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We consider systems of nonrelativistic, interacting electrons at finite density and zero temperature in
d=2,3, ... dimensions. Our main concern is to characterize those systems that, under the renormalization
flow, are driven away from the Landau Fermi-liguid=L) renormalization-group fixed point. We are espe-
cially interested in understanding under what circumstances such a system is a marginal Ferrthluid
when the dimension of space id=2. The interacting electron system is analyzed by combining
renormalization-grougRG) methods with so called “Luther-Haldane” bosonization techniques. The RG
calculations are organized as a double expansion in the inverse scale patemgtehnich is proportional to
the width of the effective momentum space around the Fermi surface and in the running coupling eanstant
which measures the strength of electron interactions at energy sealds-/\. For systems with a strictly
convex Fermi surface, superconductivity is the only symmetry-breaking instability. Excluding such an insta-
bility, the system can be analyzed by means of bosonization. The RG and the underlying perturbation expan-
sion in powers of\~! serve to characterize the approximations involved by bosonizing the system. We argue
that systems with short-range interactions flow to the LFL fixed point. Within the approximations involved by
bosonization, the same holds for systems with long-range, longitudinal, density-density interactions. For elec-
tron systems interacting via long-range, transverse, current-current interactions, a deviation from LFL behavior
is possible: if the exponent parametrizing the singularity of the interaction potential in momentum space by
V(|p))~1/p|* is greater than or equal th—1, the results of the bosonization calculation are consistent with a
MFL. [S0163-182607)03511-X]

[. INTRODUCTION electrons(up to a renormalization of the residue of the one-
particle pole and of the Fermi velocjtyln one dimension,

In this paper, we consider systems of nonrelativistic elecMFL correspond to a line of RG fixed points in the space of
trons at finite density and zero temperaturedin2,3, . . . effective Hamiltoniangor action$ containing the fixed-point
dimensions. The interactions between electrons are describedrresponding to the free system.
by two-body potentials or by current-current interactions. In d=2 dimensions, we define a MFL to be a Fermi liquid
The Cooper channel which drives the BCS instability iswith an electron propagator falling off more rapidly than the
turned off (e.g., by assuming that the Fermi sphere of thefree electron propagator by at least a fractional inverse power
noninteracting system has a suitable geontéiry of the distance between the arguments, but not exponentially

Our main concern in this paper is to characterize thosén the distance. Contrary to the superconducting instability,
systems that, under the renormalization flow, are driverihe instabilities leading to a MFL are not accompanied by
away from the Landau Fermi-liquiLFL) renormalization- symmetry breaking, and there is no energy gap in the exci-
group(RG) fixed point. More concretely, we are interested intation spectrum of such systems. Yet Landau’s picture of
understanding under what circumstances such a system isn@ninteracting quasiparticles does not apply to the physics of
marginal Fermi liquidMFL) when the dimension of space is Luttinger liquids.
d=2. This problem comes up, for example, in the study of Historically, MFL’s were discovered in the context of
single-layer quantum Hall fluids at filling fractions=3, one-dimensional systems of interacting electronshere

1, ... and, perhaps, in the theoretical description of materithey appear naturally, for a large class of two-body interac-
als related to anisotropic HTsuperconductorgsee Refs. tions. The experimental observation that the normal phase of
3-6 and references thergin anisotropic HT superconductors exhibits many nonconven-

A one-dimensional MFI(or Luttinger liquid at zero tem- tional features, incompatible with LFL theory, leads to the
perature can be characterized by the property that the elequestion whether electron-electron interactions can drive a
tron propagator falls off Iiketx|’(””>, at large distance|, system intwo or more dimensions away from LFL'’s. The
for an exponent;>0 that depends on the electron-electronsame question arises in the context of single-layer quantum
interaction and characterizes a RG fixed point. Wheran-  Hall (QH) fluids at filling fractionsv with even denomina-
ishes, the system is a LFL. In the limit of large distancetors.
scales and low frequencigscaling limi) the properties of a Recently, there have been many investigations of this
LFL are identical to those of a free system of noninteractingproblem. Besides numerical studies, two analytic techniques
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proved useful in attempts to understand it: the RG methodfactor 1N. Hence the interacting system can be analyzed by
involving an expansion in an inverse scale paramefét®  using “largeN” expansion technique¥ &1

which has led to a wealth of rigorous restits®® and the For systems with a strictly convex Fermi surface, super-
bosonization techniqués proposed, in this context, by conductivity is shown to be the only symmetry-breaking in-
Haldane'! stability that can develop in the system. We propose to study

In this paper, we study the stability and instability of the electron systems which do not undergo such a symmetry
LFL by using the same two methods. We propose to combreakdown—i.e., whose Cooper channel is turned off—by
bine them to clarify the picture of Fermi liquids. We imple- means of “bosonization.” The framework of the RG will
ment the bosonization technique in a manner elucidating itserve to characterize the approximations involved by
standing in terms of the fermionic perturbation expansiori‘bosonizing” the system.
and rendering the calculation of the electron propagator at In Sec. Ill, we introduce the bosonization technique by
large distance scales quite transparent. Our techniques apgtalculating the scaling limit of the effective gauge field ac-
to a broad class of two-body interactiof$Ve presented a tion (the generating function of connected current Green
preliminary account of our results at the 1994 Les Houchedunctions for a noninteracting electron system. The effective
summer school “Fluctuating Geometries in Statistical Me-gauge field action is obtained by coupling an external gauge
chanics and Field Theory(Ref. 12]. Next, we summarize fie[d to the electron system and by integrating out the fermi-
the contents of the various sections of this paper. onic degrees of freedom. _

In Sec. Il, we review the RG method for nonrelativistic _ The calculation of the scaling limit of the effective gauge

electron systems at finite density and zero temperature in &!d action is reduced to the calculation of the gauge field

d+1-dimensional, Euclidean space time, with-1. The un- action of a family of independent Schwinger models, be-

derlying perturbation theory is organized as a double expanc—ause thed-dimensional, noninteracting electron system

sion in an inverse scale paramer’, and in the(dimen- decomposes—to leading order in an expansion in the inverse
. . ° P ' scale parametex 1 —into independent subsystems of quasi-
sionles$ running coupling constang, of the two-body

) i . 1 ) 1+1-dimensional, “relativistic” fermions, one along each
interactions. The inverse scale parametet is proportional

) , " direction] w]={w,— w}.
to the width of a shell}, around the Fermi surface. Having Gauge invariance must hold for each subsystem—i.e., in

integrated out the electron modes with momenta lying outgach direction—separately, and implies local conservation
side the shell}, , the effective actiorS, for the remaining  |aws for the associated quasi-1-dimensional current den-
modes describes the physical properties of the electron sysitiesj f,,;, A=0, 1. These conservation laws imply that each
tem at distance scalesh/ke or energy scales-veke/\, ke current densityj f,,; can be expressed as a derivative of a
and ve being the Fermi momentum and velocity, respec-bosonic fieldgy,,. It turns out that, for the noninteracting
tively. The running coupling constany, measures the system, these fields are massless and Gaussian, propagating
strength of the two-body interactions 8y . only along the directiofiw].

Given S, , one further reduces the effective momentum By taking the effective actiofs, determined in the con-
space around the Fermi surfaceQq/, with \'=MX, M>1, text of a RG analysis as an input, we can apply the bosoniza-
and calculates the corresponding effective ac®n This  tion technique to interacting systems too. For systems whose
calculation is organized as a perturbation expansion in th&ooper channel is turned off, the electron-electron interac-
parameters), and\ %, assuming that they are small. Rescal-tions are described—to Ieadir_lg order in_th.e inverse scale
ing the resulting system by a facttt, we obtain a system Parametem *—by an expression quadratic in the currents
that is similar to the initial one, and we can compare thel {u]- BY replacing the fermionic currenfg’,; by the corre-
relevant and marginal parameters characterizing the corréponding bosonized expressions, we obtain a Gaussian
sponding effective actions. The RG method consists of exbosonic theory. Because the theory is Gaussian, it can be
ecuting these transformations iteratively, with the aim of de-studied more easily than the original fermionic theory where
riving the scaling limit of the system, as—. the interaction term is quartic in the electron fields. In the

The underlying calculations can be interpreted in a transcalculation of the effective gauge-field action, this technique
parent way by decomposing the sh@|| into N~)\%"! boxes is shown to reproduce the leading order of(farmionic)

B, (\), i=1,..N, with sides of length ~1/\. The perturbation expansion in powers %t L. The leading contri-

' butions coincide with the ones of a random-phase approxi-
énation. We determine the scaling limit of the effective
gauge-field action for systems with short range interactions
and discuss the extension of the bosonization method to sys-
i . , tems with long-range interactions in three examples: systems
Fourier modes havm;: support in the corresponding boxes. fith |ongitudinal density-density or transversal current-
component field ¢, describes quasi-i1-dimensional, cyrrent interactions, and “tomographic Luttinger liquids.”
“relativistic” electrons moving along the directiom; with In Sec. IV, we apply the bosonization technique to the
velocity v . The decomposition of the electron field into calculation of the electron propagator at large distance and
such component fields reproduces the electron propagator tome scales. We start from an effective acti§pat energy
leading order in an expansion in\l/In the noninteracting scales~vgkg/\ and the corresponding decomposition of the
system, the subsystems along the different directions are irelectron fields¥* into N quasi-t+1-dimensional compo-
dependent. Two-body interactions couple the subsystemsentsy¥ . We replace the actio8, by its bosonized version,
After rescaling, each interaction process is suppressed byiatroduced in Sec. lll, and, for each rqyw]={w,—w}, we

d-dimensional unit vectors; , i =1,... N, point to the cen-
ters of the corresponding boxes. This decomposition implie
a decomposition of the electron fielt* (where w* stands
for U* or ¥) into N componentsy? | i=1,...N, whose

)
i
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express the pai!,,y* , in terms of a Bose fieldy,,). This is

accomplished by applying the well-known bosonization for- s'= —%f dt ddXJ ds dy¥* (x) ¥ (x)V(x—y)

malism for 1+-1-dimensional relativistic fermions. However,

one has to cope with a subtlety arising from the dependence X o(t—=s)¥* (y)¥(y),

of the quasi-#1-dimensional electron fieldﬁfu on the com-

ponents of the momentum perpendicular to the diredtion

Again, the approximations involved can be characterized in S=g04+ gV, @)

the context of dformal) perturbation expansion in powers of

the inverse scale parameter®. Special care is taken to dis- Expectation values of functional&(W* ,¥), of the ¥ and

cuss the implications of linearizing the Fermi surface inside?* fields are calculated by evaluating Berezin-Grassmann

the boxesB ,(\). integrals
We verify that the electron propagator of a system with

short-range interactions tends, for large arguments, to the R

standard Landau-liquid form. Because of screening—which f D(W* W)el ST v, W)

is reproduced by bosonization—the same result holds for (F(¥*.¥)),=

systems with long-range density-density interactions. J D(V*
For systems of electrons interacting via long-range, trans- &)

verse current-current interactions, we find the possibility for

a deviation from LFL behavior, depending on the exponrent We work in the grand canonical ensemble, where the chemi-

which characterizes the singularity of the interaction poten<al potentialu is held fixed. This implies that, in general, the

tial in momentum spacV(p) 1/p|*. The critical value forx ~ mean electron density, of the interacting system does not

is d—1. For 0ka<d—1 and\—x, the electron propagator coincide with the mean electron densﬂﬁ of the free sys-

has the standard LFL form, whereas, fdr1l<a<2 and tem.

A—co, we argue that it shows MFL behavior. In the second In order to calculate expectation values of the form in Eq.

case, in order to obtain a theory which is form invariant(3), the total actior is split into its quadratic pa|$° and its

under scale transformations, the parameters of the effectivguartic partS'. One expands the exponent@? in a power

actionS,, used as an input of bosonization, must be func-series, and calculates the expectation values of the resulting

tions of the scale paramet&r A resulting consistency con- polynomials in¥* and ¥, with respect to the Gaussian Be-

dition determines the expected flow of the parameterS,of rezin integration determined 187, by using Wick’s theorem.

under RG transformations. In this paper we consider only systems invariant under
The methods and results of our analysis should be comranslations and rotations of space, i.e., the background is

pared with those in Refs. 3 and 4. Such a comparison igescribed by a constant one-body potentigix)=U that

made at the end of Sec. IV. Our results turn out to essentiall¢an be absorbed in a redefinition of the chemical potential

agree with those in Ref. 3, and add precision to those re¢‘jellium model”).

ported in Ref. 4An important conclusion of our analysis is  For technical convenience, we analyze the system in the

that bosonization can only be used reliably in the analysis ofyclidean region reached by analytic continuation in the

Fermi liquids in combination with a renormalization-group time t to the half-planeym[t]>0 and settingcy=it (Wick

whereV is a two-body potential. The total action is given by

\p)eis(‘l’* W)

analysis rotation. For a system at a finite temperatfethe x, vari-
able in the Euclidean action is integrated over the interval
Il. EFFECTIVE ACTION ON LARGE SCALES [—(B/Z),(B/Z)], Where,B is proportional to the inverse tem-
AND FERMIONIC PERTURBATION THEORY peratureT %, and antiperiodic boundary conditions are im-

posed ak,=* /2. In this paper, however, we only consider
The action of a system of noninteracting, nonrelativisticsystems at zero temperatug—x).

electrons ind+1 space-time dimensions is given by Then the covariance of the Gaussian integration—i.e., the
unperturbed electron propagator—is given by
SO(W* W) = f dt dox| W* (x,1) (i do+ w) W (x,1) G2 p(X=Y):= (Y () Y5 (),
D(V*, W) N
d - —SP(W* W)
1 = —g0 © P o(X) YY)
~om 2 YD AT |, @) Cp g
e~ iPo(Xo—Yo) Tip(x—Yy)
wherem denotes the bare electron mass, and the chemical f 'dPOJ ipo—s°(|p|) '
potential u specifies the mean electron dens'ruﬁ. We #
choose units such th&t=1. In a functional integral quanti- (4)

zation, the electrons are desgrlbed by two |mftp))endent, tw%heresz(|p|)=(p2/2m)—u is the energy of a free electron,

component ~ Grassmann f|elds\lf(x,t)=(¢1(x:t)) and  and the indicesr and 3 label the spin orientations. We use

‘lf*(x,t)=(z,//?(x,t) z,bj‘(x,t)). The arrows] and | stand for the short-hand notatiofidp(-): = fdp/2m(-).

