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Quantum fluctuations in the equilibrium state of a thin superconducting loop
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We study the oscillatory flux dependence of the supercurrent in a thin superconducting loop, closed by a
Josephson junction. Quantum fluctuations of the order parameter in the loop affect the shape and renormalize
the amplitude of the supercurrent oscillations. In a short loop, the amplitude of the sinusoidal flux dependence
is suppressed. In a large loop, the supercurrent shows a sawtooth dependence on flux in the classical limit.
Quantum fluctuations not only suppress the amplitude of the oscillations, but also smear the cusps of the
sawtooth dependence. The oscillations approach a sinusoidal form with increasing fluctuation strength. At any
finite length of the loop, the renormalized current amplitude is finite. This amplitude shows a power-law
dependence on the junction conductance, with an exponent depending on the low-frequency impedance of the
loop. [S0163-18207)05106-7

I. INTRODUCTION a one-dimensiona(1D) superconductor are known to di-
verge logarithmically with length. If these fluctuations would

Quantum effects in ultrasmall Josephson junctions haveesult in a diverging random phase across the junction, the
been studied intensely now for more than a decade, botBosephson energy of the system would average to zero, and
experimentally and theoreticall?. The most important neither of the quoted results would be true.
manifestation of quantum fluctuations is the well-known We will show that a finite renormalized Josephson energy
macroscopic quantum tunneling of the phase across @an arise because the junction itself affects the fluctuations of
current-biased junctiohThis phenomenon leads to the ob- the environment! Simultaneously, the modes of the envi-
servation of events of quantum phase slip at a bias that igonment renormalize the plasmon oscillations in the junction.
relatively close to the critical current. This mutual influence of different parts of the circuit makes

More generally, macroscopic quantum tunneling causes #e separation of it on two entities—the junction with a fixed
finite voltage to appear at any finite current. The correspondcapacitance and the environment—to be somewhat a matter
ing 1-V characteristic may be nonlinear, and in the limit of of convention.
zero temperature one findé=Al?, with an exponenty We consider a thin superconducting loop which contains a
which depends on the impedance of the leads. This relatiodosephson junction. The “environment modes” of the loop
may be derived in the framework of the Caldeira-Leggettconsist of propagating plasmon modes with a soundlike
modef that treats quantum transitions between neighboringlispersion:* The most straightforward way to observe a pos-
minima of a tilted washboard potential in the presence of #ible renormalization of the Josephson energy, is to phase
dissipative “environment.” It has been shown in Refs. 4 andbias the junction by threading a fluk through the loop and
5 that the coefficienA is proportional to the square of the measure the loop magnetization, which is proportional to the
“bare” (i.e., unaffected by the environmertunnel matrix  Josephson current=J(®). The renormalization leads to
element for transitions between the two minima of the po-values of the critical curreni;. which are smaller than one
tential. The dual result for a voltage-biased junction showsvould expect from the mean-field resull)=7AG/(2e),
that the dc current in such a junction is proportional to thewhere G is the conductance of the junction, aidis the
square of the Josephson energy of the junction, also unrenasuperconducting gap in the loop. For a large loop, it also
malized by the environmeft® changes the flux dependendgd).

Actually, these two complementary results follow from  The paper is organized as follows. The model for the loop
very similar treatments of two closely related models, thewith the junction is presented in Sec. Il, followed by a quali-
Caldeira-Leggett modél,and the electromagnetic environ- tative discussion of the dependenceJobn @ in Sec. IIl.
ment modef''® The effective boundary conditions for the The problem of the renormalization of the Josephson cou-
guantum fluctuations of the “environment modes” in thesepling is treated in Sec. IV where we make use of the simi-
treatments do not depend on the Josephson energy of therity to the problem of quantum Brownian motion in a pe-
junction itself. This approactiadequate for most existing riodic potential® The effect of the macroscopic quantum
experiments is absolutely legitimate in the case of weak tunneling on the phase dependence of the Josephson current
fluctuations of the phase of the order parameter across thHer a relatively large loop is discussed in Sec. V. We employ
junction. A more cautious analysis is needed, though, if thesthe analogy with the problem of pinning of a 1D charge
fluctuations are strong. Indeed, quantum phase fluctuations iensity wave:* or Wigner crystal® and use an instanton
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approact’ to calculateJ(®). Concluding remarks can be part of the ring involved in the phase fluctuatioris,/A.
found in Sec. VI. Therefore, we may set to zero if

