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Uniaxial-stress effects on the electronic properties of carbon nanotubes
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E. McRae
Laboratoire de Chimie du Solide Mine´ral, URA 158 CNRS, Boiˆte Postale 239, 54506 Vandoeuvre les Nancy, France

~Received 6 September 1996!

Using a semiempirical tight-binding approach modified through introduction of a deformation potential, we
have calculated the effects of uniaxial stress on the electronic density of states of carbon tubules. For zigzag
tubules (n,0) the gap varies linearly with stress and independently of diameter:udEgap/dsu510.7 meV/GPa
for usu a10 GPa, and a semiconductor to metal transition is predicted. The behavior is strongly dependent on
whether n53q,3q21,3q11. The armchair tubules remain metallic under all conditions studied.
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I. INTRODUCTION

Since graphitic tubules with radii of a few nanomete
~carbon nanotubes! were discovered by Iijima1 under roughly
the same conditions as those used to produce the fullere
quite intense activity has been undertaken in both exp
mental and theoretical fields. Early theoretical studies2–5

showed that these nanotubes exhibit some unexpected
very interesting electronic properties; indeed they may
metallic or narrow- or moderate-gap semiconductors depe
ing simply on geometric characteristics, e.g., diameter
chirality. In some respects, this is certainly an unexpec
feature since other than the effects linked to bending
graphene@two-dimensional~2D! graphite# sheets to form the
tubes~significant in small-diameter tubes and not taken in
account in the early theoretical works!, the trigonal configu-
ration of the component carbon atoms is the same in
cases. Such differences in electronic properties depend
whether the allowedk-space states pass through theK points
of the 2D graphene Brillouin zone. Later studies of ba
structure went beyond the ‘‘graphene model’’ and took in
account the effects of curvature.6

We first present thep electron density of states~DOS! of
two particular, high-symmetry types of carbon nanotub
designated zigzag and armchair tubules. We have used
Green’s-function method within the framework of a simp
tight-binding scheme based on a 1D tubule model. We h
computed an analytic expression of the DOSr(E) and dis-
cuss the main features according to the type of tubule. N
we particularly treat the effects of compressive and tens
uniaxial stress on the DOS and the band gaps. This seem
interest since such effects of stress on the electronic pro
ties of carbon tubules have received little attention~to date!
in spite of references to the predicted interesting mechan
properties.7–10

II. TUBULE MODELS

Using the notation of Refs. 6 and 11, a tubule is defined
terms of the two direct lattice vectors of a 2D graphite sh
a1 and a2 and a pair of integers (n,m) such thatC
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5na11ma2, C being the chiral vector. For the zigzag tubu
m50 and for the armchairn5m. The widely used model of
a single-walled tubule consists of rolling up a semi-infin
sheet of graphene into a cylindrical tube of constant rad
Thussp2 hybridization of the 2D graphene honeycomb la
tice, in addition to the Born–von Ka´rmán periodic boundary
conditions on the circumferencek•C52p l ~where l is an
integer!, plays a key role in the electronic properties of nan
tubes. The Born–von Ka´rmán condition cuts the hexagona
Brillouin zone of the graphene intoL allowed parallelk lines
separated by a distanceDk52p/uCu. The positions of these
lines in the Brillouin zone then define the electronic structu
of the tube. Such a representation is a 2D tubule model.

Furthermore, a translation vectorT can be defined, per
pendicular toC. The translationT and the rectangle define
by R andT completely define the tubule.11 Such a 1D rep-
resentation lends itself to an easier calculation of the D
than does a 2D model using the Green’s-function techniq
as shown below.

As mentioned above, the graphene model6 does not take
into account the effect of curvature and predicts that the z
zag tubules for whichn is a multiple of 3 are metallic. In
fact, the curvature of small diameter tubes transforms
predicted metallic behavior into that of a small-gap semic
ductor due tos-p hybridization.3,4,6 In the present case, to
introduce the effects of curvature on the~1D! electronic
properties, we use a simple deformation potential12 as a per-
turbation in a tight-binding model13 near the Fermi level.