“spin-up” and “spin-down.” In the ground state of the unperturbed system, all one-
Interactions between electrons are described by an addlDafthle states with wave vectorp satisfying |p|<keg

tional term in the action of the form =1\J2mu are occupied, and the electron density is given by



55 BOSONIZATION OF FERMI LIQUIDS 6791

0 d We adopt a Wilson-type formulation of the RG, and ac-
nM=2J’ d°p 6(ke—|p|). (5 complish the mode reduction in momentum space. The elec-
tron fields¥*(x) and¥(x) are expressed in terms of their
The Fermi surfacezSEF’l is defined as the surface of this Fourier modes

sphere, and the Fermi wave numlgrsets the fundamental R

momentum scale of the system. \If(p)zf d9*Ix PP (x),
For the main results and conclusions of this paper to hold,

the spherical symmetry is not essential. Our analysis applies

as long as the Fermi surface is strictly convex. The situation xif*(p):f dd*+1x e iPxp*(x),

changes, radically, however, for systems of electrons hop-

ping on a square lattice, at half-filling, where the Fermi sur-with px: = pyx,— px.

face contains flat, parallel faces giving rise to “nesting phe- e assume that, for a sufficiently small value of the di-
nomena.” In addition to the superconducting instability, mensionless coupling constagt there exists a large scale
other instabilities like charge- or spin-density, wave instabili-factor \j>1 (with Ag—, asg—0), such that, in a first step,

ties can occur, and their interplay can lead to rather complithe integration over the electron mod#{p) and ¥* (p)
cated phenomena. Such systems can be analyzed by usifith momentap outside the shell

methods similar to those described in this section, but their

properties are not yet fully understood. g
We are interested in universal large-scale and low-energy LIV :[PE R,

properties of electron systems, i.e., in the so-called scaling

limit of such systems. The scaling limit can be constructeddf width ke/\, around the Fermi surface, leads toeffective

by using RG techniques which are based on successiveBction that has essentially the same form as the original ac-

integrating out the modes of the electron fiel§ and ¥  tion S. More precisely, the effective action for the remaining

corresponding to wave vectors far from the Fermi surfacefnodes with momenta inside the shél} is given by

with the aim of deriving an effective action for the modes

Flpll 28 )

close to the Fermi surfacghe energy vanishes for modes - - N A,

whose momenta lie on the Fermi sg)r/f;ice S‘ffg(‘l’*(mv‘l’(P)): _lnjp,eRd\ D(¥*(p"),¥(p"))
An alternative way to obtain some *“nonperturbative” Yo

large-scale and low-energy information about an electron « o~ [S2* W) +98/(F* W)] | e

system consists in using the so called Luther-Hald@i¢) '

bosonization techniqu€:***>However, for electron systems (6)

in more than one space dimension, LH bosonization is not alye assume that

exact method, i.e., it does not exactly resume the perturba-

tion expansion in the coupling constagt of the quartic eff Ty 7 (P 7

electron-electron interactiohe aim of this paper is to in- S”O(W (P), (P~ SCF(p) W(P))-

corporate the bosonization technique into the systemati¢ny other words, for sufficiently small coupling constants
framework of the RG, in order to estimate the effects of th?<1/)\(2))' possib'e instabilities deve'op 0n|y at energy scales
approximations involved by “bosonizing” an electron sys- smaller tharvg(ke/)\); in Ref. 1, it has been proven rigor-

tem in more than one space dimension ously that this is true for a two-dimensional system with
In general, RG calculations for interacting electron sys-short-range interactions.
tems require assuming that the coupling consgartf the Given S, we wish to determine the effective action

uartic electron-electron interaction is small. For one-
gimensional systems, the calculations were carried out a Ionﬁfflf on a lower-energy scaleve(ke/A1), whereh,; =MX,,
time ago(for a review, see Ref.)7In more than one space M>1, by integrating out the modes in the shellg \Q2, .
dimension, the situation is more complicated. However, durfunctional integration leads to a perturbation expansion for
ing the last few years, there has been substantial progres$™, with a fermion propagator determined by the quadratic
accomplished by introducing the inverse scale parametngalrt Ofsiff
N1, proportional to the width of the effective wave vector ot - .
space around the Fermi surface, as a supplementary expan-'” ordgr to illustrate character_lsuc features of the resulting
sion parametet.In this way, the dominant contributions to perturbatlonotheory, we dgtermme the unperturbed electron
the scaling limit are obtained in a natural manner. propagatoiG™(x), defined in Eq(4), for large valuesx=\¢

Here we sketch a version of the RG method for electrorPf its arguments, wheré~1/kg andA—. One finds

systems in more than one space dimension based on a double ke | d-1
expansion in\~* and the running coupling constagy, GO(A5)2<_F) f d9-1e elkroré
which measures the strength of electron interactions at en- 2m ot
ergy scales~vkg/\, for original results, see Refs. 1, 2, 8, o i(PohEg—Ph -
and 9, and for reviews, Refs. 14 and 12n alternative way XJ apoj F ap, e _
would consist in artificially introducin® different species of R —Kg/2\ IPo—VEDP
electrons and to organize the perturbation expansion in pow-
ers ofA"*andS ! or S, for S— or S—0, respectively; see

X
Ref. 3)

1+0

3
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FIG. 1. Subdivision of the shell, into N disjoint, congruent FIG. 2. Linearizing the energy functiomﬁ(p) in the electron
blocks B, (\), centered at the pointk,:w('), i=1,...N on the propagator amounts to replacing the piece of the Fermi surface,
Fermi surface. Sﬂ;lm B,0()), in the boxB,wm(\) by a plane.

cf. Ref. 16, wherew denotes ad-dimensional unit vector N _
(weS§™ 1Y), and the Fermi velocity .= ke/m is given by the P* (N~ D, e_ikpw(l))\f)\—d/2\1,:1(i)(€;)’
linearization of the energy function sz(kaer) =1
=vg|p-w|+0O(p? around the Fermi sphere. For large argu- \
ments(~\) of the electron propagator, only momenta inside L
the shell), are important. Propsd g ‘1’()\5)?21 elkee N —d2g (), (10
One can subdivide the shellQ, into N a
=()\/k,:)d_1V0|(SEF_1) disjoint, congruent blocks,)(\) with propagators
with sides of length~kg/\, centered at the points: !,
i=1,...N, on the Fermi surface, as indicated in Fig. 1. The
endpoints of the unit vector®), i=1,... N, form a regular
grid onSY~ L.
This discrete decomposition of the sh8l| into N boxes
B{(\) yields a formula analoguous to E€) for the large
distance behavior of the electron propagator,

_<‘I’w(i>(§)‘1’:<i)(5)>:5w<i),w<j>f 'dkoF K
R B,

e~ ilko(éo—m0) —k(£—n)]
X

ikg—veek
Here ~ stands for “equal to leading order in Xt/ and
B,mh:=B,mh(1).

The Fourier modes of the component fiemé(i)(g), ie.,
@i(i)(ko,-), with W*=¥ or ¥*, have support in the boxes

1
X” (8) B.w(i), with sides of length~kg, and their propagators are
given by

N
GO()\g):E eik,:w('))\g-'J —deJ; —ddp
=1 R B, (N\)

e~ 1(Poréo—PAE)
1+0

X - -
|po_82(ka(')+p)

with B_w(i)()\): ={g—kew,qe B, i(\)}. - - .
The energy functior’, of the unperturbed system can be (W i(ko, K)Wr(kg k"))
written as
— 5w(i)’w(j)(2,n_)d+15(d+1)(k_kr)
X ! 15
iko—vpe k B

ep(kea+p)=vep+[(pL)+ (p)?], €)

where the momentg are supposed to lie in the box
B,m(N), with p;:=py@, p;=(w-p), andp, :=p—p;. Com-

pared to the first, linear term, the quadratic contributions argynhere
of higher order in I, and one is tempted to neglect them.
Neglecting the dependence on the perpendicular monpenta 1, keB.

amounts to replacing the piece of the Fermi surface, 1B_wm(k):= 0’ other\u/)vise

s‘k‘;lm B,0(\), in the boxB,m(\) by a plane, cf. Fig. 2. '

This approximation is harmless as long @s> (ke/\)2. Note that the momentk in Eq. (11) are related to the mo-
That is, given the decomposition of the shél] into boxes mentap in Eq. (8) by the scale transformatiop=k/\.
B, (\), one can neglect the corrections to the linear part of Whereas the electron fieldB*(x=\¢) are functions of the
the energy functiomz in the propagator, Eq. (8), as long as rescaled coordinate&). In the rescaled system, the Fermi

(k), (11)

one only integrates out modes with momentz (ke/N)2. surface has the radiuk, and the boxe8,,) cover a shell
After having linearized the energy functlmﬁ, Eq._ (8 Q of thicknessk: around the Fermi surface.
can be reproduced by decomposing the electron fidts Equation (10) shows that, in order to describe the large-

andV¥ into N independent componemﬁsz(i) and¥ ) scale physics of the unperturbed system, the electron fields
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¥* and ¥ can be decomposed into-\%"1 components For along-rangepotential, whose Faurier transfo&'(p)
¥* and ¥, which propagate only in the direction perpen- is singular in momentum space, i.&/(p)~1/p|®, with
dicular to the Fermi surface a>0, we set

We now return to the interacting system. After having

integrated out the modes with momentaF{ﬁ\QA , We can 1

apply the decompositior{10) to the remaining electron kl dg” 7 ( & )\_O'S)

modes in the effective actloﬁ‘fﬁ(\lf*(p) \If(p)) the error .

being of order I,. According to the assumptions stated 906”7 V(kpo(wg— 1))  for w,# e,

; i reeff = ceff ~ A1
above, the effective actiorg, $O at an energy scale o™ V(—(k<4)—k<1))) for es= ey,
~veke/\ o then has the form Ao

(17)
=2+ 52+ S¢+ higher-order terms,  (12)

We first restrict our analysis to short-range potentials; com-

with ments about long-range potentials will be made at the end of
this section.
-1 - In general, a quadratic ter@Sj3 of the form given in Eq.
S~ _E JI ok - V.00 (14) is generated. It displaces the origin of the energy
© ol e 0 spectrum—i.e., the Fermi wave  number—to
X (iKg— v oo k)\ifw'a_(k), (13 NoKpo=~Ng(Kg— (8mo/vgg)). Under the condition that

No(Suolvpg)<ke, we can absorb this term in a change of
the parallel momenturrk,— k| =K+ Xo(Suo/vgo), Obtain-

05~ 2 f ANy —= W) ()W, ,(K), ing
o o=1,] ’ ’
(14) — -1 .
S5=S+f=> > f YK o= WE (k')
and = NI Zo :
Lk X (ik§—vroek )W, o(K'). (18
%N_ﬁ 2 E 'dde(l)---f —dd+1k(4) o
2 No lZo @104 g0 Yy Lo, Thus the propagators obtained fro8§ are equal to the
s S D (D 4 K2 K3 K4 propagators. determined % except for a small displace-
wytwy wztwy ment of their supportB,—B,, .
1 . . By “higher-order terms,” in Eq(12), we mean contribu-
xggﬂ'(@; - K)‘I’Z U(k(“))\lf: U,(k(3>) tions corresponding to higher orders in the Taylor expansion
Mo ¢ 3 of the coefficient functions of the quadratic and quartic terms
X\i’wza/(k(z))‘i’wlg(km), (15) in the momentum variables, or contributions involving more

than four electron fields. Engineering scaling suggests that

both types of contributions are irrelevant, but we shall ana-

where o:={w;,0;,03,04, K:={kik; k3 ke}, and I, lyze these terms more carefully later in this section.

stands for the integration domamszw. As usual, one divides the terms in the action into relevant,
For srr)all values of gA, the parameters marginal, and irrelevant ones, in accordance with their scal-

Vr0,Z0,90" [@;(1/\g)k] are renormalized only weakly ing dimension. The exponentcharacterizing theéleading

with respect to the parameters ,Z=1,gV in the original behavior of an expressiofF(¥* (k), ¥ (k),k) under scale

action. The set of dimensionless coupling functionstransformations, i.e.,

977 [w;(1Mo)k] is related to the Fourier transform,

gV(k/\y), of the original interaction potential by - k k\ k - -

}'[\I'M( ) qu< ) X}%)\"}'(\P*(k),\lf(k);k)

1 s~
kl dgo (_, o |_<>~905010 V( Keo( @4 — 1) for A—o

1 @ _ (D) is called the scaling dimension . The scaling dimension
+ o (K=K ] (180 of the electron modes i&l/2)+1, i.e.,
The Fourier transfornv of a short-rangetwo-body potential - k 4241008
V is smooth in momentum space, so that—to leading order Yoolx =\ G2t (), (19
in 1/\—we can neglect the dependence on the small mo-

menta. Thus the coupling functiogg™” [;(1/\o)k] iN EQ.  This scaling dimension is fixed by the requirement that the
(15 can be replaced by a set of coupling constantsscaling dimension of the quadratic acti6 is zero.