Il. THE MODEL

4
We consider a superconducting wire of lendthand
small cross-sectional aré&s=aXx a, which is embedded in a
medium with dielectric constant. The wire is closed by a
Josephson junction to form a loop. The bare Josephson e
ergy of the junction isESETrAhG/(4e2), and its charging
energy isE.=4e?/C. Perpendicular to the loop, a magnetic

An important length scale in our model is determined by
ﬁje lengthL* at which the energy of supercurrents in the
oop and the Josephson energy of the junction are of the
same order. It is given by

field  is applied, such that a flug{L?/(4=) threads the #2n.S hgu

loop. We introduce the corresponding phase L*= ° :_g', (5)
d=HL?/(2d,), where &, is the superconducting flux 4mE(J) mE;

quantum.

The low energy excitation spectrum of this system can bé/vhereg is defined through

described in terms of the phase of the order parameter 2
@(x) by the LagrangialC=K—U, where 1 _4moy e M 2In(R/a).

g whnS #AcC a e
L A% . A e(L)— ¢(0)]2
K=J dx=—[e(x)]?+ Le(L)~¢(0)] (1) Heree?/hc=1/137 is the fine structure constant. Physically,
0 2& 2k, 1/g is the dimensionless zero-frequency impedance of the
superconducting wir&-2?

(6)

and

U:

L A2nS(de(x) B2 1 27k
fodx ~ ( ¢ ——) —EScog o(L)— ¢(0)]. 20=0=3 Ze2'

X L
2 . -
5 1 o In the absence of fluctuations, the phase varies linearly
Here, 1é.=[8e’In(Ria)/s]™" is the characteristic inverse yth the distance along the loop; therefore, it is convenient to

charging energy per unit length of the lodR is the distance  introduce a new variabley(x), by the relation
to a metallic screef), n; is the density of the superconduct-

ing condensate, anah is the electron mass. X
The first term on the right-hand side of Eq) together <P(X)=<Po[+X(X). (7)
with the first term on the right-hand side of E&) describe

the propagating plasma modealong the loop® They cor-  \whereg, is determined such that the enerigyhas its mini-

respond to the electrostatic energy stored in the plasmongum at y=0. This condition can be written in a simple
and to the energy associated with the supercurrent in thgm:

wire, respectively. In the latter energy, we included only the

kinetic inductance, assuming the wire is thin and electrody- L* L*

namic effects are weak. The plasma mode is characterized by Sinpg+ T‘PO:T(D' (8
a linear dispersion relatiom (k) =vyk between frequency

w(k) and wave vectok, where the plasma velocity is given For |ater use, we rewrite expressi¢®) for U in terms of

by x as follows:
__[ensS  a 2In(R/a)
=N "m - Ve B U=ES| —cof x(2m)~ x(0)+ ¢o] ~ [ x(2m) — x(0) Isineq
Herec is the speed of light anl, = Vmd%/(47n¢€?) is the L* r27 [ov\2 L
London penetration depth of the wire. At temperatulles +7— d X + =—Sirfeg|. (9
much smaller than the superconducting gipthe plasma L Jo 990 2L

mode involves oscillations of the supercurrent only, an . Y . . .
damping due to thermally excited quasiparticles is negli(fHere a new(“angular”) coordinated=2mx/L has been in-

- - ; N roduced.
g(tq) ;?klﬁfzg;dﬁg?nvf ;fzgfumgihrzgﬁgeg elrr: Ct: ?Nier”e\:qaljli?g of The dc Josephson effect at zero temperature is described
a<\ ' ' e fully by the ® dependence_of thg ground-state eneigy,
ThLé remaining terms in Eq€l) and (2) refer to the Jo- of the system under conS|dera_t|on. Because c_)nly the term
sephson junction. For simplicity, we will completely neglect U of the e_nergy depends explicitly ah, the pers_|stent cur
the junction capacitanc& =0, throughout this paper. This rent J()=(2e/4)dEq /9@ can be expressed in terms of

approximation corresponds to neglecting the last term ir]fhe averaggU) over the ground-state wave function:

comparison with the first one in E@l) for all the relevant e L 1/ 5u
scales of the phase variation. The shortest scale in the time J((I)):_( 1+ —-Cospg <_> (10)
dependence ob is /A, and correspondingly the smallest h L deo
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lIl. QUALITATIVE ANALYSIS cally is large. We will be interested in superconducting wires
characterized bg~ 1. For such wires, Eq.14) is satisfied,
and the local quantum fluctuations of the current due to the
propagating plasma motfeare smaller than the critical cur-
rent. We therefore neglect phase slip ev&sin the wire.
. Let us estimate the exponentglfor an Al wire. If the
A. The casel <L wire is very dirty, with a mean free path-1 nm, we esti-
For a relatively short loopl.<L*, the kinetic energy of mate the zero-temperature coherence length t§(bg~40
the supercurrent dominates over the Josephson energy, anth and the London penetration depth toNg€0)~ 500 nm.
the phase difference, across the junction is completely Present-day technology enables one to fabricate wires with a
determined by the flux threading the logp,=®, as can be cross-sectional are8= a?~ (50 nmY. Such wires would be
seen from Eq(8). Classically, i.e., in the absence of phasecharacterized by an exponentg3/1.2. For cleaner wires
fluctuations §=0), the dependence of the persistent currenwith |~a, the exponent can be expressed as
on @ is given byJ(®) = J%ind, with 10=2eEY/%. We will  1/ig=[16/a(nm)]*Z We conclude that typical values of the
see below that this classical result holds in the limitexponent should be in the rangeg#/1.
1/g—0. Quantum fluctuations suppress the maximum Josephson
In the quantum casg+ 0, we can neglect the effect of current below its mean-field valul-ﬁ. This suppression de-
the Josephson junction on phase fluctuations when calculapends on the loop length; according to Eq(13) J.—0
ing the average in Eq10) for L<L*. In other words, fora whenL—c«. As we will discuss below, this is an artefact of
short loop only the term with the integral in E), which  the lowest order of perturbation theory, where the effect of
corresponds to the kinetic energy of the supercurrent alonthe junction on the fluctuations in the attached wire is disre-
the loop, is important. Substituting E) into Eq.(10), and  garded completely.
neglecting term&(L/L*), we find

The behavior ofl as a function® is very different in the
two limiting cased. <L* andL>L*, which we will discuss
gualitatively below.

J(@)=3%cog x(27) — x(0)])sind (11) B. The casel >L*
=Jc\C0 - sind.
e averageot. As we have seen abovelif<L*, the solutiongo(®) of

The evaluation of the averageod x(2m)— x(0)]) does not  Eq. (8) that provides the absolute minimum of energy varies
differ in fact from the well-known calculation of the Debye- continuously withd. For a large loop witl.>L*, the so-
Waller factor?® We quantize the fluctuating fielg(6) inthe  lution o(®) has discontinuities:

standard way as follows:
*

o 1 i 1 E(na
=xo+— — C0§ —-
X Xo \/§n=1 \/ﬁ 2
where operators,, satisfy canonical commutation relations.

Using Eq. (12), it is straightforward to evaluate Because the Josephson energy dominates over the kinetic
(cogx(2m)—x(0)]) where the average is taken with respectenergy of the supercurrents, the phageremains “pinned”

[al+a,], (12

*

@0:27T+T((I)—27T) if T<®<27. (15

to the quadratic Hamiltonian to the minima of the cosine potential. Correspondingly, in
- . 1 the absence of fluctuations the equilibrium persistent current
vpnNmT
H= E pl agan+ - J(P) has cusps,
n=1 L 2 %
At low temperatures and->#v,/A, we finally obtain J(‘I’)zJST@ if 0<d<m,
J(®)=J.sind, with a renormalized critical current L*
, Jo(hvpl)llg alkgT/ho, |0 " JD)=—(d-27) if m<d<27. (16
c= TA :
‘LLa sinh(7LkgT/fiv ) We expect quantum fluctuatiorig to renormalize the bare

The energyA in Eq. (13) appears as a high energy cutoff for Josephson energy and thus to suppress the slope of the saw-
the plasmon waves; the result (13) holds for temperature®oth dependenceii) to smear the cusps dt=(2n+1)m,
keT<<A. The classical result,—JC is recovered in the limit @S quantum tunneling will remove the degeneracy between
1/g—0. pairs of states having the same values of energy but different

