PHYSICAL REVIEW B VOLUME 55, NUMBER 11 15 MARCH 1997-|

Electron-phonon mass enhancement and lifetime at finite temperature
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We reexamine the effect of the electron-phonon interaction on the electron mass enhancement and inverse
lifetime as a function of temperature. We assign the values of the quasiparticle energy and inverse lifetime to
the real and imaginary parts of the pole in the single-electron Green function, following Galitskii and Migdal.
We find that for intermediate to strong coupling the electron mass enhancement grows monotonically with
temperature and the electron inverse lifetime is almost independent of the electron-phonon coupling parameter.
This result corrects the conventional wisdom that the mass enhancement has a maximum as a function of
temperature, and that the inverse lifetime grows linearly with coupling constant, statements which remain true
for weak coupling. In contrast, electron-impurity scattering leads to a decrease of the electron mass enhance-
ment parametefS0163-1827)01212-5

Historically, the single-electron Green function has The quasiparticle has the energy and lifetime defined by
played a very important role in our understanding of thethe pole of the single-electron retarded Green functibe,,
impact of electron-phonon interactions on the properties othe zero of
the electror:2 In particular, the real and imaginary parts of
the pole in the single-electron Green function are normally Gfl(k,w+i5)=w—ek—2ph(w+i5), ()]
identified with the quasiparticle energy and inverse lifetime,
respectively. Such a correspondence is strictly meaningfulvheree, is the electron dispersion in the absence of interac-
only if certain conditions are met, for example, the quasipartions and now the functions are analytically continued to the
ticles are restricted to lie right on the Fermi surfddéone-  lower half plane. Defining the energy and inverse lifetime by
theless, very often the usefulness of the quasiparticle concefiie pole in the lower half plane,
continues away from the Fermi surface, and indeed, under
other conditions where, strictly speaking, the concept is no w=E—iI'/2, 3
longer valid. One such “continuation” is to finite tempera-
ture. Thus, it is common practice to define an electron masge obtain the two equations,
enhancement parameter and an inverse lifetime, for tempera-
tures above the absolute zérdparticularly in the electron- fm ) e[ (1 Vv Ek+iFk/2)

; Ex=¢+ | dv aF(v)Re | z+i————
phonon problem. Here we reexamine the electron mass en- 2 24T
hancement and inverse lifetime for nonzero temperature. The .
result is a somewhat different physical picture than is nor- (1 : V+Ek_'rk/2)]

— | 5 i |, @
mally presented. 2 2@T

We begin with the standard Migdal approximation for the

electron self-energy in the electron-phonon probfem,

N 1
(V)+§

, » , 1 rk=2J dv a’F(v)) 27
Eph(w+l5)=f dv a?F(v){ —2mi N(v)—i—z 0
0
1 v-w 1 vtow ( 1 .
a2 —Im| ¢ s +i[(v—E+il /2)/277T]]
+¢(2+'2ﬂ> "”(2 T ] @D 2 KK
whereT is the temperature and is a real frequency. The

function «®F(v) is the electron-phonon spectral function 1 ; : )
; . ) . ' - == +E—il"/2)/27T . 5
N(v) is the bose function, ang(x) is the digamma func- V) g ~LivtEily2)/2mT] ®
tion. Recall that Eq(1) comes from the lowest ordé€albeit

self-consistentFeynman diagram; hence the standard disre-H E ai h di ion in th £i
gard for vertex corrections is inherent in Eq). Further- ereEy gives the(new dispersion in the presence of inter-

more, because of the usual disparate phonon and electrfr?tions and’, gives the inverse Iifetimealso hereafter_ re-
energy scales, Fermi surface averaging over the electrof€/™ed to as the electron scattering jat€hese equations
phonon matrix elements makes the self-energy isotropic. IUSt be solved self-consistently to obtain the quasiparticle
addition particle-hole symmetry together with the large elecP0!€: i-€., energy and lifetime. The conventional procedure
tron bandwidth cause the Fermi-level energy scale to disagS: NOWever, to assume that bdgh andl' are small so that
pear from the problem and the self-consistency requiremerRN€ €an obtain closed expressions. These“are

is redundant.As a result of these approximations the expres-

sion (1) is in closed form. Ex=ed[1+N*(T)], (6)
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47 fodv @’F(v)[N(v)+f(v)]
1+A*(T) !