‘”’ (o). The two terms of the quadratic acti@®§, given by Eq.
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(521 Wy
a Iy
NN
r ¥ f 3
w1 Wo w3 Wy FIG. 4. Refinement of the box decomposition in the iteration
stepn—n+1.
(b)

FIG. 3. Nonlocal vertices that have to be included for determin-lower order vertices. This happens in cases where momen-
ing the RG flow of the effective action to leading order in an ex- tum conservation allows one to sum over thelabels of
pansion in the inverse scale parametér. (a) These vertices are  contracted pairs of incoming and outgoing propagator lines,
tree-level contributions constructed exclusively out of localleading to a contribution d®(\ $71) per contracted pairf.
4-vertices(straight lines stand for electron propagat@rsand wig- Fig. 3b)].
gly lines for local 4-vertices; the nonlocality arises from the inner The influence of such higher-order vertices to the RG
propagator lines (b) They can contribute in leading order to the flow of the parameters,Z,8u,g(w) is analyzed in Ref.
renormalization of some special, lower-order vertices in case§7: they contribute in leading order in the inverse scale pa-
where momentum conservation allows one to sum ovewttabels rameter\, but do not cause angualitative change of the
of contracted pairs of incon;inlg and outgoing propagator lines, leadfioyy, For the sake of simplicity, we shall ignore them in the
ing to a contribution oO(A™"7) per contracted pair. following, because we assume thafsgsmall. However, in

(13), are marginal. Contributions tSﬁ which arise from the RG treatl_"nent of systems with_ I_ong-range interactions,
higher orders in the Taylor expansion of the energy functiorfh€Y play an important role in obtaining the correct form of
& in the momentum variables are not displayed, as they arecr€ening. _ _
irrelevant. The quadratic terr‘r&SS, cf. Eq. (14), which Our goal is to calculate the effective actlsﬁlff at a scale
causes a displacement of the Fermi wave number has scalifg=M"\o, whereM is an integer greater than 1. Our cal-
dimension 1, i.e., it is relevant. By holding the chemicalculation is organized inductively, each step being carried out
potential u fixed, the average electron density of the perturbatively. The expansion parameters are the dimension-
system—related to the Fermi wave number—changes durinl§ss quartic coupling constant and the inverse scale param-
the RG iterations, and this requires a continual readaptatiofiter-
of the linearization point of the energy function. In the iteration stem—n-+1, we lower the energy scale
The quartic interaction Eq15), has scaling dimension in the effective actiorS;" by a factorM. The actionS;" is
1-d, i.e., itis irrelevant in dimensiod=2. However, there ~supposed to have the form specified in E42)—(15), with
are of orderN~\ 3! different interaction terms, cf. Egs. the scale parametex, replaced by\,, and the parameters
(15) and (16). It can happen that—for special exterior mo- Zo, Uro» Suo, and go(w) replaced byZ,, vg,, du,, and
mentum configurations—the sum over the different interacgn(®). The symbol~ stands for “equal to leading order in
tion terms compensates the scaling factor9I2 (as dis-  1/\,”. There areN,= (A /Kg)?" *VolI(S,) boxesB "’ which
cussed beloyv Moreover, engineering scaling arguments arecover the shell), of standard widttke around the spherical
only valid as long as the dimensionless running couplingsurfaces, of radiusX \Kgn—1=Nn(Kg— =g (Suilve)).
constants remain small during the RG iterations. If an insta- The iteration can be continued as long as the running
bility is developing, in the sense that some couplings diverggoupling constantg,(«) remain small, i.e.|g,(w)|<g<1
as\ grows, our weak-coupling analysis breaks down. Theand the displacemenk,(Sun/ve,) of the origin of the
RG method will permit us to identify those processes thagnergy function from Mn-1Ken-1 to
lead to instabilities. NoKen i =Np(Kep—1— Sun/ve,) is small compared té&:/M;
Local terms in the action involving I12electron fields cf. Fig. 4. As in step (cf. Eq.(18)], this allows us to absorb
(I>2) have scaling dimensior Id+ (d+1); they are irrel- the displacement_of the chemical potential—described by
evant and can be neglected. Howevenlocalterms of the ~ 8SZ—in the termS2 by shifting the variablek,— k| =Kk,
type shown in Fig. @) can appear which have scaling di- +\,(Su,/vg,). This yields a displacement of the Fermi
mension (—1)(1—d). These are three-level contributions wave number from\ ,Kg,_1 10 A Ken(=NKen—1). We de-
constructed exclusively out &f-1 local 4-verticegthe non-  note the shell of widttkz/M around the spherical surfacg
locality arises from the inner propagator lined\lthough  of radius\ kg, by Q. In the stepn—n+1, we eliminate
they have a negative scaling dimension, they can contributsmodes with momenté& lying in Q,\Q,,. This yields an ef-
in leading order to the renormalization of some specialfective action
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(ko k') eRXQ\Q,

x e[S AP D] 4 cte, (20)

Where{wf,} denotes the set of component fields. In order to

compareS" , to S, we subdivide each boBfu”i)ﬁﬁn into
M congruent boxeé\(,z)l, |=1,... M, with sides of length
~ke/M (cf. Fig. 4.

This requires a refinement of the decompositi@) of
the electron fieldNote that, in this way, we implicitly take
into account the curvature of the Fermi surfadésing Eq.
(19), we then rescale the momentum varialkkesk’=MKk,
with k’eBEj‘iTl), where the boxeng‘iTl) have standard
size. ' '

We end up with an effective actioB", of the same
form as ST The effective parameters
Zyi1,VEn+1:0Mn+ 1,00+ 1(@) can be expressed as functions
of the set of parametefB,:={d0un,ven,In(®) Ap}:

N Opn+1
n+1 -
Zn-%—l

M
~ 7 2o(KiPn)lk-o0,

1 . d
Znﬂwz—n 1+i a—kOEw(k,Pnﬂko}y (21)
Upn+1 1 J -
Zni1  Zn an+f9_k|2w(k,Pn)|k_o},
and
g On+1(w) 1
k42~ S T (w0.KPo)lkco- (22)
Zn+1 Zn

The functionalss, andT’, which appear in these flow equa-
tions, turn out not to depend on the iteration stepleading
order in 1A,).

The functional%,, is the self-energy, and is obtained from
the amputated one-particle irreducibldPl) connected
graphs renormalizing the propagator li@g, ,, andI'(w),

the 4-vertex function, contains all 1P1 connected graphs tha

renormalize the dimensionless coupling constafw). We

restrict our attention to discussing the flow of the effective

parametersP, to leading order in a double expansiongn
and 1A,,.

One verifies(see, e.g., Ref. 12that—for the case of
short-range interactions and to leading order in a double e
pansion ing and 1A,—the parameters of the quadratic part
of the action do not flow, i.e.,

Zn+1%Zn%ZO;
UFn+1~VUFn™~UFo;,

An+104n+1~0(9). (23
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&1 + &2 dp= =
Sé-

(@)

FIG. 5. Geometry of momentum conservation of four unit vec-
tors wq, w,, w3z, andw, satisfyingw;+w,=w;+w,in d=2 and 3
dimensions.

ferent valuesw'”, i=1,... N,. However, the four momenta

o are not all independent, but must satisfy the momentum
conservationw; + w,= w5+ w,, as required by translation in-
variance. Studying the geometry of momentum conservation,
we can subdivide the set of coupling constants into three
different channels. There is a qualitative difference between
two and more than two dimensions.

In d=2, cf. Fig. 5a), given the two incoming momenta
w; and w,, with w;+ w,#0, there are exactly two possibili-
ties to choose the outgoing momenta, eithey=w, and
w,=w; Or wy3=w; and w,=w,. In the exceptional case
wherew, + w,=0, one is free to choose arbitrarily one of the
Nn~N, discrete values fot,;ws is then determined as its
antipode, w;=—w, (i.e., in this casew; and w, are not
independent momenta, bub, and @, are. Thus, in two
dimensions, the couplings can be classified as follows:

’
gd(wl' ®,,00'):=077 (01,0, 03= 0y, 0,= W),

9%, wz,mf’):=g""/(wl,w2,w3=wl,w4=w2),
(24)

’
91 @4,00"):=077 (@1,0;= — 01, 03= — @y, @y).

Here,d stands for directe for exchange, and for Cooper;

e use the convention that==*1 for spin-up or spin-down,
respectively. Note that because of rotational invariance the
coupling constantg(w), really only depend on the scalar
product,w- @', of two vectors on the unit sphere, i.e., on the
angle Z (w,w"), between them. Analogously, they only de-
pend on the relative orientatiownsr’ (i.e., parallel or antipar-

X6_1||e|) of the spin degrees of freedom. For an electron system

in more than two dimensions, momentum conservation al-
lows more independent coupling constants than the ones
listed in Eq.(24); see Fig. ®). However, the analysis of
their renormalization flow in leading order inX}/is similar
to the one for two-dimensional systems. To leading order in
1/\,, they neither flow nor do they influence the flow of the
ones listed in Eq(24).

One can showsee, e.g., Refs. 12 and J1that—for suf-
ficiently small initial conditions—the running coupling con-

In order to analyze the flow of the quartic coupling constantssiants corresponding to the direct and exchange channel stay

gﬁ""(@), we classify them in terms of qualitatively different
channels. Besides the spin indicesind ¢’, they depend on
the four discrete momenta={w,, . . . w,}. At thenth itera-
tion step, each of these unit vectors can thke-\ 3¢ dif-

bounded. (This result remains true if one includes the
leading-order contributions of the higher vertices shown in
Fig. 3, cf. Ref. 17. Leading-order renormalizations of the
Cooper channel, however, can drive the system to the cel-
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ebrated superconducting instability: this happens, e.g., i€harge(we choose units such that=c=1). Equation(1) is
some of the initial Cooper channel couplings are negativehen replaced by
(for a more detailed discussion, see, e.g., Ref. 12

In the following, we assume that the Cooper channel is S (¥*,W;u,A) =S (¥*,¥;u) +S(V*,¥;A), (25
turned off as, e.g., in systems of electrons coupled to magy here
netic impurities with broken parity- and time-reversal
invariance d

Then, for short-range interactions, all remaining coupling sJ(xp*,qr;A):f dd“xE A, (X)jP(P* W5 A) (%),
constants are marginal, i.@,.1~3, . (This result turns out p=0
to be stable against adding higher-order correcjioimsthis
case, as the coupling constants in the effective atsfﬁrare
suppressed by a factor\d !, our calculations indicate that
the system flows to a Landau-liquid fixed point,ras:«. In JO(T* W) (x)=—ieW* (x)¥(x),
the following sections we confirm this expectation by calcu- (26)
lating the electron propagator usibgsonizationThe effec- ie
tive action St obtained by the RG analysis serves as an j'(‘l’*,‘I’:A)(X)=ﬁ [W*(x)D(A)¥(x)
input for this calculation.

For long-range interactions, the situation is more compli- — (P (x)D,(A))*¥(x)]
cated. For long-range density-density interactions of th‘?or =1 d

form displayed in Eq(2), the effecti tiors§" at a large, _ _ _ _ _ .
orm displayed in Eq(2), the effective actiors, " at a large The effective gauge-field action/(A) is obtained by in-

initial scale\y has the form given in Eq912)—(15). The - he d ¢ d f the el
effective interaction potential can be replaced by a set ofegrating out the degrees o freedom of the electrons,

coupling functions, as described in E47). Due to the sin-

gularity of the interaction potential(|p|) at |p|=0, the inter- W(A): = — In[ (EN7?

action processes witlw,# w; are less important than the

direct scattering processes, whamg=; and w;=w,. In ok Vo s

this channel, the singularity contributes a supplementary fac- Xf D(P*,¥)e (S VimATSTHTNI

tor \§ to the quartic term{15) in the action which can par-

tially or completely compensate for the facton 371, How- (27)
ever, resumming all diagrams of leading order inglleads it SV(W* W) given by Eq.(2). It is the generating func-

to a "screening” which renders the long-range interactionjong) for the connected Green functions. At noncoinciding
effectively short ranged. Therefore similar results as for th%rguments one has that

short-range case are expected to hold. We shall confirm this

and the current density is defined(in Euclidean space
time) by

expectation in the approximation obtained by bosonizing the n 5
system. I1 SA o) VA
For long-range transverse current-current interactions, as i=1 pi(xi) A=0
they occur in quantum Hall fluids at filling factors N con
1 1 . . . . .
v=3,, - - - , thescreening mechanism is ineffective. Calcu- . aan e
lating the electron propagator by the bosonization technique, =(-1 il:[l 1P B ALX) (28)
A=0

we shall observe the possibility for a deviation from Landau-
liquid behavior, depending on the exponenivhich charac- First, we consider a system of non-interacting electrons.
terizes the singularity of the interaction potential in momen-rpe geajing limit © (A) of the effective gauge-field action
tum space: fQI’a_Zd—l, We argue that the system is a MFL WPO(A) has been calculated in Ref. 16. Here, we just sketch
(similar predictions have previously been made in Refsthe essential ideas and recall the main results.
3-6. We expand the effective action’ °(A)—Eq. (27), with
SY=0—in powers of the fieldA:
lll. EFFECTIVE GAUGE-FIELD ACTION

] 1 n
AND BOSONIZATION woay=S - TT dxt2criesn(xy ... x0)
n=1 . =1

It is easiest to understand the meaning and accuracy of
“bosonization” by calculating the scaling limit of the effec- XA, (X)) A, (). (29)
tive gauge-field actionV(A), whereA is an external elec- 1 Pn
tromagnetic vector potential. From the effective gauge-fieldThe expansion coefficient€ are given—at noncoinciding
action, one can determine th@nnectefiGreen functions of  arguments—by the current Green functions, cf. &8§).

