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Phase diagrams of flux lattices with disorder
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We review the prediction, made in a previous wpfk Giamarchi and P. Le Doussal, Phys. Re\6B 1242
(1995], that the phase diagram of type-Il superconductors consists of a topologically ordered Bragg glass
phase at low fields undergoing a transition at higher fields into a vortex glass or a liquid. We estimate the
position of the phase boundary using a Lindemann criterion. We find that the proposed theory is compatible
with recent experiments on superconductors. Further experimental consequences are investigated.
[S0163-18207)07609-1

It is remarkable that after a decade of experimental andween the glass phase and the liquid was observed at low
theoretical efforts, the phase diagram of type-Il superconfields>*3rather than the predicted continuous transition, ob-
ductors in a field is far from being completely elucidated. served at high fields. Also, decoration experiments of the
Stimulated by the discovery of the high-materials, a reex- flux lattice at very low fields(60 G) in several materials
amination of the mean-field phase diagram unraveled twghowed remarkably large regions free of dislocatih®n
main new phenomena. First, it was realizédind observeti  the side of theory, old calculations on the related disordered
that due to enhanced thermal fluctuations the Abrikosov latelastic random fielX Y modef® as well as more recent scal-
tice melts well belowH,, into a flux liquid. Second, it was ing arguments for the vortex lattitesuggested, within a
argued that in the solid phase, pointlike disorder could propurely elastic description, a slower, logarithmic, growth of
duce a g|assy state with barridrqj) diverging at sma”j’ deformations. However, deSpite that faCt, it remained un-
and thus characterized by the true vanishing of the lineafiuestioned at that time that dislocations would always be
resistivity even at finite temperatuté This was a significant 9generated by disorder, as argued in Ref. 15.
departure from traditional models of thermally assisted flux In a recent work we obtained a quantitative theory of the
flow, which assumedinite barriers between pinned states. A €lastic vortex lattic€*®in the presence of point disordét.
precursor sign of an instability towards a glass was alséontrarily to previous approaches, it provides a description
found in the flux liquid’ Both for technological applications Valid at all scales and demonstrates that while disorder pro-
of high-T, materials and from a purely theoretical point of duces algebraic growth of displacements at short length
view, the understanding of the detailed properties of such a
glassy phase is of paramount importance. H

Two main phenomenological theories have been put for-
ward to describe this glassy phase and to account for some of
its properties observed in early experiments, mainly the ob-
served continuous transitibfrom the glass to the liquid and OR PINNED LIQUID
giant thermal creep. The first approach is based on the gauge
glass mode?,® and assumes a complete destruction of the Hf“
Abrikosov lattice. The second approach retains the elastic Hou
lattice structure at small scaledlthough different in nature,
both theories agreed that the disorder essential to produce the
glassy low-temperature phase and the vanishing of the linear BRAGG GLASS
resistivity was also destroying at large scales the perfect flux
lattice existing in mean-field theory. The low temperature
phase was therefore generally expected to be a topologically
disordered phase, lacking translational order. Several calcu-
lations supported this point of vie_vv. Elastic theory predigted FIG. 1. The stability region of the Bragg glass phase in the
at befglla_ stretched exponential decay of translationgfagnetic fieldH, temperatureT plane is shown schematically
ordef'%*(i.e., a power law growth of displacementnd  (ihick solid line. Upon increasing disorder the region shrinks as
general arguments tended to prove that disorder would alngicated by the thin solid linésee text The melting line of the
ways favor the presence of dislocatichhe vortex lattice  pure system is shown as a dotted line, and the vortex glass transi-
seemed to be buried for good. tion line (or crossover to the pinned ligquids shown as a thick