(M)~ ()

wheref(v) is the Fermi function and

1 v
§+I—>. (8)

1 o0
* A~ — —— 2 !
A (T) WTJO dv a’F(v)Imy T

T(M/w,

The function\* (T) is often referred to as the mass enhance-
ment parameter because of the way it enters (Bg.Both

this function andl’™* (T) are independent of momentum so
the momentum label has been dropped. Note that at zero
temperature \* (T) reduces to the well-known electron-
phonon coupling constant=2/5dv [ @?F(v)/v]. These
expressions are obtained by expanding the denominator in
Eq. (2) about the originwhere the pole at the Fermi surface
resides in the noninteracting limitin fact, Eq.(8) comes
from \*(T)= -3 (w)/dw, where the right-hand side is
evaluated atv=0. Indeed, this expansion is often taken as a
“definition” of the mass enhancement parameter. However,
in the high temperature limix* (T)=1/T?, andI'* (T) T,

as defined above. The latter result is in conflict with the
assumption that'™* (T) is small. Thus Eqs(7),(8) may be a
poor approximations for nonzero temperatures.

As stated above the correct procedure is to solve Egs.
(4),(5) self-consistently. Such a procedure defines a different
dispersion relation given b¥,. The usual practice is to
define an effective masat least at the Fermi energgand

A(T)

hence a mass enhancement parameter. Clearly the definition 00 05 10 15 20
for this purpose is Tw,
1+N(T)=(9E,/de,) L. 9)

FIG. 1. (a) The normalized scattering rate vs the temperature for various

; ; : oupling strengths. Solid curves are from Efjl) while dashed curves are
To Investigate the _Consequences' we h,ereafte,r confine OL@gtained from the approximate expression Ef. In all cases an Einstein
selves to the Fermi surface(=0). Then inspection of EQ. spectrum was usetarbitrary frequency (b) Electron mass enhancement
(4) reveals thaE,=0 remains a solution. We fintthe as-  parameter vs temperature for various coupling strengths. Solid curves are

. . . : from Eq. (10) while dashed btained from the imate ex-
terisks are dropped to differentiate these solutions from théf’ergsi(,% (qug\;\{ e dashed curves afe oblained from fhe approximate ex

previous approximate ones
and
(T v

x(T)=—ide azF(v)Imw’(E——-I—i—) (10
TI'T 0 !

2 4nT 24T 1yt i

MU= = oMy (z*m*m :

These results, along with their approximate counterparts

(13

where now the scattering rate is given by

o0 ) 1 [from Eq.(7,8)] are plotted in Fig. 1. Clearly, a precise de-
F(T)=477J0 dv a®F(v)) N(»)+ 5 termination of the polésolid curves, from Eq(11)] leads to
a significantly lower scattering rate than that obtained using
1 1 I(T) . v Eq. (7), particularly for coupling strengths that exceed unity.
UL e Sl by (1) In fact, for high temperatures, the previous result led to the

asymptotic behaviod, (T) ~2# T\, while our result for high

Equation(11) must now be solved numerically, as the right- temperature is
hand side is a function df(T). Once this equation is solved,
the result can be used in EALO) to obtain\(T). Note that I'(T)=2#TN  for A<1
the new definition o (T), Eq. (10), is simply related to the _
derivative of the self-energyhut evaluated at the single- =277 for A>1. (14)
particle pole, not on the real axis. Interestingly,A =1 demarcates weak from strong coupling

For an Einstein spectrumy®F(v)=(Awg/2)8(v— wg), behavior, as indicated by the electron scattering rate. In Fig.
so that EQs.(10,1) reduce to dimensionless forfwith  1(b) \(T) is plotted for the same parameters. The high tem-
y=I'(T)/ wg andt=T/ wg]: perature behavior is remarkable, particularly for strong cou-

_ pling. The mass enhancemex{T) increases monotonically
1 (Y l )] (12) with temperaturdor A>1. This is in contrast to the pertur-

1 1
Y(O=2mh N(llt)+§_;|m¢<§_m+ﬁ bative behavior (indicated by dashed curjesvhere a
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FIG. 2. The normalized scattering rate vs the coupling strength for vari-  FIG. 3. The electron spectral function vs the frequency Tb®og=0

ous temperatures indicated. Note that the self-consistent refadtsl (solid), 0.2 (dotted, 0.5 (dashed, and 1.0(dot-dashell Here ¢,=0 and
curves, from Eq(11)] saturate with increasing strength whereas the pertur-y _q g

bative results vary as.

