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Bosonization of Fermi liquids
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We consider systems of nonrelativistic, interacting electrons at finite density and zero temperature in
d52,3, . . . dimensions. Our main concern is to characterize those systems that, under the renormalization
flow, are driven away from the Landau Fermi-liquid~LFL! renormalization-group fixed point. We are espe-
cially interested in understanding under what circumstances such a system is a marginal Fermi-liquid~MFL!
when the dimension of space isd>2. The interacting electron system is analyzed by combining
renormalization-group~RG! methods with so called ‘‘Luther-Haldane’’ bosonization techniques. The RG
calculations are organized as a double expansion in the inverse scale parameterl21, which is proportional to
the width of the effective momentum space around the Fermi surface and in the running coupling constantgl ,
which measures the strength of electron interactions at energy scales;vFkF/l. For systems with a strictly
convex Fermi surface, superconductivity is the only symmetry-breaking instability. Excluding such an insta-
bility, the system can be analyzed by means of bosonization. The RG and the underlying perturbation expan-
sion in powers ofl21 serve to characterize the approximations involved by bosonizing the system. We argue
that systems with short-range interactions flow to the LFL fixed point. Within the approximations involved by
bosonization, the same holds for systems with long-range, longitudinal, density-density interactions. For elec-
tron systems interacting via long-range, transverse, current-current interactions, a deviation from LFL behavior
is possible: if the exponenta parametrizing the singularity of the interaction potential in momentum space by
V̂~upu!;1/upua is greater than or equal tod21, the results of the bosonization calculation are consistent with a
MFL. @S0163-1829~97!03511-X#
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I. INTRODUCTION

In this paper, we consider systems of nonrelativistic el
trons at finite density and zero temperature ind52,3, . . .
dimensions. The interactions between electrons are desc
by two-body potentials or by current-current interaction
The Cooper channel which drives the BCS instability
turned off ~e.g., by assuming that the Fermi sphere of
noninteracting system has a suitable geometry1,2!.

Our main concern in this paper is to characterize th
systems that, under the renormalization flow, are driv
away from the Landau Fermi-liquid~LFL! renormalization-
group~RG! fixed point. More concretely, we are interested
understanding under what circumstances such a system
marginal Fermi liquid~MFL! when the dimension of space
d>2. This problem comes up, for example, in the study
single-layer quantum Hall fluids at filling fractionsn51

2,
1
4, . . . and, perhaps, in the theoretical description of mat
als related to anisotropic HTc superconductors~see Refs.
3–6 and references therein!.

A one-dimensional MFL~or Luttinger liquid! at zero tem-
perature can be characterized by the property that the e
tron propagator falls off likeuxu2~11h!, at large distancesuxu,
for an exponenth.0 that depends on the electron-electr
interaction and characterizes a RG fixed point. Whenh van-
ishes, the system is a LFL. In the limit of large distan
scales and low frequencies~scaling limit! the properties of a
LFL are identical to those of a free system of noninteract
550163-1829/97/55~11!/6788~28!/$10.00
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electrons~up to a renormalization of the residue of the on
particle pole and of the Fermi velocity!. In one dimension,
MFL correspond to a line of RG fixed points in the space
effective Hamiltonians~or actions! containing the fixed-point
corresponding to the free system.

In d>2 dimensions, we define a MFL to be a Fermi liqu
with an electron propagator falling off more rapidly than t
free electron propagator by at least a fractional inverse po
of the distance between the arguments, but not exponent
in the distance. Contrary to the superconducting instabil
the instabilities leading to a MFL are not accompanied
symmetry breaking, and there is no energy gap in the e
tation spectrum of such systems. Yet Landau’s picture
noninteracting quasiparticles does not apply to the physic
Luttinger liquids.

Historically, MFL’s were discovered in the context o
one-dimensional systems of interacting electrons,7 where
they appear naturally, for a large class of two-body inter
tions. The experimental observation that the normal phas
anisotropic HTc superconductors exhibits many nonconve
tional features, incompatible with LFL theory, leads to t
question whether electron-electron interactions can driv
system intwo or more dimensions away from LFL’s. The
same question arises in the context of single-layer quan
Hall ~QH! fluids at filling fractionsn with even denomina-
tors.

Recently, there have been many investigations of t
problem. Besides numerical studies, two analytic techniq
6788 © 1997 The American Physical Society
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55 6789BOSONIZATION OF FERMI LIQUIDS
proved useful in attempts to understand it: the RG meth
involving an expansion in an inverse scale parameterl21,8

which has led to a wealth of rigorous results,1,2,8,9 and the
bosonization techniques10 proposed, in this context, b
Haldane.11

In this paper, we study the stability and instability of th
LFL by using the same two methods. We propose to co
bine them to clarify the picture of Fermi liquids. We imple
ment the bosonization technique in a manner elucidating
standing in terms of the fermionic perturbation expans
and rendering the calculation of the electron propagato
large distance scales quite transparent. Our techniques a
to a broad class of two-body interactions.@We presented a
preliminary account of our results at the 1994 Les Houc
summer school ‘‘Fluctuating Geometries in Statistical M
chanics and Field Theory’’~Ref. 12!#. Next, we summarize
the contents of the various sections of this paper.

In Sec. II, we review the RG method for nonrelativist
electron systems at finite density and zero temperature
d11-dimensional, Euclidean space time, withd.1. The un-
derlying perturbation theory is organized as a double exp
sion in an inverse scale parameterl21, and in the~dimen-
sionless! running coupling constantgl of the two-body
interactions. The inverse scale parameterl21 is proportional
to the width of a shellVl around the Fermi surface. Havin
integrated out the electron modes with momenta lying o
side the shellVl , the effective actionSl for the remaining
modes describes the physical properties of the electron
tem at distance scales;l/kF or energy scales;vFkF/l, kF
and vF being the Fermi momentum and velocity, respe
tively. The running coupling constantgl measures the
strength of the two-body interactions inSl .

Given Sl , one further reduces the effective momentu
space around the Fermi surface toVl8, with l85Ml, M.1,
and calculates the corresponding effective actionSl8. This
calculation is organized as a perturbation expansion in
parametersgl andl21, assuming that they are small. Resc
ing the resulting system by a factorM , we obtain a system
that is similar to the initial one, and we can compare
relevant and marginal parameters characterizing the co
sponding effective actions. The RG method consists of
ecuting these transformations iteratively, with the aim of d
riving the scaling limit of the system, asl→`.

The underlying calculations can be interpreted in a tra
parent way by decomposing the shellVl intoN;ld21 boxes
Bv i

(l), i51,...,N, with sides of length ;1/l. The
d-dimensional unit vectorsvi , i51,...,N, point to the cen-
ters of the corresponding boxes. This decomposition imp
a decomposition of the electron fieldC] ~whereC] stands
for C* or C! into N componentscv i

] , i51,...,N, whose

Fourier modes have support in the corresponding boxes
component field cv i

] describes quasi-111-dimensional,

‘‘relativistic’’ electrons moving along the directionvi with
velocity vF . The decomposition of the electron field in
such component fields reproduces the electron propagat
leading order in an expansion in 1/l. In the noninteracting
system, the subsystems along the different directions are
dependent. Two-body interactions couple the subsyste
After rescaling, each interaction process is suppressed
d,
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factor 1/N. Hence the interacting system can be analyzed
using ‘‘large-N’’ expansion techniques.13,8,14

For systems with a strictly convex Fermi surface, sup
conductivity is shown to be the only symmetry-breaking
stability that can develop in the system. We propose to st
electron systems which do not undergo such a symm
breakdown—i.e., whose Cooper channel is turned off—
means of ‘‘bosonization.’’ The framework of the RG wi
serve to characterize the approximations involved
‘‘bosonizing’’ the system.

In Sec. III, we introduce the bosonization technique
calculating the scaling limit of the effective gauge field a
tion ~the generating function of connected current Gre
functions! for a noninteracting electron system. The effecti
gauge field action is obtained by coupling an external ga
field to the electron system and by integrating out the fer
onic degrees of freedom.

The calculation of the scaling limit of the effective gaug
field action is reduced to the calculation of the gauge fi
action of a family of independent Schwinger models, b
cause thed-dimensional, noninteracting electron syste
decomposes—to leading order in an expansion in the inv
scale parameterl21—into independent subsystems of qua
111-dimensional, ‘‘relativistic’’ fermions, one along eac
direction @v#5$v,2v%.

Gauge invariance must hold for each subsystem—i.e.
each direction—separately, and implies local conserva
laws for the associated quasi-111-dimensional current den
sities j [v]

A , A50, 1. These conservation laws imply that ea
current densityj [v]

A can be expressed as a derivative of
bosonic fieldw@v# . It turns out that, for the noninteractin
system, these fields are massless and Gaussian, propag
only along the direction@v#.

By taking the effective actionSl determined in the con-
text of a RG analysis as an input, we can apply the boson
tion technique to interacting systems too. For systems wh
Cooper channel is turned off, the electron-electron inter
tions are described—to leading order in the inverse sc
parameterl21—by an expression quadratic in the curren
j [v]
A . By replacing the fermionic currentsj [v]

A by the corre-
sponding bosonized expressions, we obtain a Gaus
bosonic theory. Because the theory is Gaussian, it can
studied more easily than the original fermionic theory whe
the interaction term is quartic in the electron fields. In t
calculation of the effective gauge-field action, this techniq
is shown to reproduce the leading order of a~fermionic!
perturbation expansion in powers ofl21. The leading contri-
butions coincide with the ones of a random-phase appr
mation. We determine the scaling limit of the effectiv
gauge-field action for systems with short range interacti
and discuss the extension of the bosonization method to
tems with long-range interactions in three examples: syst
with longitudinal density-density or transversal curren
current interactions, and ‘‘tomographic Luttinger liquids.’’

In Sec. IV, we apply the bosonization technique to t
calculation of the electron propagator at large distance
time scales. We start from an effective actionSl at energy
scales;vFkF/l and the corresponding decomposition of t
electron fieldsC] into N quasi-111-dimensional compo-
nentscv

] . We replace the actionSl by its bosonized version
introduced in Sec. III, and, for each ray@v#5$v,2v%, we
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6790 55J. FRÖHLICH AND R. GÖTSCHMANN
express the paircv
] ,c2v

] in terms of a Bose fieldw@v# . This is
accomplished by applying the well-known bosonization f
malism for 111-dimensional relativistic fermions. Howeve
one has to cope with a subtlety arising from the depende
of the quasi-111-dimensional electron fieldscv

] on the com-
ponents of the momentum perpendicular to the direction@v#.
Again, the approximations involved can be characterized
the context of a~formal! perturbation expansion in powers o
the inverse scale parameterl21. Special care is taken to dis
cuss the implications of linearizing the Fermi surface ins
the boxesBv~l!.

We verify that the electron propagator of a system w
short-range interactions tends, for large arguments, to
standard Landau-liquid form. Because of screening—wh
is reproduced by bosonization—the same result holds
systems with long-range density-density interactions.

For systems of electrons interacting via long-range, tra
verse current-current interactions, we find the possibility
a deviation from LFL behavior, depending on the exponena
which characterizes the singularity of the interaction pot
tial in momentum spaceV̂~p!;1/upua. The critical value fora
is d21. For 0,a,d21 andl→`, the electron propagato
has the standard LFL form, whereas, ford21<a<2 and
l→`, we argue that it shows MFL behavior. In the seco
case, in order to obtain a theory which is form invaria
under scale transformations, the parameters of the effec
actionSl , used as an input of bosonization, must be fu
tions of the scale parameterl. A resulting consistency con
dition determines the expected flow of the parameters oSl

under RG transformations.
The methods and results of our analysis should be c

pared with those in Refs. 3 and 4. Such a comparison
made at the end of Sec. IV. Our results turn out to essent
agree with those in Ref. 3, and add precision to those
ported in Ref. 4.An important conclusion of our analysis
that bosonization can only be used reliably in the analysis
Fermi liquids in combination with a renormalization-grou
analysis.

II. EFFECTIVE ACTION ON LARGE SCALES
AND FERMIONIC PERTURBATION THEORY

The action of a system of noninteracting, nonrelativis
electrons ind11 space-time dimensions is given by

S0~C* ,C;m!5E dt ddxFC* ~x,t !~ i ]01m!C~x,t !

2
1

2m (
l51

d

„] lC~x,t !…* ] lC~x,t !G , ~1!

wherem denotes the bare electron mass, and the chem
potential m specifies the mean electron densitynm

0 . We
choose units such that\51. In a functional integral quanti
zation, the electrons are described by two independent,
component Grassmann fieldsC(x,t)5(c↓(x,t)

c↑(x,t)) and

C* (x,t)5„c↑* (x,t)c↓* (x,t)…. The arrows↑ and ↓ stand for
‘‘spin-up’’ and ‘‘spin-down.’’

Interactions between electrons are described by an a
tional term in the action of the form
-
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2 E dt ddxE ds ddyC* ~x!C~x!V~x2y!

3d~ t2s!C* ~y!C~y!,

whereV is a two-body potential. The total action is given b

S5S01SV. ~2!

Expectation values of functionals,F~C* ,C!, of the C and
C* fields are calculated by evaluating Berezin-Grassm
integrals

^F~C* ,C!&m5

E D~C* ,C!eiS~C* ,C;m!F~C* ,C!

E D~C* ,C!eiS~C* ,C;m!

.

~3!

We work in the grand canonical ensemble, where the che
cal potentialm is held fixed. This implies that, in general, th
mean electron densitynm of the interacting system does no
coincide with the mean electron densitynm

0 of the free sys-
tem.

In order to calculate expectation values of the form in E
~3!, the total actionS is split into its quadratic partS0 and its
quartic partSV. One expands the exponentialeiS

V
in a power

series, and calculates the expectation values of the resu
polynomials inC* andC, with respect to the Gaussian Be
rezin integration determined byS0, by using Wick’s theorem.

In this paper we consider only systems invariant un
translations and rotations of space, i.e., the backgroun
described by a constant one-body potentialU(x)[U that
can be absorbed in a redefinition of the chemical poten
~‘‘jellium model’’ !.

For technical convenience, we analyze the system in
Euclidean region reached by analytic continuation in
time t to the half-planeIm[ t].0 and settingx05 i t ~Wick
rotation!. For a system at a finite temperatureT, thex0 vari-
able in the Euclidean action is integrated over the inter
@2~b/2!,~b/2!#, whereb is proportional to the inverse tem
peratureT21, and antiperiodic boundary conditions are im
posed atx056b/2. In this paper, however, we only consid
systems at zero temperature~b→`!.

Then the covariance of the Gaussian integration—i.e.,
unperturbed electron propagator—is given by

Ga,b
0 ~x2y!:52^ca~x!cb* ~y!&m

0

52E D~C* ,C!

Jm
0 e2S0~C* ,C;m!ca~x!cb* ~y!

5da,bE
R
d̃p0E

Rd
=dp

e2 ip0~x02y0!1 ip~x2y!

ip02«m
0 ~ upu!

,

~4!

where«m
0~upu!5~p2/2m!2m is the energy of a free electron

and the indicesa andb label the spin orientations. We us
the short-hand notation* d̃p(•):5*dp/2p(•).

In the ground state of the unperturbed system, all o
particle states with wave vectorsp satisfying upu<kF
5 1

2A2mm are occupied, and the electron density is given
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nm
052E =dp u~kF2upu!. ~5!

The Fermi surfaceSkF
d21 is defined as the surface of th

sphere, and the Fermi wave numberkF sets the fundamenta
momentum scale of the system.