currents by differentiating with respect to the gauge fikld Next, we map the physical system in a space-time region
Calculating the Green functions for the electron fields ¥ A™ to a reference system in the regiaf’=A, wherex>1
is more complicated, and is accomplished in Sec. IV. is a scale parameter, andis kept fixed. We shall be inter-

The external gauge field,, p=0,1,...d, is coupled to  ested in the asymptotics when—. Under the rescaling
the electron system by replacing derivatives in the free actiomap, points inA® transform as
S(W* W;u), Eq. (1), by covariant one® (A):=d,—ieA,
(“minimal coupling”). Here e is the elementary electric x=NéeAMgeA.
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The gauge fieldA (Y (x)—which probes the response of the  In determining the effective gauge-field actioti 2, the
electron system to small external electromagnetic fields—iserm  S’(W* W;A), coupling the gauge field

chosen as follows: Ag”(x)=(1/)\)ap(§) to the electron fields, can be replaced
by

1
MNy)y= —
Ap (X) N ap(g)v (30) SJ(\P*,\P;AO\))%J‘ dd+1§ %71 [_iao(g)_voa(g)]

wherea,(£) is an arbitrary, but fixed function of. Thus the

gauge field scales like the momentum operator. In the fol- INKE(w— o )E )
lowing calculations we consider the formal thermodynamic Xw, z,d—l € W (E)¥ul8):
limit A—RY"1. To construct the scaling limivv 2 (a) of !

wOoAN), we study the asymptotic form of the current Green = SJ({zpi};a). (33

functions, Eq(28), in the limit A—x, using Eq(8), and plug ) o ) _
the result into Eq.(29). We define the scaling limit Adain, the symbok= indicates that, in a calculation of elec-
WO (a) as thecoefficientof the most divergent term in an ¥on Green functions at distance and time scales of axder
expansion ofV°%(AN) in powers ofn and\ L. this approximation y|elds the Iead_mg contribution |_m1As
In the scaling limit, one encounters ultraviolet divergen-mentioned abgv_e, in the expansion of the effective gauge-
cies in the perturbation series & ° (a). To fix a resulting ~ fI€ld action)v , in powers ofA, we evaluate the expansion
ambiguity, we use standard Ward identities implied by gaug&@efficients—i.e., the current Green functions—only at non-
invariance, i.e., coinciding points. The omission of self-contractions is indi-
cated by the normal ordering of the product of electron fields
in Eq. (33). The local terms of the expansion coefficients are
ip_ CPLPiP(Xy | X0y X)) =O. dete_rmined by requiring gauge invariance. '
X' Given a ray ], we define a current density
The result of our analysis can be summarized as follows. In
a calculation of electron Green functions at distance- and
time scales of ordek, the free fermion actios’(¥* W) . ,
can be replaced by the following approximate action: +ekrl@ @M yx (O ,i(8)), (34)

()= 2 (MO () (6):

weS

corresponding to electron motion in the direction-od, and
(P W)~ 2 J adﬂk\i,z(k)(_iko+vok)ﬁ,m(k) a current density
Iu)

U)E‘S‘i_l
_ Jlo(i= 2 {e K@M YT (g, (8):
~ X | w8 west
wleST . PN
! ) ; terkem N YR (gL (6} (35)
x| ° Eﬂiwlw ﬁ—g)‘l’[w](i) corresponding to electron motion in the directioncaf
0 Using Eq. (10), one can establish that the quasiil-
] dimensional current densities
=:S2({yl}). (31
. i —
The symbol~ indicates that the approximate action repro- JR,,](@Z =3 (re)(®+ j1a(6)

duces the large distance and time asymptotics of electron
Green functions to leading order in\l/The sumzwesg—l

1 I
extends over the discrete set of unit vectors, ARG 3 (rw1(& = i 1e1(§) (36)
i=1,...N~\9"1 whose endpoints lie on the surfasd !
of the d-dimensional unit spherécf. Sec. 1). The Fourier for [w]e[S9™1] are related to thel+1-dimensional current
modes¥ (k) have support o, :=RXB,,. In the second density,j?, p=0,...d, defined in Eq(26), by
Iirzje 1of Eqg. (31), We+introduce ar(arbitrary) partitioning of
S " into positiveS™ and negativeS™ hemispheres and de- . . _ .
néte the ray throughw, for weS*, by [w]:={w,— w}. This 200 =2 W) () ~n e 2+ wa](é),

weS

allows us to use the “relativistic” notation (37)

R 00 =1 (T A Ao =N X ey (6),
‘If[w]': lﬂa, y \P[w]:qf[m]y :(lﬂwlﬂ_w), (32) weS
where |=1,...d. Equation (37) holds for current Green
with y’=0, and y'=0,. In the following, we assume that functions to leading order in 1/ at noncoinciding argu-
electron spins are frozen in a fixed directiwe shall omit  ments. For simplicity, the electron charge has been set to
spin indices. —1. Equation(33) can be written in the suggestive form
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S(w* ,\If;A(”)%S]({d/f,};a) where we used
= E E A1 ag(8)jg,(8), ILae
+ B= @ o, T R _ B“C ®
- @) 0= 24, | 90 G (ame 2O

with
and

ag(é):i=ag(é), aj(é):=vrw-a(é).

One observes that—to leading order in the inverse scale 08 i=—, V:i=
parameter\ * — the original d+1-dimensional system de-
composes into independent, quasiitdimensional sub-
systems, one along each directipm] of RY. The 1+1- Note the nontrivial(and important fact thatwg is only
dimensional subsystems describe relativistic fermiongjuadratic in the gauge field. Invariance under gauge transfor-
moving along the directiofw] with velocity=v . Hence the  mations, space rotations, and parity—or time—reversal im-
calculation ofWi(a) is reduced to the calculation of the plies that the(Euclidean polarization tensodl,” has the
effective gauge-field action of a family of independentgeneral form
Schwinger model€ne obtains

2 i
11 ke |“F 1 o+ 000 = 5 11 (), Tk =TT = — 1", (k
WO(a)= ﬁ) UFwaJ g 00 = 1 T 00, 00 =TI = = - T (K,
% a®T(5)aeT . L KK Kkl
B:EO,l 5 (925 (&) H',g(|<)=r1;(k)(aﬂ—F +H'*(k)v, i,j=1,...d.
1 d (41
=5 | AT A, (- (K3, (k)
RxB pro=0 The calculation of the two independent functiol§ and
(39 I1¢ , for noninteracting electrons, yields the result
|
e2
—k,:vF[(1+J1+(ka/ko)2)\/1+(qu/ko)z]‘l, d=2
| —_
=Y e (2 k2 Ko ok,
7T2 Vg k2 |:k arctan- - ko o
(42
Kol
— 1 (k)——|<FUF[1JH/1+(UF|</|<0 2171 d=2
Ht (k)z \/k0 (ka)
*

e?
s
1
2( — (ke)?| 2

Ko vek |
arcta —1II,(k)|, d=3.
ko

Comparing this result to the smaddlasymptotics of formulas mionic theory can be reproduced by expressing the current

found in standard textbooks, one finds agreement—up to theensities in terms of a free, massless bose fiskk, e.g.,
“diamagnetic term” of the transversal part which is propor- Refs. 16 and 19 and references thereime introduce the

tional to |k|2 and yields lower-order corrections in\1/ following identifications:

Equation(39) is the result of resumming the leading con-

tributions in the(formal) expansion of the effective gauge-

field actionW °(A) in powers of 1X. The possible diagrams . ke | (4772
contributing to leading order in 1/to the effective gauge- J[w](f)H\/_; o

field action are displayed in Fig. 6. However, E89) states

that, because of the special form of the propaga&}sonly

the first term in Fig. 6 with two gauge-field insertions con- 2 ( ke )(d—l>/2_

3 @r1(€),

tribute toWi(a). In addition, gauge invariance requires the J [w](§)<—> 3 @re1(6) (43
) . \/_ 27
introduction of local Schwmger terms which couple, along a
ray [w], right and left mover:

Remembering that, in the+11-dimensional Schwinger for weS™, with [w]={w,—w} denoting the corresponding
model, the calculation of current Green functions in the fer-ray, and
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i ( kF )(d—l)/2

Sdeuhia)= 2 | d* a9 —=|
slo- G ()| Mzl
X IEPw](£)-

The symbol lim_.., stands for determining the coefficient of
FIG. 6. By power counting, the possible diagrams contributingthe leading term of the expansion inand\ 1.
to leading order in W to the effective gauge-field action %(a). The derivativesi“oy,) and d“oy,;) of the bosonic fields

S e sond for e St poragm@i(0) s ) descrie he curent densiy fucut and )y
o i ] etermining the scaling limit of the system. For a fixed di-
(note that here—in contrast to the calculations in the context of th?ection[w] they are composed of electron modes with mo-
RG—the electro_n propagators are understood to be integrated OVBlanta near the points-w and —k-e, respectively, on the
the entire domair,=RxB,). Fermi surface. In the scaling limit, they probe the Fermi
surface only locally around the poinks w and —krw.
59 = E (—i i+vo i) 9o = E (i i+vo i) . This implementation of bo_sonization is a _:special realiza-
2 230 23 2\ 9 23 tion of a more general formalism, presented in Ref. 20. Abe-
lian gauge invariance implies the local conservation law

Equation(43) is equivalent to
i (ke @DR2 3,jP(x)=0. (47)
l'[Bw](f)H\/—— Z) £%C08era(£), Instead of expressing the current density in terms of the el-
™ ementary fieldsV* and¥, and imposing constrair47), one
for B,C=0,1 andweS". can introduce field variables which guarantee Et}) by

The action of the seftg, (¢)} of Bose fields is given by  construction. Fod+1-dimensional currentg’, one needs, in
general, antisymmetric gauge forms of raghk 1. However,
considering only the scaling limit of the system, we can take
advantage of a substantial simplification: the fermionic
theory decomposes into a family of quasi-1-dimensional
X[K§+ (vE@k)?]@p,(K), (44)  subsystemg“dimensional reduction’}, one along each di-
rection [w] of R. Each subsystem describes quasiit
dimensional, “relativistic” electrons. Gauge invariance has
o be fullfilled for each subsystem—i.e., in each direction—
separately, and implies the conservation laws for the associ-
ated currentsj ), B=0, 1, i.e.,

]!

SO({(P[w]}):_%E _a9t1k <AP[w](_k)
[0] JRXB,

where the Fourier modeg;,;(k) of the Bose fieldg,, (&)
have support orRXB,,. [For a given valuek,, the modes
¢lw](kg, ) have a compact support. We choose this suppo
to be B,, but, in principle, there is no need to choose a
support identical to the one of the fermion modeﬁko )
One can verify that

I o 9
o [ (X) tvr® Ix J{)(X)=0. (48)

E—lf D{(P[w]}e—é"({w[w]}) _ .

® Expressing the currents,,; in terms of the free, massless

n i K| (@2 Bose fieldsgy,,; guarantees that Eg48) holds.

H L Ke £BiCia2 o (&) Next, we study the effective gauge field action for inter-

=1 | 7 Cj¥Luj ] acting systems. In Sec. Il by using the RG method, we suc-

cessively eliminated the electron modes with momenta out-

—_ _ ¥

%’:’i//lf D{lpi}e SO({*//H)})

X

21

side the shellQ, :={peR%|p—ke(p/|p|])<kg/2\n} of
thicknesskg/\ ,<kg around the Fermi surface, in order to

_ o determine the effective actio§, for the remaining modes
in the sense of distributions. with momenta inside the she®, . The resulting effective

Representatiofd3) of the one-dimensional current densi- actionS,, describes the physics at energy scales smaller than
tes o), in terms of the Bose fieldgy,), is implied by the ve(Ke/\,,). Under the assumptions specified in Sec. II, one

local conservation of the electron current, E§7), along
each ray[w] separately. These formulas are equivalent to-an reach very small energy scalggke/\ ) <veke before

Luther-Haldane bosonizatidfi1115 Identification (43) re- the form of the corresponding effective acti§pdiffers con-

produces only the leading term of the fermionic perturbations'der"’u:’.Iy f“’”? the orlgmall acugﬁ._ Y
In this section, we consider “spinless” electrons and sup-

11 jf‘,,g_]@j)], (45)
j=1

theory i.e., pose that, in addition, the Cooper channel is turned off. Then
w(a)= lim the termsS2 and S, quadratic and quartic in the fields
* Ao #¥(k), are given by
. ~ -1 A
_In[ZgolJ D{go[w]}e*[so({‘l’[w]})JrS]({‘P[m]}ua)] , Sﬁ“ E J 'dd-%—lkq,:)(k) Z_ (iko—v,:nwk)‘lfa,(k)
weS‘ifl lw n
(46) (49

with and
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= T=2D) SCASTIE
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xf YIH LK@ §@+D (D) 4 k(2 _ k(3 _(4))
[

w1
kD — k4
Ay

) v (K g% (k)

Xgn| w10,

X, (KP) i, (KY), (50)

with

k d k . k
On| @107; I = Un| @102, N —0p| w1@;; WiE
(51
The direct- and exchange-coupling functiaifsandg® were

defined in Eq.(24). The symbol~ stands for “equal to
leading order in I,".