. . where the parametels* (T) and\*(T) are given by Eqgs.
peak at low temperatures is followed by an asymptotic ap—(7) and (8)pi.e. the cogvc)entional gc;ttering rate :anqmass

Fr:gz%gtizrizr?rc;gg Qégg ffrzzﬁggaé;ﬁgguﬁl?ﬁ zsggr:”ltjr?tfr(;aru\a/ari _enhancementThus, a determination of the area under the
9 ping 9 . Lorentzian line shapéor the dispersion through several mea-

%urement)swould yield a residue governed by the mass en-

rate saturates for strong coupling, .whereas the perturbat'vﬁancement factor shown by the dashed cunat the solid
expression Eq(7) leads to a scattering rate which increases

indefinitely with coupling strength. In particular, at very high curve in Fig. 1(b). In other words, the true dispersion and
y piing gth. In particuiar, Y IR verse lifetime, as defined by the pole of the single-electron
temperaturegnot shown we obtain a kink in the result at

. L Green function, are not useful for parametrizing the low en-
A=1, as indicated by E¢14). . ergy spectral function for temperaturés wg . On the other
To understand these results, one must realize that the faﬁénd the older definitioriwhich, after all, is based on an
f/%rr Slé[ r1e+ i\e(s-re)gtsr,)laa)sazsdgr?#;zlceén?enn:haesos?enir;iaer(;db;;SEm- expansion neatw=0) proves to be useful for this purpose.
€p . . ' gnimed q'.Therefore, even if sufficiently precise photoemission experi-
In addition however, this factor gives the quasiparticle resi~onts could be performed. we would not observe the new
dueat the pole As temperature increases it is plausible that b :

the residue decreases since excited states are increasinﬁeh"’wIor noted here. Similar remarks apply to cyclotron

| 11 o
populated. Hence, while the scattering rate increases wit Sonanck** and specific heimeasurements. These prop

. ) : X . e]{ties have a nonmonotonic temperature dependence similar
increased coupling strength due to an increased interaction

: * o
the quasiparticle with the phonons, at the same time it has%l) that given t_)y)\ (T). The pf"‘-.‘se“t work shows that it is

. . incorrect to think of the specific heat at elevated tempera-
tendency to decrease due to the decreasing weight of the

quasiparticle. This also is consistent with the fact that a ures, for example, as being primarily due to the specific heat

higher temperatures the energy dispersion should decreasoe}c _dressed” quasiparticles,
'Thus far we have attempted to extend the quasiparticle

not increase,(since the original dispersion will become L he sharp i he el

smearejj and hence.(T) should increase with temperature concept to f|n|te temperature. The sharp increase of the elec-

This is apparently not true for weak couplifigee Fig. 1b) " tron scattering rate with temperature was seen to have a pro-
bp y b 9- ) found impact on the effective mass enhancement. This im-

the 'OW_ef two sets of curvgsndicative perhaps_ of |n_suff|- mediately suggests the following question: to what degree
cient (virtual) mixing of the electron wave function with the d ; . .
does ordinary impurity scatterin@t zero temperatuyeesult

phonon wave functions. S S
in similar effects? In the Born approximation the electron
? . . )
Can these effects be measured? We suggest that ve If-energy acquires a finite imaginary part:

likely they cannot, as the following example shows. In many
observablegand more directly in photoemissiptthe elec- ; ;
: : i +i8)=—
tron spectral function, A(kg,w)=—(1/7)G(kg,0+i6), Zimpl@ +10)=—(1/27), (16
plays an important role. We show this spectral function inwhere 1# is the electron-impurity scattering rate. The self-
Fig. 3as a functlor_1 ofv/ g, for various temperatures. The energy is now given by the sum of Ed.6) and Eq.(1). The
curves corresponding to the two lowest temperatures go offnite lifetime at zero temperature at the Fermi surface vio-
scale. The zero temperature curve has been understood jiftes one of the fundamental requirements of a quasiparticle
detail by Engelsberg and Schrieffemd others.Finite tem-  _that the inverse lifetime approach zero at the Fermi surface
perature smears thefunction (at the origin in this cagénto  faster than the excitation energy itSefive also violated this
an ever-broadening Lorentzian. This Lorentzian can be parequirement by going to finite temperaturdNonetheless,