III. DENSITY-OF-STATES CALCULATIONS

The Green’s-function technique we have used in t
work is formulated within the framework of a tight-bindin
Hamiltonian, which can be expressed by

Ĥ5(
i

u i &« i^ i u1(
i , j

u i &a i , j^ j u. ~3.1!

If we neglect the effect of curvature, the values of thea i , j
intersite parameters are the same as those used by Char
al.13 The site energies« i associated with the two differen
6820 © 1997 The American Physical Society
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55 6821UNIAXIAL-STRESS EFFECTS ON THE ELECTRONIC . . .
sitesA andB of a ~2D! graphite sheet have the same valu
in the graphene model. Thus these energies are chosen
reference and set equal to zero.$u i &% is a set of atomic or
Wannier-type wave functions localized on sitei . The Bloch
monoelectronic wave functions of the tubules are given b

ukW &5
1

AN(
j
eik

W
•Rj
W u j &. ~3.2!

Since thes and thep energy bands very weakly overla
in the case of graphene, we consider here thep DOS only.
The electronic properties are obtained14 from the projection
on the preceding set of Bloch wave functions of the inve
operator associated with

ĝ5@ Î z2Ĥ#. ~3.3!

The partial density ofp electronic statesr (m)(E), which
is associated with themth allowed k line in the Brillouin
zone of graphene, is deduced from the following analy
extension of the Green’s function of the tubules:

G~m!6~E6 i«!

5
V

2pN

3 lim
«→01

E
~m!line

E6 i«

~E6 i«!22U(
B

eik
W
•~RW B2RW A!aABU2dk,

~3.4!

where the integral is taken over themth line by the expres-
sion

r~m!~E!57
1

p
Im@G~m!6~E6 i«!#, ~3.5!

whereV is the volume of the~1D! unit cell of the tubule and
Im is the imaginary part. The total DOS is then given by t
summation on the allowedk lines

r~E!5(
m

r~m!~E!. ~3.6!

Using this technique,14,15 we then computed an analyti
expression ofr~E! for 0<E<10 eV in the cases of both
types of nanotubes studied here. As noted in ot
calculations,16 the curves obtained~Fig. 1! are characteristic
of quasi-1D behavior. Indeed, we observe the formation
discrete energy levelsEm corresponding to DOS discontinu
ties (d-like variations!. Furthermore, integrating Eq.~3.4! by
the residues theorem, we obtain analytical expressions o
DOS r(E), which can be expressed in the form

r~E!5(
m

uEu

AE22Em
2AEm8

22E2
, ~3.7!

whereEm andEm8 are discrete energy values. This express
of r(E) is different from that obtained for a confined 1
electron gas
s
s a

e

c

r

f

he

n

r1D~E!5(
m

am /AE2Em. ~3.8!

Experimental evidence of such 1D confinement has b
put forth through scanning tunneling spectroscopy17 ~STS!.
In these studies, conductance versus voltage cu
(dI/dV) showed peaks that these authors associated wit
AE2E0 discontinuities. Perhaps a more detailed line-sha

FIG. 1. Calculated DOSr(E) for ~a! and ~b! zigzag and~c!
armchair tubules. The parameters (n,m) are ~9,0!, ~7,0!, and~5,5!,
respectively.
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analysis of the STS data would allow distinguishing betwe
Eqs. ~3.7! and ~3.8!. In Figs. 1~a! and 1~b!, the quantity
2E1 is the gap. Figure 1~a! shows that the deformation po
tential representing the effects of the curvature@a i j in ex-
pression~3.1!# has indeed opened a small gap removing
strictly metallic character, initially predicted. Figure 1~c! il-
lustrates the metallic behavior of the armchair tubules.