For the main results and conclusions of this paper to h
the spherical symmetry is not essential. Our analysis app
as long as the Fermi surface is strictly convex. The situa
changes, radically, however, for systems of electrons h
ping on a square lattice, at half-filling, where the Fermi s
face contains flat, parallel faces giving rise to ‘‘nesting ph
nomena.’’ In addition to the superconducting instabili
other instabilities like charge- or spin-density, wave instab
ties can occur, and their interplay can lead to rather com
cated phenomena. Such systems can be analyzed by
methods similar to those described in this section, but th
properties are not yet fully understood.

We are interested in universal large-scale and low-ene
properties of electron systems, i.e., in the so-called sca
limit of such systems. The scaling limit can be construc
by using RG techniques which are based on successi
integrating out the modes of the electron fieldsC* andC
corresponding to wave vectors far from the Fermi surfa
with the aim of deriving an effective action for the mod
close to the Fermi surface~the energy vanishes for mode
whose momenta lie on the Fermi surface!.

An alternative way to obtain some ‘‘nonperturbative
large-scale and low-energy information about an elect
system consists in using the so called Luther-Haldane~LH!
bosonization technique.10,11,15However, for electron system
in more than one space dimension, LH bosonization is no
exact method, i.e., it does not exactly resume the pertu
tion expansion in the coupling constantg of the quartic
electron-electron interaction.The aim of this paper is to in
corporate the bosonization technique into the system
framework of the RG, in order to estimate the effects of
approximations involved by ‘‘bosonizing’’ an electron sy
tem in more than one space dimension.

In general, RG calculations for interacting electron s
tems require assuming that the coupling constantg of the
quartic electron-electron interaction is small. For on
dimensional systems, the calculations were carried out a
time ago~for a review, see Ref. 7!. In more than one spac
dimension, the situation is more complicated. However, d
ing the last few years, there has been substantial prog
accomplished by introducing the inverse scale param
l21, proportional to the width of the effective wave vect
space around the Fermi surface, as a supplementary ex
sion parameter.8 In this way, the dominant contributions t
the scaling limit are obtained in a natural manner.

Here we sketch a version of the RG method for elect
systems in more than one space dimension based on a d
expansion inl21 and the running coupling constantgl ,
which measures the strength of electron interactions at
ergy scales;vFkF/l, for original results, see Refs. 1, 2,
and 9, and for reviews, Refs. 14 and 12.~An alternative way
would consist in artificially introducingS different species of
electrons and to organize the perturbation expansion in p
ers ofl21 andS21 or S, for S→` or S→0, respectively; see
Ref. 3.!
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We adopt a Wilson-type formulation of the RG, and a
complish the mode reduction in momentum space. The e
tron fieldsC* (x) andC(x) are expressed in terms of the
Fourier modes

Ĉ~p!5E dd11x eipxC~x!,

Ĉ* ~p!5E dd11x e2 ipxC* ~x!,

with px:5p0x02px.
We assume that, for a sufficiently small value of the

mensionless coupling constantg, there exists a large scal
factorl0@1 ~with l0→`, asg→0!, such that, in a first step
the integration over the electron modesĈ(p) and Ĉ* (p)
with momentap outside the shell

Vl0
:5H pPRd, Up2kF

p

upuU< kF
2l0

J ,
of width kF/l0 around the Fermi surface, leads to aneffective
action that has essentially the same form as the original
tion S. More precisely, the effective action for the remainin
modes with momenta inside the shellVl0

is given by

Sl0

eff
„Ĉ* ~p!,Ĉ~p!…52 lnE

p8PRd\Vl0

D„Ĉ* ~p8!,Ĉ~p8!…

3e2@S0~Ĉ* ,Ĉ;m!1gSV~Ĉ* ,Ĉ!#1cte.

~6!

We assume that

Sl0

eff
„Ĉ* ~p!,Ĉ~p!…;S„Ĉ* ~p!,Ĉ~p!….

In other words, for sufficiently small coupling constan
~,1/l0

2!, possible instabilities develop only at energy sca
smaller thanvF(kF/l0); in Ref. 1, it has been proven rigor
ously that this is true for a two-dimensional system w
short-range interactions.

Given Sl0

eff , we wish to determine the effective actio

Sl1

eff on a lower-energy scale;vF(kF/l1), wherel15Ml0,

M.1, by integrating out the modes in the shellsVl0
\Vl1

.
Functional integration leads to a perturbation expansion
Sl1

eff , with a fermion propagator determined by the quadra

part ofSl0

eff .

In order to illustrate characteristic features of the result
perturbation theory, we determine the unperturbed elec
propagatorG0(x), defined in Eq.~4!, for large valuesx5lj
of its arguments, wherej;1/kF andl→`. One finds

G0~lj!5S kF2p D d21E
S1
d21

dd21v eikFvlj

3E
R
d̃p0E

2kF/2l

kF/2l

d̃pi

e2 i ~p0lj02pilv•j!

ip02vFpi

3F11OS 1l D G , ~7!
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cf. Ref. 16, wherev denotes ad-dimensional unit vector
~vPS 1d21!, and the Fermi velocityvF5kF/m is given by the
linearization of the energy function «m

0~kFv1p!
5vFup•vu1O~p2! around the Fermi sphere. For large arg
ments~;l! of the electron propagator, only momenta insi
the shellVl are important.

One can subdivide the shell Vl into N
5(l/kF)

d21Vol(SkF
d21) disjoint, congruent blocksBv( i )(l)

with sides of length;kF/l, centered at the pointskFv( i ),
i51,...,N, on the Fermi surface, as indicated in Fig. 1. T
endpoints of the unit vectorsv( i ), i51,...,N, form a regular
grid onS 1d21.

This discrete decomposition of the shellVl into N boxes
B v

( i )~l! yields a formula analoguous to Eq.~7! for the large
distance behavior of the electron propagator,

G0~lj!5(
i51

N

eikFv~ i !ljE
R
d̃p0E

B̄v~ i !~l!
d̃dp

3
e2 i ~p0lj02plj!

ip02«m
0 ~kFv~ i !1p!

F11OS 1l D G , ~8!

with B̄v( i )(l):5$q2kFv( i ),qPBv( i )(l)%.
The energy function«m

0 of the unperturbed system can b
written as

«m
0 ~kFv~ i !1p!5vFpi1@~p'!21~pi!

2#, ~9!

where the momentap are supposed to lie in the bo
B̄v( i )(l), with pi :5piv, pi5~v•p!, andp' :5p2pi . Com-
pared to the first, linear term, the quadratic contributions
of higher order in 1/l, and one is tempted to neglect them
Neglecting the dependence on the perpendicular momentp'

amounts to replacing the piece of the Fermi surfa
SkF
d21ùBv( i )(l), in the boxBv( i )(l) by a plane, cf. Fig. 2.

This approximation is harmless as long aspi@(kF/l)
2.

That is,given the decomposition of the shellVl into boxes
Bv( i )(l), one can neglect the corrections to the linear part
the energy function«m

0 in the propagator, Eq. (8), as long a
one only integrates out modes with momenta pi@(kF/l)

2.
After having linearized the energy function«m

0 , Eq. ~8!
can be reproduced by decomposing the electron fieldsC*
andC into N independent componentsCv( i )* andCv( i )

FIG. 1. Subdivision of the shellVl into N disjoint, congruent
blocks Bv( i )(l), centered at the pointskFv( i ), i51,...,N on the
Fermi surface.
-

e

,

f

C* ~lj!'(
i51

N

e2 ikFv~ i !ljl2d/2Cv~ i !* ~j!,

C~lj!'(
i51

N

eikFv~ i !ljl2d/2Cv~ i !~j !, ~10!

with propagators

2^Cv~ i !~j !Cv~ i !* ~d!&5dv~ i !,v~ j !E
R
d̃k0E

B̄v~ i !

d̃dk

3
e2 i @k0~j02h0!2k~j2h!#

ik02vFv~ i !k
.

Here ' stands for ‘‘equal to leading order in 1/l’’ and
B̄v( i ):5B̄v( i )(1).

The Fourier modes of the component fieldsCv( i )
] (j), i.e.,

Ĉv( i )
] (k0 ,•), with C]5C or C* , have support in the boxes

B̄v( i ), with sides of length;kF , and their propagators are
given by

2^Ĉv~ i !~k0 ,k!Ĉv~ i !* ~k08 ,k8!&

5dv~ i !,v~ j !~2p!d11d~d11!~k2k8!

3
1

ik02vFv~ i !
•k

1B̄v~ i !~k!, ~11!

where

1B̄v~ i !~k!:5H 1, kPB̄v~ i !

0 otherwise.

Note that the momentak in Eq. ~11! are related to the mo-
menta p in Eq. ~8! by the scale transformationp5k/l.
Whereas the electron fieldsC]~x5lj! are functions of the
rescaled coordinates~j!. In the rescaled system, the Ferm
surface has the radiuslkF , and the boxesB̄v( i ) cover a shell
V of thicknesskF around the Fermi surface.

Equation (10) shows that, in order to describe the large
scale physics of the unperturbed system, the electron fie,

FIG. 2. Linearizing the energy function«m
0~p! in the electron

propagator amounts to replacing the piece of the Fermi surfa
SkF
d21ùBv( i )(l), in the boxBv( i )(l) by a plane.
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55 6793BOSONIZATION OF FERMI LIQUIDS
C* and C can be decomposed into N;ld21 components
Cv* andCv , which propagate only in the direction perpen
dicular to the Fermi surface.

We now return to the interacting system. After havi
integrated out the modes with momenta inRd\Vl0

, we can
apply the decomposition~10! to the remaining electron
modes in the effective actionSl0

eff
„Ĉ* (p),Ĉ(p)…, the error

being of order 1/l0. According to the assumptions state
above, the effective actionS0

eff[Sl0

eff at an energy scale

;vFkF/l0 then has the form

S0
eff5S0

21dS0
21S0

41higher-order terms, ~12!

with

S0
2'(

v
(

s5↑,↓
E
Iv

d̃d11k
21

Z0
Ĉv,s* ~k!

3~ ik02vF0v•k!Ĉv,s~k!, ~13!

dS0
2'(

v
(

s5↑,↓
E
Iv

d̃d11k l0

dm0

Z0
Ĉv,s* ~k!Ĉv,s~k!,

~14!

and

S0
4'

1

2

kF
12d

l0
d21Z0

2 (
v1 ,...,v4

(
s,s8

E
Iv1

d̃d11k~1!•••E
Iv4

d̃d11k~4!

3dv11v2 ,v31v4
d~d11!~k~1!1k~2!2k~3!2k~4!!

3g0
s,s8S vI ;

1

l0
kI D Ĉv4s* ~k~4!!Ĉv3s8

* ~k~3!!

3Ĉv2s8~k
~2!!Ĉv1s~k~1!!, ~15!

where vI :5$v1,v2,v3,v4%, kI :5$k1 ,k2 ,k3 ,k4%, and Iv
stands for the integration domainR3B̄v .

For small values of gl0
2, the parameters

vF0 ,Z0 ,g0
s,s8@vI ;(1/l0)kI # are renormalized only weakly

with respect to the parametersvF ,Z51,gV̂ in the original
action. The set of dimensionless coupling functio

g0
s,s8@vI ;(1/l0)kI # is related to the Fourier transform
gV̂~k/l0!, of the original interaction potential by

kF
12dg0

s,s8S vI ;
1

l0
kI D'g0d

s,s8V̂S kF0~v42v1!

1
1

l0
~k~4!2k~1!! D . ~16!

The Fourier transformV̂ of a short-rangetwo-body potential
V is smooth in momentum space, so that—to leading or
in 1/l0—we can neglect the dependence on the small m

menta. Thus the coupling functionsg0
s,s8@vI ;(1/l0)kI # in Eq.

~15! can be replaced by a set of coupling consta

g0
s,s8(vI ).
s

er
-

s

For along-rangepotential, whose Fourier transformV̂(p)
is singular in momentum space, i.e.,V̂(p);1/upua, with
a.0, we set

kF
12dg0

s,s8S vI ;
1

l0
kI D

'H g0ds,s8V̂„kF0~v42v1!… for v4Þv1

g0d
s,s8V̂S 1l0

~k~4!2k~1!! D for v45v1.

~17!

We first restrict our analysis to short-range potentials; co
ments about long-range potentials will be made at the en
this section.

In general, a quadratic termdS0
2 of the form given in Eq.

~14! is generated. It displaces the origin of the ener
spectrum—i.e., the Fermi wave number—
l0kF0'l0„kF2(dm0/vF0)…. Under the condition that
l0(dm0/vF0)!kF , we can absorb this term in a change
the parallel momentum,ki→ki85ki1l0(dm0 /vF0), obtain-
ing

S̄0
2:5S0

21dS0
25(

v
(

s5↑,↓
E
Iv8
d̃d11k8

21

Z0
Ĉv,s* ~k8!

3~ ik082vF0vk8!Ĉv,s~k8!. ~18!

Thus the propagators obtained fromS̄0
2 are equal to the

propagators determined byS0
2, except for a small displace

ment of their support,B̄v→B̄v8 .
By ‘‘higher-order terms,’’ in Eq.~12!, we mean contribu-

tions corresponding to higher orders in the Taylor expans
of the coefficient functions of the quadratic and quartic ter
in the momentum variables, or contributions involving mo
than four electron fields. Engineering scaling suggests
both types of contributions are irrelevant, but we shall a
lyze these terms more carefully later in this section.

As usual, one divides the terms in the action into releva
marginal, and irrelevant ones, in accordance with their s
ing dimension. The exponentn characterizing the~leading!
behavior of an expressionF„Ĉ* (k),Ĉ(k),k… under scale
transformations, i.e.,

FF Ĉ~l!
* S kl D ,Ĉ~l!S kl D ; kl G'lnF„Ĉ* ~k!,Ĉ~k!;k…

for l→`

is called the scaling dimension ofF. The scaling dimension
of the electron modes is~d/2!11, i.e.,

Ĉ~l!
] S kl D5l~d/2!11Ĉ]~k!. ~19!

This scaling dimension is fixed by the requirement that
scaling dimension of the quadratic actionS0

2 is zero.
The two terms of the quadratic actionS0

2, given by Eq.



io
a

al
a
e
rin
tio

.
o-
ac

r
in
ta
rg
h
ha

i-
s

u
ia

en-

es,

G

pa-

e

ns,
of

l-
out
ion-
am-

e

s

l

ing

by

i

in
x

a

e
e
se

a

on

6794 55J. FRÖHLICH AND R. GÖTSCHMANN
~13!, are marginal. Contributions toS0
2 which arise from

higher orders in the Taylor expansion of the energy funct
« in the momentum variables are not displayed, as they
irrelevant. The quadratic termdS0

2, cf. Eq. ~14!, which
causes a displacement of the Fermi wave number has sc
dimension 1, i.e., it is relevant. By holding the chemic
potential m fixed, the average electron density of th
system—related to the Fermi wave number—changes du
the RG iterations, and this requires a continual readapta
of the linearization point of the energy function.

The quartic interaction Eq.~15!, has scaling dimension
12d, i.e., it is irrelevant in dimensiond>2. However, there
are of orderN;l 0

d21 different interaction terms, cf. Eqs
~15! and ~16!. It can happen that—for special exterior m
mentum configurations—the sum over the different inter
tion terms compensates the scaling factor 1/l 0

d21 ~as dis-
cussed below!. Moreover, engineering scaling arguments a
only valid as long as the dimensionless running coupl
constants remain small during the RG iterations. If an ins
bility is developing, in the sense that some couplings dive
as l grows, our weak-coupling analysis breaks down. T
RG method will permit us to identify those processes t
lead to instabilities.