rametrized by a fitting procedure around-=0: weak impurity scattering in the dilute limit is often looked
. upon as simply smearing the quasipartiéléunction into a
A(Kg, @)= 1 1 ™ (M)/2 (15) somewhat broadened Lorentzian, and the quasiparticle char-
Fs -

T 1+ N (T) w’+([*(T)/2)%" acterization is often tacitly assumed. Confining our analysis
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to an Einstein phonon spectrum and zero temperature, the 3 ,
mass enhancement and scattering rate from Ed®,(11) {a)
become 5

N(1ir)= (17)

1+[T (U7 2wg]?’

I'(1/7)/2we=(1/7/2wg)— Ntan [ T'(1/7)/2we]. (18)

For weak impurity scattering (1< wg) we recover conven-
tional results: the quasiparticle scattering ratéasreasedy

the factor J/1+\], and to the first order the mass enhance-
ment factor is unaffected by the impurity scattering. Numeri-
cal solutions to Eq917),(18) are shown in Fig. 4 for various
coupling strengthsContrary to the effect of finite tempera-
ture, impurity scatteringncreaseghe scattering rate beyond
the conventional resul(dashed curvgsand the mass en-
hancement factor isuppressedAgain, inspection of the
spectral function reveals that the low energy peak is better
characterized by the conventional result, i.e., a renormalized
scattering rate,I'* (1/7)=1[7(1+\)] with \*(1/7)=A\,
rather than by the solutions of Eq4.7),(18). Physically, the
single-electron Green function becomes dominated by the
impurity scattering as the scattering rate greatly exceeds the
phonon frequency, so that the Green function can be charac-
terized to a high accuracy by a single pole in the lower half
plane.

In summary we have obtained self-consistent solutions for
the simple poles in the electron Green function with phonon
and impurity interactions, at finite temperature. Poles at the
Fermi surface remain at the Fermi surface but acquire non-
zero imaginary parts in the lower half plane. They are char-
acterized by an effective mass and an effective scattering (1 /T) /w
rate. The self-consistency requirement changes the tempera- E
ture and impurity scattering rate significantly from that ob-
tained in the conventional perturbative approach. Nonethe- FIG. 4. (a) The normalized scattering rate vs the normalized impurity

less it remains difficult to probe this behavior scattering rate for various coupling strengths, as indicated. The self-
' .. consistent resultgsolid curves, from Eq(18)] are slightly higher than the
experimentally, as most observables are more sensitive to th@nventional onetdashed curvés(b) The mass enhancement parameter vs

properties of the Green function on the real axis, not at théhe normalized impurity scattering rate as(@&.

true qua.S|part|cIe p_olg Electronl—lmpu.rlty scattering results_ "Mand imaginary parts of the quasiparticle pole are useful for
contrasting behavior; as the impurity scattering rate in-

. arametrizing the spectral function, for example. For tem-
creases, the phonons become ineffectual, and the electr% 9 P b

T(/TV w,

—
[
|

A(1/T)

: S o _ ratures above this value, however, they are no longer use-
acquires a characteristic mass and lifetime that are indepe il, though they remain the energy and inverse lifetime of the

dent of the electron-phonon interaction. _ _ quasiparticle. It then becomes clear that a description of the
Perhaps the most significant impact of this work is a dif-gpecific heat, for example, in terms of quasiparticles, is no

ferent view of quasiparticle excitations in regimes Where,|Onger meaningful for these elevated temperatures.
strictly speaking, the quasiparticle picture should not apply,

e.g., at finite temperature. Figuréb), for example, shows This research was partially supported by the Natural Sci-
that the mass enhancement at the pole agrees with the mamsces and Engineering Research Coun®ISERQ of
enhancement defined on the real axis., through Eq(8) Canada and the Canadian Institute for Advanced Research
for T/wg=0.2]. For temperatures below this value the real (CIAR).
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