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Electronic-structure-based molecular-dynamics method for large biological systems:
Application to the 10 basepair poly(dG)- poly(dC) DNA double helix
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Combining several recently developed theoretical techniques, we have developed an electronic-structure-
based method for performing molecular-dynamical simulations of large biological systems. The essence of the
method can be summarized in three poirits:There are two energy scales in the Hamiltonian and each is
treated differently—the strong intramolecular interactions are treated within approximate density-functional
theory, whereas the weak intermolecular interactig., hydrogen bongisare described within a simple
theory that accounts for Coulomb, exchange, and hopping interactions between the weakly interacting frag-
ments.(ii) A localized basis of atomic states is used, yielding sparse Hamiltonian and overlap méiiices.

The total energies and forces from the sparse Hamiltonian and overlap matrices are solved using a linear
scaling technique to avoid thi® scaling problem of standard electronic structure methods. As an initial
benchmark and test case of the method, we performed calculations of a deoxyribonuclé¢izNajcdouble-

helix poly(dG)- poly(dC) segment containing ten basepairs, with a total of 644 atoms. By a dynamical simu-
lation, we obtained the minimum-energy geometry and the electronic structure of this DNA dehydrated seg-
ment, as well as the full dynamical matrix corresponding to the relaxed structure. The vibrational data and
energy band gap obtained compare qualitatively well with previous experimental data and other theoretical
results.[S0163-182807)04512-9

I. INTRODUCTION explicitly.® Many effects, such as the electronic polarizabil-
ity, are inadequately described by only two-body interac-
In the early years of molecular quantum mechanics, theions, but including many-body potentials complicates the
prospect of understanding the microscopic properties of ampirical model significantly because of the increasing num-
biological system from first-principles quantum mechanicsber of parameters. Many-body effects are best described by
was perhaps overestimated. Decades later we findabat quantum-mechanical methods, since they are inherently
initio approaches have made msignificantcontribution in ~ many body; in addition, they require no fitting of parameters.
the field of large biological systems. Due to “unfulfilled In dealing with biological systems, it is desirable to study
promises” most biologist$including biochemists, biophysi- more than just the structural and thermodynamical questions.
cists, eto. are inherently skeptical about deriving practical Certain microscopic properties of a system such as electron
results from first principles. As such, empirical atomic ortransport, charge densities, electronic structure, and other op-
intermolecular potential methods and semiempiricaltical and electronic properties are naturally described using
guantum-mechanical methods became the method of choi@n electronic structure method. An example of the impor-
for simulating large biological systems. tance of studying microscopic properties in biological sys-
Empirical methods have become quite popular among bitems is found in the chlorophylls. In these systems, light
ologists, which is evident by the widespread use of programsnergy is absorbed, promoting electrons to higher orbitals,
such asaMBER (Ref. 1) and cHARMM,Z which have proven and enhancing the potential for transfer of these electrons to
successful for reducing the computational time required irsuitable acceptors. Studying the electron-transfer properties
simulations with a large number of atoms. They have als@f these molecules can only be accomplished via an under-
accurately demonstrated their ability to energy minimizestanding of the microscopi¢quantum properties of such
structural conformations to those which are in general agreesystems. In another example, it has been suggested that there
ment with experimental results and biological theory. This isis a correlation between the electronic structure of deoxyri-
not unexpected since the parameters of empirical as well dsonucleic acid(DNA) and proteins and their biological
semiempirical methods are fit to a large database resultinfunctions® Quantum-mechanical methods are then necessary
from many experiments. to investigate the microscopic properties desired in each of
Although empirical methods are sufficient to answerthese two examples.
many structural and thermodynamic questions, biologists see One must appreciate the enormous hurdles that must be
the need to include more than just two-body interactionsovercome in applying electronic structure methods to bio-
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logical systems. At the atomic level, there are four majorbiological systems, there afat least two energy scales to
types of interactions in biological systems—covalent, ionic,consider: strong intramolecular interactions, such as covalent
hydrogen bonding, and van der Waals. In order to simulatéonding, and weak intermolecular interactions, such as hy-
such systems from first principles successfully, a well-drogen bonding. This factor, plus the size of the system,
described electronic structure method must be developed t®akes the DNA molecule an ideal candidate for performing
account correctly for each type of interaction. In electronic@ benchmark test of the techniques which will be presented
structure theory, the largest concentration of research effort§ this paper. _ _ .

