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Phase diagrams of flux lattices with disorder
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We review the prediction, made in a previous work@T. Giamarchi and P. Le Doussal, Phys. Rev. B52, 1242
~1995!#, that the phase diagram of type-II superconductors consists of a topologically ordered Bragg glass
phase at low fields undergoing a transition at higher fields into a vortex glass or a liquid. We estimate the
position of the phase boundary using a Lindemann criterion. We find that the proposed theory is compatible
with recent experiments on superconductors. Further experimental consequences are investigated.
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It is remarkable that after a decade of experimental
theoretical efforts, the phase diagram of type-II superc
ductors in a field is far from being completely elucidate1

Stimulated by the discovery of the high-Tc materials, a reex-
amination of the mean-field phase diagram unraveled
main new phenomena. First, it was realized,2,3 and observed4

that due to enhanced thermal fluctuations the Abrikosov
tice melts well belowHc2 into a flux liquid. Second, it was
argued that in the solid phase, pointlike disorder could p
duce a glassy state with barriersU( j ) diverging at smallj ,
and thus characterized by the true vanishing of the lin
resistivity even at finite temperature.5,6 This was a significant
departure from traditional models of thermally assisted fl
flow, which assumedfinite barriers between pinned states.
precursor sign of an instability towards a glass was a
found in the flux liquid.7 Both for technological application
of high-Tc materials and from a purely theoretical point
view, the understanding of the detailed properties of suc
glassy phase is of paramount importance.

Two main phenomenological theories have been put
ward to describe this glassy phase and to account for som
its properties observed in early experiments, mainly the
served continuous transition8 from the glass to the liquid and
giant thermal creep. The first approach is based on the ga
glass model,5,9 and assumes a complete destruction of
Abrikosov lattice. The second approach retains the ela
lattice structure at small scale.6 Although different in nature,
both theories agreed that the disorder essential to produc
glassy low-temperature phase and the vanishing of the lin
resistivity was also destroying at large scales the perfect
lattice existing in mean-field theory. The low temperatu
phase was therefore generally expected to be a topologic
disordered phase, lacking translational order. Several ca
lations supported this point of view. Elastic theory predict
at best a stretched exponential decay of translatio
order6,10,11 ~i.e., a power law growth of displacements! and
general arguments tended to prove that disorder would
ways favor the presence of dislocations.9 The vortex lattice
seemed to be buried for good.

A few points did not naturally fit into the framework o
these theories. Experimentally, a first-order transition
550163-1829/97/55~10!/6577~7!/$10.00
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tween the glass phase and the liquid was observed at
fields12,13 rather than the predicted continuous transition, o
served at high fields. Also, decoration experiments of
flux lattice at very low fields~60 G! in several materials
showed remarkably large regions free of dislocations.14 On
the side of theory, old calculations on the related disorde
elastic random fieldXYmodel15 as well as more recent sca
ing arguments for the vortex lattice16 suggested, within a
purely elastic description, a slower, logarithmic, growth
deformations. However, despite that fact, it remained
questioned at that time that dislocations would always
generated by disorder, as argued in Ref. 15.

In a recent work we obtained a quantitative theory of t
elastic vortex lattice17,18 in the presence of point disorder.19

Contrarily to previous approaches, it provides a descript
valid at all scales and demonstrates that while disorder p
duces algebraic growth of displacements at short len

