differently—the strong intramolecular interactions are treated within approximate density-functional
theory, whereas the weak intermolecular interactions~e.g., hydrogen bonds! are described within a simple
theory that accounts for Coulomb, exchange, and hopping interactions between the weakly interacting frag-
ments.~ii ! A localized basis of atomic states is used, yielding sparse Hamiltonian and overlap matrices.~iii !
The total energies and forces from the sparse Hamiltonian and overlap matrices are solved using a linear
scaling technique to avoid theN3 scaling problem of standard electronic structure methods. As an initial
benchmark and test case of the method, we performed calculations of a deoxyribonucleic acid~DNA! double-
helix poly~dG!•poly~dC! segment containing ten basepairs, with a total of 644 atoms. By a dynamical simu-
lation, we obtained the minimum-energy geometry and the electronic structure of this DNA dehydrated seg-
ment, as well as the full dynamical matrix corresponding to the relaxed structure. The vibrational data and
energy band gap obtained compare qualitatively well with previous experimental data and other theoretical
results.@S0163-1829~97!04512-8#
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I. INTRODUCTION

In the early years of molecular quantum mechanics,
prospect of understanding the microscopic properties o
biological system from first-principles quantum mechan
was perhaps overestimated. Decades later we find thaab
initio approaches have made aninsignificantcontribution in
the field of large biological systems. Due to ‘‘unfulfille
promises’’ most biologists~including biochemists, biophysi
cists, etc.! are inherently skeptical about deriving practic
results from first principles. As such, empirical atomic
intermolecular potential methods and semiempiri
quantum-mechanical methods became the method of ch
for simulating large biological systems.

Empirical methods have become quite popular among
ologists, which is evident by the widespread use of progra
such asAMBER ~Ref. 1! andCHARMM,2 which have proven
successful for reducing the computational time required
simulations with a large number of atoms. They have a
accurately demonstrated their ability to energy minim
structural conformations to those which are in general ag
ment with experimental results and biological theory. This
not unexpected since the parameters of empirical as we
semiempirical methods are fit to a large database resu
from many experiments.

Although empirical methods are sufficient to answ
many structural and thermodynamic questions, biologists
the need to include more than just two-body interactio
550163-1829/97/55~11!/6880~8!/$10.00
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explicitly.3 Many effects, such as the electronic polarizab
ity, are inadequately described by only two-body intera
tions, but including many-body potentials complicates t
empirical model significantly because of the increasing nu
ber of parameters. Many-body effects are best described
quantum-mechanical methods, since they are inhere
many body; in addition, they require no fitting of paramete

In dealing with biological systems, it is desirable to stu
more than just the structural and thermodynamical questio
Certain microscopic properties of a system such as elec
transport, charge densities, electronic structure, and othe
tical and electronic properties are naturally described us
an electronic structure method. An example of the imp
tance of studying microscopic properties in biological sy
tems is found in the chlorophylls. In these systems, lig
energy is absorbed, promoting electrons to higher orbit
and enhancing the potential for transfer of these electron
suitable acceptors. Studying the electron-transfer prope
of these molecules can only be accomplished via an un
standing of the microscopic~quantum! properties of such
systems. In another example, it has been suggested that
is a correlation between the electronic structure of deox
bonucleic acid ~DNA! and proteins and their biologica
functions.4 Quantum-mechanical methods are then neces
to investigate the microscopic properties desired in each
these two examples.

One must appreciate the enormous hurdles that mus
overcome in applying electronic structure methods to b
6880 © 1997 The American Physical Society
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55 6881ELECTRONIC-STRUCTURE-BASED MOLECULAR- . . .
logical systems. At the atomic level, there are four ma
types of interactions in biological systems—covalent, ion
hydrogen bonding, and van der Waals. In order to simu
such systems from first principles successfully, a we
described electronic structure method must be develope
account correctly for each type of interaction. In electro
structure theory, the largest concentration of research eff
has been in the development of methods to describe corre
the strong intramolecular covalent and ionic interactio
Many methods have been created as a result of the mate
theory research thrust from the 1970s to the present~for a
review of such methods see Refs. 5, 6, and 7!. In particular,
the method of Sankey and Niklewski,8 which is used as the
basis for modeling intramolecular interactions in this pap
has been shown to work well for a plethora of systems.
dealing with the more subtle and difficult weak interaction
attempts have also been made to derive simple scheme
hydrogen-bonded systems. The weak intermolecular inte
tions in this paper are modeled using a simplified electro
structure method that was previously developed and app
to the interactions between water molecules9 and between
DNA triplets.10

