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Electron-phonon mass enhancement and lifetime at finite temperature
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We reexamine the effect of the electron-phonon interaction on the electron mass enhancement and inverse
lifetime as a function of temperature. We assign the values of the quasiparticle energy and inverse lifetime to
the real and imaginary parts of the pole in the single-electron Green function, following Galitskii and Migdal.
We find that for intermediate to strong coupling the electron mass enhancement grows monotonically with
temperature and the electron inverse lifetime is almost independent of the electron-phonon coupling parameter.
This result corrects the conventional wisdom that the mass enhancement has a maximum as a function of
temperature, and that the inverse lifetime grows linearly with coupling constant, statements which remain true
for weak coupling. In contrast, electron-impurity scattering leads to a decrease of the electron mass enhance-
ment parameter.@S0163-1829~97!01212-5#
as
he
o

of
ll
e
gf
a

ce
d
n
-
a
e

e
T
or

he

n,

re

tr
ro
.
ec
a
e
es

by

ac-
the
by

r-

icle
ure
Historically, the single-electron Green function h
played a very important role in our understanding of t
impact of electron-phonon interactions on the properties
the electron.1,2 In particular, the real and imaginary parts
the pole in the single-electron Green function are norma
identified with the quasiparticle energy and inverse lifetim
respectively. Such a correspondence is strictly meanin
only if certain conditions are met, for example, the quasip
ticles are restricted to lie right on the Fermi surface.3 None-
theless, very often the usefulness of the quasiparticle con
continues away from the Fermi surface, and indeed, un
other conditions where, strictly speaking, the concept is
longer valid. One such ‘‘continuation’’ is to finite tempera
ture. Thus, it is common practice to define an electron m
enhancement parameter and an inverse lifetime, for temp
tures above the absolute zero,4,5 particularly in the electron-
phonon problem. Here we reexamine the electron mass
hancement and inverse lifetime for nonzero temperature.
result is a somewhat different physical picture than is n
mally presented.

We begin with the standard Migdal approximation for t
electron self-energy in the electron-phonon problem,5

Sph~v1 id!5E
0

`

dn a2F~n!H 22p i FN~n!1
1

2G
1cS 121 i

n2v

2pT D2cS 122 i
n1v

2pT D J , ~1!

whereT is the temperature andv is a real frequency. The
function a2F(n) is the electron-phonon spectral functio
N(n) is the bose function, andc(x) is the digamma func-
tion. Recall that Eq.~1! comes from the lowest order~albeit
self-consistent! Feynman diagram; hence the standard dis
gard for vertex corrections is inherent in Eq.~1!. Further-
more, because of the usual disparate phonon and elec
energy scales, Fermi surface averaging over the elect
phonon matrix elements makes the self-energy isotropic
addition particle-hole symmetry together with the large el
tron bandwidth cause the Fermi-level energy scale to dis
pear from the problem and the self-consistency requirem
is redundant.6 As a result of these approximations the expr
sion ~1! is in closed form.
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The quasiparticle has the energy and lifetime defined
the pole of the single-electron retarded Green function,1 i.e.,
the zero of

G21~k,v1 id!5v2ek2Sph~v1 id!, ~2!

whereek is the electron dispersion in the absence of inter
tions and now the functions are analytically continued to
lower half plane. Defining the energy and inverse lifetime
the pole in the lower half plane,

v[Ek2 iGk/2, ~3!

we obtain the two equations,

Ek5ek1E
0

`

dn a2F~n!ReH cS 121 i
n2Ek1 iGk/2

2pT D
2cS 122 i

n1Ek2 iGk/2

2pT D J , ~4!

Gk52E
0

`

dn a2F~n!H2pFN~n!1
1

2G
2ImS cH 121 i @~n2Ek1 iGk/2!/2pT#J
2cH 122@~ in1Ek2 iGk/2!/2pT#J D J. ~5!

