PHYSICAL REVIEW B VOLUME 55, NUMBER 11 15 MARCH 1997-|

Magnetophonon and electrophonon resonances in quantum wires
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Based on the formalism developed previousihys. Rev. B48, 9126(1993], magnetophonon resonances
and electrophonon resonances in quantum wires are investigated for various confinement potentials. The
occupation of several electric subbands due to these confinement potentials leads to electrophonon resonances
and a splitting and shift of magnetophonon resonance peak positions. The dependence of both resonance peak
positions on the magnetic field, the thickness of the well, the confinement frequency, and the bias field is
shown explicitly.[S0163-18207)08711-(

[. INTRODUCTION confined by narrow gates or split gates, and electrons are free
along only one direction. We assume that a heterointerface is
Magnetophonon resonancé¥lPR’s) and electrophonon nhormal to thez axis and the confinement in tlyedirection is
resonance$EPR’S in low-dimensional electron gas systems characterized by a parabolic potential of frequefiy. For
have generated considerable interest in recent years. Mariye confinement potentials along thexis, we take the fol-
studies have been made on these effects in two-dimensionwing potential wells:(1) the parabolic well and2) the
electron gas(2DEG) systems:® However, less work has Square well, Whl_ch both have t_he advantage_that all subbands
been done on the effects of a quasi-one-dimensional electrdin P& ncluded in the calculation, af@ the triangular well,
gas(Q1DEG.-8Vasilopouloset al® studied MPR effects in which is often usedetoAmodeI heterostructures. Applying a
guantum wires assuming a parabolic confinement potentiatatic magnetic field3(||z) to the wire and considering the
of frequency(), based on the Kubo formiland the quan- effective-mass approximation for conduction electrons con-
tum Boltzmann equatiofi,and their calculations revealed fined in the quantum wire, the one-particle Hamiltonian
that the ordinary resonance conditian =Pw, is modified  (he) for such electrons together with its normalized eigen-
to w =P®@., whereP is an integer,o, and o, are the functions (\)) and eigenvaluesH,), in the Landau gauge
LO-phonon frequency and cyclotron frequency, respectivelyof vector potentiaﬁ:(—By,O,o), are, respectively, given
and . is the renormalized cyclotron frequency given by by
Be=(02+ Q%2 Mori etal’ presented a theory of MPR

for the same model as treated by Vasilopoutsal® by he=(p—eA)?/2m* +m* O2y?/2+h(2), (1)
utilizing the Kubo formula and the Green’'s function ]
method™® A numerical analysis with respect to the magneto- I\ =IN.n.k)= By =y expik, )W ()L, (2)

conductivity has been performed for weak and strong con-
finement potentials by introducing the current density opera-
tor due to the electron-phonon interaction and th
confinement potential. Recently, Ryu and O’Corthélhve
presented a theory of MPR’s for the same model as treate
by Vasilopouloset al® by taking the linear response limit of
nonlinear response thedtyin order to investigate analyti-
cally the MPR effects in quantum wires. It should be pointe
out that they assumed that only the lowest subband lev
formed in the heterostructures is occupied. This assumptioft ; .
leads to the neglect of effects arising from a consequence ¢ReNt potentiall, , respectively. Alsapy(y —y,) represents
the occupation of several electric subbands such as EPR girmomc-_qpsuc;llator wave functions, centered  at
fects, the splitting of MPR peak positions, and the shift ofY=Y»= b | gky. Herek, is the wave vector in the di-
MPR peaks. The purpose of the present paper is to study thHection,b=w. /@, andlg=(A/m* &) Y2 is the effective ra-
MPR and EPR effects of a Q1DEG in quantum wires, wherelius of the ground-state electron orbit in the, §) plane.
electric subbands are considered. The dimensions of the sample are assumed to be
V=L,L,L,.

