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Quantum fluctuations in the equilibrium state of a thin superconducting loop
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We study the oscillatory flux dependence of the supercurrent in a thin superconducting loop, closed by a
Josephson junction. Quantum fluctuations of the order parameter in the loop affect the shape and renormalize
the amplitude of the supercurrent oscillations. In a short loop, the amplitude of the sinusoidal flux dependence
is suppressed. In a large loop, the supercurrent shows a sawtooth dependence on flux in the classical limit.
Quantum fluctuations not only suppress the amplitude of the oscillations, but also smear the cusps of the
sawtooth dependence. The oscillations approach a sinusoidal form with increasing fluctuation strength. At any
finite length of the loop, the renormalized current amplitude is finite. This amplitude shows a power-law
dependence on the junction conductance, with an exponent depending on the low-frequency impedance of the
loop. @S0163-1829~97!05106-0#
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I. INTRODUCTION

Quantum effects in ultrasmall Josephson junctions h
been studied intensely now for more than a decade, b
experimentally1 and theoretically.2 The most important
manifestation of quantum fluctuations is the well-know
macroscopic quantum tunneling of the phase acros
current-biased junction.1 This phenomenon leads to the o
servation of events of quantum phase slip at a bias tha
relatively close to the critical current.

More generally, macroscopic quantum tunneling cause
finite voltage to appear at any finite current. The correspo
ing I -V characteristic may be nonlinear, and in the limit
zero temperature one findsV5AIg, with an exponentg
which depends on the impedance of the leads. This rela
may be derived in the framework of the Caldeira-Legg
model3 that treats quantum transitions between neighbor
minima of a tilted washboard potential in the presence o
dissipative ‘‘environment.’’ It has been shown in Refs. 4 a
5 that the coefficientA is proportional to the square of th
‘‘bare’’ ~i.e., unaffected by the environment! tunnel matrix
element for transitions between the two minima of the p
tential. The dual result for a voltage-biased junction sho
that the dc current in such a junction is proportional to
square of the Josephson energy of the junction, also unre
malized by the environment.6–8

Actually, these two complementary results follow fro
very similar treatments of two closely related models,
Caldeira-Leggett model,3 and the electromagnetic environ
ment model:9,10 The effective boundary conditions for th
quantum fluctuations of the ‘‘environment modes’’ in the
treatments do not depend on the Josephson energy o
junction itself. This approach~adequate for most existin
experiments! is absolutely legitimate in the case of wea
fluctuations of the phase of the order parameter across
junction. A more cautious analysis is needed, though, if th
fluctuations are strong. Indeed, quantum phase fluctuation
550163-1829/97/55~10!/6551~8!/$10.00
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a one-dimensional~1D! superconductor are known to d
verge logarithmically with length. If these fluctuations wou
result in a diverging random phase across the junction,
Josephson energy of the system would average to zero,
neither of the quoted results would be true.

We will show that a finite renormalized Josephson ene
can arise because the junction itself affects the fluctuation
the environment.11 Simultaneously, the modes of the env
ronment renormalize the plasmon oscillations in the juncti
This mutual influence of different parts of the circuit mak
the separation of it on two entities—the junction with a fix
capacitance and the environment—to be somewhat a m
of convention.

We consider a thin superconducting loop which contain
Josephson junction. The ‘‘environment modes’’ of the lo
consist of propagating plasmon modes with a sound
dispersion.12 The most straightforward way to observe a po
sible renormalization of the Josephson energy, is to ph
bias the junction by threading a fluxF through the loop and
measure the loop magnetization, which is proportional to
Josephson currentJ5J(F). The renormalization leads to
values of the critical currentJc which are smaller than one
would expect from the mean-field result,Jc

05pDG/(2e),
whereG is the conductance of the junction, andD is the
superconducting gap in the loop. For a large loop, it a
changes the flux dependenceJ(F).

The paper is organized as follows. The model for the lo
with the junction is presented in Sec. II, followed by a qua
tative discussion of the dependence ofJ on F in Sec. III.
The problem of the renormalization of the Josephson c
pling is treated in Sec. IV where we make use of the sim
larity to the problem of quantum Brownian motion in a p
riodic potential.13 The effect of the macroscopic quantu
tunneling on the phase dependence of the Josephson cu
for a relatively large loop is discussed in Sec. V. We emp
the analogy with the problem of pinning of a 1D char
density wave,14 or Wigner crystal,15 and use an instanton
6551 © 1997 The American Physical Society
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approach16 to calculateJ(F). Concluding remarks can b
found in Sec. VI.

