
PHYSICAL REVIEW B 15 MARCH 1997-IVOLUME 55, NUMBER 11
Magnetophonon and electrophonon resonances in quantum wires
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Based on the formalism developed previously@Phys. Rev. B48, 9126~1993!#, magnetophonon resonances
and electrophonon resonances in quantum wires are investigated for various confinement potentials. The
occupation of several electric subbands due to these confinement potentials leads to electrophonon resonances
and a splitting and shift of magnetophonon resonance peak positions. The dependence of both resonance peak
positions on the magnetic field, the thickness of the well, the confinement frequency, and the bias field is
shown explicitly.@S0163-1829~97!08711-0#
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I. INTRODUCTION

Magnetophonon resonances~MPR’s! and electrophonon
resonances~EPR’s! in low-dimensional electron gas system
have generated considerable interest in recent years. M
studies have been made on these effects in two-dimens
electron gas~2DEG! systems.1–5 However, less work has
been done on the effects of a quasi-one-dimensional elec
gas~Q1DEG!.6–8Vasilopouloset al.6 studied MPR effects in
quantum wires assuming a parabolic confinement poten
of frequencyV, based on the Kubo formula9 and the quan-
tum Boltzmann equation,2 and their calculations reveale
that the ordinary resonance conditionvL5Pvc is modified
to vL5Pṽc , where P is an integer,vL and vc are the
LO-phonon frequency and cyclotron frequency, respectiv
and ṽc is the renormalized cyclotron frequency given
ṽc5(vc

21V2)1/2. Mori et al.7 presented a theory of MPR
for the same model as treated by Vasilopouloset al.6 by
utilizing the Kubo formula and the Green’s functio
method.10 A numerical analysis with respect to the magne
conductivity has been performed for weak and strong c
finement potentials by introducing the current density ope
tor due to the electron-phonon interaction and
confinement potential. Recently, Ryu and O’Connell8 have
presented a theory of MPR’s for the same model as tre
by Vasilopouloset al.6 by taking the linear response limit o
nonlinear response theory11 in order to investigate analyti
cally the MPR effects in quantum wires. It should be point
out that they assumed that only the lowest subband le
formed in the heterostructures is occupied. This assump
leads to the neglect of effects arising from a consequenc
the occupation of several electric subbands such as EPR
fects, the splitting of MPR peak positions, and the shift
MPR peaks. The purpose of the present paper is to study
MPR and EPR effects of a Q1DEG in quantum wires, wh
electric subbands are considered.

II. MODEL FOR QUANTUM WIRES

We consider a simple model for a quantum wire, in whi
a two-dimensional electron gas formed in heterostructure
550163-1829/97/55~11!/6719~4!/$10.00
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confined by narrow gates or split gates, and electrons are
along only one direction. We assume that a heterointerfac
normal to thez axis and the confinement in they direction is
characterized by a parabolic potential of frequencyVy . For
the confinement potentials along thez axis, we take the fol-
lowing potential wells:~1! the parabolic well and~2! the
square well, which both have the advantage that all subba
can be ncluded in the calculation, and~3! the triangular well,
which is often used to model heterostructures. Applying
static magnetic fieldBW (i ẑ) to the wire and considering th
effective-mass approximation for conduction electrons c
fined in the quantum wire, the one-particle Hamiltoni
(he) for such electrons together with its normalized eige
functions (ul&) and eigenvalues (El), in the Landau gauge
of vector potentialAW 5(2By,0,0), are, respectively, given
by

he5~pW 2eAW !2/2m*1m*Vy
2y2/21h~z!, ~1!

ul&[uN,n,kx&5fN~y2yl!exp~ ikxx!Cn~z!/ALx, ~2!

El[EN,n,kx
5~N11/2!\ṽc1\2kx

2/2m̃1«n , ~3!

wherepW is the momentum operator of a conduction electro
N (50,1,2,. . . ) andn denote the Landau-level index an
the subband-level index, respectively, andṽc5(vc

21Vy
2)1/2

andm̃5m* ṽc
2/Vy

2 are the renormalized cyclotron frequenc
with respect to the cyclotron frequencyvc5eB/m* and the
renormalized mass with respect to the effective massm*
associated with the characteristic frequency of the confi
ment potentialVy , respectively. AlsofN(y2yl) represents
harmonic-oscillator wave functions, centered
y5yl52b̃ l̃ B

2kx . Herekx is the wave vector in thex di-
rection,b̃5vc /ṽc , andl̃ B5(\/m* ṽc)

1/2 is the effective ra-
dius of the ground-state electron orbit in the (x, y) plane.
The dimensions of the sample are assumed to
V5LxLyLz .