IV. EFFECTS OF UNIAXIAL STRESS

We now examine the effects of a uniaxial, homogene
deformation of the tubules along their axes. We have co
puted thep-electron band structure and DOS, under bo
uniaxial traction (ss0! and compression (sa0! using a
semiempirical tight-binding approach,18 adapted to take into
account the modifications of both direct and reciprocal latt
structures and two-center integrals with stress.

We have determined the new positions of the carbon
oms in a tubule submitted to a uniaxial stresss, in the frame-
work of elasticity theory assuming small strains using
relationship

Ri 85~11«!Ri . ~4.1!

Ri andRi 8 are the position vectors before and after stress
atomi . 1 is the unit matrix and« is the reduced deformatio
tensor in the graphene plane.19 In the case of uniaxial defor
mation of armchair and zigzag tubules« takes the forms

«armchair5S S12s 0 0

0 S11s 0

0 0 0
D ,

«zigzag5S S11s 0 0

0 S12s 0

0 0 0
D . ~4.2!

We have used the graphite values20 S1150.98310212 Pa21

andS12520.16310212 Pa21.
Using Eq.~4.1!, the vectors of the deformed tubule un

cell are constructed. The 1D unit cell remains rectangula
shown in Fig. 2. Since the deformation also modifies
different carbon-carbon lengths it is necessary to recalcu
the transfer integrals between the different atoms. To do
we have used Harrison’s formula18,21–23

tab5tab
~0!S d0d D nab

. ~4.3!

d0 andd are the bond lengths before and after deformati
Since no experimental values ofnab are available for tu-
bules, we have usednab52 as done by Harrison himself, fo
all types of orbitalsa,b. In our approach, we take into ac
count onlyp orbitals; therefore, we no longer needa and
b indices. In the case of elongated graphene, the carb
carbon bonds are no longer equivalent and we will use
following notation:A0 is taken as a reference atom and
three nearest neighbors are designatedB1, B2, andB3. If the
A0B3 segment is parallel to the (n,0) tubule’s axis and
n

e
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n-
e

A0B1 andA0B2 are symetrically placed with respect to th
same axis, then we define the transfer integralstp

A0B35t3 and

tp
A0B15tp

A0B25t12.
We find that the discrete DOS energy levels and the g

are very deformation sensitive. For uniaxial strain,r(E) still
varies qualitatively as in Fig. 1 and is analytically express
in the case of (n,0) tubule by

r~E,s!5
1

2pA3
~11S12s!

~11S11s!(~m!

uEuu~ uEu,Em
2!u inv~ uEu,Em

1!

AE22~Em
2!2A~Em

1!22E2
,

~4.4!

where the discrete energy levelsEm , displaced by the defor-
mation, are given by

Em
6~s!5t3UF162S t121V12

t3
D cosmp

NC
GU. ~4.5!

u(uEu,Em
2) andu inv(uEu,Em

1) are, respectively, the Heavisid
and the inverse Heaviside function defined
u(uEu,Em

2)51 if uEu.Em
2 and 0 elsewhere and

u inv(uEu,Em
1)51 if uEu,Em

1 and 0 elsewhere.
Using the samei j notation as for thet i j transfer integrals,

the Vi j are parameters that take into account the effect
curvature of the graphene under conformal transformat
NC is the number of carbon atoms on the (n,0) tubule’s
circumference.

We obtain similar expressions forr(E) and Em in the
case of armchair (n,n) tubules. These results are of le
importance since these tubules remain metallic under
strains studied here.

Let us examine the (n,0) zigzag tubules. It is always pos
sible to define the zigzag tubules in one of the followi

FIG. 2. Schematic representation of the effect of uniaxial ten
stress on a~1D! rectangular unit cell. From top to bottom, deform
tion along the (n,0) zigzag axis and the (n,n) armchair axis.
Dashed lines and circles represent the undeformed honeycomb
tice.
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55 6823UNIAXIAL-STRESS EFFECTS ON THE ELECTRONIC . . .
forms: (3q,0), (3q11,0), or (3q21,0), whereq is an inte-
ger. The electronic band gap is always obtained by set
m5q in formula ~4.5!. For example, if the zigzag tubul
satisfies (3q,0) we obtain the following expression of th
gapEg :

Eg~s!52ut32t122V12u. ~4.6!