FIG. 1. The stability region of the Bragg glass phase in
magnetic fieldH, temperatureT plane is shown schematicall
~thick solid line!. Upon increasing disorder the region shrinks
indicated by the thin solid line~see text!. The melting line of the
pure system is shown as a dotted line, and the vortex glass tra
tion line ~or crossover to the pinned liquid! is shown as a thick
dotted line. For clarity, the reentrant liquid at very low field, di
cussed in the text, is not shown.
6577 © 1997 The American Physical Society
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6578 55T. GIAMARCHI AND P. Le DOUSSAL
scales, periodicity takes over at large scales and results
decay of translational orderat most algebraic.20 One striking
prediction is thus the existence of a glass phase with Br
diffraction peaks. This result was derived within an elas
theory, assuming the absence of dislocations. However,
very result of our calculation, i.e., that quasi-long-range
der survives, led us to advocate that dislocations would
much less relevant than commonly assumed.17 The alleged
importance of dislocations in a disordered system9,15made it
mandatory to further investigate carefully whether allowi
for dislocations would indeed modify the above result. T
striking result18 that we found based on energy arguments
that dislocations arenot favorable for weak disorder in
d53. This implies self-consistently the existence of a th
modynamic glass phase, as far as energy and very-
current transport properties are concerned, retaining a ne
perfect~i.e., algebraic! translational order and a perfect top
logical order. Since this phase exhibits Bragg peaks v
much like a perfect lattice, it was called the ‘‘Bragg glass
Because it retains a ‘‘lattice’’ structure and Bragg peaks, t
glass phase is radically different from the vortex glass p
ture based on a random gauge model. In particular, s
such a phase is nearly as good as a perfect lattice as f
translational order is concerned, it is natural to expect it
melt through a first-order phase transition. We propose18

that the phase seen experimentally at low fields was in
the Bragg glass, solving the apparent impossibility of
pinned solid. This allowed us to account naturally for t
first-order transition and the decoration experiments. O
prediction18 that a new phase without topological defec
should be stable at weak disorder, which also applies to
random fieldXY model,22 received subsequent further su
port both from numerical simulations23,24and from analytical
calculations in a layered geometry.25,26

Once the existence of a weak-disorder–low-field Bra
glass phase is established, the question arises of determ
its limits of stability and phase boundaries. The Bragg gl
phase should be stable as a self-consistent solution in
elastic limit, i.e., as long asRa*a.18 This condition is vio-
lated when the field is increased and we proposed in Ref
that upon raising the field the Bragg glass should underg
transition into another phase, which could be a pinned liq
or another glass~vortex glass!. A natural possibility then was
that the critical point occurring on the melting line13 was the
end point of the transition line between the Bragg glass
low fields and a topologically disordered glassy phase~or a
strongly pinned liquid! at higher field. We pointed out tha
the fact that this point can be lowered in field and raised
temperature by adding impurities was a hint that it was
lated to this transition. Such a field-driven transition cor
sponds to the destruction of the Bragg glass by prolifera
of topological defects upon raising the field, which is equiv
lent to increasing the effective disorder, which favors dis
cations. The other transition from the thermal liquid into t
putative superconducting state at higher fields is presum
continuous. The topology of the phase diagram propose
Ref. 18 is as depicted in Fig. 1. Its main features should
relevant for all type-II superconductors.

Several recent experiments can be interpreted to con
the picture proposed in Ref. 18. Neutron experiments can
naturally interpreted in terms of the Bragg glass.27,28 In
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BSCCO neutron peaks are observed at low fields and di
pear upon raising the field.29 The phase diagram of BSCCO
has been recently explored in detail by overcoming spuri
effects due to geometrical barriers.30 It can increasingly be
interpreted as a confirmation of our theory, the so-called s
ond magnetization peak line being the candidate for the p
dicted field-driven transition. Since our proposal, this li
has been investigated in more detail in BSCCO~Ref. 31! and
found to be relatively temperature independent at lower te
peratures and to be shifted downwards upon increase of p
disorder through electron irradiation.32 Also, similar types of
phase diagrams are observed in a variety of materials, inc
ing YBCO ~Refs. 12 and 33! and thallium compounds.34 The
fact that a controlled increase of point disorder through el
tron irradiation shifts the transition line to lower fields35 is a
strong indication that our picture is relevant in these mat
als as well.

In the present paper we follow up on the theory expos
in Ref. 18. We make more quantitative estimates of
phase diagram depicted in Fig. 1 using a generalized Lin
mann criterion. We also explore in more detail some exp
mental consequences of our theory.