For a parabolic well given bjn(z)=m*Q§ZZ/2 with the
characteristic frequency of the confinement potertig) the

We consider a simple model for a quantum wire, in whicheigenfunctions¥ ,(z) and the corresponding eigenvalues
a two-dimensional electron gas formed in heterostructures iasre, respectively, given by

Ex=Ennk = (N+1U2hB+ A 2M+e,,  (3)

e\/\/heref) is the momentum operator of a conduction electron,
(=0,1,2,...) andn denote the Landau-level index and
e subband-level index, respectively, dhg= (w>+ Q7)Y
andm=m* ZT)E/Q)ZI are the renormalized cyclotron frequency
dwith respect to the cyclotron frequenay=eB/m* and the
e(pnormalized mass with respect to the effective mass
ssociated with the characteristic frequency of the confine-

1. MODEL FOR QUANTUM WIRES
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— 1/2 1/ _ 5292
‘lfn(z)—(1/2”7r IBn!) ZeXF( Z/2|B)Hn(Z/|B)1 (4) Fq(N,NI;n,n/)EZ |C(CI)|2|JNN'(U)|2|Jnn'(QZ)|2-
q

en=(n+3)%Q,,n=0,12,..., (5) (13
wherelg= (£/m* Q,) Y2, wherew,, n= (g, —&,)/%, o, is the LO-phonon frequency,
For a square well of infinite height, the eigenfunctions andC(q) is the interaction potential for LO-phonon scattering,
eigenvalues, respectively, are known to be N’ indicates intermediate localized Landau stabégis the
LO—-phonon distribution function given by
2 Inm Ng=[exp(Bfiwg) — 1]~ ! with wg=w,, and
v.(2)= \ﬁsin —z], (6)
Lo\ L, , | . ?
|‘]nn’(iqz)| = J_ W:(Z)exlc(iquz)qfn’(z)dz )
en=n’%, N=123,..., @) (14)
wherego=h2m2/2m* L2 . N,! N
For the half-triangular-well case given Hy(z)=eFz |JNN’(U)|2=FG_UUN”‘_N”[LN:‘ "l (15
(z>0), « (z<0), the eigenfunctions are given by Airy m o
functions? as with  N,=min{N,N'}, Np=max¥N,N}, u=I3(b%q?

V. (2)=Ai

213
, nh=012,....