A huge roadblock to simulating large biological mo
ecules from first principles has been the enormous comp
tional intensity required. The electronic structure commun
is keenly aware of these difficulties, and many attempts h
been made to develop techniques which surmount som
these difficulties by using physically motivated approxim
tions. Using a localized basis set reduces the compute
quirements from the supercomputer level down to the wo
station level for simulations involving no more than 20
atoms. However, diagonalization of the Hamiltonian, whi
is required to obtain the electronic eigenvalue~band struc-
ture! energy, is anO(N3) computational algorithm, where
N is the number of electron orbitals. The simulation of mo
than a few hundred atoms using first-principles techniq
seems improbable with this type of scaling. An importa
redeeming factor of the localized basis set is that the Ha
tonian is sparse. Recently, several techniques have bee
veloped to take advantage of this sparseness and to solv
the band structure energy using linear scaling algorith
~commonly referred to as orderN).11–23

An electronic structure, based on the Sankey-Niklew
method with improvements to include a hydrogen-bond
model and a linear system-size scaling algorithm, has b
developed for the purpose of doing molecular-dynami
simulations of large biological systems. As an introducto
benchmark and test case of this method, we consider a
ment of DNA containing ten basepairs o
poly~dG!•poly~dC!. In general, the DNA molecule is forme
of two strands coiled about one another, yielding the fami
double-stranded helix. The outer edges of each strand
formed by a sugar-phosphate backbone which follows
helical path. Attached to each sugar along the backbone
base unit~adenine, guanine, thymine, or cytosine! which is
roughly perpendicular to the axis of the helix. The bindi
forces within each strand come from strong covalent
tramolecular interactions. The two strands are hydro
bonded across the base on one strand to a base of the o
forming the purine-to-pyrimidine complementary basepa
A•T andG•C. Hence, within the DNA molecule, as in mo
r
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biological systems, there are~at least! two energy scales to
consider: strong intramolecular interactions, such as cova
bonding, and weak intermolecular interactions, such as
drogen bonding. This factor, plus the size of the syste
makes the DNA molecule an ideal candidate for perform
a benchmark test of the techniques which will be presen
in this paper.

The organization of this paper is as follows. After discus
ing in Sec. II the electronic structure based method for c
culating large biological systems, results are given for the
basepair poly~dG!•poly~dC! DNA segments in Sec. III. Fi-
nally, in Sec. IV a summary of our results are given a
prospective work is discussed.

II. AN ELECTRONIC-STRUCTURE-BASED
MOLECULAR-DYNAMICS METHOD
FOR LARGE BIOLOGICAL SYSTEMS

A. Electronic Hamiltonian

Many biological systems, such as the DNA double he
consist of two or more weakly interacting fragments whe
within each fragment strong intramolecular interactions
present. To describe both the weak and strong interac
energy scales simultaneously with sufficient accuracy,
conveniently characterize the Hamiltonian in terms of a s
of strong intramolecular and weak intermolecular comp
nents. This allows the use of two different models of calc
lation, where each model is appropriately formulated
each type of interaction. The technique of splitting the to
energy into intramolecular and intermolecular interactio
was used previously by others such as Harris6 and Gordon
and Kim.24 For two weakly interacting fragments, we writ
the total single-particle local orbital HamiltonianH as

H5Hstrong1Hweak

5SH11
strong 0

0 H22
strongD 1S dH11

weak h12
weak

h21
weak dH22

weakD . ~1!