Let us consider a vortex lattice system in the presence
disorder. We can model the vortex lattice by stacks
coupled planes. The system is therefore described by la
of two-dimensional triangular lattices of vortices. We deno
by Ri the equilibrium position of the vortices in the absen
of disorder, labeled by an integeri , in thexy plane, and by
u(Ri ,z) their in-plane displacements which are tw
dimensional vectors~the vortex can only move within the
plane!. z is the coordinate perpendicular to the planes a
along the magnetic field andx5(r ,z). The total energy is

H5
1

2E d2rdz@~c112c66!~]aua!21c66~]aub!2

1c44~]zua!2#1E d2rdzV~r ,z!r~r ,z!, ~1!

where the density of vortex lines is simply defined byr(x)
5( id

(2)
„r2Ri2u(Ri ,z)…. The last term in Eq.~1! is the

coupling to disorder. In the limit where many weak impu
ties act collectively on a vortex, point disorder can be mo
eled by a Gaussian random potentialV(x) with correlations
V(x)V(x8)5D(r2r 8)d(z2z8), whereD(r ) is a short-range
function36 of range j ~the superconducting coherenc
length!:

D~r !5dUp
2e2r2/2j2, ~2!

where d is the distance between layers andUp a typical
pinning energy per unit length alongz.

In the high-Tc Abrikosov lattice, one has in principle to
use nonlocal elasticity, and a calculation along the lines
Ref. 18 can be done simply by using the complete kno
wave-vector-dependent expressions2,37 of the elastic con-
stants in Eq.~1!. Since we are only interested in neare
neighbor correlations and want to obtain only an order
magnitude of the scales involved, we use simple cons
elastic moduli. The physical properties of Eq.~1! were ex-
amined in detail in Refs. 17 and 18 and we just recall h
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55 6579PHASE DIAGRAMS OF FLUX LATTICES WITH DISORDER
the results needed for the phase diagram. The mean-squ
relative displacements of two vortices separated by a
tancer is

B~r !5^@u~0,0!2u~r ,0!#2&, ~3!

where^ & denotes the thermal average, whereas•• •̄ is the
disorder average. FromB(r ) one defines two length scale
Rc andRa in the xy plane ~and similarlyLc and La along
z) such that Bdis(Rc);max(j2,^u2&T) ~see below! and
B(Ra);a2, respectively.Rc is the Larkin-Ovchinikov pin-
ning length38 directly related to the critical current, wherea
Ra is the scale at which one enters the asymptotic reg
with a logarithmic growth of the displacements. The mod
~1! leads to the Bragg glass phase with quasi-long-ra
translational order.

To determine the region of stability of the Bragg gla
phase, we follow the arguments proposed in Ref. 18 that
elastic structure will become unstable when the displacem
between two neighbors becomes of order of the lattice sp
ing a, i.e.,

B~r5a!;a2. ~4!

To be more quantitative, one can introduce, as for the nor
thermal melting, a Lindermann constantcL and take for the
criterion39 of stability of the Bragg glass phase

B~r5a!5^@u~0,0!2u~a,0!#2&5cL
2a2. ~5!

cL , the Lindemann constant, is usually of the order
cL;0.1–0.2 in the usual melting and we make here the
sumption thatcL is indeed a constant independent of t
field.40

From Eq.~5! one sees that both disorder and thermal fl
tuations act together to increase the displacements. In
formula ~3.18! of Refs. 17 and 18 shows thatB(r5a) splits
naturally into two partsB(r5a)'2^u2&T1Bdis(r5a). One
immediate consequence of Eq.~5! is therefore that the melt
ing line should be pusheddownwardsin the presence o
pointlike disorder. In fact the Bragg glass can disappea
two ways: ~i! If the temperature is raised, it will melt to
liquid phase, and~ii ! if the field is raised, which amounts t
varying the effective disorder in the system, the system
become so disordered even at short length scales that d
cations will appear. Equation~5! gives thus the limit of sta-
bility of the BG phase in theH-T plane. Although the com-
plete ‘‘melting’’ curve can be computed using the formul
for B(r ) obtained in Refs. 17 and 18, such a calculation
tedious and offers little insight. We therefore study main
here the two limits of low temperature, where the transit
is mainly field driven, and of temperature close to the me
ing curve in the absence of disorder.