has been in the development of methods to describe correctly 1he Organization of this paper is as follows. After discuss-

the strong intramolecular covalent and ionic interactionsiNd in Sec. Il the electronic structure based method for cal-

Many methods have been created as a result of the materidis|ating large biological systems, results are given for the 10
theory research thrust from the 1970s to the pregiemta  Pasepair polidG)- poly(dC) DNA segments in Sec. IIl. Fi-
review of such methods see Refs. 5, 6, andi particular, ~Nally, in Sec. IV a summary of our results are given and
the method of Sankey and Niklewskiyhich is used as the Prospective work is discussed.

basis for modeling intramolecular interactions in this paper,

has been shown to work well for a plethora of systems. In Il. AN ELECTRONIC-STRUCTURE-BASED
dealing with the more subtle and difficult weak interactions, MOLECULAR-DYNAMICS METHOD
attempts have also been made to derive simple schemes for FOR LARGE BIOLOGICAL SYSTEMS

hydrogen-bonded systems. The weak intermolecular interac-
tions in this paper are modeled using a simplified electronic o )
structure method that was previously developed and applied Many biological systems, such as the DNA double helix,

to the interactions between water molectilesd between consist of two or more weakly interacting fragments where
DNA triplets © within each fragment strong intramolecular interactions are

A huge roadblock to simulating large biological mol- Present. To describe both the weak and strong interaction

ecules from first principles has been the enormous comput&nergy scales simultaneously with sufficient accuracy, we
tional intensity required. The electronic structure communityconveniently characterize the Hamiltonian in terms of a sum
is keenly aware of these difficulties, and many attempts havef strong intramolecular and weak intermolecular compo-
been made to deve|op techniques which surmount some @ents. This allows the use of two different models of calcu-
these difficulties by using physically motivated approxima-lation, where each model is appropriately formulated for
tions. Using a localized basis set reduces the computer r&ach type of interaction. The technique of splitting the total
quirements from the Supercomputer level down to the work€nergy into intramolecular and intermolecular interactions
station level for simulations involving no more than 200 Was used previously by others such as Héraisd Gordon
atoms. However, diagonalization of the Hamiltonian, whichand Kim?* For two weakly interacting fragments, we write
is required to obtain the electronic eigenvalisand struc- the total single-particle local orbital Hamiltonidt as

ture) energy, is anO(N®) computational algorithm, where

A. Electronic Hamiltonian

N is the number of electron orbitals. The simulation of more H = JStrongy 7weak

than a few hundred atoms using first-principles techniques

seems improbable with this type of scaling. An important H3 0 SHYeak  pweak

redeeming factor of the localized basis set is that the Hamil- = strong +< weak Weak)- 1)
0 H22 h21 5H22