The submatricesH11
strong and H22

strong represent the intramo
lecular interactions within fragments 1 and 2, respective
dH11

weak and dH22
weak are shifts of the intramolecular interac

tions due to the intermolecular electrostatic, exchange
overlap interactions, andh21

weakandh12
weakare the intermolecu-

lar ‘‘hopping’’ matrix elements between the two fragment
The intramolecular interactions are determined from

first-principles local-orbital method developed by Sank
and Niklewski.8 This is done using the Harris functiona6

within the local-density approximation~LDA !, and using the
pseudopotential approximation.25 The electronic eigenstate
are expanded as a linear combination of pseudoatomic o
als within a localizedsp3 basis for carbon, nitrogen, oxygen
and phosphorous, and ans-basis for hydrogen. This metho
has been applied to many covalent systems, and has pr
to be computationally fast and quantitatively accurate~see
~Refs. 26 and 27 and references therein!.

To calculate weak intermolecular interactions such as
hydrogen-bonded systems, we use a method that was p
ously developed and discussed in Ortega, Lewis,
Sankey,9 which evolved from earlier work.28 This method
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was shown to work well for water and for isolated DN
basepairs and triplets.10 In the calculation of all the intermo
lecular interactions, the atomic orbitals of the basis set
assumed to be of Slater type, since this is the expected
ymptotic shape in the intramolecular regions. These orbi
are of the form

ca
05cnlm5Nnlmr

n21Yl
m~ r̂ !e2zr , ~2!

wheren, l , andm are the appropriate quantum numbers,
functionsYl

m( r̂ ) are the spherical harmonics, andNnlm is the
normalization constant. The decay constantsz for the p or-
bitals were obtained from Hehre, Stewart, and Pople29,
which lists optimum exponents for several molecules. N
the approximation that the decay constant falls off as
square of the orbital energy,z;AE. Thus zp /zs
5AEp/AEs was used to determine the decay constants
the s orbitals~see Ref. 30 for energy level values!. The val-
ues determined for the decay contants are shown in Tab
Although the calculation of the intermolecular contributio
to the Hamilronian matrix elements is described in detai
Ref. 9, we now briefly sketch the main ideas in this secti

The intramolecular shiftdH11
weak, and similarlydH22

weak, is
determined from a sum of electrostatic, exchange, and o
lap interactions,9

dH11
weak5~dH11!

electrostatic1~dH11!
exchange1~dH11!

overlap,
~3!

between the two weakly interacting fragments. Within o
approach, these terms act only on the diagonals ofdH. The
electrostatic and exchange interactions (dH11)

electrostaticand
(dH11)

exchangeare calculated based on many-body inter
tions which are formulated via second quantization, prov
ing a simple picture with the correct physical insight.9 The
exchange interaction is based on the Hartree-Fock forma
to avoid the exchange-correlation problems that occur in
LDA ~for example, see Refs. 31–34!.

Within the intramolecular shifts, the overlap interactio
term comes from a correction factor which arises from
fact that the orbitals are asumed to be orthogonal. For
sons of convenience, the transformation from the origin
nonorthogonal basis to the orthogonalized set is done in
steps. First, the orbitals are made orthogonal to each o
only within each fragment. This step is described in the S
II B. The intermediate basis so obtained~which is orthogonal
within each fragment, and nonorthogonal between fr
ments! is further orthogonalized so that the orbitals locat

TABLE I. Decay constants used in the Slater-type orbitals. O
the valence orbitals are used, so 1s for H, and 2s and 2p for C, N,
and O.

Atom zs zp

H 1.27
C 2.45 1.75
N 2.76 1.95
O 3.23 2.25
re
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on fragment 1 are made orthogonal to those on fragment 2
performing a Lo¨wdin transformation35 of the Hamiltonian
matrix,

H5Oi
21/2HiOi

21/2 ~4!

whereHi andOi are the Hamiltonian matrix and overla
matrices in the intermediate basis, respectively. Note
Oi contains only nonzero elements between orbitals fr
different fragments, except for unity along the diagona
These overlaps beween weakly interacting fragments
small ~typically less than 0.1!; therefore, the overlap matrix
operator can be represented by the Taylor-series expans