Local terms in the action involving 2l electron fields
~l.2! have scaling dimension2 ld1(d11); they are irrel-
evant and can be neglected. However,nonlocal terms of the
type shown in Fig. 3~a! can appear which have scaling d
mension (l21)(12d). These are three-level contribution
constructed exclusively out ofl21 local 4-vertices~the non-
locality arises from the inner propagator lines!. Although
they have a negative scaling dimension, they can contrib
in leading order to the renormalization of some spec

FIG. 3. Nonlocal vertices that have to be included for determ
ing the RG flow of the effective action to leading order in an e
pansion in the inverse scale parameterl21. ~a! These vertices are
tree-level contributions constructed exclusively out of loc
4-vertices~straight lines stand for electron propagatorsGv and wig-
gly lines for local 4-vertices; the nonlocality arises from the inn
propagator lines!. ~b! They can contribute in leading order to th
renormalization of some special, lower-order vertices in ca
where momentum conservation allows one to sum over thev labels
of contracted pairs of incoming and outgoing propagator lines, le
ing to a contribution ofO(ld21) per contracted pair.
n
re

ing
l

g
n

-

e
g
-
e
e
t

te
l,

lower order vertices. This happens in cases where mom
tum conservation allows one to sum over thev labels of
contracted pairs of incoming and outgoing propagator lin
leading to a contribution ofO(l 0

d21) per contracted pair@cf.
Fig. 3~b!#.

The influence of such higher-order vertices to the R
flow of the parametersvF ,Z,dm,g(vI ) is analyzed in Ref.
17; they contribute in leading order in the inverse scale
rameterl, but do not cause anyqualitative change of the
flow. For the sake of simplicity, we shall ignore them in th
following, because we assume that gis small. However, in
the RG treatment of systems with long-range interactio
they play an important role in obtaining the correct form
screening.

Our goal is to calculate the effective actionSn
eff at a scale

ln5Mnl0 , whereM is an integer greater than 1. Our ca
culation is organized inductively, each step being carried
perturbatively. The expansion parameters are the dimens
less quartic coupling constant and the inverse scale par
eter.

In the iteration stepn→n11, we lower the energy scal
in the effective actionSn

eff by a factorM . The actionSn
eff is

supposed to have the form specified in Eqs.~12!–~15!, with
the scale parameterl0 replaced byln , and the parameter
Z0, vF0, dm0, and g0(vI ) replaced byZn , vFn , dmn , and
gn(vI ). The symbol' stands for ‘‘equal to leading order in
1/ln’’. There areNn5(ln/kF)

d21Vol~Sn! boxesB v
(n) which

cover the shellVn of standard widthkF around the spherica
surfaceSn of radiuslnkFn215ln„kF2( i50

n21(dm i /vFi)….
The iteration can be continued as long as the runn

coupling constantsgn(vI ) remain small, i.e.,ugn(vI )u<g!1
and the displacementln(dmn/vFn) of the origin of the
energy function from ln21kFn21 to
lnkFn :5ln(kFn212dmn/vFn) is small compared tokF/M ;
cf. Fig. 4. As in step 0@cf. Eq. ~18!#, this allows us to absorb
the displacement of the chemical potential—described
dSn

2—in the term S̄n
2 by shifting the variableski→ki85ki

1ln(dmn /vFn). This yields a displacement of the Ferm
wave number fromlnkFn21 to lnkFn('lnkFn21). We de-
note the shell of widthkF/M around the spherical surfaceS̃n
of radiuslnkFn by Ṽn . In the stepn→n11, we eliminate
modes with momentak lying in Vn\Ṽn . This yields an ef-
fective action

-
-

l

r

s

d-

FIG. 4. Refinement of the box decomposition in the iterati
stepn→n11.
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55 6795BOSONIZATION OF FERMI LIQUIDS
Sn11
eff

„$Ĉv
]~k!%…'2 lnE

~k08 ,k8!PR3Vn\Ṽn

D$Ĉv
]~k8!%

3e2@Sn
eff
„$Ĉv

]
~k8!%…#1cte, ~20!

where$cv
]% denotes the set of component fields. In order

compareSn11
eff to Sn

eff , we subdivide each boxBv i

(n)ùṼn into

M congruent boxes,B̃wi ,l
(n) , l51,...,M , with sides of length

;kF/M ~cf. Fig. 4!.
This requires a refinement of the decomposition~10! of

the electron field.Note that, in this way, we implicitly tak
into account the curvature of the Fermi surface. Using Eq.
~19!, we then rescale the momentum variablesk→k85Mk,
with k8PBv i ,l

(n11) , where the boxesBv i ,l

(n11) have standard

size.
We end up with an effective actionSn11

eff of the same
form as Sn

eff . The effective parameter
Zn11,vFn11,dmn11,gn11(vI ) can be expressed as functio
of the set of parametersPn :5$dmn ,vFn ,gn(vI ),ln%:

ln11

dmn11

Zn11
'
M

Zn
Sv~k;Pn!uk50 ,

1

Zn11
'

1

Zn
F11 i

]

]k0
Sv~k;Pn!uk50G , ~21!

vFn11

Zn11
'

1

Zn
FvFn1 ]

]ki
Sv~k;Pn!uk50G ,

and

kF
12d gn11~vI !

Zn11
2 '

1

Zn
2 G~vI ,kI ;Pn!ukI 50 . ~22!

The functionalsSv andG, which appear in these flow equa
tions, turn out not to depend on the iteration step~to leading
order in 1/ln!.

The functionalSv is the self-energy, and is obtained fro
the amputated one-particle irreducible~1PI! connected
graphs renormalizing the propagator lineGv,n , andG(vI ),
the 4-vertex function, contains all 1PI connected graphs
renormalize the dimensionless coupling constantgn(vI ). We
restrict our attention to discussing the flow of the effect
parametersPn to leading order in a double expansion ing
and 1/ln .

One verifies~see, e.g., Ref. 12! that—for the case of
short-range interactions and to leading order in a double
pansion ing and 1/ln—the parameters of the quadratic pa
of the action do not flow, i.e.,

Zn11'Zn'Z0 ,

vFn11'vFn'vF0 ,

ln11dmn11'O~g!. ~23!

In order to analyze the flow of the quartic coupling consta

gn
s,s8(vI ), we classify them in terms of qualitatively differen
channels. Besides the spin indicess ands8, they depend on
the four discrete momentavI 5$v1, . . . ,v4%. At thenth itera-
tion step, each of these unit vectors can takeNn;l n

d21 dif-
o

at

x-

s

ferent valuesv( i ), i51,...,Nn . However, the four momenta
vI are not all independent, but must satisfy the moment
conservationv11v25v31v4, as required by translation in
variance. Studying the geometry of momentum conservat
we can subdivide the set of coupling constants into th
different channels. There is a qualitative difference betwe
two and more than two dimensions.

In d52, cf. Fig. 5~a!, given the two incoming momenta
v1 andv2, with v11v2Þ0, there are exactly two possibili
ties to choose the outgoing momenta, eitherv35v2 and
v45v1 or v35v1 and v45v2. In the exceptional case
wherev11v250, one is free to choose arbitrarily one of th
ln;Nn discrete values forv4;v3 is then determined as it
antipode,v352v4 ~i.e., in this case,v1 and v2 are not
independent momenta, butv1 and v4 are!. Thus, in two
dimensions, the couplings can be classified as follows:

gd~v1•v2 ,ss8!:5gss8~v1 ,v2 ,v35v2 ,v45v1!,

ge~v1•v2 ,ss8!:5gss8~v1 ,v2 ,v35v1 ,v45v2!,
~24!

gc~v1•v4 ,ss8!:5gss8~v1 ,v252v1 ,v352v4 ,v4!.

Here,d stands for direct,e for exchange, andc for Cooper;
we use the convention thats561 for spin-up or spin-down,
respectively. Note that because of rotational invariance
coupling constantsg(vI ), really only depend on the scala
product,v•v8, of two vectors on the unit sphere, i.e., on th
angle/~v,v8!, between them. Analogously, they only d
pend on the relative orientationsss8 ~i.e., parallel or antipar-
allel! of the spin degrees of freedom. For an electron sys
in more than two dimensions, momentum conservation
lows more independent coupling constants than the o
listed in Eq. ~24!; see Fig. 5~b!. However, the analysis o
their renormalization flow in leading order in 1/ln is similar
to the one for two-dimensional systems. To leading orde
1/ln , they neither flow nor do they influence the flow of th
ones listed in Eq.~24!.

One can show~see, e.g., Refs. 12 and 17! that—for suf-
ficiently small initial conditions—the running coupling con
stants corresponding to the direct and exchange channel
bounded. ~This result remains true if one includes th
leading-order contributions of the higher vertices shown
Fig. 3, cf. Ref. 17!. Leading-order renormalizations of th
Cooper channel, however, can drive the system to the

FIG. 5. Geometry of momentum conservation of four unit ve
torsv1, v2, v3, andv4 satisfyingv11v25v31v4 in d52 and 3
dimensions.
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6796 55J. FRÖHLICH AND R. GÖTSCHMANN
ebrated superconducting instability: this happens, e.g.
some of the initial Cooper channel couplings are nega
~for a more detailed discussion, see, e.g., Ref. 12!.

In the following, we assume that the Cooper channe
turned off, as, e.g., in systems of electrons coupled to m
netic impurities with broken parity- and time-revers
invariance.1

Then, for short-range interactions, all remaining coupl
constants are marginal, i.e.,gn11'gn . ~This result turns out
to be stable against adding higher-order corrections!. In this
case, as the coupling constants in the effective actionSn

eff are
suppressed by a factor 1/l n

d21, our calculations indicate tha
the system flows to a Landau-liquid fixed point, asn→`. In
the following sections we confirm this expectation by calc
lating the electron propagator usingbosonization. The effec-
tive actionSn

eff obtained by the RG analysis serves as
input for this calculation.

For long-range interactions, the situation is more com
cated. For long-range density-density interactions of
form displayed in Eq.~2!, the effective actionS0

eff at a large,
initial scalel0 has the form given in Eqs.~12!–~15!. The
effective interaction potential can be replaced by a se
coupling functions, as described in Eq.~17!. Due to the sin-
gularity of the interaction potentialV̂~upu! at upu50, the inter-
action processes withv4Þv1 are less important than th
direct scattering processes, wherev45v1 and v35v2. In
this channel, the singularity contributes a supplementary
tor l0

a to the quartic term~15! in the action which can par
tially or completely compensate for the factor 1/l 0

d21. How-
ever, resumming all diagrams of leading order in 1/l0 leads
to a ‘‘screening’’ which renders the long-range interacti
effectively short ranged. Therefore similar results as for
short-range case are expected to hold. We shall confirm
expectation in the approximation obtained by bosonizing
system.

For long-range transverse current-current interactions
they occur in quantum Hall fluids at filling factor
n51

2,
1
4, . . . , thescreening mechanism is ineffective. Calc

lating the electron propagator by the bosonization techniq
we shall observe the possibility for a deviation from Landa
liquid behavior, depending on the exponenta which charac-
terizes the singularity of the interaction potential in mome
tum space: fora>d21, we argue that the system is a MF
~similar predictions have previously been made in Re
3–6!.

III. EFFECTIVE GAUGE-FIELD ACTION
AND BOSONIZATION

It is easiest to understand the meaning and accurac
‘‘bosonization’’ by calculating the scaling limit of the effec
tive gauge-field actionW(A), whereA is an external elec-
tromagnetic vector potential. From the effective gauge-fi
action, one can determine the~connected! Green functions of
currents by differentiating with respect to the gauge fieldA.
Calculating the Green functions for the electron fieldsC* , C
is more complicated, and is accomplished in Sec. IV.

The external gauge fieldAr , r50,1, . . . ,d, is coupled to
the electron system by replacing derivatives in the free ac
S0~C* ,C;m!, Eq. ~1!, by covariant onesDr(A):5]r2 ieAr
~‘‘minimal coupling’’ !. Here e is the elementary electric
if
e

s
-

-

n

i-
e

f

c-

e
is
e

as

e,
-

-

.

of

d

n

charge~we choose units such that\5c51!. Equation~1! is
then replaced by

S0~C* ,C;m,A!5S0~C* ,C;m!1SJ~C* ,C;A!, ~25!

where

SJ~C* ,C;A!5E dd11x(
r50

d

Ar~x! j r~C* ,C;A!~x!,

and the current density,j r is defined~in Euclidean space
time! by

j 0~C* ,C!~x!52 ieC* ~x!C~x!,
~26!

j l~C* ,C;A!~x!5
ie

2m
@C* ~x!Dl~A!C~x!

2„C~x!Dl~A!…*C~x!#

for l51,...,d.
The effective gauge-field actionW(A) is obtained by in-

tegrating out the degrees of freedom of the electrons,

W~A!:52 lnH ~Jm
V!21

3E D~C* ,C!e2@S0~C* ,C;m,A!1SV~C* ,C!#J ,
~27!

with SV~C* ,C! given by Eq.~2!. It is the generating func-
tional for the connected Green functions. At noncoincidi
arguments, one has that

)
i51

n
d

dAr i
~xi !
W~A!U

A50

5~21!nK )
i51

n

j r i~c* ,c;A;xi !L
A50

con

. ~28!

First, we consider a system of non-interacting electro
The scaling limitW

*
0 (A) of the effective gauge-field action

W 0(A) has been calculated in Ref. 16. Here, we just ske
the essential ideas and recall the main results.

We expand the effective actionW 0(A)—Eq. ~27!, with
SV[0—in powers of the fieldA:

W 0~A!5 (
n51

`
1

n! E )
i51

n

dxi
d11Cr1 ,...,rn~x1 ,...,xn!

3Ar1
~x1!•••Arn

~xn!. ~29!

The expansion coefficientsC are given—at noncoinciding
arguments—by the current Green functions, cf. Eq.~28!.

Next, we map the physical system in a space-time reg
L~l! to a reference system in the regionL~1![L, wherel.1
is a scale parameter, andm is kept fixed. We shall be inter
ested in the asymptotics whenl→`. Under the rescaling
map, points inL~l! transform as

x5ljPL~l!→jPL.
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55 6797BOSONIZATION OF FERMI LIQUIDS
The gauge fieldA r
(l)(x)—which probes the response of th

electron system to small external electromagnetic fields—
chosen as follows:

Ar
~l!~x!5

1

l
ar~j!, ~30!

wherear~j! is an arbitrary, but fixed function onL. Thus the
gauge field scales like the momentum operator. In the
lowing calculations we consider the formal thermodynam
limit L→Rd11. To construct the scaling limitW

*
0 (a) of

W 0~A~l!!, we study the asymptotic form of the current Gre
functions, Eq.~28!, in the limit l→`, using Eq.~8!, and plug
the result into Eq. ~29!. We define the scaling limit
W

*
0 (a) as thecoefficientof the most divergent term in a

expansion ofW 0~A~l!! in powers ofl andl21.
In the scaling limit, one encounters ultraviolet diverge

cies in the perturbation series ofW
*
0 (a). To fix a resulting

ambiguity, we use standard Ward identities implied by gau
invariance, i.e.,

]

]xi
r i
Cr1 ,...,r i ,...,rn~x1 ,...,xi ,...,xn!50.