If the temperature is close to the pure melting lin
B(r5a) is dominated by thermal fluctuations. Since f
weak disorderRa@a, the disorder-induced displacemen
are negligible at the scale of nearest neighbors and one
compute Eq.~5! using thermal fluctuations only. One the
easily recovers the pure melting line

Tm'4a3Ac66c44cL2. ~6!
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Disorder effects will push the melting line slightly down, b
effects should be negligible at low field for which the effe
tive disorder is small enough. Upon increasing the fie
disorder-induced displacements will increase, forcing
transition line defined by Eq.~5! to go down to zero tem-
perature at a finite fieldHM . The scale at which disorde
dominates can easily be obtained by looking at zero temp
ture. To obtain a reliable order of magnitude of th
‘‘disorder-induced melting’’ fieldHM , it is necessary to
know the preciseB(r ) in the presence of disorder and n
only its asymptotic forms. Fortunately such a calculation w
performed in Refs. 17 and 18. Using formula~4.18! of Ref.
18 one gets

B~r !5
a2

p2 b̃~r /Ra!. ~7!

For r5Ra one has from Ref. 18 thatb̃'1 while for r,Ra
one is in the random manifold regime and one can appro
mateB(r ). (a2/p2) (r /Ra)

1/3. From the solution of Ref. 18
we know that the above formula isquantitativelycorrect, and
not only asymptotics. Using Eq.~5! one finds that

a/Ra5~pcL!6. ~8!

Using cL50.12 givesRa;350a. Thus the transition occurs
well before the asymptotic regime. We will find that it doe
occur ~e.g., in BSCCO! indeed deep into the random man
fold regime. One also notes that in simplified models witho
an intermediate random manifold regime~where one directly
goes from a Larkin regime to the asymptotic regime! the
above formula would givea/Ra5(pcL)

2/(42d). The transi-
tion then occurs for smaller values ofRa /a, in agreement
with the results found in a special geometry.25,26

Using Eq. ~8! and the expression~4.12! of Ref. 18 for
Ra

Ra5
2a4c66

3/2c44
1/2

p3r0
2Up

22pdj2
, ~9!

as well as c665e0 /(4a
2) and c44'ce0 /(g

2a2) ~single-
vortex contribution! with e05(F0/4pl)2 andc a numerical
constant.37 One gets

a35
4p3

~pcL!6
Up
2

e0
2 2pdj2

g

Ac
. ~10!

One thus obtains an expression for the transition fi
HM naturally expressed in terms of some characteristic fie
of the system:

HM~T50!5
~pcL!4

~16p!1/3p2 S e0
Up

D 4/3Hc2
2/3Hcross

1/3 , ~11!

where we have introduced the crossover fieldHcross
5pcF0 /(g

2d2) with c; ln(gd/j) ~Ref. 37! and Hc2
5F0 /2pj2.
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6580 55T. GIAMARCHI AND P. Le DOUSSAL
As a numerical estimate of the melting fieldHM for
BSCCO with Hcross;1 T, Hc2;100 T, Up /e050.4, and
cL50.12 givesHM;400 G in good agreement with the ob
served experimental values.32 The fact that this field is well
below the decoupling field validatesa posteriorithe calcula-
tion @note also thatB(r50,z5d) is still small at the transi-
tion#. The general shape of the phase diagram is in ag
ment with the one of Fig. 1. Note that some nonline
effects, such as screening of disorder by thermal fluctuat
or by interactions at short scales, may not be captured
rectly by the Gaussian theory of Ref. 18. They can be inc
porated by a renormalization of the effective disord
Up(T). Such effects were computed in the fluxliquid using
the renormalization group~RG! in Ref. 7 and it was shown
that the pinning length was renormalized upward~and thus
the effective pinning strength downward! by a factor of
exp@(T/Tdp)