Oi
21/25~ I1S!21/25I2 1

2S1 3
8S

2 ~5!

up to second order in the overlap. After multiplying out E
~4!, diagonal corrections toHi yield the overlap corrections
to the intramolecular shifts, represented by the te
(dH11)

overlap.
Within the approximations made for the expansion of t

overlap up to second order, the hopping matrix eleme
h12
weakandh21

weakmay be modeled using the Bardeen tunneli
current.36,37 Therefore, the hopping matrix element betwe
orbitals on fragment 1 and orbitals on fragment 2,h12

weak ~and
similarly for h21

weak), is written as

h12
weak5gT12

Bardeen, ~6!

whereT12
Bardeenis the Bardeen tunneling current given by

T12
Bardeen52\2/2mE

s12

~c1¹W c22c2¹W c1!•dSW . ~7!

The wave functionc1 is a localized orbital of an atom lo
cated on fragment 1, and the wave functionc2 is a localized
orbital of an atom located on fragment 2. The wave functio
c1 and c2 are generally nonorthogonal to each other. T
correction factorg ~typically 1.4 for an atomic state boun
near a Rydberg in energy! takes into account the approxima
tions used in deriving Eq.~7! ~removal of three-center inter
actions and any overlaping between the atomic potentials
the fragments!. In additon to hydrogen-bonding interaction
the total intermolecular contribution to the total energy m
include the van der Waals interactions. The energies from
r26 van der Waals attractions~sometimes referred to as dis
persion energies! may, in the extreme case, account for a
most 50% of the total binding energy between DNA base38

For larger molecules, such as the DNA bases, van der W
interactions are necessary because of the complexity of
charge distribution and fluctuations from which such inter
tions are derived. Dispersion energies are due to correla
effects, and only recently have begun to be tackled within
framework of density-functional theory.39

A recent review article discusses empirical van der Wa
energies based on the Slater-Kirkwood approximation40

This approximation is based on a weighted average of
dispersion coefficientsC6 due to each individual atoms po
larizability, and its effective number of electrons. Using th
model, the van der Waals interactions are added into
calculations through the equation

y
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dUmn
vdW5

C6mn

rmn
6 , ~8!

where

C6mn5
2amanC6mmC6nn

am
2C6nn1an

2C6mm
. ~9!

The subscriptsm and n signify atoms on moleculesi and
j , respectively. Thea ’s are the atomic polarizabilities as
suming additivity. The atomicC6 coefficients are obtained
from the effective electron number and the atomic pola
ability. Table II shows the values ofa andC6 that were used
for H, C, N, O, and P.40

B. Linear scaling solution

For large systems, determining the electronic eigenva
~band structure! energy via matrix diagonalization must b
avoided due to theN3 scaling. A linear inN scaling tech-
nique is the desirable method of choice for determining
band structure energy. In the last few years, a numbe
methods with linear scaling have been proposed, mos
which are applicable provided that the Hamiltonian a
overlap matrices of the system are sparse in a localized
bitals basis.11–23 This is certainly the case for bothHstrong

andHweakand for the overlap matrices in our formulation f
large systems. Most of the linear scaling methods propo
so far relay on the localization properties of the magnitu
of interest like the density matrix or the electronic wa
functions. For instance, for nonmetallic systems, theoccu-
piedelectron orbitals can be constructed to be exponenti
localized Wannier-like states.41 Beyond some~small! cutoff
rangeRc , the overlap and Hamiltonian interactions betwe
these Wannier-like occupied orbitals can be neglected. S
a given electron orbital overlaps significantly with only
finite number of other electron orbitals, independent of
system size, it is inherently possible to use an ordeN
method. In the method of Ordejo´n et al.,15 which we use
here, the following energy functional is formulated

Ẽ52 Tr@„11~12S!…H#, ~10!

whereH and S are the~sparse! Hamiltonian and overlap
matrices for the system under consideration. The trac
taken in the occupied subspace, which has dimension
Ne/2, whereNe is the number of electrons. The ground sta
of the system is obtained by minimizing the energy fun
tional Ẽ with respect to all possiblelocalizedstates, which