tonian is sparse. Recently, several techniques have been de-
veloped to take advantage of this sparseness and to solve for ) stron stron )
the band structure energy using linear scaling algorithmd he submatricedd3;°" and H3;°™ represent the intramo-
(commonly referred to as ordéf) .t~ lecular interactions within fragments 1 and 2, respectively,
An electronic structure, based on the Sankey-NiklewskioH 15> and sH35°  are shifts of the intramolecular interac-
method with improvements to include a hydrogen-bondingtions due to the intermolecular electrostatic, exchange and
model and a linear system-size scaling algorithm, has bee@verlap interactions, arldbs?andh}s® are the intermolecu-
developed for the purpose of doing molecular-dynamicalar “hopping” matrix elements between the two fragments.
simulations of large biological systems. As an introductory The intramolecular interactions are determined from a
benchmark and test case of this method, we consider a sefirst-principles local-orbital method developed by Sankey
ment of DNA containing ten basepairs of and Niklewski® This is done using the Harris functiofial
poly(dG)-poly(dC). In general, the DNA molecule is formed within the local-density approximatioi.DA ), and using the
of two strands coiled about one another, yielding the familiapseudopotential approximatién.The electronic eigenstates
double-stranded helix. The outer edges of each strand ame expanded as a linear combination of pseudoatomic orbit-
formed by a sugar-phosphate backbone which follows thels within a localized p® basis for carbon, nitrogen, oxygen,
helical path. Attached to each sugar along the backbone isand phosphorous, and arbasis for hydrogen. This method
base unit(adenine, guanine, thymine, or cytosinehich is  has been applied to many covalent systems, and has proven
roughly perpendicular to the axis of the helix. The bindingto be computationally fast and quantitatively accurgtee
forces within each strand come from strong covalent in{Refs. 26 and 27 and references theyein
tramolecular interactions. The two strands are hydrogen To calculate weak intermolecular interactions such as in
bonded across the base on one strand to a base of the otheydrogen-bonded systems, we use a method that was previ-
forming the purine-to-pyrimidine complementary basepairsously developed and discussed in Ortega, Lewis, and
A-T andG- C. Hence, within the DNA molecule, as in most Sankey’ which evolved from earlier work® This method
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TABLE I. Decay constants used in the Slater-type orbitals. Onlyon fragment 1 are made orthogonal to those on fragment 2 by
the valence orbitals are used, sefor H, and Z and 2 for C, N, performing a Levdin transformatiofr of the Hamiltonian

and O. matrix,
Atom gs gp H= OI— l/ZHi OI— 1/2 (4)
H 1.27 . . .
where H; and O; are the Hamiltonian matrix and overlap
C 2.45 1.75 . . : . ) )
N 276 195 matrices in the intermediate basis, respectively. Note that
o 3'23 2'25 O; contains only nonzero elements between orbitals from

different fragments, except for unity along the diagonals.
These overlaps beween weakly interacting fragments are
small (typically less than 0Ji therefore, the overlap matrix
operator can be represented by the Taylor-series expansion

was shown to work well for water and for isolated DNA
basepairs and triplet§.In the calculation of all the intermo-
lecular interactions, the atomic orbitals of the basis set are —1/2_ ~1/2 loy 32

' : . O "“=(1+S =1—5S+3;S 5
assumed to be of Slater type, since this is the expected as- ! ( ) o8 ©

ymptotic shape in the intramolecular regions. These orbital@,p to second order in the overlap. After multiplying out Eq.

are of the form (4), diagonal corrections té{; yield the overlap corrections
to the intramolecular shifts, represented by the term
_ aA overlap
0= Yoim=Npit " Y ()e ", (2 (GHw= "%

Within the approximations made for the expansion of the
wheren. | andm are the appropriate quantum numbers. th overlap up to second order, the hopping matrix elements,
S S ppropriate qua 'DETS, TG weak andh¥eek may be modeled using the Bardeen tunneling
functionsY{'(r) are the spherical harmonics, aNdim is the  ¢y;rrent®®37 Therefore, the hopping matrix element between

normalization constant. The decay constanfer thep or-  rpitals on fragment 1 and orbitals on fragmenh% (and
bitals were obtained from Hehre, Stewart, and Péple, iy # hYea s wri

S ; y for h57), Is written as
which lists optimum exponents for several molecules. Note
the approximation that the decay constant falls off as the jweak_ , Bardeen ©®)
square of the orbital energy(~+E. Thus ¢,/¢s 12 =Y
=E,/ \/E—s was used to determine the decay constants fofyhere T82eenis the Bardeen tunneling current given by
the s orbitals (see Ref. 30 for energy level valye3he val-
ues determined for the decay contants are shown in Table I. R R _
Although the calculation of the intermolecular contributions TBardeen, —ﬁ2/2mf (1 Vipo— 4,V ipy)-dS. (7)
to the Hamilronian matrix elements is described in detail in 712

Ref. 9, we now briefly sketch the main ideas in this section . . . .
y The wave functiony; is a localized orbital of an atom lo-