The result of our analysis can be summarized as follows
a calculation of electron Green functions at distance-
time scales of orderl, the free fermion actionS0~C* ,C;m!
can be replaced by the following approximate action:

S0~C* ,C!' (
vPS1

d21
E
Iv

d̃d11kĈv* ~k!~2 ik01vFvk!Ĉv~k!

' (
@v#PS1

E dd11j C̄@v#~j!

3S g0
]

]j0
1vFg1v

]

]jDC@v#~j!

5:S0~$cv
]%!. ~31!

The symbol' indicates that the approximate action repr
duces the large distance and time asymptotics of elec
Green functions to leading order in 1/l. The sum(vPS

1
d21

extends over the discrete set of unit vectorsvi ,
i51,...,N;ld21, whose endpoints lie on the surfaceS 1d21

of the d-dimensional unit sphere~cf. Sec. II!. The Fourier
modesĈ v

](k) have support onIv :5R3B̄v . In the second
line of Eq. ~31!, we introduce an~arbitrary! partitioning of
S 1d21 into positiveS1 and negativeS2 hemispheres and de
note the ray throughv, for vPS1, by @v#:5$v,2v%. This
allows us to use the ‘‘relativistic’’ notation

C@v# :5S c2v

cv
D , C̄@v# :5C@v#

* g05~cv*c2v* !, ~32!

with g05s1 and g15s2. In the following, we assume tha
electron spins are frozen in a fixed direction~we shall omit
spin indices!.
is

l-
c

-

e

In
d

-
n

In determining the effective gauge-field actionW
*
0 , the

term SJ~C* ,C;A!, coupling the gauge field
A r

(l)(x)5(1/l)ar(j) to the electron fields, can be replace
by

SJ~C* ,C;A~l!!'E dd11j (
vPS1

d21
@2 ia0~j!2vFva~j!#

3 (
v8PS1

d21
eilkF~v2v8!j:cv8

* ~j!cv~j!:

5:SJ~$cv
]%;a!. ~33!

Again, the symbol' indicates that, in a calculation of elec
tron Green functions at distance and time scales of ordel,
this approximation yields the leading contribution in 1/l. As
mentioned above, in the expansion of the effective gau
field actionW

*
0 in powers ofA, we evaluate the expansio

coefficients—i.e., the current Green functions—only at no
coinciding points. The omission of self-contractions is ind
cated by the normal ordering of the product of electron fie
in Eq. ~33!. The local terms of the expansion coefficients a
determined by requiring gauge invariance.

Given a ray@v#, we define a current density

j @v#~j!:5 (
v8PS1

$eikF~v82v!lj:c2v8
* ~j!c2v~j!:

1eikF~v2v8!lj:c2v* ~j!c2v8~j!:%, ~34!

corresponding to electron motion in the direction of2v, and
a current density

j̄ @v#~j!:5 (
v8PS1

$e2 ikF~v82v!lj:cv8
* ~j!cv~j!:

1e2 ikF~v2v8!lj:cv* ~j!cv8~j!:% ~35!

corresponding to electron motion in the direction ofv.
Using Eq. ~10!, one can establish that the quasi-111-

dimensional current densities

j @v#
0 ~j!:5

i

2
„j @v#~j!1 j̄ @v#~j!…

j @v#
1 ~j!:5

1

2
„j @v#~j!2 j̄ @v#~j!… ~36!

for @v#P@S 1d21# are related to thed11-dimensional current
density, j r, r50,...,d, defined in Eq.~26!, by

j 0~x!:5 j 0~C* ,C!~x!'l2d (
vPS1

j @v#
0 ~j!,

~37!

j l~x!:5 j l~C* ,C;A!uA50~x!'l2d (
vPS1

vFv l j @v#
1 ~j!,

where l51,...,d. Equation ~37! holds for current Green
functions to leading order in 1/l, at noncoinciding argu-
ments. For simplicity, the electron charge2e has been set to
21. Equation~33! can be written in the suggestive form
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SJ~C* ,C;A~l!!'SJ~$cv
]%;a!

:5 (
vPS1

(
B50,1

E dd11j aB
v~j! j @v#

B ~j!,

~38!

with

a0
v~j!:5a0~j!, a1

v~j!:5vFv•a~j!.

One observes that—to leading order in the inverse sc
parameterl21 — the original d11-dimensional system de
composes into independent, quasi-111-dimensional sub-
systems, one along each direction@v# of Rd. The 111-
dimensional subsystems describe relativistic fermi
moving along the direction@v# with velocity6vF . Hence the
calculation ofW

*
0 (a) is reduced to the calculation of th

effective gauge-field action of a family of independ
Schwinger models. One obtains

W
*
0 ~a!5

1

ld21

1

p S kF2p D d21 1

vF
(

vPS1
E dd11j

3 (
B50,1

aB
v,T~j!aB

v,T~j!

5
1

2 E
R3B̄

d̃d11k (
r,s50

d

âr~2k!P
*
rs~k!âs~k!,

~39!
t
r-

n-
-
s
-

n-
he
a

r
er
le

s

t

where we used

aB
v,T~j!:5 (

C50,1
S dB,C2

]B
v]C

v

~]0
v!21~]1

v!2
D aCv~j!

and

]0
v :5

]

]j0
, ]1

v :5vFv
]

]j
. ~40!

Note the nontrivial~and important! fact thatW
*
0 is only

quadratic in the gauge field. Invariance under gauge trans
mations, space rotations, and parity—or time—reversal
plies that the~Euclidean! polarization tensorP

*
rs has the

general form

P
*
00~k!5

k2

k0
2 P

*
l ~k!, P

*
0i~k!5P

*
i0~k!52

ki

k0
P
*
l ~k!,

P
*
i j ~k!5P

*
t ~k!S d i j2

kikj

k2 D1P
*
l ~k!

kikj

k2
, i , j51,...,d.

~41!

The calculation of the two independent functionsP
*
l and

P t , for noninteracting electrons, yields the result

*

P
*
l ~k!5H e2

p
kFvF@„11A11~vFk/k0!

2
…A11~vFk/k0!

2#21, d52

e2

p2

~kF!2

vF

k0
2

k2 S 12U k0vFk
UarctanUvFkk0 U D , d53,

~42!

P
*
t ~k!55

e2

p
kFvF

uk0u

Ak021~vFk!2
2P

*
l ~k!5

e2

p
kFvF@11A11~vFk/k0!

2#21, d52

1

2 S e2p2 ~kF!2Uk0k UarctanUvFkk0 U2P
*
l ~k! D , d53.
rent

g

Comparing this result to the small-k asymptotics of formulas
found in standard textbooks, one finds agreement—up to
‘‘diamagnetic term’’ of the transversal part which is propo
tional to uku2, and yields lower-order corrections in 1/l.

Equation~39! is the result of resumming the leading co
tributions in the~formal! expansion of the effective gauge
field actionW 0(A) in powers of 1/l. The possible diagram
contributing to leading order in 1/l to the effective gauge
field action are displayed in Fig. 6. However, Eq.~39! states
that, because of the special form of the propagatorsGv

0 , only
the first term in Fig. 6 with two gauge-field insertions co
tribute toW

*
0 (a). In addition, gauge invariance requires t

introduction of local Schwinger terms which couple, along
ray @v#, right and left movers.18

Remembering that, in the 111-dimensional Schwinge
model, the calculation of current Green functions in the f
he

-

mionic theory can be reproduced by expressing the cur
densities in terms of a free, massless bose field~see, e.g.,
Refs. 16 and 19 and references therein!, we introduce the
following identifications:

j @v#~j!↔
2

Ap
S kF2p D ~d21!/2

]vw@v#~j!,

̄ @v#~j!↔2
2

Ap
S kF2p D ~d21!/2

]̄vw@v#~j! ~43!

for vPS1, with @v#5$v,2v% denoting the correspondin
ray, and
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]v:5
1

2 S 2 i
]

]j0
1vFv

]

]jD , ]̄v:5
1

2 S i ]

]j0
1vFv

]

]jD .
Equation~43! is equivalent to

j @v#
B ~j!↔

i

Ap
S kF2p D ~d21!/2

«BC]C
vw@v#~j!,

for B,C50,1 andvPS1.
The action of the set$w@v#~j!% of Bose fields is given by

S0~$w@v#%!52 1
2(

@v#
E
R3B̄v

d̃d11k ŵ@v#~2k!

3@k0
21~vFvk!2#ŵ@v#~k!, ~44!

where the Fourier modesŵ [v] (k) of the Bose fieldw@v#~j!
have support onR3B̄v . @For a given valuek0, the modes
ŵ[v](k0,•) have a compact support. We choose this supp
to be B̄v , but, in principle, there is no need to choose
support identical to the one of the fermion modesĉ v

](k0 ,•).#
One can verify that

Jw
21E D$w@v#%e

2S0~$w@v#%!

3H )
j51

n F i

Ap
S kF2p D ~d21!/2

«BjCj]Cj

v w@v j #
~j j !G J

'Jc
21E D$cv

]%e2S0~$cv
]%!H )

j51

n

j
@v j #

Bj ~j j !J , ~45!

in the sense of distributions.
Representation~43! of the one-dimensional current dens

ties j [v]
B , in terms of the Bose fieldsw@v# , is implied by the

local conservation of the electron current, Eq.~37!, along
each ray@v# separately. These formulas are equivalent
Luther-Haldane bosonization.10,11,15 Identification (43) re-
produces only the leading term of the fermionic perturbatio
theory, i.e.,

W
*
0 ~a!5 lim

l→`

2 lnHZw
21E D$w@v#%e

2@S0~$w@v#%!1SJ~$w@v#%;a!#J ,
~46!

with

FIG. 6. By power counting, the possible diagrams contributin
to leading order in 1/l to the effective gauge-field actionW 0(a).
Straight lines stand for the electron propagatorsGv

0 (k)5@ ik0
2vFvk#21

•1B̄v
(k), and crosses for the gauge-field insertionsam

v

~note that here—in contrast to the calculations in the context of
RG—the electron propagators are understood to be integrated
the entire domainIv5R3B̄v!.
rt

o

SJ~$w@v#%;a!5 (
vPS1

E dd11jaB
v~j!eBC

i

Ap
S kF2p D ~d21!/2

3]C
vw@v#~j!.

The symbol liml→` stands for determining the coefficient o
the leading term of the expansion inl andl21.

The derivatives]vs@v# and ]̄vs@v# of the bosonic fields

w@v# describe the current density fluctuationsj @v# and ̄ @v#

determining the scaling limit of the system. For a fixed d
rection @v# they are composed of electron modes with m
menta near the pointskFv and2kFv, respectively, on the
Fermi surface. In the scaling limit, they probe the Fer
surface only locally around the pointskFv and2kFv.

This implementation of bosonization is a special realiz
tion of a more general formalism, presented in Ref. 20. A
lian gauge invariance implies the local conservation law

]r j
r~x!50. ~47!

Instead of expressing the current density in terms of the
ementary fieldsC* andC, and imposing constraint~47!, one
can introduce field variables which guarantee Eq.~47! by
construction. Ford11-dimensional currentsj r, one needs, in
general, antisymmetric gauge forms of rankd21. However,
considering only the scaling limit of the system, we can ta
advantage of a substantial simplification: the fermion
theory decomposes into a family of quasi-111-dimensional
subsystems~‘‘dimensional reduction’’!, one along each di-
rection @v# of R. Each subsystem describes quasi-111-
dimensional, ‘‘relativistic’’ electrons. Gauge invariance h
to be fullfilled for each subsystem—i.e., in each direction
separately, and implies the conservation laws for the ass
ated currents,j [v]

B , B50, 1, i.e.,

]

]x0
j @v#
0 ~x!1vFv

]

]x
j @v#
1 ~x!50. ~48!

Expressing the currentsj [v]
B in terms of the free, massles

Bose fieldsw@v# guarantees that Eq.~48! holds.
Next, we study the effective gauge field action for inte

acting systems. In Sec. II by using the RG method, we s
cessively eliminated the electron modes with momenta o
side the shellVln

:5$pPRd;up2kF(p/upu)<kF/2ln% of
thicknesskF/ln!kF around the Fermi surface, in order t
determine the effective actionSn for the remaining modes
with momenta inside the shellVln

. The resulting effective
actionSn describes the physics at energy scales smaller t
vF(kF/ln). Under the assumptions specified in Sec. II, o
can reach very small energy scalesvF(kF/ln)!vFkF before
the form of the corresponding effective actionSn differs con-
siderably from the original actionS.

In this section, we consider ‘‘spinless’’ electrons and su
pose that, in addition, the Cooper channel is turned off. Th
the termsSn

2 and Sn
4, quadratic and quartic in the field

ĉ v
](k), are given by

Sn
2' (

vPS1
d21

E
Iv

d̃d11kĈv* ~k!
21

Zn
~ ik02vFnvk!Ĉv~k!

~49!

and

e
ver
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Sn
4'

kF
12d

2ln
d21

1

Zn
2 (

v1 ,v2PS1
d21

E
Iv1

d̃d11k~1!•••

3E
Iv1

d̃d11k~4!d~d11!~k~1!1k~2!2k~3!2k~4!!

3gnS v1v2 ;
k~1!2k~4!

ln
D ĉv1
* ~k~4!!ĉv2

* ~k~3!!

3ĉv2
~k~2!!ĉv1

~k~1!!, ~50!

with

gnS v1v2 ;
k

ln
D5H gndS v1v2 ;

k

ln
D2gn

eS v1v2 ;
k

ln
D J .

~51!

The direct- and exchange-coupling functionsgd andge were
defined in Eq.~24!. The symbol' stands for ‘‘equal to
leading order in 1/ln’’.

Contributions toSn corresponding to higher orders in th
Taylor expansion of the coefficient functions of the quadra
and quartic terms in the momentum variables, or contri
tions involving more than four electron fields, are neglect
By engineering scaling they are irrelevant, cf. Sec. II. F
systems with a short range two-body interaction potentiaV,
the coupling functionsgn~v1v2;k/ln! can be replaced—to
leading order in 1/ln—by the coupling constantsgn~v1v2!.
We first restrict our attention to such systems.

The termSn
J($c v

]%;a) coupling the electron fields to th
gauge fielda has the form

Sn
J~$cv

]%;a!' (
vPS1

(
B50,1

E dd11jaB
v~j! j @v#

B ~j!, ~52!

where (a0
v ,a1

v):5(a0 ,vFnv•a), and the quasi-111-
dimensional currentsj [v]

B ~j! are defined as in the noninte
acting system; cf. Eqs.~34!–~37!, but with the products
cv8
* (j)cv(j) of the electron fields replaced b

(1/Zn)cv8
* (j)cv(j) ~in the noninteracting system,Zn[1!. A

Ward identity relates the renormalization of the vertex~52!
to the renormalization of the electron propagator, preven
the appearance of a new, independent renormalization fa

The quartic interaction termSn
4 given by Eq.~50! can be

expressed in terms of the quasi-111-dimensional currents

Sn
4~$cv

]%!5
1

8

kF
12d

ln
d21 (

v1 ,v2PS1
E dd11jE dd11h

3dkF
d11~j2h!$gn~v1v2!@ j @v1#~j ! j @v2#~h!

1 ̄ @v1#~j ! ̄ @v2#~h!#2gn~2v1v2!

3@ j @v1#~j ! ̄ @v2#~h!1 ̄ @v1#~j ! j @v2#~h!#%,

~53!

with

dkF
d11~j2h!5E

R
d̃k0E

uku<kF/2
d̃dk eik~j2h!.
c
-
.
r

g
or.