A few points did not naturally fit into the framework of dotted line. For clarity, the reentrant liquid at very low field, dis-
these theories. Experimentally, a first-order transition beeussed in the text, is not shown.
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scales, periodicity takes over at large scales and results inBSCCO neutron peaks are observed at low fields and disap-
decay of translational ordett most algebraié® One striking ~ pear upon raising the fiefd. The phase diagram of BSCCO
prediction is thus the existence of a glass phase with Braghas been recently explored in detail by overcoming spurious
diffraction peaks. This result was derived within an elasticeffects due to geometrical barriefsit can increasingly be
theory, assuming the absence of dislocations. However, théterpreted as a confirmation of our theory, the so-called sec-
very result of our calculation, i.e., that quasi-long-range or-0nd magnetization peak line being the candidate for the pre-
der survives, led us to advocate that dislocations would béicted field-driven transition. Since our proposal, this line
much less relevant than commonly assurfe@he alleged has been investigated in more detail in BSC@ef. 3] and
importance of dislocations in a disordered systéfmade it found to be relatively temperature independent at lower tem-

mandatory to further investigate carefully whether allowingPeratures and to be shifted downwards upon increase of point

for dislocations would indeed modify the above result. ThediSorder through electron inadiatidhAlso, similar types of
hase diagrams are observed in a variety of materials, includ-

striking result® that we found based on energy arguments i .
that dislocations araot favorable for weak disorder in N9 YBCO (Refs. 12 and 3and thallium compound¥. The

d=3. This implies self-consistently the existence of a ther-faCt t.hat a c'ontroll_ed Increase .o.f p0|_nt disorder through elec-
ron irradiation shifts the transition line to lower fiefdss a

modynamic glass phase, as far as energy and very—lovJ dication that cture is rel tin th teri
current transport properties are concerned, retaining a nearggogg welllca ion that our picture 1S reievant in these materi-

erfect(i.e., algebraittranslational order and a perfect topo-
P ( 9 ; P P In the present paper we follow up on the theory exposed

logical order. Since this phase exhibits Bragg peaks verYn Ref. 18. We make more quantitative estimates of the

much like a perfect lattice, it was called the “Bragg glass.” h di deicted in Fig. 1 usi lized Lind
Because it retains a “lattice” structure and Bragg peaks, thiPNase diagram gepicted in Fg. 1 using a generalized Linde-
mann criterion. We also explore in more detail some experi-

glass phase is radically different from the vortex glass pic- al ¢ h
ture based on a random gauge model. In particular, sincd1éntal consequences of our theory. .
such a phase is nearly as good as a perfect lattice as far SLet us consider a vortex lattice system in the presence of

translational order is concerned, it is natural to expect it to isorder. We can model th? vortex lattice by stacks of
melt through a first-order phase transition. We propted coupled.plane_s. The.system IS therefore dgscrlbed by layers
of two-dimensional triangular lattices of vortices. We denote

that the phase seen experimentally at low fields was in facb h libri . fth ) 1 the ab
the Bragg glass, solving the apparent impossibility of a y R; the equilibrium position of the vortices in the absence

pinned solid. This allowed us to account naturally for the®f disorder, labeled by an integérin thexy plane, and by
first-order transition and the decoration experiments. Oub(Ri,2) their in-plane displacements which are two-
predictiorf® that a new phase without topological defectsd'mens'o_nal vector$the vortex can_only move within the
should be stable at weak disorder, which also applies to thBlang. z is the coordinate perpendicular to the planes and
random fieldXY model?? received subsequent further sup- l0ng the magnetic field and=(r,z). The total energy is
port both from numerical simulatilz%’z?r’%z“and from analytical L
calculations in a layered geometry: _ | 42 _ 2 2