R ; weak i weak
e e s 1 ofted o Fragment 1, and e wave s a oz
. . ' k orbital of an atom located on fragment 2. The wave functions
lap interactions,
1 and ¢, are generally nonorthogonal to each other. The
_ correction factory (typically 1.4 for an atomic state bound
SHYTRK= (H ) electostatio, ( s,y exchange ( 5, ) overlap near a Rydberg in enerjyakes into account the approxima-
(3)  tions used in deriving Eq7) (removal of three-center inter-
actions and any overlaping between the atomic potentials on
between the two weakly interacting fragments. Within ourthe fragments In additon to hydrogen-bonding interactions,
approach, these terms act only on the diagonal§tbf The  the total intermolecular contribution to the total energy must
electrostatic and exchange interactior#H()®'°"*®cand  include the van der Waals interactions. The energies from the
(8H,) "% gre calculated based on many-body interac+ ~® van der Waals attractior(sometimes referred to as dis-
tions which are formulated via second quantization, providpersion energigsmay, in the extreme case, account for al-
ing a simple picture with the correct physical insiJiffthe  most 50% of the total binding energy between DNA ba8es.
exchange interaction is based on the Hartree-Fock formalisrRor larger molecules, such as the DNA bases, van der Waals
to avoid the exchange-correlation problems that occur in thénteractions are necessary because of the complexity of the
LDA (for example, see Refs. 31-34 charge distribution and fluctuations from which such interac-
Within the intramolecular shifts, the overlap interaction tions are derived. Dispersion energies are due to correlation
term comes from a correction factor which arises from theeffects, and only recently have begun to be tackled within the
fact that the orbitals are asumed to be orthogonal. For redramework of density-functional theory.
sons of convenience, the transformation from the original, A recent review article discusses empirical van der Waals
nonorthogonal basis to the orthogonalized set is done in twenergies based on the Slater-Kirkwood approximatfon.
steps. First, the orbitals are made orthogonal to each othdris approximation is based on a weighted average of the
only within each fragment. This step is described in the Secdispersion coefficient€g due to each individual atoms po-
Il B. The intermediate basis so obtain@ehich is orthogonal larizability, and its effective number of electrons. Using this
within each fragment, and nonorthogonal between fragmodel, the van der Waals interactions are added into our
mentg is further orthogonalized so that the orbitals locatedcalculations through the equation
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TABLE Il. Atomic polarizabilities andCg parameters used in  are expanded in terms of the atomic orbital basidy those
the Slater-Kirkwood approximation for the van der Waals interac-entering the localization sphere of radiBs are included in
i 40 . . .
tions. this expansion The advantage of the functional of Ed.0)
is the fact that no orthogonality constraints need to be im-

Atom “i Cei posed during the minimization, since the form of the func-
H 2.60 2.8 tional drives the wave functions toward orthogonalization. In
C 6.38 19.1 other words, the minimum is achieved for orthogonal func-
N 6.90 228 tions, and for the exact ground-state band enétgy.
0 5.42 16.8 The energy functional is minimized iteratively using the
P 24.32 190.8 method of conjugate gradierfsin this method, a succession
of line minimizations is performed, where the minimization
directions are given by the “forcelike” gradient of the en-
aw_ Cémn ergy functional, corrected to make the successive directions
Unn = o (8)  orthogonal to each of the former iterations. The “forces” of
mn the energy functional are just the derivatives of the energy
where functional with respect to the coefficients of the expansion of
the occupied orbitals in terms of the basis functions. This
Corm 2amanCemmCenn © procedure is repeated until the value of the energy functional

is minimized and unchanged within some tolerance. All the
) o ) computations involved(gradients and energy functional
The subscriptsn and n signify atoms on molecules and  gcgle linearly with the number of electrons, as long as the
j, respectively. Thex's are the atomic polarizabilities as- occupied states are localized within a radRis This tech-
suming additivi'ty. The atomi€y coefficients are qbtaineq nique avoids th@(N3) complexity involved in the orthogo-
from the effective electron number and the atomic polariz-ajization process present in standard iterative minimization
ability. Table Il shows the values of andCq that were used  procedures, as well as in matrix diagonalization. We refer the