Contributions toS, corresponding to higher orders in the
Taylor expansion of the coefficient functions of the quadratic
and quartic terms in the momentum variables, or contribu-
tions involving more than four electron fields, are neglected
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Replacing the quadratic ter8¢ of the action by the bosonic
action SO({qo[w]}) given in Eq. (44), and inserting the
bosonization identitie$43) for the current densities in Egs.
(52 and (53), we end up with aGaussianbosonic theory.
The bosonized versions of Eq&2) and(53) are given—in
momentum space—hy

Sr]‘l({ga[w]}!a) = z

f a9tk ag(—k)
west BC=01J1,

-1 kF d—1/2
Xchﬁ(z) keraw(k)  (54)
and
S({oru) = it (i)d S [ e
" Le] )\n_l 2m a)l,a)zeS+ leﬂlwz

X [Gn( — @102) @1 1(—K) (KO1k 2+ K1k 2)
X @10,1(K) + gn(@1@7) op,, 1(—K)
X (k“1k®2+Kk“1k2) gy, 1(K) ], (55)

with

By engineering scaling they are irrelevant, cf. Sec. Il. For

systems with a short range two-body interaction poteiial
the coupling functiongy,(w,@,:;k/\,) can be replaced—to
leading order in I,—by the coupling constant,(w,,).
We first restrict our attention to such systems.

The termS}({¢ #};a) coupling the electron fields to the
gauge fielda has the form

Sdviha~ 2 2 | d*ag@)if, 8, (62
west B=01
where @g,a7):=(aq,vpn@-a), and the quasi-t1-
dimensional currentj;Fw](g) are defined as in the noninter-
acting system; cf. Eqs(34)—(37), but with the products
z//fu,(g) v, (&) of the electron fields replaced by
(1/Z,) z/r’;,(g) (&) (in the noninteracting systerd,,=1). A
Ward identity relates the renormalization of the vert6g)

ko=1(—iko+vrwk) and k°=1(iko+vrek).

With the aim of calculating the scaling Iimwl’(a) of the
effective gauge-field action of the interacting electron sys-
tem, we replace the fermionic acti®y, given by Eqs(49)—
(52), by their bosonic version, given by Eq#&4), (54),
and (55); calculate the corresponding effective gauge-field
action, W¥(a;P,); and determine theoefficientV (a;P,)
of the leading contribution in an expansion)af¥(a;P,) in
powers of\, and A, as\,—. P, stands for the set of
parameters characterizing the fermionic actn As the
bosonic theory is Gaussian, it is easier to study than the
fermionic theory where the interaction term is quartic in the
fields . 5

Does the actionV! (a;P,) derived by the bosonization
procedure reproduce the correct result that one would obtain

to the renormalization of the electron propagator, preventin@y iterating the RG transformations and by determining the
the appearance of a new, independent renormalization factoigsulting fixed point actiorin—o)? In order to answer this

The quartic interaction terr8;, given by Eq.(50) can be
expressed in terms of the quast1-dimensional currents

>

wl,w268+

1-d

1k
Si{yih= g)\—fjfl dd“fj di*1y

X 83 (E= {In(@102) [ 0,)(E)] w)(M)
+ J 10y (O)J [0 (1)]— Gl — w1027)

X106 1o (D J 101 (E)itw (M}
(59
with

Tk gké—n
k|<kg/2

5= [ ko

question, we have to clarify the approximations involved by
bosonizing the electron system described by the acpn
The approximations can be characterized in terms ofdhe
mal perturbation expansion of the fermionic theory in pow-
ers of A, 1. In fact, by bosonizing an electron system with
action §,, we resume all leading-order contributions of the
fermionic perturbation expansion of the effective gauge-field
action in powers of\;, L —except self-energy renormaliza-
tions of inner propagator linesThe diagrams reproduced
after bosonization are displayed in Fig. 7. In these diagrams,
each factor N9~ * per interaction vertex is compensated for
by a bubble-summatior (-). These diagrams correspond
to the so-called random-phase approximation (RPA)

In principle, to leading order in &ormal) expansion in
1/\,, the propagator lines in the polarization bubbles in Fig.
7 are renormalized by “cactus diagrams” of the form shown
in Fig. 8. For systems with a short-range two-body potential
V, their contribution is—to leading order in Xi,}/—a con-
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0 .
o N > @ + T o WX(a): lim _|n[5;1f D{(P[w]}e—(sn({w[w]}Hsﬂ({qw]},a))
* w1 wi,w2 )\n*}m

V
FIG. 7. Diagrams contributing to the effective gauge-field action X e‘sn({ﬁo[w]})] : (57)
WV(a) reproduced after bosonization. As above, straight lines stand

for electron propagators and crosses for gauge-field insertions. Thghere the action is defined by Eqel4), (54), and (55).
interaction verticeskE™ /A ") gn(ey,), defined in Eq(51), are Again, lim, _ ., stands for determining theoefficientof the

represented by dots. . . .
P y leading term of the Laurent expansionXp and\,, 1. Car-

) ) ~rying out theGaussianfuncticgnal integral, we find for the
stant i.e., they only lead to a displacement of the chemicaleading term proportional tad~?,

potential. As the polarization bubbles depend only on the

difference of the momenta of the two inner propagator lines, d

they are not modified by such a displacement of the chemical WX(a):%J ddtik > a,(— kI (k)a,(k). (58
potential. po=0

. Doesjr\lls result |.mply that, by taking func'tlonal deriva- The polarization tensofl{; (k) has the general form de-
tives of W, (a;P,) with respect to the gauge fieland by . ) t . ¢

evaluating the resulting current Green functions, cf. 2§), sclnbed in Eq/(41), wherell,. (k) is given byl__[*(k)’ and

for large argument$x(V— x| =x |0 — 0|, with \,—o, Iy« (k) can be expressed as a Neumann serigg. (- w').

one obtains the leading contribution in\16f the current The explicit expression for the Neumann series is rather
Green functions of the interacting system? One must rementomplicated in the general cadgut straightforward to deter-
ber that we use the fermionic actioB, as an input of ming. We only write down the explicit expression for
bosonization. Because of the linearization of the pieces oH'V*(k) in the (somewhat artificigl case when
the Fermi surface contained in the boxBg, this action g, (w,w,)=g, . Then one obtains

describes the properties of the system only correctly at mo-

mentum scales betwedq/\,, and b(ks/\ 2), as argued in

|
sec. Il Mg () =11, (k) —7—
It follows that the current Green functions derived from 1+ 2 Ff—l 11! (k)
0 ™F

VVX(a;Pn) reproduce the leading-order contribution i1/
of the current Green functions of the interacting system fo'[the functionsl'['*" are defined in Eq43)].

argun;nents|x(')—x“)| =\ €= D] of order between\, For systems with a long-range two-body potentfalthe
and\ 7. In order to explore the current Green functions of the;anormalization flow of the effective actio8, is not yet

interacting system at larger distance and time scales, we firﬁg"y understood. Given the effective acti® , we can cal-

have to iterate the RG transformations further, with the aimy,jate  the corresponding  effective gauge-field action

of deriving effective actions,,, m>n, describing the prop- \TV(a,Pn) by bosonizing the system. This yields a result for

erties of the system at larger distance and time scales. Sughe current Green functions in the domain of validity dis-

an effective actior,, can serve as an input for the bosoniza- ¢;ssed above. In order to derive results at larger distance and

tion procedure. time scales, one is obliged to make assumptions on the flow
In Sec. Il, we have analyzed the flow of the $&f of  of the effective actionS,, asn—. In the following, we

parameters characterizing the effective ac&?,qu_)r electron  jiscuss the calculation ofV(a,P,) for three examples of
systems with a short-range two-body potental All the systems with singular interactions.

parameters of the s@&,—except the scale factay,—tend to
finite valuesP, in the limit A,,—oc. This implies that . N .
A. Long-range, density-density interactions
- We consider interactions of the type shown in EB)
WY(a)= lim WY(a;P,), (56)  with a long-range interaction potentigV, i.e., one whose
Ap—o Fourier transformgV(|p|)=(g/k 4™ 1)|(ke/p)|* becomes sin-
gular at|p|=0. The exponentr and the coupling constangt
i.e., the scaling limit of the effective gauge-field action is @€ supposed to be positive. We assume that the effective
given by action S, at an energy scaleg,(kg/\,) has the form speci-
fied in Egs.(49)—(52), and that all the parameters of the set
P, characterizing the actioB,—except the scale parameter
A—tend to finite values in the limih—co. In particular, the
set of coupling functiong,[ w;(1/\,)K] is supposed to be

@ @@ related to the initial interaction potential by E¢L7), for
arbitrary n. We can neglect the exchange channel with re-
@ @ @ spect to the direct channel. In the direct channel—contrary to
w T T o o t & T t

the case of short-range interactions—we have to retain the
(singulay dependence on the small momenta,\(Jk, as

FIG. 8. “Cactus diagrams” renormalizing inner propagator indicated in Eq(17). Hence, in Eq(50), the dominant cou-
lines to leading order in 4. pling constants are given by
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! ; JLES 1 (k; Py) =I5 (K).
9n| @y, — k kd 1 - |k| F/n . D( n) n( )
x5 K
59
o . ®9 [The functionsIT};! are defined in Eq(43), with ve— v, .]
By bosonizing the system, one obtains the result As expected, this result coincides with the result of a RPA

calculation.

WP(a;P,) =3\ d— 1f a9tk
B. Tomographic Luttinger liquid

d
X 2 a,(—KIIE(k;Pya,(k), (60) We introduce interactions which describe singular direct
p.o=0 (or “forward” ) scattering processes, where the quasielectron
where the polarization tens®ff’(k;P,) has the same form with momentum neak-w interacts only with one with mo-
as in Eqg.(41), with the two independent functlorﬁD and mentum near-krw. This leads to the coupling constants
4 given by

On(@102) =80~ N (2% gy, (61)

I (k; Py) =T1,(K) ,

2
1+ =g,V
K

k ) |
N Hn(k)

n

By inserting Eq.(61) into Eq. (57), one obtains

WTL(a-'Pn)z_m( f Me*(l/z)ﬁwes“l(l*(2n/2ﬂ'))fdd+153"’4’[,,,](f)ﬁﬂw](f)esﬂ,({@[a}]}ia)
’ z
(%]
d
=§xﬁ*1f Ik D A, (— KT (K Py ag(k).

p,o0=0

The polarization tensofl4{ is renormalized by an overall the Fermi surface following the same procedure as for lon-
factor (1+gn/2m) ! with respect to the noninteracting sys- gitudinal interactions. Using E438), one obtains
tem,

2
_ OnUFn d+1 © k
” Y STwEN = - 2o a1y v(_
[ (k P ) ( ﬁ) Hﬁ (k) (62) 2)\n : ®1,07 est |wlﬂ|w2 )\n
C. Long-range, transverse, current-current interactions X 2 wlj[ml] k)Pﬁ(k)wjzj [lwz](k): (64)

In the original system, interactions between transverse
currents lead to an additional term in the action of the formwith

d a
kik; - ke
S =-1[ @ x| a3 0 Pi=0;- " and V(ph= gt |
k=1
X gV(|Ix—y]) 8(xo=Yo)i¥(y), (63)  For a QH system with unscreened Coulomb interactions, the
, exponenta is equal to 1; if one assumes the Coulomb inter-
with actions to be screened, the exponentirns out to be 2. We
d " propose to calculate the effective gauge-field action of this
K ® ATy — _ KA g e system by replacing the fermionic current$,; (¥}, ¥1.))
TV 21 O~ d , PP ). by their bosonic versiongf. (¢, given in Eq.(43). We
Z J have to make assumptions analogous to the ones stated in
=0 Sec. Ill A. One obtains
A physical realization of such a system is a quantum Hall
(QH) system at filling factors/=3, 3, . .. which can be de- ~ o )
scribed as a system of fréeompositg fermions interacting W'(a;Py)=3\5 lJ RN UZZO a,(—k)
via long-range, transverse, current-current interactions as .
diplayed in Eq.(63), cf. Refs. 3, 4, and 6. X T127(K; Pr)a,(K), (65)

One determines the effective interaction for the low-
energy modes whose momenta lie in a thin skgjlaround  with



55 BOSONIZATION OF FERMI LIQUIDS 6803

T (k; Py) =TI} (K), 1
Vo1(é0,§)):= ¢—w\|(§o.§u)<—>m

=l
I15(k; Py) =T (k) XD g)(£0,&:1): €V ealC08);,

1+114(K) g,V

k)'

n

Yoo, = Wiwu(gof)H#/z
Again, this reproduces the result of a RPA calculation. o
X Dp,y(&o. &5 —1)e” "V ea b0 80
IV. ELECTRON PROPAGATOR

In this section, we determine the bosonic expressions for Yu2(0:61): = Yui(€0.61) (277)174
the electron fieldsl* and W, in order to calculate the elec- .
tron propagator for interacting systems. We shall bosonize X Dyo1(€0,€) 1)@ VTe(E0.8):
each one of th&l~\%"1 component fields)? separately*

stands fory* or ). More precisely, for each rajw]={w, 1

—m}, we express the paip?, y*  in terms of a Bose field oa(€0.6)) =Yy (é0,8) = 2P

¢, This is accomplished by applying the well-known

bosonization formalism for -t 1-dimensional relativistic fer- X Dy o)(0.&)3 — 1):¢ Gq;h](go,gu):’ (69)

mions summarized in Appendix A. However, one has to
cope with a subtlety arising from the dependence of thevhereD(,; is a disorder operator, and the normal ordered
quasi-11-dimensional electron fields! on the components exponential Of(pEw] is a “vertex operator.” The precise defi-

of the momentum perpendicular to the directas. nitions of the expressions on the right sides of E&f) ap-
We start our discussion with the noninteracting system fopear in Appendix A.
which The fields<pﬁw](§o,§“) are I+-1-dimensional free, massless