Once the existence of a weak-disorder—low-field Bragg H= 2J drdz[(c11— Ceg) (dala)“+ Cosl dalip)
glass phase is established, the question arises of determining
its limits of stability and phase boundari_es. The Bragg glass +C44(€9zua)2]+f d2rdz\(r,2)p(r,2), (1)
phase should be stable as a self-consistent solution in the
elastic limit, i.e., as long aR,=a.'® This condition is vio- . . L ,
lated when the field is increased and we proposed in Ref. mjhere(zt)he density of vortex lines is S|mp.ly defmeq )
that upon raising the field the Bragg glass should undergo g 2i07(r—Ri—u(R;,2)). The last term in Eq(l) is the
transition into another phase, which could be a pinned liquit®UP!ing to disorder. In the limit where many weak impuri-
or another glaséortex glass A natural possibility then was ties act collectlvgly on a vortex, p0|'nt d|sqrder can pe mod-
that the critical point occurring on the melting lifevas the ~ €leéd by @ Gaussian random potentiglx) with correlations
end point of the transition line between the Bragg glass aV/(X)V(X')=A(r—r")8(z—2'), whereA(r) is a short-range
low fields and a topologically disordered glassy phagea  functio™ of range ¢ (the superconducting coherence
strongly pinned liquitl at higher field. We pointed out that length:
the fact that this point can be lowered in field and raised in -
temperature by adding impurities was a hint that it was re- A(r)=dUge "7?¢, 2
lated to this transition. Such a field-driven transition corre-
sponds to the destruction of the Bragg glass by proliferationvhere d is the distance between layers abig a typical
of topological defects upon raising the field, which is equiva-pinning energy per unit length alormg
lent to increasing the effective disorder, which favors dislo- In the highd, Abrikosov lattice, one has in principle to
cations. The other transition from the thermal liquid into theuse nonlocal elasticity, and a calculation along the lines of
putative superconducting state at higher fields is presumablRef. 18 can be done simply by using the complete known
continuous. The topology of the phase diagram proposed iwave-vector-dependent expressiotisof the elastic con-
Ref. 18 is as depicted in Fig. 1. Its main features should bstants in Eqg.(1). Since we are only interested in nearest-
relevant for all type-Il superconductors. neighbor correlations and want to obtain only an order of

Several recent experiments can be interpreted to confirrmagnitude of the scales involved, we use simple constant
the picture proposed in Ref. 18. Neutron experiments can belastic moduli. The physical properties of EG) were ex-
naturally interpreted in terms of the Bragg glds%® In  amined in detail in Refs. 17 and 18 and we just recall here
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the results needed for the phase diagram. The mean-squarBisorder effects will push the melting line slightly down, but

relative displacements of two vortices separated by a diseffects should be negligible at low field for which the effec-

tancer is tive disorder is small enough. Upon increasing the field
disorder-induced displacements will increase, forcing the

B(r)=([u(0,0—u(r,0)]?), (3)  transition line defined by Eq5) to go down to zero tem-

perature at a finite field,,. The scale at which disorder

where( ) denotes the thermal average, whereas is the  dominates can easily be obtained by looking at zero tempera-

disorder average. From(r) one defines two length scales ture. To obtain a reliable order of magnitude of the

R. and R, in the xy plane(and similarlyL, andL, along  “disorder-induced melting” fieldH,,, it is necessary to

z) such that By R)~max@(u?);) (see below and  know the preciseB(r) in the presence of disorder and not

B(R,) ~a?, respectivelyR; is the Larkin-Ovchinikov pin- only its asymptotic forms. Fortunately such a calculation was

ning lengti® directly related to the critical current, whereas performed in Refs. 17 and 18. Using formu#18 of Ref.

R, is the scale at which one enters the asymptotic regimé8 one gets

with a logarithmic growth of the displacements. The model

(1) leads to the Bragg glass phase with quasi-long-range a2

translational order. B(r)=—b(r/Ry). (7

To determine the region of stability of the Bragg glass ™

phase, we follow the arguments proposed in Ref. 18 that the _

elastic structure will become unstable when the displacemeritor r =R, one has from Ref. 18 thddt~1 while forr<R,

between two neighbors becomes of order of the lattice spamne is in the random manifold regime and one can approxi-