3# where Tdp;(Up
2dj2ce0 /g

2)1/3 is the single-
vortex depinning temperature.1 It would be interesting to
compute these effects in the solid as well. On gene
grounds that thermal fluctuations can only weaken the di
der, one expects an additional curvatureupwardof the Bragg
glass instability lineHM(T) when T increases beyond
O(Tdp).

In Fig. 1 two main regions can be distinguished: If t
temperature is high, the stability line is nearly indistinguis
able from the melting line of the pure system. This regim
corresponds to the case whereRa(T50)@a. In that case the
translational order is only affected at distances huge c
pared to the lattice spacing, and the modification compa
to a pure lattice is negligible as far as the melting is co
cerned. This part of the stability line is therefore nearly ide
tical to the melting of a pure lattice and one can expect
transition to be first order. The Bragg glass melts to a liq
phase, nearly insensitive to disorder.

If the field is increased, one will shortenRa(T50). The
disorder itself is now able to make dislocations proliferate
particular even atT50 disorder destroys the Bragg glass.
this range of field and at lowT the transition line flattens a
a function of temperature, since it is controlled mainly by t
disorder. The phase into which the Bragg glass ‘‘melts’’
low T is relatively poorly understood. It is characterized
the absence of translational order and of Bragg peaks. S
it is dominated by point disorder, dislocations will decorr
late alongz and thus can lead to an entangled state. Th
should still be some amount of pinning at lowT, but whether
such a phase is a true glass with diverging barriers, simila
the proposed vortex glass of Ref. 9, or simply a very visc
form of the liquid phase remains controversial. This pha
could also retain hexatic order~hexatic glass! at least in a
portion of it since, at least at a naive level, similar argume
for the survival of hexatic topological order~no unbound
disclinations! as for translational topological order in th
Bragg glass can be given. If the phase is a true glass ph
then it should melt thermally to the liquid, on the thic
dotted line of Fig. 1. Whether a true vortex glass phase ex
in untwinnedsamples is an important, still open, and cont
versial question41 which may need to be settled b
high-sensitivity42 measurements. Since the low-temperat
phase is in any case much more continuously related to
liquid phase, one can expect now the transition to beco
second order. The Bragg glass therefore provides one na
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explanation for a change of the order of the~thermal! melt-
ing transition, as well as for the existence of a field-induc
transition.

One should also point out that atvery low fields
(B;Hc1) where screening is important,a*l, a similar~in-
verted! field driven transition should also occur when th
field is lowered, from the Bragg glass to a pinned liquid~or
another glass! as suggested by the decoration images of R
14. As shown in Ref. 7 the liquid becomes unstable
B,B0exp@2(T/Tdp)

3#, presumably to a glass or a pinned liq
uid ~see Ref. 43 for an experimental evidence of this line!.

The proposed field-induced transition between the Bra
glass ~BG! and the putative vortex glass~VG! being just
characterized by an injection of dislocations, it is not nec
sarily linked to a decoupling between the layers. As a c
sequence one does not expect the critical current alongz to
become zero at the field-induced transition, at least fo
low-anisotropy system like YBCO. Of course it is alway
possible that in materials with high anisotropy like BSSC
dislocations prefer to appear first between the planes and
BG-VG and decoupling transition coincide. Let us, howev
emphasize that it does not need to be so and that we
expect our transition to occur in purely isotropic system
Another argument against the field-induced transition bein
simple thermal decoupling transition37 is the fact that such a
transition could not extend down to zero temperature. In a
case measurements of the critical current perpendicular to
plane, in particular in YBCO, should help to separate b
tween the two effects.