Bose fields with an action given by
—(oi)(K) l/ft,ﬁ)(k’))O:5w<i),w(j)(217)d+15(d+1)(k—k’)
1 Sty (Pl =7 f

X[ —(kg/2),(kg/2)] I ;l[w]( k ,_k”)
Xiko UFOJ(I)k Qw(l)( ) (66) R 0 0

X (kg+ (vek) D@ (Ko K)). (70)

In comparison to Eq(11), we replaced the boxeB,i) by  The Fourier modes ﬂw](ko,ku) have support on
cubesQ, @, with sides of lengttkg (the exact shape of the RX[—(Kg/2),(kr/2)]. One can verify that from the bosoniza-
integration domain is irrelevantBecause of the isotropy of tion formulas, Eqs(67)—(69) for the electron fields the ones
the electron system, one observes a nontrivial dependence for the current densities, E@3), follow. In Appendix B, we
the components df only in the 0 andw directions. Propa- show this in an example.

gation takes place in the radial directian This suggests a It is important to understand the relation of the radial
decomposition of the quasi particle fielg€(¢) into tensor  Bose field&pﬂw](go,@) to the fieldsgy,,(é) introduced in Egs.
products (43) and (44), which are related to the fermionic currents.
Following Eq.(44), the actionSO(go[w]) of the Bose fieldg,;
lﬁi(g):)([w](é)@ lﬂiu(go.fu) (67) is given, in momentum space, by
for we_s‘j—l_ The “radial” fields ¥, describe ¥1- SO(‘P[w]):_%f AN oy (— ) (G (0k))?)
dimensional, relativistic electrons, whereas the bosonic “an- RXQ,

gular” fields, x;,;(§,) just guarantee momentum conserva- -

tion in the perpendicular direction. X @ro)(K), (7D
The angular fields,,(,) are Gaussian, of mean 0, and j.e,, the fieldgy,; propagates only along the directifa]. It

their propagatofcovariancg is given, in momentum space, follows that the propagators of thg,,; fields are related to

by the ones of they,, fields by

<5([w](kL)5([w'](ki)>L = 5[w]’[wr](27T)d71 <¢[(u](§0!§ll 1§L)¢[m’]( R/ TIL)>

X 60 (k, —k{) - Tgl-n(k*). = St 0108 (&L= M@ 0)(£00 6D 9y (0, ),
(68) (72
. . —_ o d-1 with

Their Fourier modeg,;(k,), have support irQ .

The radial fieldsy, can be bosonized by applying the
standard * 1-dimensional formalism. For each riy], one L&) = ﬁdfldd‘lkle”&é.
uses the following identifications: oF Qo
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Comparing Eq(71) to Eq.(70), one can decompose the field tion Sn(goEw]) of the radial bose field,oEw] from the action

¢r,)(é) into a tensor producto[w](g)=goﬂw](go,g‘)@)([w](gi), S\({¢p.)) of the family{(p[w],[w]68+} of d+1-dimensional

where;,,(£,) coincides with the bosonic Gaussian field in- Bose fields.

troduced in Eqs(67) and (68). Through interaction55), the field ¢,,;, for a given ray

Next we study the effect of interactions of the form dis- [w], is coupled to all the other fieldg,,,, for [w']esSt

played in Eq.(50). As discussed in the preceeding sections,Integrating out the fieldgy,,;, for [o']#[w], we obtain the

we use the effective actior®, given in Eqs(49) and(50) as  (“effective”) action S,(¢y,)) of the field ¢, which is still

an input for the bosonization calculations. The act®nis Gaussian

the result of an RG analysis where the electron modes with

momentap outside the shell),, have been integrated out. It _1 d+1pn n -1~

describes the properties ofnthe electron system at energys”((’o[“’])_ZJRXQUa Koy (—KLC 01 (K) ] epa)(K),

scales smaller thawg,(kg/N,). Under the assumptions (75

specified in Sec. Il, one can reach very small energy scalesh

Ven(Ke/N) <<venke before the form ofS, deviates from the where

one given in Egs(49) and (50). The (remaining fermionic n —/n A

degrees of freedom are described by the fieltfs These QK= {1~k oo (k)

fields W#(\,&) can be decomposed intd,~\ 9~ indepen- is the propagator of the Fourier moe}q:w](k) in the inter-

dent componentg?(¢): acting system. We determine the acti®yie|,;) of the radial
field ¢Ew](§0,§|) by averaging the inverse propagator
[C[‘w](k)]‘1 in Eq. (75) over the components, of k perpen-

* — —ikpoNp€ \ —0/2) %
¥ (M) % e r N W (8), dicular to the directiofw]:
) B Iy 1
V)= et Wy ), (73 Sl LWOJU_kF/a,(_kF/z)]ak
where the Fourier modeg? (k) have support irQ,, [cf. Eq. X &l (=Ko, =KDy (Ko, K @[ (Ko k),
[w] [w] [w]
(10]. Momentum conservation guarantees tkt, ")V (76)

~4,.." SO that the interacting propagat@r splits into the

contributions of the component fields : with

) —l-d d-1 . -
GO\p(é— 77))~2 e'kaNn(?ﬂ))\;de'n(g_ n), (74 th](kmkH)-—kF kdl‘d kL[CFw](kOJ(HykL)] g

Our procedure to calculate the radial, fermionic propagator

where G —mn) are the propagators of the component 8 - . .
onlé ) propegd ’ G/, , is summarized in the following formula:

fields calculated by using the effective actiSp. The sym-
bol ~ indicates that the equation holds to leading order in a1 (£0— 710, E1— 71)
expansion in I, . .\ $07 70,517 7
As in Eq. (8), this formula should be regarded as a dis- = —(y, (&0, ¢¥" (10, 7))
crete approximation to a continuous angular decomposition
of the interacting propagator, -Z,
*\/E(D[w](fo,guil)D[w](ﬁo,Uui_l)i

X @l (D Wepy (0.6 @l (~DVTeLy(T0 M)y
(o]

X Gl, (&~ 10, (£~ 1)) (77)

for large arguments.,(§—7), where the radial propagators where =1 for —w, and @=2 for +w. The disorder field

G\, n(£0— 10, @(£— 1)) depend only on the 0 component D, in the bosonized expression of the electron field guar-
and the component parallel to the direct@nHence, for the antees the correct anticommutation relations, regardless of
interacting system, the decompositi¢@i7) of each compo- the nature of interactions.

GO(E= )= [, ¢ o eteoni 2
1

nenty? into a tensor product of a radial field? (&,,&) and Before diving into explicit calculations, we have to clarify
an angular fieldy,, (&, )—with the propagator defined in Eq. the meaning of the symbot in Eq. (77), i.e., we have to
(68)—remains valid. clarify the approximations involved in calculating the elec-

We calculate the propagat(ﬂ*!u'n(go,g‘) in the radial di- tron propagator by means of bosonization. As in Sec. I,
rection by bosonizing the system, i.e., we use the identificawhere we analyzed the calculation of the effective gauge-
tions (69) for the component fields and replace the fermionicfield action, we characterize our approximations in terms of
action Sn({wf,}) by its bosonic versiorS,({¢,)}) given in  theformal perturbation expansion of the fermionic theory in
Egs. (44) and (55). Then the calculation of the propagator powers of . By bosonizing the electron system with ac-
G, n(&.&) is reduced to evaluating an expectation value intion S, , we resum all leading-order contributions of ffier-
the interacting bosonic ground state of a product of disordemal) fermionic perturbation expansion of the electron propa-
and vertex operators ime] [see Eq.69)]. In order to cal- gator in powers of \, 1l_except for self-energy
culate this expectation value, we have to determine the aadenormalizations of inner propagator lingss in Sec. ).
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FIG. 9. Some examples of self-energy contributions reproduced
after bosonization. The corresponding “diagrammar” has been de-
fined above; the summatiorEwi, associated with each electron
loop, is not displayed explicitly.

FIG. 11. Diagrams contributing to the self-energy reproduced
after bosonization.

The diagrams contributing to the propaga®; (k) that (@1a)(K) @o)(K'))°0=(2m) 184 D(k+k')
are reproduced by bosonization can be found in the follow- 1
ing way (we restrict our discussion to 1P| self-energy con- Xg————15 (k). (78)
tributions: First, draw all diagrams renormalizing the bare kot (vro-k) ¢
w-propagator line that are composed only @fpropagators
and contain loops of at most two propagator lines, i.e.
“bubbles.” Then add all diagrams that are generated by re
placing an « bubble by anw’ bubble formed by two - - , ,
o'-propagator lines, fow'#w. In Fig. 9, we display some (@ro)(K) eray(k )n=(2m) S D (k+K')
examples. A characteristic feature of bosonization is that it 1
reproduces only diagrams containing loops of at most two Xy
propagator lines. Kot (vene-k)

By introducing an effective interaction vertex as defined
in Fig. 10, we can represent the diagrams reproduced in the X
compact form shown in Fig. 11. The first class of diagrams
leads to a contribution of order 1, the second one to a con-
tribution of order 1X,,. One finds that all leading-order dia-
grams are reproduced by bosonization, except for self-energynere
renormalizations of inner propagator lines. For short-range
interactions, one can show by explicit calculations that the d
contribution of these self-energy renormalizations of innerTFw][w,](k)=(2—> [gn(®- ') (K3+ (vEn®-K) (VEq@'k))
propagator lines igeroto the order considered in our calcu- m
lation. For long-range interactions, however, they could +gn(— 0 ) (— K2+ (v K)
change the final result.

One should remember that we use the effective ac$jpn
as an input of bosonization. Because of the linearization of X (VEne@'k))] K+ (k)2
the pieces of the Fermi surface contained in the bdkes 0
this action describes the properties of the electron systemor sufficiently small coupling constantg,,(w- ®')|<g.<1,

correctly at(unrescaled momentum scales betwedn/\,  the Neumann series converges, and one obtains
and kg/\ 2. Therefore, Eq.(77) reproduces the electron

If one turns on interactions given by E&5), the propagator
changes to become

> (—p—l T”(k)) } ,
=0 n [wllw’]

(79

propagator only correctly for argumen- 7| of order be- (§o[w](k)<}a[w](k’)>n=(27T)d+15(d+1)(k+ k')
tween 1kg and\ /kg [EqQ. (77) is written with respect to the

rescaled systemln this range, formuld77) holds to leading 1

order in a(formal) expansion in powers of 1}. To deter- ng+(anw. k)2

mine the electron propagator for larger arguments, we first
have to calculate an effectiéermionic) actionS,,, m>n,
describing the properties of the system at larger distance and
time scales. Such an effective acti§f can serve as an input
for the bosonization procedure. wheref(k;g,) is a bounded function ik. From Sec. II, we
We now return to the calculation of the bosonic propagaknow that—for a system with short-range interactions—the
tor of the interacting system. First, we consider systems witltoupling constantg, (- ') tend to finite limits, ag—sc.
a short-range two-body interaction potential. For the nonin-Thus, in the limit\,—, the effects of interactions disap-
teracting system, Eq71) implies pear, and the system is driven to the noninteractirandau
liquid) fixed point with a propagator given by E((8). For
wooW w W w woow W' short-range interactions, the dependencekorns irrelevant
>o< = >-< + >@< + + o and suppressed by a facton {7 1.
w W w W w W oow W Below, we shall see that, for sufficiently long-range trans-
verse current-current interactions, the dependencé ors
FIG. 10. Diagrammatic definition of an effective interaction ver- significant(i.e., singular, agk, |—0, with |Ko|, |k/|<|k [). It is
tex. not suppressed by an inverse power of the scale fagor

X

1
1+p—1f(k;gn)}, (80)
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We have to average over the varialde in order to deter- which the polarization tensdi”” has been calculated explic-
mine the effective dynamics of the bosonic degrees of freeitly.
dom ¢{,,; in the direction alondw].

Using Eq.(77), we then calculate the propagator of the
radial, quasielectron componem‘é,”. We start by studying
two technically easier classes of systems with singular inter- The set of coupling constants is given by E§9), with
actions. These systems correspond to Secs. Il A-Ill C, fog,V(|p|)=(g,/k& 1) |(ke/p)|* a>0. One obtains

A. Long-range, density-density interactions

1 2 [ 1\9 (vppe-k)?
- - Y — d+1 g(d+1) ' _ n
<(ID[w](k)(P[w](k )>n (277) 5( (k+k ) k(2)+(l)|:nw'k)2 [1+ )\d—l (277.) k(2)+(anw'k)2

X

~ k -1
gnlvl( : +H2°<k>} ] (81)

n

whereIT2° is defined in Eq(41), with ve—vg,. Using that

2
and lim TI%%k)—c’,
ko /K|—0

k
lim Hgo(k)ec<—
[kikg|—0 Ko

one verifies that

(m«k)z[( Un )—1 Kk |a+ kT_l f |k| o
_ — Cl— or |—|—
(VEn®-k)? —1\”/—1< Kk %0 P ke [ LVKET TkeNnl ko ko
ké+(Uan' k)? 9 An 3 g |7 k_ a—l— c’ N for @ 0

kE'F*l Kehq, k '

I
For O<=a=<2, the right-hand side is a bounded functiorkof B. Tomographic Luttinger liquid

Under the assumption that all paramet®s(except the With Eq. (61), one obtains

scale parametek,,) characterizing the effective actio8, '

tend to finite values, aa—x, it follows that, in the limit ~ - Ny d+1 (d+1 /
> 7 ' . k k')y,=(2 St (k+k

\,—, the effect of interactions on the Bose propagator dis- {@ra1(K) erag(k'))n=(2) ( )

appears, as for the system with short-range interactions.