ing a, i.e., mateB(r)= (a%/m?) (r/R,) 3. From the solution of Ref. 18
we know that the above formula guantitativelycorrect, and
B(r=a)~a?. (4)  not only asymptotics. Using E@5) one finds that
To be more quantitative, one can introduce, as for the normal alR,=(mc,)®. (8)
thermal melting, a Lindermann constanjt and take for the ) . -
criterior?® of stability of the Bragg glass phase Using ¢, =0.12 givesR,~350a. Thus the transition occurs
well before the asymptotic regime. We will find that it does
B(r=a)=([u(0,0—u(a,0)]?) =c?a’. (5) occur (e.g., in BSCCQindeed deep into the random mani-

fold regime. One also notes that in simplified models without

c_, the Lindemann constant, is usually of the order of@n intermediate random .manifold regirfvehere one di.rectly

c,~0.1-0.2 in the usual melting and we make here the asg0es from a Larkin regime to the asymptotic regintiee

sumption thatc, is indeed a constant independent of the@bove formula would give/R,=(c,) @ )_- The transi-

field 40 tion then occurs for smaller values & /a, in agreement
From Eq.(5) one sees that both disorder and thermal fluc-With the results found in a special geometry®

tuations act together to increase the displacements. In fact Using Eq.(8) and the expressiof.12) of Ref. 18 for

formula(3.18 of Refs. 17 and 18 shows thB{(r =a) splits Ra

naturally into two part(r =a)~2(u?)1+ Byr=a). One

immediate consequence of E§) is therefore that the melt- 2a%ci2cl?

ing line should be pushedownwardsin the presence of Ri=—=2 72—

pointlike disorder. In fact the Bragg glass can disappear in 7 poUp2mdE

two ways: (i) If the temperature is raised, it will melt to a

liquid phase, andii) if the field is raised, which amounts to as well ascge=€o/(4a”) and cy~ceo/(y*a%) (single-

varying the effective disorder in the system, the system caiortex contributiop with ey= (®o/47\)? andc a numerical

become so disordered even at short length scales that disleonstant’ One gets

cations will appear. Equatiofb) gives thus the limit of sta-

€)

bility of the BG phase in thél-T plane. Although the com- 3 ()2
b 4 " H 477 U ’y
plete “melting” curve can be computed using the formulas 8=~ Poqe2 L 10
a 5 2 2mdE —. (10
for B(r) obtained in Refs. 17 and 18, such a calculation is (mCL)” € Je

tedious and offers little insight. We therefore study mainly
here the two limits of low temperature, where the transition
is mainly field driven, and of temperature close to the melt—H
ing curve in the absence of disorder.

If the temperature is close to the pure melting line,
B(r=a) is dominated by thermal fluctuations. Since for

One thus obtains an expression for the transition field
v haturally expressed in terms of some characteristic fields
of the system:

weak disorderR,>a, the disorder-induced displacements Hy(T=0)= (mep)? o s 21341/3 (11)
are negligible at the scale of nearest neighbors and one can m(T=0)= (16m) 7372 U, c2’ ‘cross!

compute Eq.(5) using thermal fluctuations only. One then

easily recovers the pure melting line where we have introduced the crossover fiett] ose