Replacing the quadratic termSn
2 of the action by the bosonic

action S0~$w@v#%! given in Eq. ~44!, and inserting the
bosonization identities~43! for the current densities in Eqs
~52! and ~53!, we end up with aGaussianbosonic theory.
The bosonized versions of Eqs.~52! and ~53! are given—in
momentum space—by

Sn
J~$w@v#%;a!5 (

vPS1
(

B,C50,1
E
Iv

d̃d11k âB
v~2k!

3«BC
21

Ap
S kF2p D d21/2

kC
vw@v#~k! ~54!

and

Sn
V~$w@v#%!5

1

ln
d21 S 1

2p D d (
v1 ,v2PS1

E
Iv1

ùIv2

d̃d11k

3@gn~2v1v2!w@v1#~2k!~kv1k̄v21 k̄v1kv2!

3w@v2#~k!1gn~v1v2!w@v1#~2k!

3~kv1kv21 k̄v1k̄v2!w@v2#~k!#, ~55!

with

kv5 1
2 ~2 ik01vFvk! and k̄v5 1

2 ~ ik01vFvk!.

With the aim of calculating the scaling limitW
*
V (a) of the

effective gauge-field action of the interacting electron s
tem, we replace the fermionic actionSn , given by Eqs.~49!–
~52!, by their bosonic version, given by Eqs.~44!, ~54!,
and ~55!; calculate the corresponding effective gauge-fie
action,W̃V~a;Pn!; and determine thecoefficientW

*
V (a;Pn)

of the leading contribution in an expansion ofW̃ V~a;Pn! in
powers ofln and l n

21, asln→`. Pn stands for the set o
parameters characterizing the fermionic actionSn . As the
bosonic theory is Gaussian, it is easier to study than
fermionic theory where the interaction term is quartic in t
fields ĉ v

] .
Does the actionW̃

*
V (a;Pn) derived by the bosonization

procedure reproduce the correct result that one would ob
by iterating the RG transformations and by determining
resulting fixed point action~n→`!? In order to answer this
question, we have to clarify the approximations involved
bosonizing the electron system described by the actionSn .
The approximations can be characterized in terms of thefor-
mal perturbation expansion of the fermionic theory in po
ers of l n

21. In fact, by bosonizing an electron system wi
action Sn , we resume all leading-order contributions of th
fermionic perturbation expansion of the effective gauge-fi
action in powers ofl n

21—except self-energy renormaliza
tions of inner propagator lines. The diagrams reproduce
after bosonization are displayed in Fig. 7. In these diagra
each factor 1/l n

d21 per interaction vertex is compensated f
by a bubble-summation,(v~•!. These diagrams correspon
to the so-called random-phase approximation (RPA).

In principle, to leading order in a~formal! expansion in
1/ln , the propagator lines in the polarization bubbles in F
7 are renormalized by ‘‘cactus diagrams’’ of the form show
in Fig. 8. For systems with a short-range two-body poten
V, their contribution is—to leading order in 1/ln—a con-
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stant, i.e., they only lead to a displacement of the chemic
potential. As the polarization bubbles depend only on t
difference of the momenta of the two inner propagator lin
they are not modified by such a displacement of the chem
potential.

Does this result imply that, by taking functional deriva
tives of W̃

*
V (a;Pn) with respect to the gauge fielda and by

evaluating the resulting current Green functions, cf. Eq.~28!,
for large argumentsux( i )2x( j )u5lnuj

( i )2j ( j )u, with ln→`,
one obtains the leading contribution in 1/l of the current
Green functions of the interacting system? One must reme
ber that we use the fermionic actionSn as an input of
bosonization. Because of the linearization of the pieces
the Fermi surface contained in the boxesB̄v , this action
describes the properties of the system only correctly at m
mentum scales betweenkF/ln and b(kF/l n

2), as argued in
Sec. II.

It follows that the current Green functions derived fro
W̃
*
V (a;Pn) reproduce the leading-order contribution in 1/ln

of the current Green functions of the interacting system
argumentsux( i )2x( j )u5lnuj

( i )2j ( j )u of order betweenln
andl n

2. In order to explore the current Green functions of t
interacting system at larger distance and time scales, we
have to iterate the RG transformations further, with the a
of deriving effective actionsSm , m.n, describing the prop-
erties of the system at larger distance and time scales. S
an effective actionSm can serve as an input for the bosoniz
tion procedure.

In Sec. II, we have analyzed the flow of the setPn of
parameters characterizing the effective actionSn for electron
systems with a short-range two-body potentialV. All the
parameters of the setPn—except the scale factorln—tend to
finite valuesP

*
in the limit ln→`. This implies that

W
*
V ~a!5 lim

ln→`

W̃V~a;Pn!, ~56!

i.e., the scaling limit of the effective gauge-field action
given by

FIG. 7. Diagrams contributing to the effective gauge-field acti
WV(a) reproduced after bosonization. As above, straight lines st
for electron propagators and crosses for gauge-field insertions.
interaction vertices (kF

12d/l n
d21)gn~v1v2!, defined in Eq.~51!, are

represented by dots.

FIG. 8. ‘‘Cactus diagrams’’ renormalizing inner propagato
lines to leading order in 1/ln .
l
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,
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-

W
*
V ~a!5 lim

ln→`

2 lnHJw
21E D$w@v#%e

2„Sn
0
~$w@v#%!1Sn

J
~$w@v#%;a!…

3e2Sn
V

~$w@v#%!J , ~57!

where the action is defined by Eqs.~44!, ~54!, and ~55!.
Again, limln→` stands for determining thecoefficientof the
leading term of the Laurent expansion inln andl n

21. Car-
rying out theGaussianfunctional integral, we find for the
leading term proportional tol n

d21,

W
*
V ~a!5 1

2 E d̃d11k (
r,s50

d

âr~2k!PV*
rs

~k!âs~k!. ~58!

The polarization tensorPV*
rs (k) has the general form de

scribed in Eq.~41!, wherePV*
t (k) is given byP

*
t (k), and

PV*
l (k) can be expressed as a Neumann series ing

*
~v•v8!.

The explicit expression for the Neumann series is rat
complicated in the general case~but straightforward to deter
mine!. We only write down the explicit expression fo
PV*

l (k) in the ~somewhat artificial! case when
g̃
*
~v1v2!5g

*
. Then one obtains

Pg*
l

~k!5P
*
l ~k!

1

11
k2

k0
2

g*
kF
d21 P

*
l ~k!

@the functionsP
*
l ,t are defined in Eq.~43!#.

For systems with a long-range two-body potentialV, the
renormalization flow of the effective actionSn is not yet
fully understood. Given the effective actionSn , we can cal-
culate the corresponding effective gauge-field act
W̃~a,Pn! by bosonizing the system. This yields a result f
the current Green functions in the domain of validity d
cussed above. In order to derive results at larger distance
time scales, one is obliged to make assumptions on the
of the effective actionSn , as n→`. In the following, we
discuss the calculation ofW̃~a,Pn! for three examples of
systems with singular interactions.

A. Long-range, density-density interactions

We consider interactions of the type shown in Eq.~2!
with a long-range interaction potentialgV, i.e., one whose
Fourier transformgV̂~upu!5(g/k F

d21)u(kF/p!ua becomes sin-
gular atupu50. The exponenta and the coupling constantg
are supposed to be positive. We assume that the effec
actionSn at an energy scalevFn(kF/ln! has the form speci-
fied in Eqs.~49!–~52!, and that all the parameters of the s
Pn characterizing the actionSn—except the scale paramete
ln—tend to finite values in the limitn→`. In particular, the
set of coupling functionsgn[vI ;(1/ln)kI ] is supposed to be
related to the initial interaction potential by Eq.~17!, for
arbitrary n. We can neglect the exchange channel with
spect to the direct channel. In the direct channel—contrar
the case of short-range interactions—we have to retain
~singular! dependence on the small momenta, (1/ln)kI , as
indicated in Eq.~17!. Hence, in Eq.~50!, the dominant cou-
pling constants are given by

d
he
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gnS v1v2 ;
1

ln
kI D5kF

d21gnV̂S 1ln
uku D5gnUkFln

k Ua

.

~59!

By bosonizing the system, one obtains the result

W̃ D~a;Pn!5 1
2lnd21E d̃d11k

3 (
r,s50

d

âr~2k!PD
rs~k;Pn!âs~k!, ~60!

where the polarization tensorPD
rs~k;Pn! has the same form

as in Eq.~41!, with the two independent functionsPD
l and

PD
t given by

PD
l ~k;Pn!5Pn

l ~k!
1

11
k2

k0
2
gnV̂S U k

ln
U D Pn

l ~k!

,

ll
s-

rs
rm

a

w

PD
t ~k;Pn!5Pn

t ~k!.

@The functionsP n
l ,t are defined in Eq.~43!, with vF→vFn .#

As expected, this result coincides with the result of a R
calculation.

B. Tomographic Luttinger liquid

We introduce interactions which describe singular dir
~or ‘‘forward’’ ! scattering processes, where the quasielect
with momentum nearkFv interacts only with one with mo-
mentum near2kFv. This leads to the coupling constants

gn~v1v2!5dv1 ,2v2
ln
d21~2p!d21gn . ~61!

By inserting Eq.~61! into Eq. ~57!, one obtains
W̃TL~a;Pn!52 lnS E D$w@v#%

Zw
e2~1/2!(vPS14„11~2n/2p!…*dd11j]vw@v#~j! ]̄ vw@v#~j!eSn

J
~$w@v#%;a!D

5 1
2ln

d21E d̃d11k (
r,s50

d

âr~2k!PTL
rs~k;Pn!âs~k!.
on-

the
er-

his

d in
The polarization tensorP TL
ra is renormalized by an overa

factor ~11gn/2p!21 with respect to the noninteracting sy
tem,

PTL
rs~k;Pn!5S 11

gn
2p D 21

Pn
rs~k!. ~62!

C. Long-range, transverse, current-current interactions

In the original system, interactions between transve
currents lead to an additional term in the action of the fo

ST~C* ,C!52 1
2 E dd11xE dd11y(

k51

d

j T
k~x!

3gV~ ux2yu!d~x02y0! j T
k~y!, ~63!

with

j T
k~C* ,C;x!5(

l51

d S dk,l2
]k] l

(
i50

d

] i
2D j l~C* ,C;x!.

A physical realization of such a system is a quantum H
~QH! system at filling factorsn51

2,
1
4, . . . which can be de-

scribed as a system of free~composite! fermions interacting
via long-range, transverse, current-current interactions
diplayed in Eq.~63!, cf. Refs. 3, 4, and 6.

One determines the effective interaction for the lo
energy modes whose momenta lie in a thin shellVn around
e

ll

as

-

the Fermi surface following the same procedure as for l
gitudinal interactions. Using Eq.~38!, one obtains

Sn
T~$cv

]%!52
gnvFn

2

2ln
d21 (

v1 ,v2PS1
E
Iv1

ùIv2

d̃d11k V̂S U kln
U D

3 (
i , j51

d

v1
i j @v1#

1 ~2k!Pi jT ~k!v2
j j @v2#
1 ~k!, ~64!

with

Pi jT ~k!5d i j2
kikj
k2

and V̂~ upu!5
1

kF
d21 UkFp U

a

.

For a QH system with unscreened Coulomb interactions,
exponenta is equal to 1; if one assumes the Coulomb int
actions to be screened, the exponenta turns out to be 2. We
propose to calculate the effective gauge-field action of t
system by replacing the fermionic currents,j [v]

m (c̄ [v] ,c [v] )
by their bosonic versionsj @v#

m ~w@v#! given in Eq. ~43!. We
have to make assumptions analogous to the ones state
Sec. III A. One obtains

W̃T~a;Pn!5 1
2ln

d21E d̃d11k (
r,s50

d

âr~2k!

3PT
rs~k;Pn!âs~k!, ~65!

with
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PT
l ~k;Pn!5Pn

l ~k!,

PT
t ~k;Pn!5Pn

t ~k!
1

11Pn
t ~k!gnV̂S U k

ln
U D .

Again, this reproduces the result of a RPA calculation.

IV. ELECTRON PROPAGATOR

In this section, we determine the bosonic expressions
the electron fieldsC* andC, in order to calculate the elec
tron propagator for interacting systems. We shall boson
each one of theN;ld21 component fieldscv

] separately~c]

stands forc* or c!. More precisely, for each ray@v#5$v,
2v%, we express the paircv

] , c2v
] in terms of a Bose field

w@v# . This is accomplished by applying the well-know
bosonization formalism for 111-dimensional relativistic fer-
mions summarized in Appendix A. However, one has
cope with a subtlety arising from the dependence of
quasi-111-dimensional electron fieldscv

] on the components
of the momentum perpendicular to the direction@v#.

We start our discussion with the noninteracting system
which

2^ĉv~ i !~k!ĉv~ i !* ~k8!&05dv~ i !,v~ j !~2p!d11d~d11!~k2k8!

3
1

ik02vFv~ i !k
1Q̄v~ i !~k!. ~66!

In comparison to Eq.~11!, we replaced the boxesB̄v( i ) by
cubesQ̄v( i ), with sides of lengthkF ~the exact shape of th
integration domain is irrelevant!. Because of the isotropy o
the electron system, one observes a nontrivial dependenc
the components ofk only in the 0 andv directions. Propa-
gation takes place in the radial directionv. This suggests a
decomposition of the quasi particle fieldscv

]~j! into tensor
products

cv
]~j!5x@v#~j'! ^ cvi

] ~j0 ,j i! ~67!

for vPS 1d21. The ‘‘radial’’ fields cvi
] describe 111-

dimensional, relativistic electrons, whereas the bosonic ‘‘
gular’’ fields, x@v#~j'! just guarantee momentum conserv
tion in the perpendicular direction.

The angular fieldsx@v#~j'! are Gaussian, of mean 0, an
their propagator~covariance! is given, in momentum space
by

^x̂@v#~k'!x̂@v8#~k'8 !&'5d@v#,@v8#~2p!d21

3d~d21!~k'2k'8 !•1Q̄
v
~d21!~k'!.

~68!

Their Fourier modesx̄ @v#~k'!, have support inQ̄ v
d21.

The radial fieldscvi
] can be bosonized by applying th

standard 111-dimensional formalism. For each ray@v#, one
uses the following identifications:
or

e

e

r

on

-
-

cv1~j0 ,j i!:5c2vi~j0 ,j i!↔
1

~2p!1/4

3D @v#~j0 ,j i ;1!:eiApw@v#
i

~j0 ,j i !:,

cv1* ~j0 ,j i!:5c2vi* ~j0 ,j i!↔
1

~2p!1/4

3D @v#~j0 ,j i ;21!:e2 iApw@v#
i

~j0 ,j i !:,

cv2~j0 ,j i!:5cvi~j0 ,j i!↔
1

~2p!1/4

3D @v#~j0 ,j i ;1!:e2 iApw@v#
i

~j0 ,j i !:,

cv2* ~j0 ,j i!:5cvi* ~j0 ,j i!↔
1

~2p!1/4

3D @v#~j0 ,j i ;21!:eiApw@v#
i

~j0 ,j i !:, ~69!

whereD @v# is a disorder operator, and the normal order
exponential ofw@v#

i is a ‘‘vertex operator.’’ The precise defi
nitions of the expressions on the right sides of Eq.~69! ap-
pear in Appendix A.

The fieldsw@v#
i ~j0,ji! are 111-dimensional free, massles

Bose fields with an action given by

S@v#
0 ~w@v#

i
!5 1

2 E
R3@2~kF/2!,~kF/2!#

d̃k0d̃kiŵ@v#
i

~2k0 ,2ki!

