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Uniaxial-stress effects on the electronic properties of carbon nanotubes
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Using a semiempirical tight-binding approach modified through introduction of a deformation potential, we
have calculated the effects of uniaxial stress on the electronic density of states of carbon tubules. For zigzag
tubules 0,0) the gap varies linearly with stress and independently of diamlet&p,,/do|=10.7 meV/GPa
for |o| <10 GPa, and a semiconductor to metal transition is predicted. The behavior is strongly dependent on
whether n=3q,3qg—1,3q+1. The armchair tubules remain metallic under all conditions studied.
[S0163-182697)02411-9

I. INTRODUCTION =na,+ma,, C being the chiral vector. For the zigzag tubule
m=0 and for the armchain=m. The widely used model of
Since graphitic tubules with radii of a few nanometersa single-walled tubule consists of rolling up a semi-infinite
(carbon nanotubgsvere discovered by lijimaunder roughly  sheet of graphene into a cylindrical tube of constant radius.
the same conditions as those used to produce the fullerenéEhus sp? hybridization of the 2D graphene honeycomb lat-
quite intense activity has been undertaken in both experitice, in addition to the Born—von Kman periodic boundary
mental and theoretical fields. Early theoretical stutiies conditions on the circumferende C=2#l (wherel is an
showed that these nanotubes exhibit some unexpected amtegey, plays a key role in the electronic properties of nano-
very interesting electronic properties; indeed they may beubes. The Born—von Kman condition cuts the hexagonal
metallic or narrow- or moderate-gap semiconductors dependrillouin zone of the graphene into allowed parallek lines
ing simply on geometric characteristics, e.g., diameter angeparated by a distandek=27/|C|. The positions of these
chirality. In some respects, this is certainly an unexpectedines in the Brillouin zone then define the electronic structure
feature since other than the effects linked to bending thef the tube. Such a representation is a 2D tubule model.
graphendtwo-dimensional2D) graphitd sheets to form the Furthermore, a translation vectdr can be defined, per-
tubes(significant in small-diameter tubes and not taken intopendicular toC. The translationT and the rectangle defined
account in the early theoretical woikshe trigonal configu- by R and T completely define the tubufé.Such a 1D rep-
ration of the component carbon atoms is the same in altesentation lends itself to an easier calculation of the DOS
cases. Such differences in electronic properties depend ahan does a 2D model using the Green’s-function technique,
whether the allowe#t-space states pass through Kh@oints  as shown below.
of the 2D graphene Brillouin zone. Later studies of band As mentioned above, the graphene mbdides not take
structure went beyond the “graphene model” and took intointo account the effect of curvature and predicts that the zig-
account the effects of curvatute. zag tubules for whic is a multiple of 3 are metallic. In
We first present ther electron density of statd®OS) of ~ fact, the curvature of small diameter tubes transforms the
two particular, high-symmetry types of carbon nanotubespredicted metallic behavior into that of a small-gap semicon-
designated zigzag and armchair tubules. We have used thiictor due toos-7 hybridization®*® In the present case, to
Green's-function method within the framework of a simple, introduce the effects of curvature on tti&D) electronic
tight-binding scheme based on a 1D tubule model. We havgroperties, we use a simple deformation potetttias a per-
computed an analytic expression of the D@E) and dis- turbation in a tight-binding mod&l near the Fermi level.
cuss the main features according to the type of tubule. Next,
we particularly treat the effects of compressive and tensile, IIl. DENSITY-OF-STATES CALCULATIONS
uniaxial stress on the DOS and the band gaps. This seems of
interest since such effects of stress on the electronic proper- The Green’s-function technique we have used in this
ties of carbon tubules have received little attentftmdat¢  work is formulated within the framework of a tight-binding
in spite of references to the predicted interesting mechanicallamiltonian, which can be expressed by
properties’ 10
H=2 [i)ei(i|+2) [ia (il (3.9
Il. TUBULE MODELS I hJ
Using the notation of Refs. 6 and 11, a tubule is defined irif we neglect the effect of curvature, the values of the
terms of the two direct lattice vectors of a 2D graphite sheeintersite parameters are the same as those used by Charlier et
a, and a, and a pair of integersn(m) such thatC  al® The site energies; associated with the two different
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sitesA andB of a (2D) graphite sheet have the same values 10
in the graphene model. Thus these energies are chosen as a
reference and set equal to zefi.)} is a set of atomic or
Wannier-type wave functions localized on siteThe Bloch
monoelectronic wave functions of the tubules are given by

1 -
J_N; ek Rilj). (3.2

Since thes and ther energy bands very weakly overlap
in the case of graphene, we consider here#hBOS only.
The electronic properties are obtaifitétom the projection ﬁ%
on the preceding set of Bloch wave functions of the inverse 44 E— ,‘E‘|E1, ——

operator associated with 0 8 6 4 2 0 2 4 & 8 10
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The partial density ofr electronic statep™(E), which
is associated with thenth allowedk line in the Brillouin
zone of graphene, is deduced from the following analytic ] 1 E
extension of the Green'’s function of the tubules:
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where the integral is taken over thath line by the expres-
sion

Wy 77T

1 .
p(m)(E)::;|m[G(m>i(Ei|8)], (3.5

where() is the volume of thé1D) unit cell of the tubule and
Im is the imaginary part. The total DOS is then given by the
summation on the allowek lines

0.5 1 _

Density Of States

p(B)=2 p™(E). (3.6 .