At this point we would like to note that the Lagrangian VaUes Of¢o. This is shown schematically in Fig. 1.
defined by Eqs(1) and (2) has been derived in the limit of However, due to the fact that the Josephson energy is not

small phase fluctuationg(V y)2)<1/£2(0). This poses an a weak perturbation iE>L*, we have to take its effect on
upper bound on the allowed values of1/ the quantum fluctuations into account. This is very similar to

the problem of pinning of a 1D cryst&l. The decrease in

e? In(R/a) (cog x(2m)—x(0)]) with a growing length of the loof

(kea)? P (14)  should saturate wheh exceeds the characteristic length
L*. The saturation occurs because the Josephson coupling

The right-hand side of this inequality is proportional to the pins the low-frequency modes, thus preventing the logarith-

number kga)? of quantum channels in the wire, and typi- mic divergence of the phase fluctuations at the junction.

1/g< .
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I(®) fivy /L. Therefore the perturbative analysis of Sec. Il A
' applies, and we find for the flux-dependent Josephson current
[
@ 3P 2eB% (hp,\ 10
-~ _ J pl ;
© i J(P) 7 ( A sind. (20
0 ; 5 P . .
“/ T We see that quantum fluctuations will completely suppress

the Josephson current s-o if g<1.

The case @ 1. In this case, the situation is quite different.
The RG procedure should be stopped wkgr- 1, i.e., when
the cutoff energyu reaches a valug,, which satisfies the
FIG. 1. Schematic dependence of the Josephson culremt  condition u;=E;(u,). As a resultE; is renormalized down

@ for a large loopL>L*: () sawtooth dependence, found in the tg 5 valueES", and should be determined from the condition
absence of fluctuationgh) quantum fluctuations suppress the slope ¢ self-consistency

of the sawtooth dependence and smear the cusps over a typical

width 6. geff\ g
ESf= EO( —J> (21)
IV. RENORMALIZATION OF THE JOSEPHSON ENERGY J A '
In this section we will analyze the renormalization of the which yields
Josephson energy by the charge fluctuations in the frame-
work of the renormalization groufRG) approach. This ap- g9\ e~
proach will enable us to treat both cadesL* andL>L* ES'"= Eg(x) (22

in a unifying manner. We will restrict our analysis first to
zero applied fluxd®=0. It is convenient to perform a Wick The valueES™ is reached folt g~ (L*/g) (A/EVO-D, we
rotation to imaginary timer and to consiger the Euclidean inys conclude that i>1, the result(13) at T=0 holds as
action § for the fluctuating field x(6,7)=x(6.7)  |ong asL=<L*; for larger values oL, the decrease of the
—x(2m—0,7), which can be easily obtained from the La- josephson coupling slows down, and eventusijsaturates
grangian L. Next one .|nteg.rates out thg fluctuations N 5t the vaIueEJeﬁ given by Eq.(22). Further suppression of the
x(6,7) away from the junction, and obtains the effective josephson energy is prevented by the fact that the modes
action for the fieldy(6=0), X (o) at frequencieso<ES"/% are pinned by the Josephson
g [ do _ o - cpupling, and hence cannot participate in the renormaliza-
=1 Z|)((w)|2|w|—f drE;jcosy(6=0,7). (17)  tion. . . o
When usingA as an upper energy cutoff in the derivation
This action can be studied by a standard perturbative R®f Egs.(19) — (22), we assumed conditiof#) to be satisfied.
method™® We introduce a running cutoff energy, and find  In fact, the above treatment remains valid, even if &g.is
a flow equatiof’® for the dimensionless Josephson couplingviolated, but the weaker conditioh*>C, holds; in this
energyE,;=E;/u: caseA should be replaced witk, in Egs.(19) — (22).
Result(16) for the flux-dependent Josephson current in a
— — loop with L>L* remains valid for values of flux away from
ar ~A-M9E,+O(Ey, dl=—du/u. (18  the cusp atb=; we just should replac&$ by ES". The
behavior ofJ(®) for &~ 7 is strongly affected by quantum