HereEk gives the~new! dispersion in the presence of inte
actions andGk gives the inverse lifetime~also hereafter re-
ferred to as the electron scattering rate!. These equations
must be solved self-consistently to obtain the quasipart
pole, i.e., energy and lifetime. The conventional proced
is, however, to assume that bothEk andGk are small so that
one can obtain closed expressions. These are5,4

Ek'ek/@11l* ~T!#, ~6!
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G* ~T!'
4p*0

`dn a2F~n!@N~n!1 f ~n!#

11l* ~T!
, ~7!

where f (n) is the Fermi function and

l* ~T!'2
1

pTE0
`

dn a2F~n!Imc8S 121 i
n

2pTD . ~8!

The functionl* (T) is often referred to as the mass enhan
ment parameter because of the way it enters Eq.~6!. Both
this function andG* (T) are independent of momentum s
the momentum label has been dropped. Note that at
temperature,l* (T) reduces to the well-known electron
phonon coupling constant,l[2*0

`dn @a2F(n)/n#. These
expressions are obtained by expanding the denominato
Eq. ~2! about the origin~where the pole at the Fermi surfac
resides in the noninteracting limit!. In fact, Eq. ~8! comes
from l* (T)52]S(v)/]v, where the right-hand side i
evaluated atv50. Indeed, this expansion is often taken a
‘‘definition’’ of the mass enhancement parameter. Howev
in the high temperature limitl* (T)}1/T2, andG* (T)}T,
as defined above. The latter result is in conflict with t
assumption thatG* (T) is small. Thus Eqs.~7!,~8! may be a
poor approximations for nonzero temperatures.

As stated above the correct procedure is to solve E
~4!,~5! self-consistently. Such a procedure defines a differ
dispersion relation given byEk . The usual practice is to
define an effective mass~at least at the Fermi energy! and
hence a mass enhancement parameter. Clearly the defin
for this purpose is

11l~T![~]Ek /]ek!
21. ~9!

To investigate the consequences, we hereafter confine
selves to the Fermi surface (ek50). Then inspection of Eq
~4! reveals thatEk50 remains a solution. We find~the as-
terisks are dropped to differentiate these solutions from
previous approximate ones!

l~T!52
1

pTE0
`

dn a2F~n!Imc8S 122
G~T!

4pT
1 i

n

2pTD , ~10!

where now the scattering rate is given by

G~T!54pE
0

`

dn a2F~n!HN~n!1
1

2

2
1

p
ImcS 122

G~T!

4pT
1 i

n

2pTD J . ~11!

Equation~11! must now be solved numerically, as the righ
hand side is a function ofG(T). Once this equation is solved
the result can be used in Eq.~10! to obtainl(T). Note that
the new definition ofl(T), Eq. ~10!, is simply related to the
derivative of the self-energy,but evaluated at the single
particle pole, not on the real axis.

For an Einstein spectrum,a2F(n)5(lvE/2)d(n2vE),
so that Eqs.~10,11! reduce to dimensionless form@with
g[G(T)/vE and t[T/vE#:

g~ t !52plHN~1/t !1
1

2
2
1

p
ImcS 122

g~ t !

4pt
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l~ t !52
l

2pt
Imc8S 122

g~ t !

4pt
1

i

2pt D . ~13!

These results, along with their approximate counterpa
@from Eq. ~7,8!# are plotted in Fig. 1. Clearly, a precise d
termination of the pole@solid curves, from Eq.~11!# leads to
a significantly lower scattering rate than that obtained us
Eq. ~7!, particularly for coupling strengths that exceed uni
In fact, for high temperatures, the previous result led to
asymptotic behavior,G(T)'2pTl, while our result for high
temperature is

G~T!52pTl for l,1

52pT for l.1. ~14!

Interestingly,l51 demarcates weak from strong couplin
behavior, as indicated by the electron scattering rate. In
1~b! l(T) is plotted for the same parameters. The high te
perature behavior is remarkable, particularly for strong c
pling. The mass enhancementl(T) increases monotonically
with temperaturefor l.1. This is in contrast to the pertur
bative behavior ~indicated by dashed curves! where a