TABLE II. Atomic polarizabilities andC6 parameters used in
the Slater-Kirkwood approximation for the van der Waals inter
tions. 40

Atom a i C6i i

H 2.60 2.8
C 6.38 19.1
N 6.90 22.8
O 5.42 16.8
P 24.32 190.8
-

e

e
of
of
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ed
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ly

n
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e
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of

-

are expanded in terms of the atomic orbital basis~only those
entering the localization sphere of radiusRc are included in
this expansion!. The advantage of the functional of Eq.~10!
is the fact that no orthogonality constraints need to be
posed during the minimization, since the form of the fun
tional drives the wave functions toward orthogonalization.
other words, the minimum is achieved for orthogonal fun
tions, and for the exact ground-state band energy.15

The energy functional is minimized iteratively using th
method of conjugate gradients.42 In this method, a successio
of line minimizations is performed, where the minimizatio
directions are given by the ‘‘forcelike’’ gradient of the en
ergy functional, corrected to make the successive directi
orthogonal to each of the former iterations. The ‘‘forces’’
the energy functional are just the derivatives of the ene
functional with respect to the coefficients of the expansion
the occupied orbitals in terms of the basis functions. T
procedure is repeated until the value of the energy functio
is minimized and unchanged within some tolerance. All t
computations involved~gradients and energy functiona!
scale linearly with the number of electrons, as long as
occupied states are localized within a radiusRc . This tech-
nique avoids theO(N3) complexity involved in the orthogo-
nalization process present in standard iterative minimiza
procedures, as well as in matrix diagonalization. We refer
reader to Refs. 15 and 21 for the details of the ordeN
method used in this work.

In the procedure to minimize the energy functional, a
dicious initial guess for the wave functions is needed. In
first molecular-dynamics time step of the simulation, w
make an initial guess that takes into account the chemistr
the system. We build Wannier-like functions which are ce
tered in bonds and lone pairs, and which are initially taken
the bonding combination of the hybrids forming the bond,
the pure lone-pair orbitals, respectively. For subsequ
simulation time steps, the initial guess of wave functions
taken from the solution of preceding simulation time ste
The initial wave functions in the first time step are far fro
orthonormality and from the Born-Oppenheimer surface,
a relatively large number of minimization iterations
needed, compared with subsequent time steps. Once th
ergy functional is minimized, a value for the band-structu
energy is obtained along with the orthonormal set of wa
functions which are then used in the calculation of t
atomic forces, charge densities, etc. For the energy fu
tional given by Eq.~10!, the band-structure force can b
readily evaluated, using a variation of the Hellman
Feynman theorem.15,21,43,44

We recall from Sec. II A that a Lo¨wdin orthogonalization
within each fragment was to be performed. Since strong
tramolecular interactions are computed in the original, n
orthogonal basis, the intramolecular Hamiltonian has to
transformed to the intermediate basis according to the L¨w-
din transformation:

Hi
strong5O21/2HstrongO21/2, ~11!

whereO is the intramolacular overlap matrix,

-
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O5SO11 0

0 O22
D . ~12!

Similarly, in the hydrogen-bonding model, the electrosta
and exchange contributions require knowing the Lo¨wdin
charges, which are the occupation numbers of the orbital
each atom. These charges, which are computed from
wave-function solution of the isolated noninteracting fra
mentsC i5(aciaca , are given by

qa52(
i occ

U(
a8

ca8Oa8a
1/2 U2. ~13!

We see that bothO21/2 andO1/2 are needed to perform th
Löwdin orthogonalization and to calculate the Lo¨wdin
charges, respectively. Normally, these matrices would be
tained by diagonalization of the intramolecular overlap m
trix O; however, this is anO(N3) operation, and a more
efficient approach must be developed. In the hydrog
bonding model, as discussed previously, the termOi

21/2 was
written as (I1S)21/2, and computingOi

21/2 was accom-
plished through the use of a Taylor-series expansion u
O(S2), since terms in the intermolecular overlap matrix a
small ~similarly for Oi

1/2). However, terms in the intramo
lecular overlap matrix are not small, and this procedure c
not be used in this case. Keeping within the spirit of ord
N techniques, we found it accurate and efficient to calcu
O1/2 andO21/2 by expanding it into a Chebyshev series,

f ~x!5F (
k50

N21

ckTk~x!G2 1
2c0 . ~14!