Using this techniqué?!® we then computed an analytic R A A P S

expression ofp(E) for 0O<E<10 eV in the cases of both (g Energy (eV)
types of nanotubes studied here. As noted in other

calculations'® the curves obtainefFig. 1) are characteristic
of quasi-1D behavior. Indeed, we observe the formation o
discrete energy levels,, corresponding to DOS discontinui-
ties (&-like variationg. Furthermore, integrating E¢3.4) by
the residues theorem, we obtain analytical expressions of the

¢ FIG. 1. Calculated DOS(E) for (@ and (b) zigzag and(c)
armchair tubules. The parametersf) are (9,0), (7,0, and(5,5),
respectively.

DOS p(E), which can be expressed in the form plD(E):% ! E—E. E,. (3.9
E)=>, [E] 3
p(E)= = \/EZ—EZ \/EIZ_EZ’ 3.7) Experimental evidence of such 1D confinement has been
m m

put forth through scanning tunneling spectrosddpgTS.

whereE, andE;,, are discrete energy values. This expressiorin these studies, conductance versus voltage curves
of p(E) is different from that obtained for a confined 1D (dl/dV) showed peaks that these authors associated with 1/
electron gas VE—E, discontinuities. Perhaps a more detailed line-shape
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analysis of the STS data would allow distinguishing between
Egs. (3.7 and (3.8). In Figs. Xa) and Xb), the quantity
2E, is the gap. Figure (&) shows that the deformation po-
tential representing the effects of the curvatfig; in ex-
pression(3.1)] has indeed opened a small gap removing the
strictly metallic character, initially predicted. Figuréclil-
lustrates the metallic behavior of the armchair tubules.

IV. EFFECTS OF UNIAXIAL STRESS

We now examine the effects of a uniaxial, homogeneous
deformation of the tubules along their axes. We have com-
puted thew-electron band structure and DOS, under both
uniaxial traction ¢>0) and compression<0) using a
semiempirical tight-binding approa¢hadapted to take into
account the modifications of both direct and reciprocal lattice
structures and two-center integrals with stress.

We have determined the new positions of the carbon at-
oms in a tubule submitted to a uniaxial stressn the frame-
work of elasticity theory assuming small strains using the U
relationship

FIG. 2. Schematic representation of the effect of uniaxial tensile
Ri=(1+2)R;. 4.1 stress on &1D) rectangular unit cell. From top to bottom, deforma-

. tion along the §,0) zigzag axis and then(n) armchair axis.
R andR; are the position vectors before and after stress opaghed lines and circles represent the undeformed honeycomb lat-
atomi. 1 is the unit matrix and is the reduced deformation jce.

tensor in the graphene plafieln the case of uniaxial defor-

mation of armchair and zigzag tubulegakes the forms AoB; andA,B, are symetrically placed with respect to the
same axis, then we define the transfer integ@q%ztg and
S0 0 0 AoB1_ +A0B2 _
o =t =1
€amchai=| 0 Suo 0], We find that the discrete DOS energy levels and the gaps
0 0O O are very deformation sensitive. For uniaxial straiE) still
varies qualitatively as in Fig. 1 and is analytically expressed
Syo 0 0 in the case of 1§,0) tubule by
rigrag=| O S0 0. 4.2 (Eoye L (L+S0) [EI6(IEl.E) in(|E],Epn)
lo- = 1
0 0 0 p 27T\/§(1+Sllo-)(m) \/EZ_(E;])Z\/(E;;)Z_EZ

We have used the graphite valtes;;=0.98< 10 *? Pa ! (4.4

andS;,=—0.16x10 2 Pa . where the discrete energy levdls,, displaced by the defor-
Using Eq.(4.1), the vectors of the deformed tubule unit mation, are given by

cell are constructed. The 1D unit cell remains rectangular as

shown in Fig. 2. Since the deformation also modifies the . to+t V| ma

different carbon-carbon lengths it is necessary to recalculate En(o)=ts [1i2 )COSN— : (4.5
the transfer integrals between the different atoms. To do so 3 ¢

we have used Harrison’s formdfet* 2% o(|E|,E) and 6,,(|E|,E") are, respectively, the Heaviside