3

n—I—Z 12

+03)/2, and L\(u) being an associated Laguerre
2m*eF,\ 13 g, polynomial’® In Eq. (12) we have made an approximation
#2 Z_e_lzS : ®  N'*1~N’ for very largeN’ and assumed that the phonons
are dispersionlesg.e., i wg~% w ~const) and the system is
where the eigenvalues are approximately given by of bulk (i.e., three dimensiongal The energy-conserving
functions in Eq.(12) imply that when the electron undergoes
ﬁzezFi v a collision by absorbing energy from the field, its energy can
En= | Tom* 37 change only by an amount equal to the energy of a phonon
involved in the transition. This in fact leads to the MPRs
. ] ] . ] o and/or EPR effects, for whichw. and Ae,, >1',. The se-
Here Fg is an applied bias field in the direction of the  |action rule N\’ £\ in the summation of Eq(12) means
heterostructure. (N’,n")#(N,n), which contains the following conditions:
(1) NN andn’=n, (2) N'=N andn’#n, and(3) N’
#N andn’#n. From these conditions, we can expect three
possible transitions in quantum wirgd) the transition due
1. MAGNETOPHONON AND ELECTROPHONON to the Landau levels for the direction,(2) the transition due
RESONANCES to the subband levels for thedirection, and(3) the transi-
The transverse magnetoconductivity, for the Q1D ver- gggbd;nedtloe\tjglt: ft(r;re thzr&?ftelitl;\;els for thadirection and the
sion can be evaluated from the I|_near-_response I|_m|t with Seting N'-N=—P in the emission term and
respect to Eq.(4.38)_0f _Ref. 11 given in the nonlinear- N'—N=P in the absorption terfnand considering Egs.
response tﬁ‘eory' which is exp.ressed ,?hy tge sum of the ho?iO), (11), and(12), we see from the above condition that the
ping partoy, and the nonhopping past,, a transverse magnetoconductivity shows resonant behaviors:
~ L~ MPR’s atP&.=w, and atP@.=w (P is an integer with
o3~ (€207 ENSAZGeV) Doy o1 (10 o, =w_ *w,,. Those resonances involving the terms
- wnr, reflect the subband structure in tledirection. The
T (e?BINLEIM* Q2V)[ oy ] Y, (1)) MPR condition atP@.= w, is identical with those indicated
D = . . _ by Vasilopouloset al® Furthermore, we see from the above
where Ng~= ymL}/8w%°BZexd B(Er—&,)]/sinh(Bhiw./  condition that the conductivity shows other resonant behav-
2), with E¢ being the Fermi energy3=1/kgT, with kg be-  jors: EPR’s due to the subband in the direction at
ing Boltzmann’s constanXy, =(\[X|\") for any operator 4 ,.=w, . Note that, in the zero-magnetic-field case, the
X, andI'g, ,\, is the relaxation rate associated with the stateselaxation ratgand hence the electric conductivitybtained
\,and\,. To obtain the above equations we have performedy replacings. in Eq.(12) by Q, shows resonant behaviors:
the sum over tha state with the use of Eq2). Using Eqs. EPR’s due to the subband level in the direction at
(2) and (3) and_proceeding as in Ryu and O'Conrfethe  PQy=w and atPQy=w_ (P is an integey, and EPR’s due
relaxation rateﬂ"o}\Jrl}\ and]"o)\}\ are given as to the subband in the direction at Wprp= WL and at
oy n=w =P, . In this case, we also see that the subband
~ ~ level for they or z direction leads to the splitting of EPR’s
Tori1a~Toa~2m(No+1/21/2) 2, Fo(N,N’;n,n") whenever virtual interelectric subband transitions take place.
M #N Employing the collision-broadening mofieind applying
XS[(N'=N)AB+ oy tho ], (12 Poisson’s summation formutafor the =p in Eq. (12) we
then obtain the relaxation rate for three different confinement
with potentials as
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- ~ 27mL2 i y1 wf ) (7’1 wf)
r ~Tour~ \/——=(Ng+1/2+1/2) >, Re| Fo| —+—;n,n’ | (¥ =, —
OA+IATLon Bhswc( 0 )% e{ q(ﬁac B ho, B
ZW'rﬁLx
+ >—(2Ng+1)S*{n;n’), (16)
Bh
where
(1hQ)REF (NN iy, 11Q,+ 0 1Q)} W (v, /hQ,,01Q,) (parabolic well,
sosqn:n’) =1 [1/2e0(n+x1)IREFG(N,N";iy3/e0+x1)}W(ysleo, X)) (square wel, (17)
[3(x2+n+%)IZFS]Re{Fq(N,N’;iy4/FS+x2)}‘If(y4/FS,x2), (triangular wel),
- sinh(27a)
— —27s —
W (a,b) 1+2S§=)le cod2mSh) = o —cogaah) (270 (18)

with x;=vn?+w /eg—n, x=\{(n+3/4"3+w IFJ® evant energy separation between subbands forzttizec-
—(n+3/4), andv;(i=1,2,3,4) being the damping param- tion, the splitting of the MPR peak positions occurs. The
eters. shift of the peak positions increases as the energy separation
between two subband levels for theirection increases.
Figures 2a)—2(c) show the energy diagram of the EPR’s

atfiw,,=hwo_ for three different confinement potentials for

To visualize the series of resonance positions associat Mo . .
. X . e z direction: a parabolic well, a square well, and a trian-
with MPR and EPR effects in the quantum wires, we showe :
ular well, respectively. The quantum number of the sub-

he pl in Figs. 1 2, wh h ical-ph
the plots in Figs. 1 and 2, where the optical-phonon energ and level in the direction is indicated for each line, where

has been taken adw, = 36.6 meV for GaAs. Figure 1
“L d the initial and final states are representedrbgndn’, re-

shows the energy diagram of the MPR’sR#b .= w, and at : i X
P@.=w, as a function of magnetic field. The quantum spectively. Any changes in the confinement frequefigy