3„k0
21~vFki!

2
…ŵ@v#

i
~k0 ,ki!. ~70!

The Fourier modes ŵ [v]
i (k0 ,ki) have support on

R3@2(kF/2),(kF/2)#. One can verify that from the bosoniza
tion formulas, Eqs.~67!–~69! for the electron fields the one
for the current densities, Eq.~43!, follow. In Appendix B, we
show this in an example.

It is important to understand the relation of the rad
Bose fieldsw@v#

i ~j0,ji! to the fieldsw@v#~j! introduced in Eqs.
~43! and ~44!, which are related to the fermionic current
Following Eq.~44!, the actionS0~w@v#! of the Bose fieldw@v#

is given, in momentum space, by

S0~w@v#!52 1
2 E

R3Q̄v

d̃d11k ŵ@v#~2k!„k0
21~vFki!

2
…

3ŵ@v#~k!, ~71!

i.e., the fieldw@v# propagates only along the direction@v#. It
follows that the propagators of thew@v# fields are related to
the ones of thew@v#

i fields by

^w@v#~j0 ,j i ,j'!w@v8#~h0 ,h i ,h'!&

5d@v#,@v8#dkF
d21~j'2h'!^w@v#

i
~j0 ,j i!w@v8#

i
~h0 ,h i!&

i,

~72!

with

dv,kF
d21~j'!5E

Q̄v
d21

d̃d21k'e
ik'j'.
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Comparing Eq.~71! to Eq.~70!, one can decompose the fie
w@v#~j! into a tensor productw@v#~j!5w@v#

i ~j0,ji!^x@v#~j'!,
wherex@v#~j'! coincides with the bosonic Gaussian field i
troduced in Eqs.~67! and ~68!.

Next we study the effect of interactions of the form d
played in Eq.~50!. As discussed in the preceeding sectio
we use the effective actionsSn given in Eqs.~49! and~50! as
an input for the bosonization calculations. The actionSn is
the result of an RG analysis where the electron modes w
momentap outside the shellVn have been integrated out.
describes the properties of the electron system at en
scales smaller thanvFn(kF/ln). Under the assumption
specified in Sec. II, one can reach very small energy sc
vFn(kF/ln)!vFnkF before the form ofSn deviates from the
one given in Eqs.~49! and ~50!. The ~remaining! fermionic
degrees of freedom are described by the fieldsC]. These
fieldsC]~lnj! can be decomposed intoNn;l n

d21 indepen-
dent componentscv

]~j!:

C* ~lnj!5(
v

e2 ikFvlnj ln
2d/2cv* ~j!,

C~lnj!5(
v

eikFvlnj ln
2d/2cv~j!, ~73!

where the Fourier modesĉ v
](k) have support inQ̄v @cf. Eq.

~10!#. Momentum conservation guarantees that^cvcv8
* &V

;dv,v8 , so that the interacting propagatorG splits into the
contributions of the component fieldscv

] :

G„ln~j2h!…'(
v

eikFvln~j2h!ln
2dGv,n~j2h!, ~74!

where Gv,n~j2h! are the propagators of the compone
fields calculated by using the effective actionSn . The sym-
bol ' indicates that the equation holds to leading order in
expansion in 1/ln .

As in Eq. ~8!, this formula should be regarded as a d
crete approximation to a continuous angular decomposi
of the interacting propagator,

G„ln~j2h!…'E
S1
d21

dd21v eikFvln~j2h!ln
21

3Gv,n
i
„j02h0 ,v~j2h!…

for large argumentsln~j2h!, where the radial propagator
Gv,n

i
„j02h0 ,v(j2h)… depend only on the 0 compone

and the component parallel to the directionv. Hence, for the
interacting system, the decomposition~67! of each compo-
nentcv

] into a tensor product of a radial fieldc vi
] ~j0,ji! and

an angular fieldx@v#~j'!—with the propagator defined in Eq
~68!—remains valid.

We calculate the propagatorG v,n
i ~j0,ji! in the radial di-

rection by bosonizing the system, i.e., we use the identifi
tions ~69! for the component fields and replace the fermio
action Sn~$cv

]%! by its bosonic versionSn~$w@v#%! given in
Eqs. ~44! and ~55!. Then the calculation of the propagat
G v,n

i ~j0,ji! is reduced to evaluating an expectation value
the interacting bosonic ground state of a product of disor
and vertex operators inw@v#

i @see Eq.~69!#. In order to cal-
culate this expectation value, we have to determine the
,

th

gy

es

t

n

-
n

-
c

r

c-

tion Sn~w@v#
i ! of the radial bose fieldw@v#

i from the action
Sn~$w@v#%! of the family $w@v# ,@v#PS1% of d11-dimensional
Bose fields.

Through interaction~55!, the fieldw@v# , for a given ray
@v#, is coupled to all the other fieldsw@v8#, for @v8#PS1.
Integrating out the fieldsw@v8#, for @v8#Þ@v#, we obtain the
~‘‘effective’’ ! actionSn~w@v#! of the fieldw@v# which is still
Gaussian,

Sn~w@v#!5 1
2 E

R3Q̄v

d̃d11kŵ@v#~2k!@C@v#
n ~k!#21ŵ@v#~k!,

~75!

where

C@v#
n ~k!5^ŵ@v#~2k!ŵ@v#~k!&n

is the propagator of the Fourier modeŵ [v] (k) in the inter-
acting system. We determine the actionSn~w@v#

i ! of the radial
field w@v#

i ~j0,ji! by averaging the inverse propagat
@C [v]n (k)#21 in Eq. ~75! over the componentsk' of k perpen-
dicular to the direction@v#:

Sn~w@v#
i

!5 1
2 E

R
d̃k0E

@~2kF/2!,~2kF/2!#
d̃ki

3ŵ@v#
i

~2k0 ,2ki!h@v#
n ~k0 ,ki!ŵ@v#

i
~k0 ,ki!,

~76!

with

h@v#
n ~k0 ,ki!:5kF

12dE
Q̄v
d21

d̃d21k'@C@v#
n ~k0 ,ki ;k'!#21.

Our procedure to calculate the radial, fermionic propaga
G v,n

i is summarized in the following formula:

G7v,n
i

~j02h0 ,j i2h i!

52^cva~j0 ,j i!cva* ~h0 ,h i!&n
i

'
2Zn

A2p
^D @v#~j0 ,j i ;1!D @v#~h0 ,h i ;21!:

3ei ~21!a21Apw@v#
i

~j0 ,j i !::ei ~21!aApw@v#
i

~h0 ,h i !:&Sn~w
@v#
i

! ,

~77!

wherea51 for 2v, and a52 for 1v. The disorder field
D @v# in the bosonized expression of the electron field gu
antees the correct anticommutation relations, regardles
the nature of interactions.

Before diving into explicit calculations, we have to clarif
the meaning of the symbol' in Eq. ~77!, i.e., we have to
clarify the approximations involved in calculating the ele
tron propagator by means of bosonization. As in Sec.
where we analyzed the calculation of the effective gau
field action, we characterize our approximations in terms
the formal perturbation expansion of the fermionic theory
powers ofl n

21. By bosonizing the electron system with a
tion Sn , we resum all leading-order contributions of the~for-
mal! fermionic perturbation expansion of the electron prop
gator in powers of l n

21—except for self-energy
renormalizations of inner propagator lines~as in Sec. III!.



w
n
re

e
re

t
w

d
t

o
-
r
g
h
e
-
l

o

te

r

a
t

a
it
in

the

-

s-

ce
d
n

r-

ed

55 6805BOSONIZATION OF FERMI LIQUIDS
The diagrams contributing to the propagatorGv,n(k) that
are reproduced by bosonization can be found in the follo
ing way ~we restrict our discussion to 1PI self-energy co
tributions!: First, draw all diagrams renormalizing the ba
v-propagator line that are composed only ofv propagators
and contain loops of at most two propagator lines, i.
‘‘bubbles.’’ Then add all diagrams that are generated by
placing an v bubble by anv8 bubble formed by two
v8-propagator lines, forv8Þv. In Fig. 9, we display some
examples. A characteristic feature of bosonization is tha
reproduces only diagrams containing loops of at most t
propagator lines.

By introducing an effective interaction vertex as define
in Fig. 10, we can represent the diagrams reproduced in
compact form shown in Fig. 11. The first class of diagram
leads to a contribution of order 1, the second one to a c
tribution of order 1/ln . One finds that all leading-order dia
grams are reproduced by bosonization, except for self-ene
renormalizations of inner propagator lines. For short-ran
interactions, one can show by explicit calculations that t
contribution of these self-energy renormalizations of inn
propagator lines iszeroto the order considered in our calcu
lation. For long-range interactions, however, they cou
change the final result.

One should remember that we use the effective actionSn
as an input of bosonization. Because of the linearization
the pieces of the Fermi surface contained in the boxesB̄v ,
this action describes the properties of the electron sys
correctly at ~unrescaled! momentum scales betweenkF/ln
and kF/l n

2. Therefore, Eq.~77! reproduces the electron
propagator only correctly for argumentsuj2hu of order be-
tween 1/kF andln/kF @Eq. ~77! is written with respect to the
rescaled system#. In this range, formula~77! holds to leading
order in a~formal! expansion in powers of 1/ln . To deter-
mine the electron propagator for larger arguments, we fi
have to calculate an effective~fermionic! actionSm , m.n,
describing the properties of the system at larger distance
time scales. Such an effective actionSm can serve as an inpu
for the bosonization procedure.

We now return to the calculation of the bosonic propag
tor of the interacting system. First, we consider systems w
a short-range two-body interaction potential. For the non
teracting system, Eq.~71! implies

FIG. 9. Some examples of self-energy contributions reprodu
after bosonization. The corresponding ‘‘diagrammar’’ has been
fined above; the summation,(v i

, associated with each electro
loop, is not displayed explicitly.

FIG. 10. Diagrammatic definition of an effective interaction ve
tex.
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^ŵ@v#~k!ŵ@v#~k8!&05~2p!d11d~d11!~k1k8!

3
1

k0
21~vFv•k!2

1Q̄v~ i !~k!. ~78!

If one turns on interactions given by Eq.~55!, the propagator
changes to become

^ŵ@v#~k!ŵ@v#~k8!&n5~2p!d11d~d11!~k1k8!

3
1

k0
21~vFnv•k!2

3F(
l50

` S 2
1

ln
d21 T n~k!D l G

@v#@v8#

,

~79!

where

T
@v#@v8#

n
~k!5S 1

2p D d@gn~v•v8!„k0
21~vFnv•k!~vFnv8k!…

1gn~2v•v8!„2k0
21~vFnv•k!

3~vFnv8k!…#
1

k0
21~v8k!2

.

For sufficiently small coupling constants,ugn~v•v8!u<gc!1,
the Neumann series converges, and one obtains

^ŵ@v#~k!ŵ@v#~k8!&n5~2p!d11d~d11!~k1k8!

3
1

k0
21~vFnv•k!2

3F11
1

ln
d21 f ~k;gn!G , ~80!

where f (k;gn) is a bounded function ink. From Sec. II, we
know that—for a system with short-range interactions—
coupling constantsgn~v•v8! tend to finite limits, asn→`.
Thus, in the limitln→`, the effects of interactions disap
pear, and the system is driven to the noninteracting~Landau
liquid! fixed point with a propagator given by Eq.~78!. For
short-range interactions, the dependence onk' is irrelevant
and suppressed by a factor 1/l n

d21.
Below, we shall see that, for sufficiently long-range tran

verse current-current interactions, the dependence onk' is
significant~i.e., singular, asuk'u→0, with uk0u, ukiu,uk'i!. It is
not suppressed by an inverse power of the scale factorln .

d
e- FIG. 11. Diagrams contributing to the self-energy reproduc
after bosonization.
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We have to average over the variablek' in order to deter-
mine the effective dynamics of the bosonic degrees of fr
domw@v#

i in the direction along@v#.
Using Eq. ~77!, we then calculate the propagator of th

radial, quasielectron componentscvi
] . We start by studying

two technically easier classes of systems with singular in
actions. These systems correspond to Secs. III A–III C,
is
on

ng
l

-

r-
r

which the polarization tensorPrs has been calculated explic
itly.

A. Long-range, density-density interactions

The set of coupling constants is given by Eq.~59!, with
gnV̂~upu!5(gn/k F

d21) u~kF/p!ua, a.0. One obtains
^ŵ@v#~k!ŵ@v#~k8!&n5~2p!d11d~d11!~k1k8!
1

k0
21~vFnv•k!2 H 11

2

ld21 S 1

2p D d ~vFnv•k!2

k0
21~vFnv•k!2

3Fgn21V̂21S U kln
U D 1Pn

00~k!G21J , ~81!

whereP n
00 is defined in Eq.~41!, with vF→vFn . Using that

lim
uk/k0u→0

Pn
00~k!→cS kk0D

2

and lim
uk0 /ku→0

Pn
00~k!→c8,

one verifies that

~vFnv•k!2

k0
21~vFnv•k!2

Fgn21V̂21S U kln
U D1Pn

00~k!G21

;H S v•k

k0
D 2F S gn

kF
d21D 21U k

kFln
Ua

1cU kk0U
2G21

for u
k

k0
u→0

F S gn
kF
d21D 21U k

kFln
Ua

1c8G21

for Uk0k U→0.
nta,
the

und
For 0<a<2, the right-hand side is a bounded function ofk.
Under the assumption that all parametersPn ~except the

scale parameterln! characterizing the effective actionSn
tend to finite values, asn→`, it follows that, in the limit
ln→`, the effect of interactions on the Bose propagator d
appears, as for the system with short-range interacti
Hence, in the limitln→`, the electron propagatorG tends to
the standard LFL form.

This result is due to the screening of the bare, long-ra
interaction potentialV̂~upu!. In Eq. ~81!, the bare potentia
V̂~uk/lnu! is replaced by an effective RPA potential

gnV̂n
eff~k0 ,k!:5

gnV̂S U kln
U D

11gnV̂S U kln
U DPn

00~k!

5
1

gn
21V̂21S U kln

U D1Pn
00~k!

.

In the static limituk0/ku→0, we obtain

lim
uk0 /ku→0

gnV̂n
eff~k0 ,k!5

1

S gn
kF
d21D 21S kFln

uku D a

1c

,

i.e., in this limit, the effective potential is short ranged.
-
s.

e

B. Tomographic Luttinger liquid

With Eq. ~61!, one obtains

^ŵ@v#~k!ŵ@v#~k8!&n5~2p!d11d~d11!~k1k8!

3
1

k0
21~vFnv•k!2

F11
gn
2p G21

.

As there is no dependence on the perpendicular mome
one can immediately read off the effective dynamics for
modesŵ @v#

i propagating along@v#:

Sn
TL~w@v#

i
!5 1

2 E
R3@2~kF/2!,~kF/2!#

d̃k0d̃kiŵ@v#
i

~2k0 ,2ki!

3F11
gn
2pG„k021~vFnki!

2
…ŵ@v#

i
~k0 ,ki!.

The result for the quasi-electron propagator can be fo
with the help of formulas~A18! and ~A19! of Appendix A:

G6v,n~j!5dv,kF
~d21!~j'!

7 i

2p
e6 i arg~z!

Zn
uzu11h , ~82!

where

j5~z,j'! with z:5S j0 ,
j i

vFn
D ,

and



ca
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dv,kF
~d21!~j'!:5E

Q̄d21
d̃d21k'e

ik'j'.