=mcdy/(y?d?) with c~In(yd/&) (Ref. 37 and Hg,
Tm~4a\ceaCasct. ©)  =dy/27E
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As a numerical estimate of the melting field,, for  explanation for a change of the order of tftkerma) melt-
BSCCO withHges~1 T, H,~100 T, U,/€0=0.4, and ing transition, as well as for the existence of a field-induced
¢, =0.12 givesH,;~400 G in good agreement with the ob- transition.
served experimental valudsThe fact that this field is well One should also point out that atery low fields
below the decoupling field validatesposteriorithe calcula- (B~H,;) where screening is importarg=X\, a similar(in-
tion [note also thaB(r=0,z=d) is still small at the transi- verted field driven transition should also occur when the
tion]. The general shape of the phase diagram is in agredield is lowered, from the Bragg glass to a pinned liq(id
ment with the one of Fig. 1. Note that some nonlinearanother glagsas suggested by the decoration images of Ref.
effects, such as screening of disorder by thermal fluctuation$4. As shown in Ref. 7 the liquid becomes unstable for
or by interactions at short scales, may not be captured dB< Boexp{—(T/po)3], presumably to a glass or a pinned lig-
rectly by the Gaussian theory of Ref. 18. They can be incoruid (see Ref. 43 for an experimental evidence of this)line
porated by a renormalization of the effective disorder The proposed field-induced transition between the Bragg
Up(T). Such effects were computed in the flliquid using  glass (BG) and the putative vortex glas®/G) being just
the renormalization groufRG) in Ref. 7 and it was shown characterized by an injection of dislocations, it is not neces-
that the pinning length was renormalized upwéadd thus sarily linked to a decoupling between the layers. As a con-
the effective pinning strength downwardy a factor of sequence one does not expect the critical current atotog
exf(T/Tgp) ] where Ty,~(Ujdé%cey/ %)M is the single-  become zero at the field-induced transition, at least for a
vortex depinning temperatufelt would be interesting to low-anisotropy system like YBCO. Of course it is always
compute these effects in the solid as well. On generapossible that in materials with high anisotropy like BSSCO
grounds that thermal fluctuations can only weaken the disordislocations prefer to appear first between the planes and the
der, one expects an additional curvatupvardof the Bragg BG-VG and decoupling transition coincide. Let us, however,
glass instability lineH,,(T) when T increases beyond emphasize that it does not need to be so and that we also
O(Typ)- expect our transition to occur in purely isotropic systems.

In Fig. 1 two main regions can be distinguished: If the Another argument against the field-induced transition being a
temperature is high, the stability line is nearly indistinguish-simple thermal decoupling transitiis the fact that such a
able from the melting line of the pure system. This regimetransition could not extend down to zero temperature. In any
corresponds to the case wh@&g(T=0)>a. In that case the case measurements of the critical current perpendicular to the
translational order is only affected at distances huge complane, in particular in YBCO, should help to separate be-
pared to the lattice spacing, and the modification comparetiveen the two effects.
to a pure lattice is negligible as far as the melting is con- The suggestion that there may be two different glass
cerned. This part of the stability line is therefore nearly iden-phases could seem farfetched. There is a case, however,
tical to the melting of a pure lattice and one can expect thenostly of theoretical interest at present, wherghibuldhap-
transition to be first order. The Bragg glass melts to a liquideen as a direct consequence of our Bragg glass consider-
phase, nearly insensitive to disorder. ations. This is ford-dimensional vortex line systems with

If the field is increased, one will shortéR,(T=0). The correlated disorder or equivalently ird{ 1)-dimensional
disorder itself is now able to make dislocations proliferate. Inquantum bosons with disorder. It is reasonably well estab-
particular even aT =0 disorder destroys the Bragg glass. In lished theoretically, numerically, and experimentally that a
this range of field and at loW the transition line flattens as Bose glass phase exists for these systemsl#8 [i.e.,

a function of temperature, since it is controlled mainly by thed=2+1 (2 space, 1 time dimensipfior bosong. It is also
disorder. The phase into which the Bragg glass “melts” atbelieved that this phase lacks translational long-range order
low T is relatively poorly understood. It is characterized byin the plane perpendicular to the columns. Indeed, since the
the absence of translational order and of Bragg peaks. Sina@rtices are localized along the columns, one can roughly
it is dominated by point disorder, dislocations will decorre-view the properties in the perpendicular plane, as those of a
late alongz and thus can lead to an entangled state. Theréd— 1)-dimensional system with pointlike disordér-or the
should still be some amount of pinning at IGwbut whether d=3 vortex problem, dislocations are therefore expected to
such a phase is a true glass with diverging barriers, similar tappear(as they presumably appear fd=2 systems with