Hence, in the limit\,—o°, the electron propagat@® tends to Xm

the standard LFL form. ot (VEne-k)

_ This result is due to the screening of the bare, long-rang@s there is no dependence on the perpendicular momenta,

interaction potential(|p|). In Eq. (81), the bare potential one can immediately read off the effective dynamics for the

-1

On
+_
2

V(|k/\,|) is replaced by an effective RPA potential modesj|,; propagating alongie]:

~[lk ~
gnV - SIL((PFWJ):%f akoak\\(PFm](_kOi_kH)

Ceff A Rx[ = (ke/2), (e /2)]
gnVn (ko,k):: R K
. 00, g R
1+gnV()\n‘)Hn (o X 1+ﬁ G+ (VEnK 2@l (Ko K)).-
1

The result for the quasi-electron propagator can be found

9;1\“/—1( ® +H2°(k) with the help of formulagA18) and (A19) of Appendix A:
_s@-Dg ) T griagn S0
In the static limit|ky/k|—0, we obtain Geonlé)= 5(kap (&) 2m © e &R (82)
1 where

lim  g,Ve(ko k)= _ —
|k0/IE|LOg (kok) On | Kekn +c . &
E__l |k| §:(§1§L) with g::(g(')i U_Fn),

i.e., in this limit, the effective potential is short ranged. and
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SN [, 1t kene Gl (MO~ - Gl i 1(4). (84

The exponenty is given by By inserting Eq.(82)

(%)
7= ﬂ- Zn 1 Zn+1
(R Y'Y I+7:
149 i) M7 M [

This interacting system describes a Luttinger liquid. it follows that

The flow of the paramete£,, in Eq. (82) can be derived
by assuming that, along each directi@nthe system is scale

invariant: Recall that Zn+1

1 1
Z, M7

(™7

or Z,~

. 1
~ KA po- &
G(hné) zw: © )\_ﬁ Gunl(é) i.e., for this system, the residug, of the one-particle pole

vanishes, ag—o.
f do e/kFhne f G” n(0). (83)
C. Long-range, transverse current-current interactions
This equation and the assumption that the theory is scale Such interactions have been introduced in &Y), with

invariant along each directiono implies the following  g,V(p)=cnlke/p|® ch:=g v 2,/kE 2, and lead to the fol-
matching property for the Green functio@s, Q) lowing bosonic propagatc(lfor [w]= [w’]):

(@1a)(K) roy(K))a=(2m) 184 V(k+ k')

k2+( Upn®
\A/ k
x4 1- _d—2 . (kF) n i 2 —r(w.k)z 85
N teml2m) ( )Ht(k) G+ e k)? [© 7 Tk -
gn n n
with
ﬁ o 2 1 (kp)dl s k2 , (k)2
L =312+ \2x N A Kt (vpe k)2 | k* |
|
One finds that limp_..IT,(k) =TI} (k), with TI} (k) defined Gon(é)~ 5ﬁkF1)(§i)
in Eq. (41). Using that Iirr|\ko,k|ﬁol'[}1(k)~|k0/k|, one can i 2
see(cf. Appendix Q that the contribution from the interac- X ) P ardio* (&) /vEn) %
2m \/(Uano) +§\|

tions to the propagator yields a singular dependence, as

k.| —0 and (k[kol)<lk,| As discussed above, we then o ¢ ion s 1(¢,) was defined in Eq(82. The o

have to average over the perpendicular momkntan order L ' _

to determine theeffective action, SI for the modescp ence of the mteractl[(()crjw o)n the electron propagator is sup-
’ —[(d=1)—a]

propagating alondw]. The somewhat tedious calculatlons pressed by a factor,, , @Shp—2. From the match-

are deferred to appendix C. Here, we only describe our relnd condition(84), it Tollows that

sults. We obtain two different regimes, depending on the Zy1~Z, and vgpi1~Ug;.
exponenta which characterizes the singularity of the inter- The system tends to a LFL.
action potential in momentum space Wyip|)~1/|p|*: (i) For d—1<a=<2, we display the result in the region

(i) For 0<sa<d—1, the bosonization calculation yields  |&|<|&l/ven:
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gl adifot (& /vpn)zZ

—Ii
Gonl(§)~ ;‘,;F”(a)(z

r gll [a—=(d=1)]/1+ «

ex[{_ulkFCg/(lJra) )\nv_ ) for |§H|>Cnan)\g

Fn
ke & N Venhp
X{ exp —uy g1 —| for coupahn>|§|> ——— (87)
Np " UFn Ke
1 vEnA 37l 1

= for ———>|§/|>—-

[ T2 g

The constant,, stands forg,v 2,/k2 %, andu, andu, are is satisfied. Further, the requirement that the system is form
positive constants depending on the dimengionf space invariant under scale transformations implies the matching
and the exponent (cf. Appendix Q. We have neglected all condition(84). This condition can be satisfied if
terms which are of lower order in an expansion\ifi* than
the leading terms displayed. Two interpretations are consis-
tent with this result: c
(1) The parameter®, characterizing the effective action
S, are all of order 1—except for the scale paramateri.e., Then it follows that
they do not flow under RG transformations. Then, the system
tends to a LFL, aa,—: for finite arguments& |, the propa-
gatorG,, , has the standard LFL form. It deviates from this
form only for very large argumentg|>v g\ & ke, where o
the results of a bosonization calculation are not religie ~ 1he flow of the parametéz,, cannot be derived in the same
member that, because of the linearization of the pieces of th&@y: for this, one would have to know subleading correc-
Fermi surface contained in the box@s,, the results of the tions to the argument of the expon'ent.la,I’ in £87). Hence
present calculation are only reliable for argumengg the system displays “non-Landau-liquid” behavior, as sug-
smaller thar,,). gested in Ref. 3. o _ _
(2) The parameters of the s, flow under RG transfor- The result of 'Fhe bosonization calculation permits two
mations, i.e., they are functions of the scale paramker consistent scenarios. In order to be able to decide which one

The electron propagator deviates from the standard LFlis realized in the physical system, one has to determine the

g/(1+a>v(Fdn—1—a>/(1+“>~ const.

an)\;a(afdJrl)/(lJrga) and UFnN)\;ad/(lJra).

form for finite argumentsg|, if the condition f_Iov_v of the parameter$’, under RG transformations._Pre-
liminary calculations indicate that the second case is real-
ized.
Cnan)\g~o(i) (i) For the critical valuex.=d—1 of the exponent, we
Ke find, for the electron propagator in the regi@g<|&|/ve,

exp(—vkgC, In2|§H|) for |§H|>CnUFn)\n

i\
_ «d-1) 1) i ardigo+ (& fopn) 1 1
o€~ 00k (gl)(ZW)e g [ for CnUFn)\n>|§u|>k_’ %
F

&l

wherev is a constant of order one. D. Comparison of our results with those in Refs. 3 and 4

As for a>d-1, we can distinguish two possible sce-  one of the conclusions of our work is that a naive appli-
narios, consistent with the results of the bosonization Calcuc':ation of bosonization, without a careful analysis of the

lation: If the parameters,, ,vg,, are not functions of the scale enormalization flow of couplings, will in general lead to
parameten,, the propagator has the standard LFL form, asyyong conclusions. Following the ideas presented in Refs. 1,
Ap—°. In order to obtain a non-LFL behavior, the producty g 9 and 14, we sketched how Wilson-type
Chvenhn Of parameters must be of order one. Then, therenormalization-group methods can be applied to Fermi lig-
matching condition(84) requires that,,.;~c,. By the first  uids (see Sec. )| albeit only for short-range interactions. A
condition, it follows thatvg,~ 1/\,,. Again, in order to de- careful renormalization-group analysis for Fermi liquids with
cide which one of the two scenarios is realized, the flow oflong-rangeinteractions is very demanding, technically, and
the parameters under RG transformations must be investgoes beyond the scope of this paper. For these fascinating
gated. Preliminary calculations point in the second directionsystems, we have, however, worked out what a combination
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lof bosonization and a self-consistent ansatz for the form of — g
the effective action on an arbitrary scale predicts about the V(¥ ¥)=-3 J d?& jH(&)jH(&), (A2)
renormalization flow of the parametets: (renormalized
Fermi velocity andg (four-body couplingsin the effective  where the one-dimensional currernitsare defined by
action.

The authors of Ref. 3 do analyze Fermi liquids with long- (&) =—11¥(&) vy (§):u=0,1.
range interactions, but by using elaborate diagrammatic tech- = i
nigues(that involve certain approximationsather than by This is the Tom(_)naga-Lu_ttlnger model.
carrying out a Wilson-type renormalization-group analysis Before studying the interacting system, we recall the
(which would presumably be more reliapléheir conclu- bosqnlz_atlon formulas_f_or the free syste_m. Identlfylng the
sions about the large-distance, low-energy behavior of thérmionic current density” with the bosonic expressions
electron propagatoqualitatively agree with ourgwhich are i
based on a self-consistent use of bosonization methods, as SO W (e
described above for an arbitrary numbeN of electron fla- O =] (eid) Jm © G (A3)

vors, and they agreguantitatively with ours in the limit .
N—0. This does not mean, however, that bosonization meth2"'c ©an reproduce the Green functions for the currents from

ods can only be applied in the limN—O. It just says that, the ac'gorS(dgo) of the free, massless Bose figfdwhich is
before they can be applied reliably, one must control thed'Ven by
renormalization flow of couplings in the effective action,
thereby taking into account, e.g., the curvature of the Fermi§0(d¢):%J d2¢ aﬂ(p(g)g#@(g):%j de(&)A\*de(§).
surface.

The methods of analysis used in Ref. 4 are based on (A4)

bosonization, too, just like ours. However, in Ref. 4 the ap-n this appendix, we write the actiof(¢) as a functional,
proximations(e.g., neglecting effects due to the curvature ofg(d¢), of derivatives of the bosonic field. Here we have
the Fermi surfaceinvolved in bosonizing Fermi liquids in jntroduced the one formg=a,¢d¢”, and* denotes the
d=2 dimensions remain in the shade. In particular, it mayHodge star operation. We use standard notations of differen-
not have been realized in Ref. 4 that one must control thgja| calculus. In Ref. 20 one finds a brief summary of the
renormalization flow of the couplings in the effective actionmain definitions.(Note that, in Ref. 20, we use slightly
of a Fermi liquid, before one understands the domain of vap,ggified conventions: especiallyp— ¢: = ¢/2\/; and
lidity and the limitations of bosonization. =i )

In order to express the Green functions of the fiel@é (

in the bosonic theory, one has to introduce disorder fields
We thank P.-A. Marchetti and M. Seifert for many helpful D(y,q): For nonzero integergy={q),... g™}, satisfying
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discussions. =M,q"=0, we define the one form
n
APPENDIX A: BOSONIZATION OF THE ELECTRON L o
PROPAGATOR IN 1+1 DIMENSIONS Hm(g)'_;l I0,q0(£), (AS)

In this appendix, we review the bosonization of a relativ-yith
istic 1+1-dimensional electron systetyy using functional
integrals Our aim is to summarize the procedure for calcu- T ace=17"9" e dev: = — (s gA—152
lating the electron propagator. The general ideas of the 7q0(8) v (&)de™ \/;q [ ’7(')](5)
bosonization technique have been presented in Refs. 19 and 1 w_ (i
_ W& -m v _
20- = q M2 & v dg y /.L,V_O,l.
i i - id- 2w~ =2
We study a #1-dimensional electron system in Euclid
ean space-time, whose action is given by

Here we use that

SO(‘I’,‘I')=f d?€ W(&) y*a, V(). (A1) d,0,A7&)=-87(9),
. , ie., (A6)
The field¥ denotes a two-component Grassmann field, and
P:=¥*,° where¥* is an independent Grassmann field. 1
Choosing the chiral representation of thenatrices, i.e., AN =~ o In|&|.
a
Y=o Y=o yo=—iyPyt=¢3 . . ; .
L 2 ' In physics terminologyll, , is the vector potential of a mag-
g nhetic vortex of chargey at the pointy=(»,,7,). The field

. . . ) strength is given by
holomorphic modes, respectively, which are the Euclidean

analogs of left and right movers, respectively. drl = Jma* S(E— 7).
We shall perturb the system by a current-current interac- naé) \/—q (&=m)
tion of the form If D is a two-dimensional domain, then

the two componentsig) of ¥ are the antiholomorphic an
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if neD
de,]q(g) 0 otherwise.

The one formll, ,
multivalued functione,, (9, i.e.,

I, o(&)=da, 4($). (A7)

By identifying the Euclidean space-time with the complex
plane £=(&.&)—>é=i&y1 ¢, the functiona, (¢) can be

represented as

q —
=———=argé— 7). A8
ya(§)= = 5 =g (A8)
The expectatlon value of a disorder
D(7.q)=I1{_,D(»",q™) is given by
'D()De—g(d<p+l_[z]’g)
(D(7,9))s= . (A9

DepeS(de)

ren

On the right-hand side of EqA9), a multiplicative renor-

can be written as the derivative of a

field
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where A=-4,d,, f denotes a test function, and, is a
positive constant. It is straightforwagdf. Refs. 19 and 20
to verify that

0

n 0 n
<E ¢2i<§i)> =<2 ¢2i<¢;§i>> :
i=1 E i=1

B

One can show that the same bosonization identities hold
for the interacting system, with the interactidhgiven by
Eq. (A3) (cf. Ref. 20. The only difference is that expectation
values of bosonic operators are taken with respect to the
interacting system, i.e.,

Do _
<(.)>\B/;=f Z_Ve [2]d¢ 9, 0(£)d,0(E)FV(dR)]( )
(A13)
where the functionaV/(d¢) is obtained from the functional
V(¢; ) by using the identitie$A3), i.e.,

Vide)= o [ @€ 00,00 (A10)

One obtains, e.g.,

malization is necessary, in order to eliminate an infinite

“self-energy.”