and the inverse Heaviside function defined by
e 43 0(|E|,E,)=1 if |E|>E, and 0 elsewhere and
ap™tap| g - 4.3 0in(|E|,E)=1 if |[E|<E,. and 0 elsewhere.
Using the saméj notation as for the;; transfer integrals,
do andd are the bond lengths before and after deformationthe V;; are parameters that take into account the effect of
Since no experimental values of,; are available for tu- curvature of the graphene under conformal transformation.
bules, we have used, ;=2 as done by Harrison himself, for N¢ is the number of carbon atoms on the,q) tubule’s
all types of orbitalse, 8. In our approach, we take into ac- circumference.
count only 7 orbitals; therefore, we no longer needand We obtain similar expressions fgr(E) and E,,, in the
B indices. In the case of elongated graphene, the carborcase of armchairr,n) tubules. These results are of less
carbon bonds are no longer equivalent and we will use thémportance since these tubules remain metallic under all
following notation: A, is taken as a reference atom and itsstrains studied here.
three nearest neighbors are design&edB,, andB;. If the Let us examine then(0) zigzag tubules. It is always pos-
AoB3; segment is parallel to then(0) tubule’s axis and sible to define the zigzag tubules in one of the following
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_ FIG. 3. Band gap as a function of stress: circle, square, and up G, 4. variation of semiconductor to metal transition pressure
triangle correspond, respectively to a small band @@ and mod- ik diameter for (3,0) tubules.

erate band gap@®,0 and(10,0. For these three tubuleg=3. The

down triangle corresponds to(40,0 tubule (diameter of 3.1 of (39,0) and (3)+1,0) and the same kind of transition is

_ ) ) obtained with traction in the case of {3 1,0) tubules, at a
forms: (39,0), (39+1,0), or (3—1,0), whereq is an inte-  giameter dependent stresg(d). In their study of instabili-

ger. The electronic band gap is alwa_ys obta?ned by settingeg beyond linear response theory Yakobsbal2 showed
m=q in formula (4.5. For example, if the zigzag tubule {hat 3 tubule modeled by a Tersoff-Brenner poterffidl,
satisfies (§,0) we obtain the following expression of the ghows four singularities at high straieswhen subjected to
9apE,: uniaxial compression. I is less than 0.05 there is no shape
_ L change. In our case, this value corresponds to an axial stress
Eg(0)=2|t3—t1,— V3. (4.6 iferior to 51 GPa. It should be noted that prior to this work
Given that the values o, and Sy, are of the order of Of Yacobsonet al,* Robertsoret al*® presented one of the

(4.6) can be developed neaiS;;=0 and we obtain, neglect- ~ We observe from Fig. 3 that only the ¢®) tubules
ing the small curvature term, might present such an experimentally observable transition
as shown on Fig. 4. Figure 4 represents the stress at which
Eg(0)=3ty(S11— S1o) 0, (4.7  the semiconductor to metal transition occurs foq(® zig-

zag tubules. Thus, knowledge of a given tubule’s diameter
would allow predicting the stress necessary to create a semi-

twern_q-r OLb'talsl of negrest r:jelsghbprs In 'g1e graphene.. conducting tubule of a given gap or the stress required to
sing the values o6,;; and S, given above, expression i metallic behavior.

(4.7) shows that the gap sensitivity with stress is equal to
10.7 meV/GPa for uniaxial stress less than 10 GPa. This
value is comparable to that found for various diamond V. CONCLUSION

structure$’ or semiconductor such as Ga#s. In summary, we have shown that a uniaxial stress applied
As indicated in Fig. 3, the variation &;=E,(o) in the parallel to the axis of carbon nanotubes can significantly
case of (8—1,0) and (3+1,0) nanotubes remains linear modify the band gap and induce a semiconductor-metal tran-
with approximatively the same value fldEg,,/do]. Figure  sition. For the zigzag tubules(0) the behavior is strongly
3 allows proposing a different classification for the zigzagdependent on whether=3q, 3q—1, or 3q+1. As for the
tubules. In the case of (B+1,0), the gap increases under DOS, an analytic expression has been put forth using 1D
traction, whereas in the caseq3 1,0) it decreases. These Green’'s-function theory. From an experimental viewpoint,
different kinds of behavior can be understood in the 2D repstate of the art nanotechnology has recently permitted mea-
resentation by examining the effects of stress on the alloweguring the galvanomagnetic properties of a single bifidfe
lines in the Brillouin zones. In the (B+1,0) case, the near- and a single nanotub8. Furthermore, recent studies have
est corner allowed line moves away from the point, allowed determination of the elastic properties of microstruc-
whereas for the (§—1,0) case it becomes closer. tures such as DNA chairi$ Adaptation of such technologies

Furthermore, we observe on Fig. 3 that compressiomay therefore open the future to experimental works under
should lead to a semiconductor to metal transition in the casthe effects of stress.

wherety;=3.2 eV (Ref. 13 is the two-center integral be-
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