Given that the values ofS11 andS12 are of the order of
10212 Pa21, the productssS11 andsS12 are small compared
to unity for strains less than 10 GPa. Consequently, form
~4.6! can be developed nearsS1150 and we obtain, neglect
ing the small curvature term,

Eg~s!.3t0~S112S12!s, ~4.7!

where t053.2 eV ~Ref. 13! is the two-center integral be
tweenp orbitals of nearest neighbors in the graphene.

Using the values ofS11 andS12 given above, expressio
~4.7! shows that the gap sensitivity with stress is equal
10.7 meV/GPa for uniaxial stress less than 10 GPa. T
value is comparable to that found for various diamo
structures24 or semiconductor such as GaAs.23

As indicated in Fig. 3, the variation ofEg5Eg(s) in the
case of (3q21,0) and (3q11,0) nanotubes remains linea
with approximatively the same value forudEgap/dsu. Figure
3 allows proposing a different classification for the zigz
tubules. In the case of (3q11,0), the gap increases und
traction, whereas in the case (3q21,0) it decreases. Thes
different kinds of behavior can be understood in the 2D r
resentation by examining the effects of stress on the allo
lines in the Brillouin zones. In the (3q11,0) case, the near
est corner allowed line moves away from theK point,
whereas for the (3q21,0) case it becomes closer.

Furthermore, we observe on Fig. 3 that compress
should lead to a semiconductor to metal transition in the c

FIG. 3. Band gap as a function of stress: circle, square, and
triangle correspond, respectively to a small band gap~9,0! and mod-
erate band gaps~8,0! and~10,0!. For these three tubules,q53. The
down triangle corresponds to a~40,0! tubule ~diameter of 3.1 nm!.
g
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of (3q,0) and (3q11,0) and the same kind of transition
obtained with traction in the case of (3q21,0) tubules, at a
diameter dependent stresss t(d). In their study of instabili-
ties beyond linear response theory Yakobsonet al.25 showed
that a tubule modeled by a Tersoff-Brenner potential,26,27

shows four singularities at high strainse when subjected to
uniaxial compression. Ife is less than 0.05 there is no shap
change. In our case, this value corresponds to an axial s
inferior to 51 GPa. It should be noted that prior to this wo
of Yacobsonet al.,25 Robertsonet al.28 presented one of the
first studies on stress effects: the variation of strain ene
with tubule diameter, chirality, and uniform tensile strain.

We observe from Fig. 3 that only the (3q,0) tubules
might present such an experimentally observable transi
as shown on Fig. 4. Figure 4 represents the stress at w
the semiconductor to metal transition occurs for (3q,0) zig-
zag tubules. Thus, knowledge of a given tubule’s diame
would allow predicting the stress necessary to create a s
conducting tubule of a given gap or the stress required
obtain metallic behavior.

V. CONCLUSION

In summary, we have shown that a uniaxial stress app
parallel to the axis of carbon nanotubes can significan
modify the band gap and induce a semiconductor-metal t
sition. For the zigzag tubules (n,0) the behavior is strongly
dependent on whethern53q, 3q21, or 3q11. As for the
DOS, an analytic expression has been put forth using
Green’s-function theory. From an experimental viewpoi
state of the art nanotechnology has recently permitted m
suring the galvanomagnetic properties of a single bundle29,30

and a single nanotube.10 Furthermore, recent studies hav
allowed determination of the elastic properties of microstr
tures such as DNA chains.31 Adaptation of such technologie
may therefore open the future to experimental works un
the effects of stress.

p FIG. 4. Variation of semiconductor to metal transition press
with diameter for (3q,0) tubules.
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