This equation describes how the Josephson couin@s  tunneling, which we will study in the next section.
renormalized when high energy degrees of freedom are inte-

grated out’ From Eq.(18) it follows that, upon decreasing
u, the energyg; flows to zero ifg<1, whereask; increases
if g>1.2% Note that in the latter case perturbation theory ~As we have seen in Sec. Ill B, in the classical limit the
breaks down as soon &~ 1. flux dependence of the persistent current has cusps at
In order to investigate these cases in more detail, we in®=(2n+1) for a large loopL>L*. At these values of
tegrate Eq(18) from the high energy cutoffi,= A at whicn &, a degeneracy occurs: Two states having a phase differ-
E,=EJ down to a valueu,=%v /1y, characterized by some ence at the junction given by go=2nw and
lengthl,. As a result, we find ©o=2(n+ 1), respectively, have the same energy. This de-
generacy may be lifted by the quantum fluctuations of phase
of vyl 1o at 1g#0. Tunneling between the two macroscopic states
Es(m)=E; TA] (19 characterized by different values @f, induces a shiftsE of
the ground-state energy of the system. As a result, the cusps
The case g 1. In this case, the resull9) remains valid in the functionJ(®) will be smeared. We will show below
for u—0, i.e., for the largest possible valueslgf Putting  that the tunnel splittingSE<#uv /L, i.e., it is smaller than
Io~L we thus recover our earlier resglt3) at T=0. Atany  the gap between the degenerate ground state and the first
finite lengthL>7%v, /A, the renormalized Josephson energyexcited state of the loop with the junction. Thus, at zero
E; is smaller than the plasmon level spacing of the looptemperature, we are dealing with an effective two-state sys-

S

V. QUANTUM TUNNELING OF PHASE
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tem, and the flux dependence df{é®=®— ) near ) ¢
® =7 will be given by® T =-T/2 T T=T—Ty/2
2eE; L* 0 X 0 X
J(6D)~—= =5 L2 Lo L2
h L =7 -
x4{1 7
BRI Y 2 (- ¢ ¢
V(L*/L)?8®2+[ SE/(7E;)] x T2 - .
(23 0 N 0 .
In particular, we see that the smearing is characterized by a _ﬂ Lo L2 _ﬂ L2

width 6®,~(L/L*)(SE/E;), see Fig. 1.

The tunnel splittingdE is proportional to the amplitude FIG. 2. Four configurations of the phase fieldwhich occur
t for tunneling through a barrier of height;. This tunneling  during the tunneling process; these configurations are discussed in
involves a varying phase fielg(x) along the loop, and the text.
therefore occurs in a multidimensional potential landscape.
The dominant contribution to the tunneling action grows
logarithmically with the system size. For largeL the am- <¢f|e*H77’l|¢i>=Nf Dpe ", (25)
plitude t can thus be obtained within the WKB approxima-

tion. However the preexponential factor has to be retained, @Sere N is a normalization constari the Hamiltonian, and
the leading term of the WKB approximation yields a power- ¢ _ 7_7%72d +£(7) the action. The matrix elemef25) can be

law, rather than an exponential, decaytafith L. The cal- used 1o determine the around-state en because it
culation of 6E is therefore conveniently performed with the “E Tk 9 eEgy.
decays ag™ “o'" for 7—oo.

use of instanton techniquswhich generalize the WKB The matrix elemen{25) will be evaluated in the so-called

method to higher dimensions and enable one to evaluate th(Jellute instanton gas approximatiofiWe first will construct

preexponential factor directly. 8 single instantor{Sl), i.e., a classical trajectory in the in-

We start our anaysis by introducing a new phase variabl ) . X
d)(X)E(p(X)—go(L—)}(/)-i-(Z);(/L—l)q) E[Jnote thgt H(L2) verted potentiaU between the configurationg; and ¢
that passes once, at a timg, through the minimum of

=0]. In imaginary time, the Lagrangian for this phase f|eld_U_ According to Refs. 14 and 15, the tunneling process

reads consists of a fast and a slow part. The actual tunneling at the
figuy (L2 [ 1 [ad\2 ()2 junction (i.e., the passage through the minimum~rat 7.)
L= p'f dx{—z(— +| —| [+E;cosp(0,7). happens within a short time,, and involves a part of the
4m Jo vpi\ 97 X phase field with a lengthy=v 7. The lengthL is deter-