2 2 .
@ Cennt a@Comm

0
for H, C, N, O, and P reader to Refs. 15 and 21 for the details of the onder-
_ _ _ method used in this work.
B. Linear scaling solution In the procedure to minimize the energy functional, a ju-

For large systems, determining the electronic eigenvaluQiCiOUS initial guess fo_r the_wave functions is neede_d. In the
(band structureenergy via matrix diagonalization must be first molecular-dynamics time step of the simulation, we
avoided due to thél3 scaling. A linear inN scaling tech- make an initial guess that takes into account the chemistry of
nique is the desirable method of choice for determining thén€ system. We build Wannier-like functions which are cen-
band structure energy. In the last few years, a number dered in bonds and lone pairs, and which are initially taken as
methods with linear scaling have been proposed, most df*€ bonding combination of the hybrids forming the bond, or
which are applicable provided that the Hamiltonian andthe pure lone-pair orbitals, respectively. For subsequent

overlap matrices of the system are sparse in a localized ofimulation time steps, the initial guess of wave functions are
bitals basi$1~23 This is certainly the case for both>""9 taken from the solution of preceding simulation time step.

andH"¢2kand for the overlap matrices in our formulation for The initial wave functions in the first time step are far from

large systems. Most of the linear scaling methods propose@fthonormality and from the Born-Oppenheimer surface, so
so far relay on the localization properties of the magnitude€ Telatively large number of minimization iterations is

of interest like the density matrix or the electronic wave "€€ded, compared with subsequent time steps. Once the en-
functions. For instance, for nonmetallic systems, toeu- €9y functional is minimized, a value for the band-structure
pied electron orbitals can be constructed to be exponentiall#Nergy is obtained along with the orthonormal set of wave
localized Wannier-like staté‘é.Beyond somdsmal) cutoff functions which are then used in the calculation of the
rangeR., the overlap and Hamiltonian interactions between@tOMic forces, charge densities, etc. For the energy func-
these Wannier-like occupied orbitals can be neglected. Sind¥nal given by Eq.(10), the band-structure force can be

a given electron orbital overlaps significantly with only a réadily evaluated, using a variation of the Hellmann-

,21,43,44
finite number of other electron orbitals, independent of thd~€yNman theorertr . L
system size, it is inherently possible to use an oider- We recall from Sec. Il A that a lwdin orthogonalization

method. In the method of Ordejoet al.’® which we use within each fragment was to be performed. Since strong in-
here, the following energy functional is,formulated tramolecular interactions are computed in the original, non-
’ orthogonal basis, the intramolecular Hamiltonian has to be

~ ) transformed to the intermediate basis according to the-Lo
E=2T(+(1-9)H], (10 din transformation:

whereH and S are the(spars¢ Hamiltonian and overlap

matrices for the system under consideration. The trace is Strong__ — 1/24 strongey— 112

taken in the occupied subspace, which has dimensions of H = O RSO, (11)
N¢/2, whereN, is the number of electrons. The ground state

of the_system is obtained by minimizing the energy func-

tional E with respect to all possiblocalizedstates, which  whereQ is the intramolacular overlap matrix,
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O,; O electronsN, due to errors. There are two error sources:
—< 0 o ) (120 the energy functional Eq.10) gives a number of electrons
22 smaller than the exact number because of the localized func-
Similarly, in the hydrogen-bonding model, the electrostatictions used? and (ii) the calculation of the Lwdin popula-
and exchange contributions require knowing théwHm  tions uses an approximation &2, Since then, popula-
charges, which are the occupation numbers of the orbitals dfons are used to determine long-range Coulomb interactions,
each atom. These charges, which are computed from themall errors in the total charge may give rise to non-
wave-function solution of the isolated noninteracting frag-negligable errors in the total energy. In order to correct this,
mentsWV;, =3 ,c;,¥,, are given by the orbital populations are renormalized in such a way that
the total charge is equal to the exact number of electrons, i.e.,
2

9.=22>

I occ

1/2
> ¢ 0

!
o

(13 n([:lorrected: Ne n,. (16)

Ncalc

We see that boti®~ Y2 and OV are needed to perform the This corrects for the errors in_t'he alin charges.in a mean-
field manner, and in fact stabilizes the solution in such a way