The exponenth is given by

h5

2S gnp D 2
112S gnp D 2 .

This interacting system describes a Luttinger liquid.
The flow of the parameterZn in Eq. ~82! can be derived

by assuming that, along each directionv, the system is scale
invariant: Recall that

G~lnj!;(
v

eikFlnv•j
1

ln
d Gv,n~j!

;E dv eikFlnv•j
1

ln
Gv,n

i
~z!. ~83!

This equation and the assumption that the theory is s
invariant along each directionv implies the following
matching property for the Green functionsG v,n

i ~z!:
-
s
n

s
r
th
r-
le

Gv,n
i

~Mz!'
1

M
Gv,n11

i
~z!. ~84!

By inserting Eq.~82!,

Zn
uMzu11h ;

1

M

Zn11

uzu11h ,

it follows that

Zn11

Zn
;

1

Mh or Zn;
1

~Mn!h ,

i.e., for this system, the residueZn of the one-particle pole
vanishes, asn→`.

C. Long-range, transverse current-current interactions

Such interactions have been introduced in Eq.~63!, with
gnV~upu!5cnukF/pua, cn :5g n

Tv Fn
2 /k F

d21, and lead to the fol-
lowing bosonic propagator~for @v#5@v8#!:
^ŵ@v#~k!ŵ@v#~k8!&n5~2p!d11d~d11!~k1k8!
1

k0
21~vFnv•k!2

3H 12
2

ln
d21

1

2p S kF2p D d21 gnV̂S U kln
U D

11gnV̂S U kln
U DPn

t ~k!

k0
2

k0
21~vFnv•k!2

Fv22
~v•k!2

k2 GJ , ~85!

with

)
n

t

~k!5
2

d21

1

2p S kF2p D d21 1

ln
d21 (

vPS1

k0
2

k0
21~vFnv•k!2

Fv22
~v•k!2

k2 G .
up-

n

One finds that limn→`Pn
t (k)5P

*
t (k), with P

*
t (k) defined

in Eq. ~41!. Using that limuk0 /ku→0Pn
t (k);uk0 /ku, one can

see~cf. Appendix C! that the contribution from the interac
tions to the propagator yields a singulark' dependence, a
uk'u→0 and (ukiu,uk0u)!uk'u As discussed above, we the
have to average over the perpendicular momentak' , in order
to determine the~effective! action,Sn

T, for the modesŵ @v#
i

propagating along@v#. The somewhat tedious calculation
are deferred to appendix C. Here, we only describe our
sults. We obtain two different regimes, depending on
exponenta which characterizes the singularity of the inte
action potential in momentum space byV̂~upu!;1/upua:

~i! For 0<a,d21, the bosonization calculation yields
e-
e

Gv,n~j!;dv,kF
~d21!~j'!

3S 2 i

2p Dei arg„i j01~j i /vFn!…
Zn

A~vFnj0!
21j i

2
.

~86!
The functiondv,kF

(d21)(j') was defined in Eq.~82!. The influ-

ence of the interaction on the electron propagator is s
pressed by a factorl n

2[(d21)2a] , asln→`. From the match-
ing condition~84!, it follows that

Zn11'Zn and vFn11'vFn .
The system tends to a LFL.

~ii ! For d21,a<2, we display the result in the regio
uj0u!ujiu/vFn :
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Gv,n~j!;dv,kF
~d21!~j'!S 2 i

2p Dei arg„i j01~j i /vFn!…Zn

35
expS 2uIkFcn

d/~11a!Uln

j i

vFn
U @a2~d21!#/11aD for uj iu@cnvFnln

a

expS 2uII
kF

ln
d21

uj iu
vFn

D for cnvFnln
a@uj iu@

vFnln
d21

kF
1

uj iu
for

vFnln
d21

kF
@uj iu@

1

kF
.

~87!
l

si

n

te

is

f t

F

orm
ing

e
c-

g-

o
one
the
-
al-
The constantcn stands forgnv Fn
2 /k F

d21, anduI anduII are
positive constants depending on the dimensiond of space
and the exponenta ~cf. Appendix C!. We have neglected al
terms which are of lower order in an expansion inl n

21 than
the leading terms displayed. Two interpretations are con
tent with this result:

~1! The parametersPn characterizing the effective actio
Sn are all of order 1—except for the scale parameterln—i.e.,
they do not flow under RG transformations. Then, the sys
tends to a LFL, asln→`: for finite argumentsujiu, the propa-
gatorGv,n has the standard LFL form. It deviates from th
form only for very large argumentsujiu@vFnl n

d21/kF , where
the results of a bosonization calculation are not reliable~re-
member that, because of the linearization of the pieces o
Fermi surface contained in the boxesQ̄v , the results of the
present calculation are only reliable for argumentsujiu
smaller thanln!.

~2! The parameters of the setPn flow under RG transfor-
mations, i.e., they are functions of the scale parameterln .
The electron propagator deviates from the standard L
form for finite argumentsujiu, if the condition

cnvFnln
a;OS 1kFD
e-
lc
e
a
ct
th

o
es
on
s-

m

he

L

is satisfied. Further, the requirement that the system is f
invariant under scale transformations implies the match
condition ~84!. This condition can be satisfied if

cn
d/~11a!vFn

~d212a!/~11a!;const.

Then it follows that

cn;ln
2a~a2d11!/~11ga! and vFn;ln

2ad/~11a! .

The flow of the parameterZn cannot be derived in the sam
way: for this, one would have to know subleading corre
tions to the argument of the exponential in Eq.~87!. Hence
the system displays ‘‘non-Landau-liquid’’ behavior, as su
gested in Ref. 3.

The result of the bosonization calculation permits tw
consistent scenarios. In order to be able to decide which
is realized in the physical system, one has to determine
flow of the parametersPn under RG transformations. Pre
liminary calculations indicate that the second case is re
ized.

~ii ! For the critical valueac5d21 of the exponenta, we
find, for the electron propagator in the regionuj0u!ujiu/vFn ,
Gv,n~j!;dv,kF
~d21!~j'!S 2 i

2p Dei arg„i j01~j i /vFn!…ZnH exp~2vkFcn ln
2uj iu! for uj iu@cnvFnln

1

uj iu
for cnvFnln@uj iu@

1

kF
,

~88!
li-
he
o
. 1,
e
liq-
A
ith
nd
ting
tion
wherev is a constant of order one.
As for a.d21, we can distinguish two possible sc

narios, consistent with the results of the bosonization ca
lation: If the parameterscn ,vFn are not functions of the scal
parameterln , the propagator has the standard LFL form,
ln→`. In order to obtain a non-LFL behavior, the produ
cnvFnln of parameters must be of order one. Then,
matching condition~84! requires thatcn11'cn . By the first
condition, it follows thatvFn;1/ln . Again, in order to de-
cide which one of the two scenarios is realized, the flow
the parameters under RG transformations must be inv
gated. Preliminary calculations point in the second directi
u-

s

e

f
ti-
.

D. Comparison of our results with those in Refs. 3 and 4

One of the conclusions of our work is that a naive app
cation of bosonization, without a careful analysis of t
renormalization flow of couplings, will in general lead t
wrong conclusions. Following the ideas presented in Refs
2, 8, 9, and 14, we sketched how Wilson-typ
renormalization-group methods can be applied to Fermi
uids ~see Sec. II!, albeit only for short-range interactions.
careful renormalization-group analysis for Fermi liquids w
long-rangeinteractions is very demanding, technically, a
goes beyond the scope of this paper. For these fascina
systems, we have, however, worked out what a combina
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1of bosonization and a self-consistent ansatz for the form
the effective action on an arbitrary scale predicts about t
renormalization flow of the parametersvF ~renormalized
Fermi velocity! andg ~four-body couplings! in the effective
action.

The authors of Ref. 3 do analyze Fermi liquids with long
range interactions, but by using elaborate diagrammatic te
niques~that involve certain approximations! rather than by
carrying out a Wilson-type renormalization-group analys
~which would presumably be more reliable!. Their conclu-
sions about the large-distance, low-energy behavior of t
electron propagatorqualitativelyagree with ours~which are
based on a self-consistent use of bosonization methods
described above!, for an arbitrary numberN of electron fla-
vors, and they agreequantitativelywith ours in the limit
N→0. This does not mean, however, that bosonization me
ods can only be applied in the limitN→0. It just says that,
before they can be applied reliably, one must control t
renormalization flow of couplings in the effective action
thereby taking into account, e.g., the curvature of the Fer
surface.

The methods of analysis used in Ref. 4 are based
bosonization, too, just like ours. However, in Ref. 4 the a
proximations~e.g., neglecting effects due to the curvature
the Fermi surface! involved in bosonizing Fermi liquids in
d>2 dimensions remain in the shade. In particular, it ma
not have been realized in Ref. 4 that one must control t
renormalization flow of the couplings in the effective actio
of a Fermi liquid, before one understands the domain of v
lidity and the limitations of bosonization.
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APPENDIX A: BOSONIZATION OF THE ELECTRON
PROPAGATOR IN 111 DIMENSIONS

In this appendix, we review the bosonization of a relativ
istic 111-dimensional electron systemby using functional
integrals. Our aim is to summarize the procedure for calcu
lating the electron propagator. The general ideas of t
bosonization technique have been presented in Refs. 19
20.

We study a 111-dimensional electron system in Euclid
ean space-time, whose action is given by

S0~C̄,C!5E d2j C̄~j!gm]mC~j!. ~A1!

The fieldC denotes a two-component Grassmann field, a
C̄:5C*g0, whereC* is an independent Grassmann field
Choosing the chiral representation of theg matrices, i.e.,

g05s1 , g15s2 , g552 ig0g15s3,

the two components (c2

c1) of C are the antiholomorphic and

holomorphic modes, respectively, which are the Euclide
analogs of left and right movers, respectively.

We shall perturb the system by a current-current intera
tion of the form
of
e

-
h-

s

e

as

h-

e

i

n
-
f

y
e

-

-

-
e
nd

d
.

n

-

V~C̄,C!52
g

2 E d2j j m~j! j m~j!, ~A2!

where the one-dimensional currentsj m are defined by

j m~j!52 i :C̄~j!gmC~j!:m50,1.

This is the Tomonaga-Luttinger model.
Before studying the interacting system, we recall t

bosonization formulas for the free system. Identifying t
fermionic current densityj m with the bosonic expressions

j m~C̄,C;j!↔ j m~w;j!5
i

Ap
«mn]nw~j!, ~A3!

one can reproduce the Green functions for the currents f
the actionS̃(dw)1 of the free, massless Bose fieldw, which is
given by

S̃0~dw!5 1
2 E d2j ]mw~j!]mw~j!5 1

2 E dw~j!`* dw~j!.

~A4!

In this appendix, we write the actionS~w! as a functional,
S̃(dw), of derivatives of the bosonic field. Here we ha
introduced the one formdw5]mwdjm, and * denotes the
Hodge star operation. We use standard notations of diffe
tial calculus. In Ref. 20 one finds a brief summary of t
main definitions.~Note that, in Ref. 20, we use slightl
modified conventions; especiallyf→w:5f/2Ap and
j 8m→ j m5 i j 8m.!
In order to express the Green functions of the fields (c2

c1)

in the bosonic theory, one has to introduce disorder fie
D(yI ,qI ): For nonzero integers,qI 5$q(1),...,q(n)%, satisfying
( i51
n q( i )50, we define the one form

PhI ,qI ~j!:5(
i51

n

Ph~ i !,q~ i !~j !, ~A5!

with

Ph~ i !,q~ i !~j !5Pn
h~ i !,q~ i !

~j !djn:52Apq~ i !@* dD21dh~ i !
~2!

#~j!

5
1

2Ap
q~ i !

jm2h~ i !m

uj2h~ i !u2
«mn djn, m,n50,1.

Here we use that

]m]nD21~j!52d~2!~j !,

i.e., ~A6!

D21~j!52
1

2p
lnuju.

In physics terminology,Ph,q is the vector potential of a mag
netic vortex of chargeq at the pointh5~h0,h1!. The field
strength is given by

dPh,q~j!5Apq* d~j2h!.

If D is a two-dimensional domain, then
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1

Ap
E
D
dPh,q~j!5 Hq0 if hPD

otherwise.

The one formPh,q can be written as the derivative of
multivalued functionah,q~j!, i.e.,

Ph,q~j!5dah,q~j!. ~A7!

By identifying the Euclidean space-time with the compl
plane j5~j0,j1!°j̄5 i j01j1, the functionah,q~j! can be
represented as

ah,q~j!52
q

2Ap
arg~ j̄2h̄ !. ~A8!

The expectation value of a disorder fie
D(hI ,qI )5P i51

n D(h ( i ),q( i )) is given by

^D~hI ,qI !&B55 E Dwe2 S̃~dw1PhI ,qI
!

E Dwe2 S̃~dw! 6
ren

. ~A9!

On the right-hand side of Eq.~A9!, a multiplicative renor-
malization is necessary, in order to eliminate an infin
‘‘self-energy.’’

Correlation functions involving disorder fieldsD(hI ,qI )
and functionals,F~dw,w!, depending on the bosonic fieldw
and its derivativedw are defined by

^D~hI ,qI !F~dw,w!&B

55 E DwFS dw1)
hI ,qI

,w1ahI ,qI D e2 S̃~dw1PhI ,qI
!

E Dwe2 S̃~dw! 6
ren

.

~A10!

For the electron fields, the following identifications hold:

c1~j!↔
1

~2p!1/4
D~j,1!:eiApw~j!:5:c1~w;j!,

c2~j!↔
1

~2p!1/4
D~j,1!:e2 iApw~j!:5:c2~w;j!,

c1* ~j!↔
1

~2p!1/4
D~j,21!:e2 iApw~j!:5:c1* ~w;j!,

c2* ~j!↔
1

~2p!1/4
D~j,21!:eiApw~j!:5:c2* ~w;j!,

~A11!

with the convention that, in a product composed of seve
ca’s, we write the disorder fields to the left of all functiona
depending onw. Normal ordering of exponentials is define
by

:ei*d
2j w~j! f ~j!:5ei*d

2j w~j! f ~j!e~1/2!*d2j f ~j!~D1m0
2
!21f ~j!,

~A12!
al

where D52]m]m , f denotes a test function, andm0 is a
positive constant. It is straightforward~cf. Refs. 19 and 20!
to verify that

K (
i51

n

cb i
] ~j i !L

F

0

5K (
i51

n

cb i
] ~w;j i !L

B

0

.

One can show that the same bosonization identities h
for the interacting system, with the interactionV given by
Eq. ~A3! ~cf. Ref. 20!. The only difference is that expectatio
values of bosonic operators are taken with respect to
interacting system, i.e.,

^~• !&B
V :5E Dw

ZV
e2@~1/2!*dj ]mw~j!]mw~j!1V~dw!#~• !,

~A13!

where the functionalV(dw) is obtained from the functiona
V(c̄;c) by using the identities~A3!, i.e.,

V~dw!5
g

2p E d2j ]mw~j!]mw~j!. ~A14!

One obtains, e.g.,

^c2* ~j!c2~h!&V5
i

2p
e2 i arg~ j̄ 2 h̄ !

1

uj2hu11b ,

~A15!

where

b5

2S 2gp D 2
112S 2gp D 2 .

Similarly,

^c1* ~j!c1~h!&V5
2 i

2p
ei arg~ j̄ 2 h̄ !

1

uj2hu11b
.

~A16!