Chebyshev polynomials are defined over the range@21,1#;
therefore, the functionO1/2 or O21/2, where the eigenvalue
of O are roughly in the range@a,b#e@0.10,3.00#, is scaled
appropriately by

y5
x2 1

2 ~b1a!

1
2 ~b2a!

. ~15!

The use of only approximately ten terms yields a very go
convergence of the Chebyshev series toO1/2, but 20 terms
are needed for a very good convergence of the Chebys
series toO21/2, because this function is not as stable f
smaller overlap values. It must be noted that, in princip
successive multiplications of the overlap matrix in the ser
expansion will lead to less and less sparse matrices, w
would eventually lead to a supralinear scaling of the ma
multiplications. This is avoided by using ‘‘absorbing boun
ary conditions’’ on each matrix multiplication after the fir
product. ~Absorbing boundary conditions means we set
zero in the product matrix all elements which are zero
both factor matrices!. The elements which are neglected d
cay exponentially with the distance from the nearest nonz
element of the original overlap matrixO, and represent a
reasonable approximation in the spirit of an order-N method.

It must be pointed out that the calculated total cha
Ncalc5(ana is not precisely equal to the total number
c

of
he
-

b-
-

-

to

n-
-
te

d

ev
r
,
s
ch
x

-
ro

e

electronsNe due to errors. There are two error sources:~i!
the energy functional Eq.~10! gives a number of electron
smaller than the exact number because of the localized fu
tions used;21 and ~ii ! the calculation of the Lo¨wdin popula-
tions uses an approximation ofO1/2. Since thena popula-
tions are used to determine long-range Coulomb interactio
small errors in the total charge may give rise to no
negligable errors in the total energy. In order to correct th
the orbital populations are renormalized in such a way t
the total charge is equal to the exact number of electrons,

na
corrected5

Ne

Ncalc
na . ~16!

This corrects for the errors in the Lo¨wdin charges in a mean
field manner, and in fact stabilizes the solution in such a w
that even fewer terms in the Chebyshev series ofO1/2 and
O21/2 can be taken to yield good convergence in the to
energy.

As a final technical detail, we mention that, since the
thonormal wave functions of the isolated noninteracting fra
ments are needed for calculating the Lo¨wdin charges, the
total band-structure energy is necessarily obtained in a t
step procedure. First, the energy functional of Eq.~10! is
minimized to determine the band structure energy for o
the strong intramolecular interactions~i.e.,Hstrong, which, for
example could be one strand of a DNA double helix!. This
yields the solution for the wave functions of the isolat
noninteracting fragments. The Lo¨wdin charges are calculate
from these orthonormal wave functions. Second, from th
Löwdin charges we calculate the intermolecular electrost
and exchange contributions, and the energy functional of
~10! is again minimized to determine the band-structure
ergy for the total interaction picture~i.e.,Hstrong1Hweak).

In conclusion, we presented an electronic structure ba
method with the purpose of performing simulations of lar
biological molecules. The method combines three differ
techniques, providing a means to model the strong intram
lecular interactions, to model the weak intermolecular int
actions, and to avoid the costlyO(N3) scaling as a result o
matrix diagonalization. In Sec. III, the results of applyin
this electronic-structure-based method to the 10 base
poly~dG!•poly~dC! DNA double helix are discussed.