Lowdin orthogonalization and to calculate the vidin ) WP
charges, respectively. Normally, these matrices would be Ol}hgtl/tzaven fewer terms in the Chebyshev serie®df and
(@] can be taken to yield good convergence in the total

tained by diagonalization of the intramolecular overlap ma-
trix ©; however, this is arO(N®) operation, and a more €N€ray:

efficient approach must be developed. In the hydrogen- As a final technical detail, we mention that, since the or-
bonding model, as discussed previously, the tamt’2 was thonormal wave functions of the isolated noninteracting frag-
L L |

written as (+9) 2, and computingOi’l’z was accom- ments are needed for caICl_JIatlng theV\_td)n chgrgeg, the
lished through the use of a Taylor-series expansion up ttotal band-structure energy is necessarily obtained in a two-
b gtep procedure. First, the energy functional of ED) is

O(S”)’ S.m.?e Iterfms(l;l/ghe|_||ntermolec;ular oyer:ﬁp _m?tnx A€ minimized to determine the band structure energy for only
small (similarly for O7). However, terms in the intramo- the strong intramolecular interactiotise., #5"°"% which, for

lecular overlap matrix are not small, and this procedure Canéxample could be one strand of a DNA double helikhis

not be gsed in this case. Keeping within th.e. spirit of order- ields the solution for the wave functions of the isolated

Nltltgchmqu?f/,zwe found It accurate and efficient to ca_1|cu|at oninteracting fragments. The Wwalin charges are calculated

O andO" " by expanding it into a Chebyshev series, o these orthonormal wave functions. Second, from these
Lowdin charges we calculate the intermolecular electrostatic

N . and exchange contributions, and the energy functional of Eqg.
f(x)= IZO CkTk(X) | = 3Co. (149 (10) is again minimized to determine the band-structure en-

ergy for the total interaction picturg.e., HS""%+ FH"Weal

In conclusion, we presented an electronic structure based
method with the purpose of performing simulations of large
biological molecules. The method combines three different
techniques, providing a means to model the strong intramo-
lecular interactions, to model the weak intermolecular inter-
actions, and to avoid the costy(N®) scaling as a result of

x—3(b+a) matrix diagonalization. In Sec. lll, the results of applying
Y=—F——" (15  this electronic-structure-based method to the 10 basepair
poly(dG)- poly(dC) DNA double helix are discussed.

Chebyshev polynomials are defined over the rangé,1];
therefore, the functio®'’2 or ©®~ %2, where the eigenvalues
of O are roughly in the rangga,b]e[0.10,3.0Q, is scaled
appropriately by

The use of only approximately ten terms yields a very good Il APPLICATION OF THE METHOD TO THE 10

convergence of the Chebyshev seriest?, but 20 terms BASEPAIR POLY (DG)- POLY (DC) DNA DOUBLE HELIX
are needed for a very good convergence of the Chebyshev

series to©~ 2, because this function is not as stable for The combination of the above-described techniques allow
smaller overlap values. It must be noted that, in principleus to perform a quantum-molecular dynamics calculations of
successive multiplications of the overlap matrix in the seriea deoxyribonucleic aciDNA) double helix. Using a 0.2-fs
expansion will lead to less and less sparse matrices, whictime step, a simulation was done to relax a DNA segment
would eventually lead to a supralinear scaling of the matrixcomposed of ten guanine-cytosine basepairs. The relaxation
multiplications. This is avoided by using “absorbing bound-was accomplished via a method known as dynamical
ary conditions” on each matrix multiplication after the first quenching, where the velocities are set to zero as the kinetic
product. (Absorbing boundary conditions means we set toenergy reaches a maximum; thus the system’s geometry
zero in the product matrix all elements which are zero inseeks the nearest minimum-energy configuration. This relax-
both factor matrices The elements which are neglected de-ation was computed on a DEC 3000/600 Alpha workstation,
cay exponentially with the distance from the nearest nonzereequiring 691 CPU minutes for the first time step and aver-
element of the original overlap matri®, and represent a aging approximately 18 CPU minutes for each additional
reasonable approximation in the spirit of an ortlernethod.  time step. As a comparison, use of a direct diagonalization
It must be pointed out that the calculated total chargemethod, instead of the ord&-method used here, is esti-
Neac= 2N, IS Not precisely equal to the total number of mated to take approximately 70 CPU minutes per time step.
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Electronic Density of States