FIG. 1. ~a! The normalized scattering rate vs the temperature for vari
coupling strengths. Solid curves are from Eq.~11! while dashed curves are
obtained from the approximate expression Eq.~7!. In all cases an Einstein
spectrum was used~arbitrary frequency!. ~b! Electron mass enhancemen
parameter vs temperature for various coupling strengths. Solid curves
from Eq. ~10! while dashed curves are obtained from the approximate
pression Eq.~8!.
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peak at low temperatures is followed by an asymptotic
proach to zero for high temperature.4 In Fig. 2 we illustrate
the scattering rate as a function of coupling strength for v
ous temperatures. It is clear from this plot that the scatte
rate saturates for strong coupling, whereas the perturba
expression Eq.~7! leads to a scattering rate which increas
indefinitely with coupling strength. In particular, at very hig
temperatures~not shown! we obtain a kink in the result a
l51, as indicated by Eq.~14!.

To understand these results, one must realize that the
tor 1/@11l(T)# plays a dual role. On the one hand its i
verse represents a mass enhancement, as signified by Eq~6!.
In addition however, this factor gives the quasiparticle re
dueat the pole. As temperature increases it is plausible th
the residue decreases since excited states are increas
populated. Hence, while the scattering rate increases
increased coupling strength due to an increased interactio
the quasiparticle with the phonons, at the same time it h
tendency to decrease due to the decreasing weight of
quasiparticle. This also is consistent with the fact that
higher temperatures the energy dispersion should decre
not increase,~since the original dispersion will becom
smeared!, and hencel(T) should increase with temperatur
This is apparently not true for weak coupling@see Fig. 1~b!,
the lower two sets of curves# indicative perhaps of insuffi-
cient ~virtual! mixing of the electron wave function with th
phonon wave functions.

Can these effects be measured? We suggest that
likely they cannot, as the following example shows. In ma
observables~and more directly in photoemission! the elec-
tron spectral function,A(kF,v)[2(1/p)G(kF,v1 id),
plays an important role. We show this spectral function
Fig. 3 as a function ofv/vE , for various temperatures. Th
curves corresponding to the two lowest temperatures go
scale. The zero temperature curve has been understoo
detail by Engelsberg and Schrieffer6 and others.7 Finite tem-
perature smears thed function~at the origin in this case! into
an ever-broadening Lorentzian. This Lorentzian can be
rametrized by a fitting procedure aroundv50:

A~kF,v!5
1

p

1

11l* ~T!

G* ~T!/2

v21„G* ~T!/2…2
, ~15!

FIG. 2. The normalized scattering rate vs the coupling strength for v
ous temperatures indicated. Note that the self-consistent results@solid
curves, from Eq.~11!# saturate with increasing strength whereas the per
bative results vary asl.
-
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where the parametersG* (T) andl* (T) are given by Eqs.
(7) and (8), i.e., the conventional scattering rate and ma
enhancement. Thus, a determination of the area under t
Lorentzian line shape~or the dispersion through several me
surements! would yield a residue governed by the mass e
hancement factor shown by the dashed curve~not the solid
curve! in Fig. 1~b!. In other words, the true dispersion an
inverse lifetime, as defined by the pole of the single-elect
Green function, are not useful for parametrizing the low e
ergy spectral function for temperaturesT*vE . On the other
hand, the older definition~which, after all, is based on a
expansion nearv50) proves to be useful for this purpos
Therefore, even if sufficiently precise photoemission expe
ments could be performed, we would not observe the n
behavior noted here. Similar remarks apply to cyclotr
resonance8–11 and specific heat4 measurements. These pro
erties have a nonmonotonic temperature dependence sim
to that given byl* (T). The present work shows that it i
incorrect to think of the specific heat at elevated tempe
tures, for example, as being primarily due to the specific h
of ‘‘dressed’’ quasiparticles.