number of the Landau level is indicated for each line, de{h® well widthL, and the bias field-, lead to changes of
pending on the value of2,. The crossing points give the the energy separation between elect.nc subbands, WhICh al-
resonance magnetic fields, which depend on the strength W Uus to have the energy levels in resonance with the
confinement in the direction. We notice that the resonance optlcal—phonpn energy. The crossing points given in Figs.
magnetic field decreases 8, increases. In the case where 2(8)—2(c) indicate the resonance confinement frequency, the
only intraelectric-virtual-subband transitionsn-Gn’ =n) resonance well width, and the resonance bias field, respec-
take place, i.e.w,,=0, there is no splitting of the MPR’s. tively. As can be seen from Fig(&, no EPR takes place for
However, we can see that whenever the interelectrié), >5.56x 10" sec ! since the energy separation between
(nonresonanjvirtual-subband transitions take place for a rel- adjacent subband levels is larger than the optical-phonon en-
ergy (ko =36.6 meV for GaAs As (), decreaseS§.e., the

IV. NUMERICAL RESULTS
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well in z direction becomes widgrthe energy separation
between subbandsandn’ becomes closer. Therefore, vari-
ous resonance transitions fromto anyn’ are allowed to
take place due to the LO phonons. Note that the reason for
having the identical resonance frequencies for adjacent sub-
band resonance transition is due to the fact that the energy
separation between adjacent subband levels is all same. Un-
like the parabolic well case, for the square well case given in
Fig. 2b), the resonance well widths for adjacent subband
resonance transition have different values, which is due to
the fact that every energy separation between adjacent sub-
band levels is not the same because the subband energy spec-
trum e, is proportional ton? and is not equidistant. We can
see that as the thickness of the well increases, various reso-
nance transitions from the subband leveto anyn’ take

FIG. 1. Energy diagram is plotted as a function of magnetic field de—p|ace_ The results for increasing the well WidIE!~ 1/ /QZ

pending on the values of both characteristic frequency ofyt@ectional
confinement and energy separation of the subbands far thection. The
difference of the quantum number of the Landau lev@=(N’'—N) is in-

are similar to those for decreasing the confinement frequency
), in the parabolic potential case. For the triangular well

dicated for each line. The solid, dotted, and dash-dotted lines are fof@se given in Fig. @), the energy separation between adja-
0y=0.10¢, Qy=w;, andQ =50, respectively.

cent subband levels is altered by changing the bias field
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FIG. 2. Energy diagram is plotted as a function(a¥ (2, , the charac-
teristic frequency of they-directional confinement for the parabolic well
case,(b) L,, the width of the well for the square well case, dofiF, the

F,. As the bias field is increased the well width in the
direction is decreased. As a result, the energy separation be-
tween adjacent subband levels becomes larger. This is simi-
lar to the parabolic potential case because increasing the con-
finement frequency), is identical with decreasing the well
width.

V. CONCLUSIONS

So far, we have studied MPR and EPR effects for a Q1D
quantum-wire structure in the presence and absence of any
magnetic field, in which a Q1DEG is confined by a parabolic
well in they direction and three kinds of confinement poten-
tials in the z direction, including the parabolic well, the
square well, and the triangular well. The relaxation résesl
hence the transverse magnetoconductiviilow resonant
behaviors: MPR’s aPw.=w, and atPw.=w, * w,/, and
EPR’s due to the subband in tlzedirection atw, ,= o,
which strongly depends on the subband structure inzthe
direction. The occupation of several electric subbands gives
rise to the additional oscillatory behavior of the MPR effect
and EPR effect. It should be noted that the MPR peak posi-
tions are strongly sensitive to the strength of the magnetic
field, the optical-phonon energy, the characteristic frequency
of the y-directional confinemenfl,, and the type of the
confinement potential well in the direction. The MPR con-
dition at Pw.=w, is identical to those of Vasilopoulos
et al.® assuming that only the lowest subband level formed
in heterostructures is occupied. In the zero magnetic-field
case, the relaxation rat¢éand hence the electric conductiv-
ity) show resonant behaviors due to the subband levels given
in two different directions: EPR’s due to the subband level
for they direction atP()y = w, and atPQy=w| * w,/,, and
EPR'’s due to the subband for thedirection atw, ,= o,
and atw, ,=w = PQ,.

In present calculation for the conductivity, we considered
the most simple situation of linear transport and a nondegen-
erate electron gas. The nonlinear magnetophonon resonance
and electrophonon resonance effects will be studied later.
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