III. APPLICATION OF THE METHOD TO THE 10
BASEPAIR POLY „DG…–POLY „DC… DNA DOUBLE HELIX

The combination of the above-described techniques al
us to perform a quantum-molecular dynamics calculations
a deoxyribonucleic acid~DNA! double helix. Using a 0.2-fs
time step, a simulation was done to relax a DNA segm
composed of ten guanine-cytosine basepairs. The relaxa
was accomplished via a method known as dynam
quenching, where the velocities are set to zero as the kin
energy reaches a maximum; thus the system’s geom
seeks the nearest minimum-energy configuration. This re
ation was computed on a DEC 3000/600 Alpha workstati
requiring 691 CPU minutes for the first time step and av
aging approximately 18 CPU minutes for each additio
time step. As a comparison, use of a direct diagonaliza
method, instead of the order-N method used here, is est
mated to take approximately 70 CPU minutes per time s
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Figure 1 shows the geometry of the relaxed structure for
nearest local-energy minimum. A comparison between
final structure and the initial structure and a quantitat
analysis will be published elsewhere.45 This structure is con-
sidered in particular because of its simplicity—each base
is just an n336° and ann33.3728-Å translation of the
original basepair. The initial coordinates were obtained fr
a structure based on x-ray-diffraction studies of microcr
talline fibers and refined via a least-squares method u
‘‘standard’’ bond lengths.46 Currently, water molecules sur
rounding the DNA segment are not included in the simu
tion, but will be added in future work. In natural DNA, th
phosphate groups along the backbone chain are negat
charged by onee2, and counterions exist to compensate
this change. We treat the DNA molecule taking into acco
this extra electron at each phosphate group, but we do
include the counterions in the simulation. Since this wo
give rise to long-range Coulomb repulsions between
negatively charged phosphate groups, a common approx

FIG. 1. This DNA segment consists of ten guanine-cytos
basepairs. Each basepair is just ann336° and ann33.3728 Å
translation of the first. This structure was fully relaxed to the nea
local minimum, and the electronic and vibrational DOS’s were c
culated.
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tion is to mimic the effect of the counterions by neutralizin
the molecule. We accomplish this by distributing a positi
electronic charge smeared evenly over the phosphorous
oxygen atoms located in the phosphate group. This sme
charge only appears in the calculation of the long-range C
lomb intermolecular interactions.

The electronic density of states~DOS! for an isolated
grand canonical~GC! basepair and the poly~dG!•poly~dC!
structure are shown in Figs. 2~a! and 2~b!, respectively.
These electronic DOS’s are calculated based on the l
relaxed minimum-energy configurations of the two system
It is interesting to note that the electronic eigenvalue sp
trum for the poly~dG!•poly~dC! system has qualitatively
similar features as that of the isolated GC basepair. T
energy-band gapeg is taken as the difference between t
highest occupied molecular-orbital~HOMO! level and the
lowest unoccupied molecular-orbital~LUMO! level, and is
found to be 1.40 eV for the poly~dG!•poly~dC! structure, and
3.37 eV for the isolated basepair. The reduction from
band gap of the isolated basepair to the poly~dG!•poly~dC!
structure is 1.97 eV, due to the addition of the backbone
phosphate groups as well as due to the broadening of
HOMO and LUMO energy levels from the coupling of th
basepairs.

It is well known that LDA does not yield quantitativel
accurate results for the energy values of band gaps, but ra
generally underestimates these values. In addition to
LDA errors differences between our results and experime
results mainly occur due to two other important factors. Fi
the presence of water will structurally support the DN
double helix as well as screen charges in electrostatic in
actions, resulting in an increased value for the energy g
Second, more accurately including the effects of counteri
will yield a structural difference in the DNA double helix
which will affect the HOMO-LUMO gap.

On the basis of several experiments, which measured
resistivity as a function of temperature, the energy-band
eg of some DNA compounds was found to range from 1.8

e

st
-

FIG. 2. The calculated electronic DOS for~a! an isolated GC
basepair and~b! the poly~dG!•poly~dC! structure. The band gap
eg is found to be 1.40 eV for the poly~dG!•poly~dC! structure, and
3.37 eV for the isolated basepair.
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2.4 eV.4 In addition, a few theoretical calculations, based
semiempirical methods, were completed and determined
energy-band gap of DNA systems. Most all of these cal
lations also neglect the effects of water. One calculation
both theA andB forms of a DNA molecule, containing only
guanine or cytosine bases, yields results for the energy b
gap of approximately 2.0 eV.47 Other semiempirical result
for poly~dG!•poly~dC!, find energy band gaps in the range
6.0–6.5 eV,48 and one result yields a value of 11.7 eV.49