Thus far we have attempted to extend the quasipart
concept to finite temperature. The sharp increase of the e
tron scattering rate with temperature was seen to have a
found impact on the effective mass enhancement. This
mediately suggests the following question: to what deg
does ordinary impurity scattering~at zero temperature! result
in similar effects? In the Born approximation the electr
self-energy acquires a finite imaginary part:

S imp~v1 id!52~ i /2t!, ~16!

where 1/t is the electron-impurity scattering rate. The se
energy is now given by the sum of Eq.~16! and Eq.~1!. The
finite lifetime at zero temperature at the Fermi surface v
lates one of the fundamental requirements of a quasipar
—that the inverse lifetime approach zero at the Fermi surf
faster than the excitation energy itself3 ~we also violated this
requirement by going to finite temperature!. Nonetheless,
weak impurity scattering in the dilute limit is often looke
upon as simply smearing the quasiparticled function into a
somewhat broadened Lorentzian, and the quasiparticle c
acterization is often tacitly assumed. Confining our analy

i-

-

FIG. 3. The electron spectral function vs the frequency forT/vE50
~solid!, 0.2 ~dotted!, 0.5 ~dashed!, and 1.0~dot-dashed!. Here ek50 and
l51.5.
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55 6677BRIEF REPORTS
to an Einstein phonon spectrum and zero temperature,
mass enhancement and scattering rate from Eqs.~10!,~11!
become

l~1/t!5
l

11@G~1/t!/2vE#2
, ~17!

G~1/t!/2vE5~1/t/2vE!2ltan21@G~1/t!/2vE#. ~18!

For weak impurity scattering (1/t!vE) we recover conven-
tional results: the quasiparticle scattering rate isdecreasedby
the factor 1/@11l#, and to the first order the mass enhanc
ment factor is unaffected by the impurity scattering. Nume
cal solutions to Eqs.~17!,~18! are shown in Fig. 4 for various
coupling strengths.Contrary to the effect of finite tempera
ture, impurity scatteringincreasesthe scattering rate beyon
the conventional result~dashed curves! and the mass en
hancement factor issuppressed. Again, inspection of the
spectral function reveals that the low energy peak is be
characterized by the conventional result, i.e., a renormal
scattering rate,G* (1/t)51/@t(11l)# with l* (1/t)5l,
rather than by the solutions of Eqs.~17!,~18!. Physically, the
single-electron Green function becomes dominated by
impurity scattering as the scattering rate greatly exceeds
phonon frequency, so that the Green function can be cha
terized to a high accuracy by a single pole in the lower h
plane.

In summary we have obtained self-consistent solutions
the simple poles in the electron Green function with phon
and impurity interactions, at finite temperature. Poles at
Fermi surface remain at the Fermi surface but acquire n
zero imaginary parts in the lower half plane. They are ch
acterized by an effective mass and an effective scatte
rate. The self-consistency requirement changes the temp
ture and impurity scattering rate significantly from that o
tained in the conventional perturbative approach. None
less, it remains difficult to probe this behavio
experimentally, as most observables are more sensitive to
properties of the Green function on the real axis, not at
true quasiparticle pole. Electron-impurity scattering results
contrasting behavior; as the impurity scattering rate
creases, the phonons become ineffectual, and the ele
acquires a characteristic mass and lifetime that are inde
dent of the electron-phonon interaction.

Perhaps the most significant impact of this work is a d
ferent view of quasiparticle excitations in regimes whe
strictly speaking, the quasiparticle picture should not app
e.g., at finite temperature. Figure 1~b!, for example, shows
that the mass enhancement at the pole agrees with the
enhancement defined on the real axis@i.e., through Eq.~8!
for T/vE&0.2#. For temperatures below this value the re
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and imaginary parts of the quasiparticle pole are useful
parametrizing the spectral function, for example. For te
peratures above this value, however, they are no longer
ful, though they remain the energy and inverse lifetime of
quasiparticle. It then becomes clear that a description of
specific heat, for example, in terms of quasiparticles, is
longer meaningful for these elevated temperatures.

This research was partially supported by the Natural S
ences and Engineering Research Council~NSERC! of
Canada and the Canadian Institute for Advanced Rese
~CIAR!.

FIG. 4. ~a! The normalized scattering rate vs the normalized impur
scattering rate for various coupling strengths, as indicated. The s
consistent results@solid curves, from Eq.~18!# are slightly higher than the
conventional ones~dashed curves!. ~b! The mass enhancement parameter
the normalized impurity scattering rate as in~a!.
ch
ll
1V.M. Galitskii and A.B. Migdal, Zh. E´ksp. Teor. Fiz.34, 139~1958! @Sov.
Phys. JETP7, 96 ~1958!#.
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