The suggestion that there may be two different gla
phases could seem farfetched. There is a case, howe
mostly of theoretical interest at present, where itshouldhap-
pen as a direct consequence of our Bragg glass cons
ations. This is ford-dimensional vortex line systems wit
correlated disorder or equivalently in (d21)-dimensional
quantum bosons with disorder. It is reasonably well est
lished theoretically, numerically, and experimentally tha
Bose glass phase exists for these systems ind53 @i.e.,
d5211 ~2 space, 1 time dimension! for bosons#. It is also
believed that this phase lacks translational long-range o
in the plane perpendicular to the columns. Indeed, since
vortices are localized along the columns, one can roug
view the properties in the perpendicular plane, as those
(d21)-dimensional system with pointlike disorder.44 For the
d53 vortex problem, dislocations are therefore expected
appear~as they presumably appear ford52 systems with
pointlike disorder!. In higher dimensions, however, this nee
not be the case. For instance, ind54 for vortex systems
(d5311 for quantum particles! one is led, by similar argu-
ments as in Ref. 18 totwo distinct localized phases. For
weak disorder no dislocation will appear, giving a Bose gla
with topological order. This ‘‘Bragg-Bose glass’’ phase
the equivalent for columnar defects of the Bragg glass
occurring for pointlike disorder. For stronger disorder, dis
cations will destroy the topological order perpendicular
the columns, giving back the ‘‘conventional Bose glass
i.e., the continuation of itsd5211 version. At the transition
between these two different Bose glass phases, unbindin
dislocations loops~cylinders! should occur. An interesting
point is that in the ‘‘conventional Bose glass’’ these disloc
tions loops will remain pinned to the columnar defects, an
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55 6581PHASE DIAGRAMS OF FLUX LATTICES WITH DISORDER
will thus still be a true glass. This Bose glass phase would
in some sense analogous, in the case of point disorder, to
putative vortex glass. However, for pointlike disorder it
much less obvious that such a phase exists as a gen
thermodynamic phase ind53.45 Let us note that the corre
lated disorder problem was studied analytically within
elastic theory in Ref. 44 using a variational method and
Ref. 46 using RG methods: The phase described there is
the ‘‘Bragg-Bose glass.’’ The difference between the tw
phases should be apparent only at scales larger than the
tance between unpaired dislocations.

Several consequences of our theory could be furt
checked in experiments. First, since the Bragg glass ph
has translational order and the vortex glass has not, neu
experiments should observe a destruction of the Bragg p
at the same location47 as the transition observed by magne
measurements. Such a feature seems to be consistent
the existing experimental data in BSSCO,29 but a more de-
tailed experimental investigation would be needed to ch
this point in other materials as well. Another clear distincti
between the two phases should be observed when a cy
in current similar to the one of Ref. 27 is performed. Su
cycles, taking the system above the criticalJc and then back
to zero, are expected to heal the lattice and to expel ou
equilibrium dislocations. One can therefore expect go
healing in the Bragg glass phase, as is indeed the case,
dislocations can only exist as out of equilibrium object. O
the other hand, the same cycle performed in the VG ph
should make little difference on the neutron diffraction p
tern since theequilibrium state already contains unpaire
dislocations.

Finally one expects the barriers to vary very differently
the two glass phases. In the Bragg glass phase, elastic
strong. Pinning can only be collective and one expects th
fore weak barriers at short length scales. This implies a sm
critical current. On the other hand, since creep can only
cur collectively, the barrier should grow very rapidly wit
decreasing current. Standard creep arguments1 in the pres-
ence of the Lorentz forcef; j show thatV;exp@2U(j)/T#
with the optimal barrierU( j )5maxL(L