FIG. 2. The calculated electronic DOS fta) an isolated GC
basepair andb) the polydG)- poly(dC) structure. The band gap
€4 is found to be 1.40 eV for the pdlgfG)- poly(dC) structure, and
3.37 eV for the isolated basepair.

tion is to mimic the effect of the counterions by neutralizing
the molecule. We accomplish this by distributing a positive
electronic charge smeared evenly over the phosphorous and
oxygen atoms located in the phosphate group. This smeared
charge only appears in the calculation of the long-range Cou-
lomb intermolecular interactions.

The electronic density of statd®0S) for an isolated
grand canonicalGC) basepair and the pdlgG)- poly(dC)
structure are shown in Figs.(@& and Zb), respectively.
These electronic DOS’s are calculated based on the local
relaxed minimum-energy configurations of the two systems.
It is interesting to note that the electronic eigenvalue spec-

FIG. 1. This DNA segment consists of ten guanine-cytosinetflum for the polydG)-poly(dC) system has qualitatively
basepairs. Each basepair is just mr36° and annx3.3728 A  similar features as that of the isolated GC basepair. The
translation of the first. This structure was fully relaxed to the neares€nergy-band gag, is taken as the difference between the

local minimum, and the electronic and vibrational DOS’s were cal-highest occupied molecular-orbitdHOMO) level and the
lowest unoccupied molecular-orbitdLUMO) level, and is

found to be 1.40 eV for the palgiG) - poly(dC) structure, and
3.37 eV for the isolated basepair. The reduction from the
Figure 1 shows the geometry of the relaxed structure for théand gap of the isolated basepair to the @) poly(dC)
nearest local-energy minimum. A comparison between thistructure is 1.97 eV, due to the addition of the backbone and
final structure and the initial structure and a quantitativephosphate groups as well as due to the broadening of the
analysis will be published elsewhefeThis structure is con- HOMO and LUMO energy levels from the coupling of the
sidered in particular because of its simplicity—each basepaibasepairs.

is just annx36° and annx3.3728-A translation of the It is well known that LDA does not yield quantitatively
original basepair. The initial coordinates were obtained fromaccurate results for the energy values of band gaps, but rather
a structure based on x-ray-diffraction studies of microcrys-generally underestimates these values. In addition to the
talline fibers and refined via a least-squares method usingDA errors differences between our results and experimental
“standard” bond length4® Currently, water molecules sur- results mainly occur due to two other important factors. First,
rounding the DNA segment are not included in the simulathe presence of water will structurally support the DNA
tion, but will be added in future work. In natural DNA, the double helix as well as screen charges in electrostatic inter-
phosphate groups along the backbone chain are negativeéictions, resulting in an increased value for the energy gap.
charged by one™, and counterions exist to compensate for Second, more accurately including the effects of counterions
this change. We treat the DNA molecule taking into accounwill yield a structural difference in the DNA double helix,
this extra electron at each phosphate group, but we do nathich will affect the HOMO-LUMO gap.

include the counterions in the simulation. Since this would On the basis of several experiments, which measured the
give rise to long-range Coulomb repulsions between theesistivity as a function of temperature, the energy-band gap
negatively charged phosphate groups, a common approximag of some DNA compounds was found to range from 1.8 to

culated.
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For the polydG)- poly(dC) structure, the local density of
vibrational stateLDOS) were calculated to determine the
contributions of the guanine, cytosine, sugar backbone, and
phosphate components on each of the modes. Although the
number of modes is quite large and most experimental work
does not assign displacement patterns to the results of their
spectra, this LDOS information, along with our calculated
eigenvectors, is used to compare our results with those of
experiment. First, from an examination of the LDOS and the
eigenvectors, we find a strongly coupled sugar backbone-
phosphate mode peaked at 739.1 ¢mExperimental work
finds a 790-cm?® band for a phosphate-sugar vibration of