For a parabolic well given byh(z)5m*Vz
2z2/2 with the

characteristic frequency of the confinement potentialVz , the
eigenfunctionsCn(z) and the corresponding eigenvalues«n
are, respectively, given by
6719 © 1997 The American Physical Society
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Cn~z!5~1/2np1/2l Bn! !
1/2exp~2z2/2l B

2 !Hn~z/ l B!, ~4!

«n5~n1 1
2 !\Vz ,n50,1,2,. . . , ~5!

wherel B5(\/m*Vz)
1/2.

For a square well of infinite height, the eigenfunctions a
eigenvalues, respectively, are known to be

Cn~z!5A 2

Lz
sinS np

Lz
zD , ~6!

«n5n2«0 , n51,2,3,. . . , ~7!

where«05\2p2/2m* Lz
2 .

For the half-triangular-well case given byh(z)5eFsz
(z.0), ` (z,0), the eigenfunctions are given by Air
functions12 as

Cn~z!5AiF S 2m* eFs\2 D 1/3S z2
«n
eFs

D G , ~8!

where the eigenvalues are approximately given by

«n5S \2e2Fs
2

2m* D 1/3F3pS n1
3

4D /2G
2/3

, n50,1,2, . . . .

~9!

Here Fs is an applied bias field in thez direction of the
heterostructure.

III. MAGNETOPHONON AND ELECTROPHONON
RESONANCES

The transverse magnetoconductivitysxx for the Q1D ver-
sion can be evaluated from the linear-response limit w
respect to Eq.~4.38! of Ref. 11 given in the nonlinear
response theory, which is expressed by the sum of the h
ping partsxx

h and the nonhopping partsxx
nh as8

sxx
h '~e2b̃2l̃ B

2Ns
1D/\2ṽcV!G̃0l11l , ~10!

sxx
nh'~\e2ṽc

2Ns
1D/m*Vy

2V!@G̃0ll#21, ~11!

where Ns
1D5Am̃Lx2/8p\2b(nexp@b(EF2«n)#/sinh(b\ṽc/

2!, with EF being the Fermi energy,b51/kBT, with kB be-
ing Boltzmann’s constant,Xll8[^luXul8& for any operator
X, andG̃0l2l1

is the relaxation rate associated with the sta

l1andl2. To obtain the above equations we have perform
the sum over thel state with the use of Eq.~2!. Using Eqs.
~2! and ~3! and proceeding as in Ryu and O’Connell,8 the
relaxation ratesG̃0l11l and G̃0ll are given as

G̃0l11,l'G̃0l,l'2p~N011/261/2! (
l8Þl

Fq~N,N8;n,n8!

3d@~N82N!\ṽc1\vn8n6\vL#, ~12!

with
d

h

p-

s

d

Fq~N,N8;n,n8![(
qW

uC~q!u2uJNN8~u!u2uJnn8~qz!u
2,

~13!

wherevn8n5(«n82«n)/\, vL is the LO-phonon frequency
C(q) is the interaction potential for LO-phonon scatterin
N8 indicates intermediate localized Landau states,N0 is the
LO–phonon distribution function given by
NqW5@exp(b\vqW)21#21 with vqW5vL , and

uJnn8~6qz!u25U E
2`

`

Cn* ~z!exp~6 iqxz!Cn8~z!dzU2,
~14!

uJNN8~u!u25
Nn!