Correlation functions involving disorder fieldS(#,q)
and functionals,F(d¢,¢), depending on the bosonic field
and its derivativede are defined by

(D(7,9)F(de,¢))e

f’DgoF(qu—H pta,qle
7.9 o

f DypeS(de)

~S(de+11,,9)

ren
(A10)
For the electron fields, the following identifications hold:

¢1(§)H(—)1/— 2 D(£,1):6" ™90 =1y (9;8),
1 o
tﬁz(f)HW D(£,1):e7 "9 = 1y(;6),
Y1 (&)

1 o
2 D(&,—1):e V@ =yt (¢;€),

1 L=
wz(swm D(&,—1):e" ™9 =195 (;),

1

(A15)

(W@l m) =5 @97

where

Similarly,

1

* ___i iarg é—7)
W) V=g €T

(Al6)

The exponenp describes the decay of the electron propaga-
tor for large arguments. The dependence on the coupling
constant is a characteristic feature of Luttinger liquids.

APPENDIX B: CONSISTENCY
OF BOSONIZATION FORMULAS
In this appendix, we show on the example of

(J 10,16 J [wy)()° that the bosonization formula&?7)—
(70) for the electron fieldss? imply the bosonization formu-

(ALD) las (43)—(45) for the electron currentg;,; and j,;. The
with the convention that, in a product composed of severafjeneralization that this statement holds for arbitrary products
¥,’'s, we write the disorder fields to the left of all functionals of current densities evaluated in the noninteracting ground
depending onp. Normal ordering of exponentials is defined state is straightforward.
by The calculation of expectation values of products of cur-
rent densities in the interacting ground state is organized as a
perturbation expansion in powers of the set of coupling con-
stantsg,(w-w’) and the inverse scale parameber’. For

@ [0%€ (8)1(8): — gi[0%€ ¢(&)1(£) (WD F(£)(A+mg) ~H(8)
(A12)
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systems with interactions of the form given in B§0) [i.e.,  current densitiegy,; and J [, in the noninteracting ground
interactions which can be expressed in terms of the currerdtate, where our statement applies.

densitiesj,; and J ,;, cf. Eq.(53)], such an expansion re- _By inserting Eq. (35, for the expression
duces the calculation to the task of evaluating products of j ,, () J [« ](77)>° one obtains
1 2

Uto(OJ ()= 2 {eleerenteheroa ey, () g, (1107, () o, (1))°

wi ,wéeS+
@M N0z g (£), ()00, (1) hugy(1)1)°
@M ke g () ()10, (1)t (1)1)°

+elkeM o en ke om0y () 4,1 (8): (1) Py (1))

=] ek eMem e &y (£)i, (7)Ao (EU5 (M)0F 8, 0, 2 RO eDE D

wleS+

XU (O g (1) X W (W5 (1)°+ By 0, 2 elkeN@r—en(E=

o)ieS+

XU, (), (M) X W (£, (1)) Nz e ED YT (&), ()X, (E) P, ()°

In order to simplify these expressions we can apply a “dis- By applying this lemma to the expressions appearing
cretized” version of lemmd3.2]) in Ref. 16: above and by insertin? the bosonization formul@®—(70)

Lemma For a decomposition of the surfacd ! of the  for the electron fieldss* , we obtain the following formula:
d-dimensional unit spheréwith d>1) into congruent, qua-

dratic patches with sides of length\lwe define the set — — 0 ke |91 1
of d-dimensional unit vectors @,  (J1eg(O)Jw)(m)=—4| 5 Bury oy Oy~ ke (EL (1)
i=1,... N=Vq(S¢1)/\9"1 pointing to the centers of these
patches. Given a vectooje M and some test function X (€0.&) ;‘PFwﬂ)%l”
f(w; ;€), one finds, in the limitl\—co, the following asymp- '
totic formula: X (70,7 ;‘PFwﬂ))%ﬁ’
) X |
J A% 2 f(@ 918k (& (w)elEe )] (V€013 0l0y)
R wieM r
X wt)l\\( 0,7 1@&1&]))%?’ (BZ)

. -1 1
- fRdddgng f(@138)) du o, 5gj vA(gi("J))JFO(X”’ where ¥ (&.4:¢l,) is a short-hand notation for the
' bosonized expressions of the radial electron fighjg&,,&)
(B1) specified in Eq.(69). It is a straightforward calculation to
verify that Eq.(B2) is identical to the following formula:

where
L . . e k d-1
§i(o).=§—(§o0)o <J[wl](§)J[w2](77)>O~—4(i 5“)1,“,25?,);,][(F(§l(w1))
and
| -<51¢le](fofu)?2¢ng](770177\|)>Sf
5gj_r]/-\(§J_(a'j))::f[ A12),(A12)]® g9k e,
(=A12),(A12)]7

2

Here, A<\kg denotes an arbitrary momentum which can be =
chosen to be equal th:. The proof of this lemma is ana-

loguous to the proof of the continuous version of the lemma

presented in Appendix C of Ref. 16.

—2 [ ke (d-1)2
e \ 27

N

X (310101 (£) 72010, (7)), (B3)
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where we use EqA6) for the propagator of the radial Bose of the radial electron fields” ,, we have to determine the
field ¢[,(&.&), and Eq.(72) to deduce the second part of the effective actionS}(¢f,;) of the bosonic fieldg(,; propagat-

equation. Formul&B3) reproduces the bosonization identity ing along the directiofiw].

for the current density,,, cf. Egs.(43)—(45). Hence we have The propagato(fp[w](k)gp[w](k’»n of the bosonized in-

verified our claim, thus showing the consistency of theteracting system is given in E¢85). It can be written as
bosonization formulas for the electron fields and the current

densities.
(@10)(K) @roy(K))p=(2m) 87159 D(k—K")

APPENDIX C: CALCULATION OF THE ELECTRON
PROPAGATOR FOR A SYSTEM WITH LONG-RANGE,

n
TRANSVERSE CURRENT-CURRENT INTERACTIONS X ké-i— (VEno- k)2 Ic[w](k)'
In order to apply Eq(77) to the calculation of the propa- (CY
gator
G (é0= 10.&— 1) = = (Vual &0.ED Voo 10, 1) )1 with
|
d-1 2 1,2
2 1 kF ~ k 1 ko (w k)
+t—— | — Vi |—|||— - | ()*~ 1- 8yq.0r
)\g—l 27T (2#) gn ( )\n )|:d_1 w’§5+ kg+(Uan/k)2 (( ) k2 ( gq, )
Kiuy (k)= (C2

k

An

a1 2 " 12
2 1 [k - 1 k (o' ,k)
+ﬁ_(_':) gnV( )_ > 2—0,2((‘”/)2_ 2 )
Ny 27\ 27 d—1 . cst kgt (vpnw'k) k

One observes that the functioﬁfw](k) is bounded by &KX {‘w](k)sl, for arbitraryk. In explicit calculations, expressid?2)
for IC[‘w](k) is not convenient. We replace it by

1+g,V —)H;(k)
Kf, (k)= " (C3)
. 1+g,V Mtk + —— 2 [ X Tk (w)? (wrk)”
—_ —_— —_— —_— o —_
In n " )\gfl 27\ 27 I(cz)(v,:nwk)2 k2

which has the same asymptotics for small moméomslc[‘w](k). The functionII }(k) has been defined in E@42), with
UV—UEnp-

The actiQnSI(¢[w]) of the bosonic fielde(,,(k) which reproduces the propagatt®1)—but with the functionC(k)
replaced byK(k)—is given by

Sh( Plo) =3 fRXBd'ddea?[w]( —K)[(K5+ (v ank)z)(EFw](k))fl] @[w)(K). (CH
We define

(KL (k) L= 147, (K, (C5)

with

2 () B e

xﬁ*1; 2 ké-k(v,:nwk)2 k?

T (k)= :
g, 'v!

+1T(k)

n

The effective actiorSI(goEw]) of the modes propagating along the directies)] is deduced frofm the actioﬁl(go[w]) by
averaging over the momenta perpendiculafad One obtains

kg/2
STetu) =] ko " 11 OLG+ (0 A+ g0 D) co



55 BOSONIZATION OF FERMI LIQUIDS 6813

with

1
n . d-1 n
t[w](ko,kn)- = Tkal ﬁled kJ_T[w](k)-

For small momenta kj,k;) and a large scale factax,, the calculation yields the following asymptotic formula for
tr.1(Ko kp:
[w]\R0 R

tFw](koiku)MT Fa)](kO’kH)

( a(d) ke for 1>k |>i
K+ (venk))? [kol N9~ NG
o zk—gzkpcnkﬁ’(d’“ d 1+a—d ( )\dﬁcln||§0|2)(d1a>/<1+a>_1} o
Ko+ (venky) l+a \1lt+a l+a w42
1
\ for )\—g>|cnk0|

where d=2 and 3 is the dimension of spacey(d) is a positive constant of order unity, and the constants
ch:=(v,/k& 1g,>0 anda, with 0<a=<2, parametrize the interaction potentmN(lP|)=cn(kF/|p|)“.

For 1>|c ko|>1/\ ¢, one observes that" takes values between\y ! and N9 @~V If a<d—1, it follows that the
interactions can be neglected in the limjt—. If a>d—1, the interactions become important as sookgs of order 1x 41
or smaller. In the range 1£>|c.Kkq|, Eg. (C7) can be rewritten as

r 3 - |k0| (d=1-a)/(1+a)
di(1+a)| 1700 _
b(d,a) ira d keCp ( X, for a>d—-1
T (ko k) =c(d) s ! N (o)
[w]\ PO ] kg+(ank\\)2 2 )\g_lgn|k0|
— m kFCn In m?z for a=d-—1
L b(d,a)kec A&~ @" Y for d—1>a=0.

For a<d—1, the effect of the interactions is suppressed by a_ We again write the actiorSI(cpEw]) as a functional,
factor 1A9717 % For a=d—1, one observes a singulép SI((?;L‘PE(U]). of the derivatives?lL(pEw]. One has that
dependence of the functidn

Using the methods presented in Appendix A, the calcula- ST I [olpy— gT( ! S Trylel
tion of the radial electron propagators is straightforward. Fol- S 0oy 120" =Snlepu) + S nlllzo),
lowing Eq. (77), the large-distance asymptotics of, e.g., thewhere the actiois[(¢],,) is defined in Eq(A7). The contri-
propagatoiG !}, is obtained by evaluating the expression bution Sh(ITk%) of the disorder fields is given by

~ Ke/2 _ VEn
S I(H[z%])z - Wf 'dkoj dk[e*¢—1] I+ (0pnk)2
e~ \DEnm(al g0~ al30) R —Kel2 ot (VEnk;

1
(W51 (O) a0~ Nz

™ X (L+17,5(K)), (C10
XJ Dol e—E}(oMEw]Jrnffm) and the contribution of the vertex-operators in EG9)
(o] amounts to
f Il o II
X e W0 gl v“Fn”“’[w](O):}, f D"Zogw] e~ Sn e w): @ I PFRTH 4](0): - @l PFRT| 4](0)-
n
(C9
1 )
with {=(&.(&/ven)). For each rajfw], the vector potential = \/? exr{wf 2k e*¢—1]
I1%,5,, and the functiorely are given in Eqs(A5) and (A8) ™ Rxke
in Appendix A. However, in contrast to Appendix A, here Ven 1
we display the Fermi velocit explicitly. Then, on the X . C11
play YFn p y ’ kg‘f‘(l)':nku)z 1+tFw](k)) ( )

right-hand-side of Eq4A5) and(A8), there is an additional
factor 1Alug,. Note also the supplementary factgvg, in ~ We display the behavior of the fermionic Green function
the exponent of the vertex operators. G !jn(g) in the following two regions:
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[z (fo, §'>cx </},

|

In region |, the propagato® ”1n(§) is obtained by evaluating the integrals in E¢S810 and(C11) by using the asymptotic
form (C9):

n=(z (fo, f‘) [dJ<cahi and |&ol<|-

Fn

| ardiég+ (€ /vep))

(WD rn(0))~ ( .

( 1+« a—(d—1) Vené
di(1+a)y [a=(d=1))(1+a) | Aa—(d—1)]/(1+a) néo
exp(—ukgecs AL ¢ a=(d=1) cos{ T arcta 3
di(L+ —d venéo
|§| (1*“cog —— arcta ; for 2=a<d—1
I
X\ exp(— kaCn In?|¢])  for a=d—1
1 FCn , — A1+ w(kee, (NG *) 7L
NE 1+Wﬂﬂ &+ (vendo)
Fn n
L X[554_(Uano)z]f(w/8)(kpcn/>\ﬂflw) for d—1>a>0,
(C12
where
T=c(d,a) 1o T @ d v—c(da=d—1) =
=eldhe) T g 17q ad v=c(de=d-1)4.
sinm| ——
1+«

As it stands, the limit of the propagator fad—1 is singular and does not reproduce the formuladferd—1. The reason
is that, fora>d—1, there is a subleading term, not displayed in E{l2), which becomes leading fak=d—1. Idem for
atd—1.

In region Il, ford—1<a<2, one finds

- Apd—1
. e~ untke A EIED  for ¢y hds| g5 =
- F
(oD Por(0))n~ ( ) it lory pnd-t . (c13
— for — 1 —s>lgl>—.
1€l Ke 4l Ke
And, for O<a<d-—1,
I i gl ardiéo+(§)/vEn)) 1
(Y1) $01(0))n~ OIS TFn m for |§ul>k—F- (C19
In Egs.(C13 and(C14), we have omitted subleading terms in an expansion i .1/
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