the proposed vortex glass of Ref. 9, or simply a very viscougointlike disorde). In higher dimensions, however, this need
form of the liquid phase remains controversial. This phas#ot be the case. For instance, d=4 for vortex systems
could also retain hexatic ordé¢hexatic glasgat least in a (d=3+1 for quantum particlgsone is led, by similar argu-
portion of it since, at least at a naive level, similar argumentsnents as in Ref. 18 tdwo distinct localized phases-or

for the survival of hexatic topological ordéno unbound weak disorder no dislocation will appear, giving a Bose glass
disclinations as for translational topological order in the with topological order. This “Bragg-Bose glass” phase is
Bragg glass can be given. If the phase is a true glass phad#e equivalent for columnar defects of the Bragg glass one
then it should melt thermally to the liquid, on the thick- occurring for pointlike disorder. For stronger disorder, dislo-
dotted line of Fig. 1. Whether a true vortex glass phase existeations will destroy the topological order perpendicular to
in untwinnedsamples is an important, still open, and contro-the columns, giving back the “conventional Bose glass,”
versial questioht which may need to be settled by i.e., the continuation of itd=2+1 version. At the transition
high-sensitivity? measurements. Since the low-temperatureoetween these two different Bose glass phases, unbinding of
phase is in any case much more continuously related to thaislocations loopgcylinders should occur. An interesting
liguid phase, one can expect now the transition to becompoint is that in the “conventional Bose glass” these disloca-
second order. The Bragg glass therefore provides one naturéns loops will remain pinned to the columnar defects, and it
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will thus still be a true glass. This Bose glass phase would be \Y
in some sense analogous, in the case of point disorder, to the
putative vortex glass. However, for pointlike disorder it is
much less obvious that such a phase exists as a genuine
thermodynamic phase id=3.° Let us note that the corre-
lated disorder problem was studied analytically within an
elastic theory in Ref. 44 using a variational method and in
Ref. 46 using RG methods: The phase described there is thus
the “Bragg-Bose glass.” The difference between the two
phases should be apparent only at scales larger than the dis-
tance between unpaired dislocations.

Several consequences of our theory could be further
checked in experiments. First, since the Bragg glass phase
has translational order and the vortex glass has not, neutron
experiments should observe a destruction of the Bragg peaks
at the same locatidhas the transition observed by magnetic
measurements. Such a feature seems to be consistent withFIG. 2. I-V characteristics in the Bragg glass phase and in the
the existing experimental data in BSSEhut a more de- vortex glass(or pinned liquid are shown schematically, respec-
tailed experimental investigation would be needed to checkively, as solid and dashed lines. One goes from snda)l {o larger
this point in other materials as well. Another clear distinction(J2) critical currents, but rapidly divergent to weakly divergeot
between the two phases should be observed when a cyclidijite) barriers, when increasing the field.