These latter results do not take into account effects due to
backbone structure or counterions, and are relatively h
compared to experiment. In addition, calculations wher
Mg21 counterion is included find energy-band gaps of 8
and 2.0 eV, dependent on the location of the counterion50

The calculated vibrational DOS for an isolated G•C base-
pair and the poly~dG!•poly~dC! structure are shown in Figs
3~a! and 3~b!, respectively. Similar features can be fou
within the two spectra, although there are some freque
shifts in the DNA molecule@Fig. 3~b!# due to the addition of
the sugar backbone and the phosphate groups. Both sp
were obtained by a diagonalization of the dynamical ma
which was constructed by finite differences. In this meth
each atom is displaced, once at a time, in each directio
space by 0.0125 Å. The forces are computed on all ato
and dividing by the displacement~assuming a harmonic ap
proximation! gives one column of the force constant matr
For the poly~dG!•poly~dC! structure, this involved 1932 dis
placed atom calculations. Cubic anharmonic terms are
moved by averaging the dynamical matrix using positive a
negative displacements. In the process of diagonalizing
dynamical matrix, we unfortunately obtained several ne
tive eigenvalues. This is a common problem using finite d
ferences, in which small errors in the force constants
break the rotational invariance of the exact dynamical m
trix, and produce imaginary eigenfrequencies for the lowe
energy modes~the translational invariance is explicitly bui
in the calculated dynamical matrix!. Also, small frequency
‘‘floppy’’ modes ~which are certainly present in this larg
system! may not have been completely relaxed in the proc
of the structure optimization, which would again produce
few imaginary frequencies.

FIG. 3. The calculated vibrational DOS for~a! an isolated GC
basepair and~b! the poly~dG!•poly~dC! structure.
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For the poly~dG!•poly~dC! structure, the local density o
vibrational states~LDOS! were calculated to determine th
contributions of the guanine, cytosine, sugar backbone,
phosphate components on each of the modes. Although
number of modes is quite large and most experimental w
does not assign displacement patterns to the results of
spectra, this LDOS information, along with our calculat
eigenvectors, is used to compare our results with those
experiment. First, from an examination of the LDOS and
eigenvectors, we find a strongly coupled sugar backbo
phosphate mode peaked at 739.1 cm21. Experimental work
finds a 790-cm21 band for a phosphate-sugar vibration
B-DNA forms.51 Second, we located the presence of sy
metric and antisymmetric stretch modes peaked at 106
and 1282.4 cm21, respectively, compared to experiment
values of 1094 and 1215 cm21, respectively.52 Third, we
find strong LDOS cytosine-sugar backbone modes peake
342.9 cm21 and two other LDOS cytosine-sugar backbo
modes peaked nearby at 224.9 and 235.9 cm21. Compari-
sons can be made qualitatively to experimental results,
showing a strong cytodine mode at 317 cm21 and two
nearby modes at 248 and 264 cm21, where these mode
involve the ribose ring.53 Fourth, additional comparisons o
our LDOS cytosine-sugar backbone and LDOS guani
backbone modes to that of experiment show good qualita
agreement.54

IV. SUMMARY

In summary, we have successfully completed anab initio
molecular dynamics simulation for a DNA molecule. W
demonstrate that electronic structure methods have matu
and that computational resources have allowed simulat
of large biological systems within a feasible amount of tim
Our results for the band gap and the vibrational modes of
dehydrated poly~dG!•poly~dC! DNA structure are compa
rable to experimental results and the theoretical results
others.

In future work, we propose to perform simulations of th
hydrated poly~dG!•poly~dC! DNA structure. In addition,
more accurate modeling of the cations will be included
using a completely self-consistent version of the electron
structure-based method presented here. Comparisons w
made to see how the effects of hydration will change
resulting electronic structure and the vibrational modes. D
to the inclusion of the water molecules, the electronic str
ture and vibrational properties are expected to be more a
rate when compared with the experimental data.
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