The exponentb describes the decay of the electron propa
tor for large arguments. The dependence on the coup
constant is a characteristic feature of Luttinger liquids.

APPENDIX B: CONSISTENCY
OF BOSONIZATION FORMULAS

In this appendix, we show on the example

^ ̄ @v1#(j) ̄ @v2#(h)&
0 that the bosonization formulas~67!–

~70! for the electron fieldscv
] imply the bosonization formu-

las ~43!–~45! for the electron currentsj @v# and ̄ @v# . The
generalization that this statement holds for arbitrary produ
of current densities evaluated in the noninteracting grou
state is straightforward.

The calculation of expectation values of products of c
rent densities in the interacting ground state is organized
perturbation expansion in powers of the set of coupling c
stantsgn~v•v8! and the inverse scale parameterl n

21. For
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systems with interactions of the form given in Eq.~50! @i.e.,
interactions which can be expressed in terms of the cur

densitiesj @v# and ̄ @v# , cf. Eq. ~53!#, such an expansion re
duces the calculation to the task of evaluating products
is

e

be
-
m

nt

f

current densitiesj @v# and ̄ @v# in the noninteracting ground
state, where our statement applies.

By inserting Eq. ~35!, for the expression

^ ̄ @v #(j) ̄ @v #(h)&
0 one obtains
1 2
^ ̄ @v1#~j ! ̄ @v2#~h!&05 (
v18 ,v28PS1

$eikFl~v12v18!jeikFl~v22v28!h^:cv
18
* ~j!cv1

~j!::cv
28
* ~h!cv2

~h!:&0

1eikFl~v12v18!jeikFl~v282v2!h^:cv
18
* ~j!cv1

~j!::cv2
* ~h!cv

28
~h!:&0

1eikFl~v182v1!jeikFl~v22v28!h^:cv1
* ~j!cv

18
~j!::cv

28
* ~h!cv2

~h!:&0

1eikFl~v182v1!jeikFl~v282v2!h^:cv1
* ~j!cv

18
~j!::cv2

* ~h!cv
28
~h!:&0%

5H eikFl~v12v2!~j2h!^cv2
* ~j!cv2

~h!&0^cv1
~j!cv1

* ~h!&01dv1 ,v2 (
v18PS1

eikFl~v12v18!~j2h!

3^cv
18
* ~j!cv

18
~h!&0^cv1

~j!cv1
* ~h!&01dv1 ,v2 (

v18PS1

eikFl~v182v1!~j2h!

3^cv1
* ~j!cv1

~h!&0^cv
18
~j!cv

18
* ~h!&01eikFl~v22v1!~j2h!^cv1

* ~j!cv1
~h!&0^cv2

~j!cv2
* ~h!&0J .
ing

e

In order to simplify these expressions we can apply a ‘‘d
cretized’’ version of lemma~3.21! in Ref. 16:

Lemma: For a decomposition of the surfaceS 1d21 of the
d-dimensional unit sphere~with d.1! into congruent, qua-
dratic patches with sides of length 1/l we define the setM
of d-dimensional unit vectors vi ,
i51,...,N5V0l~S 1d21)/ld21 pointing to the centers of thes
patches. Given a vectorsjPM and some test function
f ~vi ;j!, one finds, in the limitl→`, the following asymp-
totic formula:

E
Rd
ddj (

viPM
f ~vi ;j!@dv i ,kF

d21
„j'~vi !…e

ikFlj~vi2sj !#

5E
Rd
ddj (

viPM
f ~vi ;j!Fdv i ,s j

ds j ,L
d21

„j'~sj !…1OS 1l D G ,
~B1!

where

j'~s!:5j2~j•s!s

and

ds j ,L
d21

„j'~sj !…:5E
@~2L/2!,~L/2!#d21

d̃d21k'e
ik'j'~sj !.

Here,L!lkF denotes an arbitrary momentum which can
chosen to be equal tokF . The proof of this lemma is ana
loguous to the proof of the continuous version of the lem
presented in Appendix C of Ref. 16.
-

a

By applying this lemma to the expressions appear
above and by inserting the bosonization formulas~67!–~70!
for the electron fieldscv

] , we obtain the following formula:

^ ̄ @v1#~j ! ̄ @v2#~h!&0'24S kF2p D d21

dv1 ,v2
dv12,kF
d21

„j'~v1!…

3^cv1i* ~j0 ,j i ;w@v1#
i

!cv1i

3~h0 ,h i ;w@v1#
i

!&S
i
0

3^cv1i~j0 ,j i ;w@v1#
i

!

3cv1i* ~h0 ,h i ;w@v1#
i

!&S
i
0, ~B2!

where cvi
] ~j0,ji ;w@v#

i ! is a short-hand notation for th
bosonized expressions of the radial electron fieldscvi

] ~j0,ji!
specified in Eq.~69!. It is a straightforward calculation to
verify that Eq.~B2! is identical to the following formula:

^ ̄ @v1#~j ! ̄ @v2#~h!&0'24S kF2p D d21

dv1 ,v2
dv1 ,kF
d21

„j'~v1!…

•^]̄v1w@v1#
i

~j0 ,j i!]̄v2w@v2#
i

~h0 ,h i!&S
i
0

5F22

Ap
S kF2p D ~d21!/2G 2

3^]̄v1w@v1#~j !]̄v2w@v2#~h!&S
i
0, ~B3!
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where we use Eq.~A6! for the propagator of the radial Bos
field w@v#

i ~j0,ji!, and Eq.~72! to deduce the second part of th
equation. Formula~B3! reproduces the bosonization identi
for the current densitȳv , cf. Eqs.~43!–~45!. Hence we have
verified our claim, thus showing the consistency of t
bosonization formulas for the electron fields and the curr
densities.

APPENDIX C: CALCULATION OF THE ELECTRON
PROPAGATOR FOR A SYSTEM WITH LONG-RANGE,
TRANSVERSE CURRENT-CURRENT INTERACTIONS

In order to apply Eq.~77! to the calculation of the propa
gator

Gv,n
ia ~j02h0 ,j i2h i!:52^cva~j0 ,j i!cva* ~h0 ,h i!&n

i

t

of the radial electron fieldcva
] , we have to determine the

effective actionSn
T~w@v#

i ! of the bosonic fieldw@v#
i propagat-

ing along the direction@v#.
The propagator̂ ŵ [v] (k)ŵ [v] (k8)&n of the bosonized in-

teracting system is given in Eq.~85!. It can be written as

^ŵ@v#~k!ŵ@v#~k8!&n5~2p!d11d~d11!~k2k8!

3
1

k0
21~vFnv•k!2

K@v#
n ~k!,

~C1!

with
K@v#
n ~k!5

11
2

ln
d21

1

2p
S kF
2p

D d21

gnV̂S U k
ln
U D F 1

d21
(

v8PS1

k0
2

k0
21~vFnv8k!2

S ~v8!22
~v8k!2

k2 D ~12dgq,v8!G
11

2

ln
d21

1

2p
S kF
2p

D d21

gnV̂S U k
ln
U D 1

d21
(

v8PS1

k0
2

k0
21~vFnv8k!2

S ~v8!22
~v8,k!2

k2
D . ~C2!

One observes that the functionK [v]
n (k) is bounded by 0<K [v]

n (k)<1, for arbitraryk. In explicit calculations, expression~C2!
for K [v]

n (k) is not convenient. We replace it by

K̃@v#
n ~k!5

11gnV̂S U k
ln
U D Pn

t ~k!

11gnV̂S U k
ln
U D FPn

t ~k!1
2

ln
d21

1

2p
S kF
2p

D d21
k0
2

k0
2~vFnvk!2

S ~v!22
~v•k!2

k2
D G ~C3!

which has the same asymptotics for small momentak asK [v]
n (k). The functionP n

t (k) has been defined in Eq.~42!, with
vF→vFn .

The actionSn
T~w@v#! of the bosonic fieldŵ [v] (k) which reproduces the propagator~C1!—but with the functionK(k)

replaced byK̃(k)—is given by

Sn
T~w@v#!5 1

2 E
R3Q̄d

d̃d11kŵ@v#~2k!@„k0
21~vFnvk!2…„K̃@v#

n ~k!…21#ŵ@v#~k!. ~C4!

We define

„K̃@v#
n ~k!…21:511T@v#

n ~k!, ~C5!

with

T@v#
n ~k!:5

2

ln
d21

1

2p
S kF
2p

D d21
k0
2

k0
21~vFnvk!2

S ~v!22
~v•k!2

k2
D

gn
21V̂21S U k

ln
U D 1Pn

t ~k!

.

The effective actionSn
T(w@v#

i ) of the modes propagating along the direction@v# is deduced frofm the actionSn
T(w@v#) by

averaging over the momenta perpendicular to@v#. One obtains

Sn
T~w@v#

i
!5 1

2 E
R
d̃k0E

2kF/2

kF/2

d̃kiŵ@v#~2k!@„k0
21~vFnki!

2
…„11t @v#

n ~k0 ,ki!…#ŵ@v#~k!, ~C6!
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with

t @v#
n ~k0 ,ki!:5

1

kF
d21 E

Q̄d21
dd21k'T@v#

n ~k!.

For small momenta (k0 ,ki) and a large scale factorln , the calculation yields the following asymptotic formula fo
t [v]
n (k0 ,ki):

t @v#
n ~k0 ,ki!; t̃ @v#

n ~k0 ,ki!

:55
a~d!

k0
2

k0
21~vFnki!

2

kF
uk0u

1

ln
d21 for 1@cnk0u@

1

ln
a

a~d!
k0
2

k0
21~vFnki!

2 kFcnln
a2~d21!

2

11a
GS d

11a DGS 11a2d

11a D F S ln
acnuk0u

pd212d22D ~d212a!/~11a!

21G
for

1

ln
a @ucnk0u

~C7!

where d52 and 3 is the dimension of space,a(d) is a positive constant of order unity, and the consta
cn :5(v Fn

2 /k F
d21)gn.0 anda, with 0<a<2, parametrize the interaction potentialgnV̂~upu!5cn~kF/upu!a.

For 1@ucnk0u@1/l n
a, one observes thatt̃ n takes values between 1/l n

d21 and l n
a2(d21). If a,d21, it follows that the

interactions can be neglected in the limitln→`. If a.d21, the interactions become important as soon ask0 is of order 1/l n
d21

or smaller. In the range 1/l n
a@ucnk0u, Eq. ~C7! can be rewritten as

t̃ @v#
n ~k0 ,ki!5c~d!

k0
2

k0
21~vFnki!

2 5
b~d,a!

3

11a

p

sinS p
d

11a D kFcn
d/~11a!S uk0u

ln
D ~d212a!/~11a!

for a.d21

2
2

11a
kFcn lnS ln

d21gnuk0u
kFpd212d22D for a5d21

b~d,a!kFcnln
a2~d21! for d21.a>0.

~C8!
y

la
o
he

re

l
on
Fora,d21, the effect of the interactions is suppressed b
factor 1/l n

d212a. For a>d21, one observes a singulark0
dependence of the functiont̃.

Using the methods presented in Appendix A, the calcu
tion of the radial electron propagators is straightforward. F
lowing Eq. ~77!, the large-distance asymptotics of, e.g., t
propagatorG v,n

i1 is obtained by evaluating the expression

^cv1* ~z!cv1~0!&n
i ;

1

A2p
Fe2 iAvFnp„az,0

@v#
~z!2az,0

@v#
~0!…

3E Dw@v#
i e2 S̃n

T
~]mw@v#

i
1P@v#m

z,0
!

3:e2 iAvFnpw@v#
i

~z!::eiAvFnpw@v#
i

~0!: G ,
~C9!

with z5„j0,~ji/vFn!…. For each ray@v#, the vector potential
P@v#m

z,0 and the functionaz,0
@v# are given in Eqs.~A5! and ~A8!

in Appendix A. However, in contrast to Appendix A, he
we display the Fermi velocityvFn explicitly. Then, on the
right-hand-side of Eqs.~A5! and~A8!, there is an additiona
factor 1/AvFn. Note also the supplementary factorAvFn in
the exponent of the vertex operators.
a

-
l-

We again write the actionSn
T~w@v#

i ! as a functional,
S̃n
T~]mw@v#

i !, of the derivatives]mw@v#
i . One has that

S̃ n
T~]mw@v#

i
1Pz,0

@v#m!5Sn
T~w@v#

i
!1S̃ n

T~Pz,0
@v#!,

where the actionSn
T~w@v#

i ! is defined in Eq.~A7!. The contri-
bution S̃n

T~Pz,0
@v#! of the disorder fields is given by

S̃ n
T~Pz,0

@v#!52pE
R
d̃k0E

2kF/2

kF/2

d̃ki@eikz21#
vFn

k0
21~vFnki!

2

3„11t @v#
n ~k!…, ~C10!

and the contribution of the vertex-operators in Eq.~C9!
amounts to

E Dw@v#
i

Zn
T e2Sn

T
~]mw@v#

i
!:e2 iAvFnpw@v#

i
~z!::eiAvFnpw@v#

i
~0!:

5
1

A2p
expFpE

R3kF

d̃ 2k@eikz21#

3S vFn
k0
21~vFnki!

2

1

11t @v#
n ~k! D G . ~C11!

We display the behavior of the fermionic Green functi
G v,n

i1 ~z! in the following two regions:
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I5H z5S j0 ,
j i

vFn
D :cnln

a!uzuJ ,
II5H z5S j0 ,

j i

vFn
D :uzu!cnln

a and uj0u!U j i

vFn
UJ .

In region I, the propagatorG v,n
i1 ~z! is obtained by evaluating the integrals in Eqs.~C10! and ~C11! by using the asymptotic

form ~C9!:

^cv1* ~z!cv1~0!&n
i ;S 2 i

2p Dei arg„i j01~j i /vFn!…

35
exp(2ūIkFcn

d/~11a!ln
@a2~d21!#/~11a!

•uz@a2~d21!#/~11a!
11a

a2~d21!
cosFa2~d21!

11a
arctanS UvFnj0j i

U D G
2U j i

vFn
Uuzu2d/~11a!cosF 2d

11a
arctanS UvFnj0j i

U D G for 2>a,d21

exp~2vkFcn ln
2uzu! for a5d21

1

AuvFnzu
F S 11w

kFcn
ln
d212aD j i

21~vFnj0!
2G21/4„A11w~kFcn /~ln

d212a
!…21

3@j i
21~vFnj0!

2#2~w/8!~kFcn /ln
d212a

! for d21.a.0,

~C12!

where

ū15c~d,a!
2

11a

p

sinpS d

11a D GS d

11a D and v5c~d,a5d21!
1

d
.

As it stands, the limit of the propagator fora↓d21 is singular and does not reproduce the formula fora5d21. The reason
is that, fora.d21, there is a subleading term, not displayed in Eq.~C12!, which becomes leading fora5d21. Idem for
a↑d21.

In region II, for d21,a<2, one finds

^cv1* ~z!cv1~0!&n
i ;S 2 i

2p Dei arg„i j01~j i /vFn!…H e2uII~kF /ln
d21

!~ uj iu/vFn! for cnvFnln
a@uj iu@

vFnlnd21

kF
1

uj iu
for

vFnln
d21

kF
@uj iu@

1

kF
.

~C13!

And, for 0,a,d21,

^cv1* ~z!cv1~0!&n
i ;S 2 i

2p Dei arg„i j01~j i /vFn!…
1

uj iu
for uj iu@

1

kF
. ~C14!

In Eqs.~C13! and ~C14!, we have omitted subleading terms in an expansion in 1/ln .
in

.
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