Nm!
e2uuNm2Nn@LNn

Nm2Nn~u!#2, ~15!

with Nn5min$N,N8%, Nm5max$N,N8%, u5 l̃ B
2(b̃2qx

2

1qy
2)/2, and LN

M(u) being an associated Laguer
polynomial.13 In Eq. ~12! we have made an approximatio
N861'N8 for very largeN8 and assumed that the phono
are dispersionless~i.e.,\vqW'\vL'const) and the system i
of bulk ~i.e., three dimensional!. The energy-conservingd
functions in Eq.~12! imply that when the electron undergoe
a collision by absorbing energy from the field, its energy c
change only by an amount equal to the energy of a pho
involved in the transition. This in fact leads to the MPR
and/or EPR effects, for which\ṽc andD«n @G̃0. The se-
lection rule l8Þl in the summation of Eq.~12! means
(N8,n8)Þ(N,n), which contains the following conditions
~1! N8ÞN and n85n, ~2! N85N and n8Þn, and ~3! N8
ÞN andn8Þn. From these conditions, we can expect thr
possible transitions in quantum wires:~1! the transition due
to the Landau levels for they direction,~2! the transition due
to the subband levels for thez direction, and~3! the transi-
tion due to both the Landau levels for they direction and the
subband levels for thez direction.

Setting N82N52P in the emission term and
N82N5P in the absorption term6 and considering Eqs
~10!, ~11!, and~12!, we see from the above condition that th
transverse magnetoconductivity shows resonant behav
MPR’s atPṽc5vL and atPṽc5vL

6 (P is an integer! with
vL

65vL6vn8n . Those resonances involving the term
vn8n reflect the subband structure in thez direction. The
MPR condition atPṽc5vL is identical with those indicated
by Vasilopouloset al.6 Furthermore, we see from the abov
condition that the conductivity shows other resonant beh
iors: EPR’s due to the subband in thez direction at
vn8n5vL . Note that, in the zero-magnetic-field case, t
relaxation rate~and hence the electric conductivity! obtained
by replacingṽc in Eq. ~12! byVy shows resonant behaviors
EPR’s due to the subband level in they direction at
PVy5vL and atPVy5vL

6 (P is an integer!, and EPR’s due
to the subband in thez direction at vn8n5vL and at
vn8n5vL6PVy . In this case, we also see that the subba
level for they or z direction leads to the splitting of EPR’
whenever virtual interelectric subband transitions take pla

Employing the collision-broadening model6 and applying
Poisson’s summation formula14 for the (P in Eq. ~12! we
then obtain the relaxation rate for three different confinem
potentials as
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with x15An21vL /«02n, x25A$(n13/4)2/31vL /Fs%
3

2(n13/4), andg i( i51,2,3,4) being the damping param
eters.

IV. NUMERICAL RESULTS

To visualize the series of resonance positions associ
with MPR and EPR effects in the quantum wires, we show
the plots in Figs. 1 and 2, where the optical-phonon ene
has been taken as\vL5 36.6 meV for GaAs. Figure 1
shows the energy diagram of the MPR’s atPṽc5vL and at
Pṽc5vL

6 , as a function of magnetic field. The quantu
number of the Landau level is indicated for each line, d
pending on the value ofVy . The crossing points give th
resonance magnetic fields, which depend on the strengt
confinement in thez direction. We notice that the resonan
magnetic field decreases asVy increases. In the case whe
only intraelectric-virtual-subband transitions (n→n85n)
take place, i.e.,vn8n50, there is no splitting of the MPR’s
However, we can see that whenever the interelec
~nonresonant-!virtual-subband transitions take place for a r

FIG. 1. Energy diagram is plotted as a function of magnetic field
pending on the values of both characteristic frequency of they-directional
confinement and energy separation of the subbands for thez direction. The
difference of the quantum number of the Landau level (P5N82N) is in-
dicated for each line. The solid, dotted, and dash-dotted lines are
Vy50.1vc , Vy5vc , andVy55vc , respectively.
ed
d
y

-

of

ic

evant energy separation between subbands for thez direc-
tion, the splitting of the MPR peak positions occurs. T
shift of the peak positions increases as the energy separ
between two subband levels for thez direction increases.