A
A M}m B-DNA forms>! Second, we located the presence of sym-
U, . WA

|

(b)

Hydrogen Vibrational
tates

Vibrational Density of States

metric and antislymmetric stretch modes peaked at 1068.1
and 1282.4 cm-, respectively, compared to experimental

0 500 1000 1500 2000 2300 3000 3500 values of 1094 and 1215 cnt, respectively’? Third, we

Wave number (cm ) find strong LDOS cytosine-sugar backbone modes peaked at

342.9 cm ! and two other LDOS cytosine-sugar backbone

modes peaked nearby at 224.9 and 235.9 tnCompari-

sons can be made qualitatively to experimental results, also

2.4 eV* In addition, a few theoretical calculations, based onShowing a strong cytodine mode at 317 ¢mand two
semiempirical methods, were completed and determined thaearby modes at 248 and 264 ¢t where these modes
energy-band gap of DNA systems. Most all of these calcuinvolve the ribose ring® Fourth, additional comparisons of
lations also neglect the effects of water. One calculation foPur LDOS cytosine-sugar backbone and LDOS guanine-
both theA andB forms of a DNA molecule, containing only backbone Todes to that of experiment show good qualitative
guanine or cytosine bases, yields results for the energy barRgreement:
gap of approximately 2.0 e¥. Other semiempirical results
for poly(dG) - poly(dC), find energy band gaps in the range of IV. SUMMARY
6.0-6.5 eV*® and one result yields a value of 11.7 &Y.
These latter results do not take into account effects due to the In summary, we have successfully completedaarinitio
backbone structure or counterions, and are relatively higtnolecular dynamics simulation for a DNA molecule. We
compared to experiment. In addition, calculations where &lemonstrate that electronic structure methods have matured,
Mgz+ counterion is included find energy-band gaps of 8.7and that computational resources have allowed simulations
and 2.0 eV, dependent on the location of the countetion. of large biological systems within a feasible amount of time.
The calculated vibrational DOS for an isolated@base- Our results for the band gap and the vibrational modes of the
pair and the pol§dG)- poly(dC) structure are shown in Figs. dehydrated poldG)- poly(dC) DNA structure are compa-
3(a) and 3b), respectively. Similar features can be foundrable to experimental results and the theoretical results of
within the two spectra, although there are some frequencgthers.
shifts in the DNA moleculéFig. 3(b)] due to the addition of In future work, we propose to perform simulations of the
the sugar backbone and the phosphate groups. Both specttgdrated polydG)-poly(dC) DNA structure. In addition,
were obtained by a diagonalization of the dynamical matrixmore accurate modeling of the cations will be included by
which was constructed by finite differences. In this methodusing a completely self-consistent version of the electronic-
each atom is displaced, once at a time, in each direction dgtructure-based method presented here. Comparisons will be
space by 0.0125 A. The forces are computed on all atomgnade to see how the effects of hydration will change the
and dividing by the displacemerfassuming a harmonic ap- resulting electronic structure and the vibrational modes. Due
proximation gives one column of the force constant matrix. to the inclusion of the water molecules, the electronic struc-
For the polydG)- poly(dC) structure, this involved 1932 dis- ture and vibrational properties are expected to be more accu-
placed atom calculations. Cubic anharmonic terms are rgate when compared with the experimental data.
moved by averaging the dynamical matrix using positive and
negatn{e dlsplagements. In the process pf diagonalizing the ACKNOWLEDGMENTS
dynamical matrix, we unfortunately obtained several nega-
tive eigenvalues. This is a common problem using finite dif- We thank the Office of Naval Resear@@rant No. ONR
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trix, and produce imaginary eigenfrequencies for the lowestbemkov, Josértega, Wolfgang Windl, and Stuart Lindsay
energy modesthe translational invariance is explicitly built for useful discussions about this work. One of (i50)
in the calculated dynamical matjixAlso, small frequency gratefully acknowledges support and encouragement from R.
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FIG. 3. The calculated vibrational DOS f¢a) an isolated GC
basepair andb) the poly(dG)- poly(dC) structure.
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