(24 mined by minimizing the total action of the SI; as we will
see belowLy~L*, in agreement with Refs. 14 and 15. The

Here, we put® =1, i.e., we consider the degeneracy point. . "

The Josephson coupling energly appearing in Eq(24) is rest of the phase field makes the transitivn- ¢ sloyvly. .
: : Tperefore the Sl consists of three steps, see Fig(i)2:

assumed to be renormalized by the high energy degrees o . X ;

: : =T2<r<7.,—1/2: slow adjustment of the phase field
freedom of the loop. It is a complicated problem to actually way from the junction from the initial configuratiof to
perform such a renormalization procedure, due to the stron o ?/ntermediatje configuratios(x>Lg) =0 (ﬁ) o 1
anharmonicity of the potential [Eg. (2)] close to the de- < 7<71.+ 70/2: fast tunngelin a’?)the 'ur(;ct_ion’ invoIC?n Tg art
generacy point. For our subsequent treatment of the quantun} trT1C Toh' field 'tgh | JthL e +g /S
tunneling process the following qualitative description of the® € phase Tield wi engthlo, () 7 o

renormalization scheme will be sufficient. We imagine inte-.<7'<772: slow adjustment of the phase field away from the

grating out high energy degrees of freedom in the spirit 01;unction from the intermediate configuration to the final con-
Sec. IV, starting fromA down to a cutoffu, , which satisfies flgl‘i'rr?go;;btfri'x element25) for a SI can be written as a
the inequalityE§“< m<<A. These degrees of freedom are so . .

fast that they “follow” the tunneling process and merely product of two amplitudes, one corresponding to the slow

diabaticall lize the J h eﬁsﬁ i and one corresponding to the fast contribution.
adiabatically renorma 'sf? € o%ep son.en ﬁown 0 We describe theslow adjustmentoy decomposing the
the valueE;, where EJ"<E;<Ej;. As will be discussed

) ) A phase fieldp(x,7) into modes on the loop
below, the tunneling process itself consists of a slow part and

a fast part. The former involves the remaining low energy N

degrees of freedom with energies up By, whereas the _ ;

latter involves those with energies betwegnand u, . ¢x.7) ngl n(n)sin(2mnxL). (26)
We will be interested in tunneling between the initial

phase configuration¢;(x,—7/2)=—(2m/L)(x—L/2) at The upper cutofh,~L/Ly indicates that slow adjustment

time 7=-7/2 and the final configurationg:(x,772) involves the phase field away from the junctior>(L)

=(2@/L)(x—L/2) at time 7=772. Both are classical con- only. For the initial (final) state of each mode we have

figurations which minimize the enerdy, see Eq.(2). The  ¢n(7=—(+)7I2)=—(+)2/n; the dynamics of the modes is

tunneling amplitude is characterized by the matrix element determined by the Lagrangiaf24) without the cos term.
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This is a quadratic problem and the contribution to the ma- From the behavior of Eq(33) for 7—«~ we infer that
trix element(25) can be calculated exactly. We find there are two low-lying energy eigenstates with energies

Eg=Eq* SE, whereEg, is an irrelevant reference energy
Nmax Mswh, and
(Bile™ T di)gon= 11 N —7re e, (27
hUp| *SSI ﬁvp| L* g-1
. SE~—Fe %t ~——| — (34)
wheremg=2#gL/(mv,) is the “mass” of each mode and L L 1L
w,=2mnv, /L its frequency. The Sl action for slow adjust-
ment of the phase is easily calculated to be We see that indeedE<7v, /L for largeL, consistent with
the assumption leading to E(RJ).
SSh~=hgIn(L/Ly). (289

VI. DISCUSSION
The fast tunnelingof the phase field close to the junction

(x<L,) can be described by the following ansitz: The interplay between disorder and Coulomb correlations
O .

strongly influences the properties of low-dimensional super-
conductors. This is well known for thin film&:A transition
from superconductingS) to insulating () behavior occurs
Substituting this into Eq(24), we find the Lagrangian for UPON decreasmg the'thIC_:kneSS of. the film. Only reg:ently,
bo(7): deve_lopm_ents_ in fabrlcatlon_techn[ques made_ experimental

studies orin situ grown quasi-1D wire¥32 possible. These

indicate that a similar transition might occur in a supercon-
+Ejcoq ¢o). (30) ducting wire upon decreasing its cross-sectional &eaor-
respondingly, one may expect that if the paramejeis
smaller than a certain threshold valgg, the wire should
behave as an insulator on length scales even shorter than the
loop circumferencé., and the theory presented above ceases
to be valid.