Figures 2~a!–2~c! show the energy diagram of the EPR
at \vn8n5\vL for three different confinement potentials fo
the z direction: a parabolic well, a square well, and a tria
gular well, respectively. The quantum number of the su
band level in thez direction is indicated for each line, wher
the initial and final states are represented byn and n8, re-
spectively. Any changes in the confinement frequencyVz ,
the well widthLz , and the bias fieldFz lead to changes o
the energy separation between electric subbands, which
low us to have the energy levels in resonance with
optical-phonon energy. The crossing points given in Fi
2~a!–2~c! indicate the resonance confinement frequency,
resonance well width, and the resonance bias field, res
tively. As can be seen from Fig. 2~a!, no EPR takes place fo
Vz .5.5631013 sec21 since the energy separation betwe
adjacent subband levels is larger than the optical-phonon
ergy (\vL536.6 meV for GaAs!. As Vz decreases~i.e., the
well in z direction becomes wider!, the energy separation
between subbandsn andn8 becomes closer. Therefore, var
ous resonance transitions fromn to any n8 are allowed to
take place due to the LO phonons. Note that the reason
having the identical resonance frequencies for adjacent
band resonance transition is due to the fact that the en
separation between adjacent subband levels is all same.
like the parabolic well case, for the square well case given
Fig. 2~b!, the resonance well widths for adjacent subba
resonance transition have different values, which is due
the fact that every energy separation between adjacent
band levels is not the same because the subband energy
trum «n is proportional ton

2 and is not equidistant. We ca
see that as the thickness of the well increases, various r
nance transitions from the subband leveln to any n8 take
place. The results for increasing the well widthLz;1/AVz
are similar to those for decreasing the confinement freque
Vz in the parabolic potential case. For the triangular w
case given in Fig. 2~c!, the energy separation between ad
cent subband levels is altered by changing the bias fi

-

or
G̃0l11,l'G̃0l,l'A2pm̃Lx
2

b\3vc

~N011/261/2!(
n8

ReH FqS ig1

\ṽc

1
vL

6

ṽc

;n,n8D J CS g1

\ṽc

,
vL

6

ṽc
D

1A2pm̃Lx
2

b\2 ~2N011!Sosc~n;n8!, ~16!

where

Sosc~n;n8!5H ~1/\Vz!Re$Fq~N,N8; ig2 /\Vz1vL /Vz!%C~g2 /\Vz ,vL /Vz! ~parabolic well!,

@1/2«0~n1x1!#Re$Fq~N,N8; ig3 /«01x1!%C~g3 /«0 ,x1! ~square well!,

@3~x21n1 3
4 !/2Fs#Re$Fq~N,N8; ig4 /Fs1x2!%C~g4 /Fs ,x2!, ~ triangular well!,

~17!

C~a,b!5112(
s51

`

e22psacos~2psb!5
sinh~2pa!

cosh~2pa!2cos~2pb!
~a.0!, ~18!
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FIG. 2. Energy diagram is plotted as a function of~a! Vy , the charac-
teristic frequency of they-directional confinement for the parabolic we
case,~b! Lz , the width of the well for the square well case, and~c! Fs , the
electric field for the triangular well case. The quantum number of the s
band level is indicated for each line.
Fz . As the bias field is increased the well width in thez
direction is decreased. As a result, the energy separation
tween adjacent subband levels becomes larger. This is s
lar to the parabolic potential case because increasing the
finement frequencyVz is identical with decreasing the we
width.

V. CONCLUSIONS

So far, we have studied MPR and EPR effects for a Q
quantum-wire structure in the presence and absence of
magnetic field, in which a Q1DEG is confined by a parabo
well in they direction and three kinds of confinement pote
tials in the z direction, including the parabolic well, th
square well, and the triangular well. The relaxation rates~and
hence the transverse magnetoconductivity! show resonant
behaviors: MPR’s atPṽc5vL and atPṽc5vL6vn8n and
EPR’s due to the subband in thez direction atvn8n5vL ,
which strongly depends on the subband structure in thz
direction. The occupation of several electric subbands gi
rise to the additional oscillatory behavior of the MPR effe
and EPR effect. It should be noted that the MPR peak p
tions are strongly sensitive to the strength of the magn
field, the optical-phonon energy, the characteristic freque
of the y-directional confinementVy , and the type of the
confinement potential well in thez direction. The MPR con-
dition at Pṽc5vL is identical to those of Vasilopoulo
et al.,6 assuming that only the lowest subband level form
in heterostructures is occupied. In the zero magnetic-fi
case, the relaxation rates~and hence the electric conductiv
ity! show resonant behaviors due to the subband levels g
in two different directions: EPR’s due to the subband le
for they direction atPVy5vL and atPVy5vL6vn8n , and
EPR’s due to the subband for thez direction atvn8n5vL
and atvn8n5vL6PVy .

In present calculation for the conductivity, we consider
the most simple situation of linear transport and a nondeg
erate electron gas. The nonlinear magnetophonon reson
and electrophonon resonance effects will be studied late
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