u2juLd);(1/j )m with
m5u/(d1z2u), and lead tom50.7–0.8 at intermediate
currents~random manifold exponents! and m50.5 at very
small currents (u5d22, z50!.18 Taking the dispersion o
elastic moduli into account leads to higher values ofm in the
intermediate regime.1 On the other hand, in the VG phas
barriers should be significantly larger at short length sca
since the nearly destroyed lattice has additional effective
grees of freedom, such as free dislocations, and can
adapt more easily to the pinning potential. The critical c
rent should therefore increase when approaching the fi
induced transition. The onset of entanglement at the tra
tion could also increase the critical current because of
cutting barriers.48 On the other hand, in the VG phase th
barriers should grow much more slowly with decreasing c
rent since there is no need for collective motion, or ev
remain finite if the phase is simply a crossover from t
liquid phase. Some estimates of the exponents for the ga
glass model gave very small exponents of the order
m;0.1–0.2. One can therefore expectI -V characteristics
evolving with fields like the ones shown in Fig. 2. Such
behavior is in good qualitative agreement with the obser
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tions of a second peak in relaxation measurements when
transition is passed. More refined transport or relaxat
measurements should help in deciding on the behavior of
barriers. Note that peak effects upon raising the field w
observed49 in two-dimensional~2D! materials. There the in-
crease of the critical current, as compared to the predicti
of a 2D Larkin-Ovchinikov theory, was interpreted in term
of an elastic instability towards dislocations. It was not d
cussed at that time whether the vortex state at low field
these experiments was or not a true glass with topolog
order and diverging barriers at low current.

It is important to note that the Lindemann criterion us
here isnot a detailed theory of the transition when disloc
tions proliferate, which is not yet available. It represents o
possible mechanism of instability dominated by short len
scales. It thus provides a reasonable upper bound for
instability field HM since the Bragg glass certainly cann
self-consistently survive ifRa,a. However, it cannot be ex
cluded that the Bragg glass is unstable before this limit,
could be the case, for instance, if, because of the weake
of translational order at large distances in the Bragg gl
compared to a real solid, unbound dislocations start to app
first at large length scales compared toa. In that case this
additional phase~which may or may not be a true glas!
would also melt through a first-order transition with goo
short-distance translational order properties. This could h
pen, for instance, if unbound dislocations appear first
scales betweena andRc(T), thus affecting the critical cur-
rent but not the first-order melting. This is one possible s
nario for YBCO where the second peak line is observed w
below the tricritical point~though a clear interpretation ther
is more delicate due to additional twin boundaries and
fact that the second peak region appears quite broad!. Fi-
nally, it would prove very interesting to investigate in mo
detail the phase diagrams of a variety of compounds incl
ing organic superconductors50 and heavy fermion
compounds51 as well as the thallium family. Indeed thes
phase diagrams show remarkable similarities, and we ex
that these can also be interpreted using the ideas of Re
and the present paper.

FIG. 2. I -V characteristics in the Bragg glass phase and in
vortex glass~or pinned liquid! are shown schematically, respe
tively, as solid and dashed lines. One goes from small (J1) to larger
(J2) critical currents, but rapidly divergent to weakly divergent~or
finite! barriers, when increasing the field.
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In conclusion, we have examined in some detail the i
plications, for the phase diagram of type-II superconducto
of the existence of a glass phase with translational order:
Bragg glass. The existence of this phase immediately imp
the existence of a field-driven transition in the phase d
gram, and thus provides a natural interpretation of severa
the experimentally observed features of the phase diagram
BSCCO, YBCO, and TlBCCO, namely, a change from
first-order melting transition to a continuous transition wh
the field is increased and the existence of a field-indu
transition. We interpret this last transition as the destruct
of the Bragg glass phase by spontaneous injection of
:
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-
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bounded dislocations into a topologically disordered gl
phase or liquid. This transition, being disorder driven, sho
extend down toT50. We have estimated the position of th
transition using a Lindemann criterion and discuss furt
experimental consequences.

Note added in proof.We received recently an interestin
paper by D. S. Fisher~unpublished! where refined energy
and scaling arguments are presented confirming the exist
of a dislocation-free phase at weak disorder, thus provid
additional theoretical support in favor of the Bragg gla
theory of Refs. 17 and 18.
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