Recent attempts to extend the descriptionTgfsuppres-
sion in homogeneous thin filrffsto include quasi-1D homo-
geneous wires have met with considerable difficuffie®n
the other hand, in a 1D boson system disorder is known to
induce a localized-delocalized transition, which occurs for
Shse=EsLo/vp+ ahg, (1) strongly attractive interactions between the bos8ridore
. . . specifically, in terms of our model, the results of Ref. 34
wherea |§Ia constant of order unity. Minimizing the total S 14 correspond to a transition to insulating behavior at a
action S'=Sjo,+Sps With respect to Lo we find \que g.=3/2. This threshold in interaction strength is re-

Lo=%gu,/E;~L*. Following the standard treatment for y,ced in the case of two coupled chaffisand one may
tunneling in a 1D double-well potential outlined in Ref. 16 conjecture a reduction tg,=1 for a multimode wire, in

d(X, 7)=do(T)[1—XILg], —T<Po<m. (29

:hgvpl
" 4x¢

Lo (d¢o
3vg.(w +—¢o

This Lagrangian describes the “rigid” tunneling of a part of
the phase field with length in terms of the motion of a
particle with “mass”m;=7%gL,/(6mvy) and “coordinate”
bo in an inverted double-well potential
V(o) = —hgu 3/ (4mLo) — Ecosihy). The action corre-
sponding to a single passage through the minimunv ait
$o=0 can be estimated to He

one can easily estimate the fast Sl contribution to §), agreement with Ref. 25.
| An interesting model system which show&- transition
(Bile" T )5~ g pIT vl <o — %’[ is a 1D array of Josephson junctiofis’ The behavior of
b1 Pi)tast™ VY L* 2L* : such an array is determined by a competition of the Joseph-

(32 son couplingE; between the islandgvhich favors a phase-
coherent superconducting statth the electrostatic energy
E, (which localizes Cooper pairs on the superconducting is-
landg. If the array is superconductingEK/8E0)1’2>277, its
éow lying excitations are “phase waves” with a linear dis-
persion,w (k) ~ V8E;Eok. We therefore speculate that a 1D
under the assumption that SI's do not overlap, which is jus&/T@Y containing a Junct|on which is weakly coupled to its
tified as long a§[s'>h, i.e., for (L/L*)9>1. As a result we neighbors could be used to study the renormalization of the
find Jqsephson energy dlscusseq in this paper. An advantage of
this system is that the energi&s andE,, which depend on
Nmax properties of the array, are well known and controllable in a
(bele M| )~ \/_exp{ *T} H [ R /Mewnf] typical experiment® in particular the Josephson coupling
2L h E; can be chosen from a large range of values. This also
would enable one to systematically probe the regime close to
exp{ el J ,h] the S+ transition.
L* In conclusion, we considered a thin superconducting loop
which contains a Josephson junction. The “environment
—exp{ B ﬂe_sﬁ,h” (33 modes” of the loop, which consist of propagating plasmon
L* ' modes with a soundlike dispersion, were found to renormal-

The total matrix elemer(25) can now be calculated in the
dilute instanton approximatiotf.One sums over all configu-
rations of single instantons and anti-instantons that involv
transitions¢;— ¢; and ¢;— ¢;, respectively. This is done

X
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ize the Josephson energy of the junction. The strength of thihe shape of the oscillations approaches a sinusoidal form. At
renormalization is determined by the dimensionless zeroany finite length of the loop, the renormalized current ampli-
frequency impedance of the loop. In order to observe thisude is finite and shows a power-law dependence on the
renormalization we propose to phase bias the junction byunction conductance, with an exponent depending on the
threading the loop with a flux and measure the correspondingnpedance of the loop.

Josephson current. For a relatively short loop, the kinetic

energy of the supercurrent dominates over the Josephson en-
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