in current similar to the one of Ref. 27 is performed. Suchyjong of 4 second peak in relaxation measurements when the
cycles, taking the system above the critidgland then back  ransition is passed. More refined transport or relaxation
to zero, are expected to heal the lattice and to expel out gheasurements should help in deciding on the behavior of the
equilibrium dislocations. One can therefore expect gootharriers. Note that peak effects upon raising the field were
healing in the Bragg glass phase, as is indeed the case, singgserved’ in two-dimensional2D) materials. There the in-
dislocations can only exist as out of equilibrium object. Oncrease of the critical current, as compared to the predictions
the other hand, the same cycle performed in the VG phasef a 2D Larkin-Ovchinikov theory, was interpreted in terms
should make little difference on the neutron diffraction pat-of an elastic instability towards dislocations. It was not dis-
tern since theequilibrium state already contains unpaired cussed at that time whether the vortex state at low field in
dislocations. these experiments was or not a true glass with topological
Finally one expects the barriers to vary very differently in order and diverging barriers at low current.
the two glass phases. In the Bragg glass phase, elasticity is It is important to note that the Lindemann criterion used
strong. Pinning can only be collective and one expects thererere isnot a detailed theory of the transition when disloca-
fore weak barriers at short length scales. This implies a smations proliferate, which is not yet available. It represents one
critical current. On the other hand, since creep can only ocpossible mechanism of instability dominated by short length
cur collectively, the barrier should grow very rapidly with scales. It thus provides a reasonable upper bound for the
decreasing current. Standard creep argunentshe pres- instability field Hy, since the Bragg glass certainly cannot
ence of the Lorentz forcé~j show thatV~exd —U(j)/T] self-consistently survive iR,<a. However, it cannot be ex-
with the optimal barriet) (j)=max (L?—juL%~ (1/j)* with cluded that the Bragg glass is unstable before this limit, as
pu=0/(d+{—6), and lead tou=0.7-0.8 at intermediate could be the case, for instance, if, because of the weakening
currents(random manifold exponentsand ©=0.5 at very of translational order at large distances in the Bragg glass
small currents §=d—2, {=0).® Taking the dispersion of compared to a real solid, unbound dislocations start to appear
elastic moduli into account leads to higher valuegwoh the  first at large length scales comparedaoln that case this
intermediate regimé.On the other hand, in the VG phase additional phasgwhich may or may not be a true glass
barriers should be significantly larger at short length scalesvould also melt through a first-order transition with good
since the nearly destroyed lattice has additional effective deshort-distance translational order properties. This could hap-
grees of freedom, such as free dislocations, and can thysen, for instance, if unbound dislocations appear first at
adapt more easily to the pinning potential. The critical cur-scales betweea and R.(T), thus affecting the critical cur-
rent should therefore increase when approaching the fieldent but not the first-order melting. This is one possible sce-
induced transition. The onset of entanglement at the transiario for YBCO where the second peak line is observed well
tion could also increase the critical current because of fluwbelow the tricritical pointthough a clear interpretation there
cutting barrieré® On the other hand, in the VG phase the is more delicate due to additional twin boundaries and the
barriers should grow much more slowly with decreasing cur{fact that the second peak region appears quite Drdzie
rent since there is no need for collective motion, or evemally, it would prove very interesting to investigate in more
remain finite if the phase is simply a crossover from thedetail the phase diagrams of a variety of compounds includ-
liquid phase. Some estimates of the exponents for the gaugeg organic  superconductdfs and heavy fermion
glass model gave very small exponents of the order otompounds as well as the thallium family. Indeed these
©~0.1-0.2. One can therefore expdelV characteristics phase diagrams show remarkable similarities, and we expect
evolving with fields like the ones shown in Fig. 2. Such athat these can also be interpreted using the ideas of Ref. 18
behavior is in good qualitative agreement with the observaand the present paper.
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In conclusion, we have examined in some detail the im-bounded dislocations into a topologically disordered glass
plications, for the phase diagram of type-Il superconductorsphase or liquid. This transition, being disorder driven, should
of the existence of a glass phase with translational order: thextend down tal =0. We have estimated the position of this
Bragg glass. The existence of this phase immediately impliegansition using a Lindemann criterion and discuss further
the existence of a field-driven transition in the phase diaexperimental consequences.
gram, and thus provides a natural interpretation of several of Note added in proofWe received recently an interesting
the experimentally observed features of the phase diagram %faper by D. S. Fishefunpublishedl where refined energy
BSCCO, YBCO, and TIBCCO, namely, a change from a;ng scaling arguments are presented confirming the existence
first-order melting transition to a continuous transition whens o dislocation-free phase at weak disorder, thus providing

the fi_e_ld is inc_reased anq the eX‘St?r_‘CE of a field-indupe dditional theoretical support in favor of the Bragg glass
transition. We interpret this last transition as the destructlor{heory of Refs. 17 and 18

of the Bragg glass phase by spontaneous injection of un-
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