II. THE MODEL

We consider a superconducting wire of lengthL and
small cross-sectional areaS5a3a, which is embedded in a
medium with dielectric constant«. The wire is closed by a
Josephson junction to form a loop. The bare Josephson
ergy of the junction isEJ

0[pD\G/(4e2), and its charging
energy isEc54e2/C. Perpendicular to the loop, a magne
field H is applied, such that a fluxHL2/(4p) threads the
loop. We introduce the corresponding pha
F5HL2/(2F0), where F0 is the superconducting flux
quantum.

The low energy excitation spectrum of this system can
described in terms of the phase of the order param
w(x) by the LagrangianL5K2U, where

K5E
0

L

dx
\2

2ec
@ẇ~x!#21

\2@ẇ~L !2ẇ~0!#2

2Ec
~1!

and

U5E
0

L

dx
\2nsS

8m S ]w~x!

]x
2

F

L D 22EJ
0cos@w~L !2w~0!#.

~2!

Here, 1/ec5@8e2ln(R/a)/«#21 is the characteristic invers
charging energy per unit length of the loop (R is the distance
to a metallic screen17!, ns is the density of the superconduc
ing condensate, andm is the electron mass.

The first term on the right-hand side of Eq.~1! together
with the first term on the right-hand side of Eq.~2! describe
the propagating plasma mode12 along the loop.18 They cor-
respond to the electrostatic energy stored in the plasm
and to the energy associated with the supercurrent in
wire, respectively. In the latter energy, we included only t
kinetic inductance, assuming the wire is thin and electro
namic effects are weak. The plasma mode is characterize
a linear dispersion relationv(k)5vplk between frequency
v(k) and wave vectork, where the plasma velocity is give
by

vpl5AecnsS

4m
5c

a

2lL
A2ln~R/a!

p«
. ~3!

Herec is the speed of light andlL5Amc2/(4pnse
2) is the

London penetration depth of the wire. At temperaturesT
much smaller than the superconducting gapD, the plasma
mode involves oscillations of the supercurrent only, a
damping due to thermally excited quasiparticles is ne
gible. Retardation effects were neglected in the derivation
Eqs. ~1!–~3!, i.e., we assume thatvpl!c; hence we require
a!lL .

The remaining terms in Eqs.~1! and ~2! refer to the Jo-
sephson junction. For simplicity, we will completely negle
the junction capacitance,C50, throughout this paper. Thi
approximation corresponds to neglecting the last term
comparison with the first one in Eq.~1! for all the relevant
scales of the phase variation. The shortest scale in the
dependence ofw is \/D, and correspondingly the smalle
n-
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e
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d
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f
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e

part of the ring involved in the phase fluctuation is\vpl /D.
Therefore, we may setC to zero if

Ec

D
@
mvpl
\nsS

. ~4!

An important length scale in our model is determined
the lengthL* at which the energy of supercurrents in th
loop and the Josephson energy of the junction are of
same order. It is given by

L*[
\2nsS

4mEJ
0 5

\gvpl
pEJ

0 , ~5!

whereg is defined through

1

g
5
4

p

mvpl
\nsS

58
e2

\c

lL

a
A2ln~R/a!

p«
. ~6!

Heree2/\c.1/137 is the fine structure constant. Physical
1/g is the dimensionless zero-frequency impedance of
superconducting wire,19–22

Z~v50!5
1

g

2p\

~2e!2
.

In the absence of fluctuations, the phase varies line
with the distance along the loop; therefore, it is convenien
introduce a new variable,x(x), by the relation

w~x!5w0

x

L
1x~x!, ~7!

wherew0 is determined such that the energyU has its mini-
mum at x50. This condition can be written in a simpl
form:

sinw01
L*

L
w05

L*

L
F. ~8!

For later use, we rewrite expression~2! for U in terms of
x as follows:

U5EJ
0F2cos@x~2p!2x~0!1w0#2@x~2p!2x~0!#sinw0

1p
L*

L E
0

2p

duS ]x

]u D 21 L

2L*
sin2w0G . ~9!

Here a new~‘‘angular’’ ! coordinateu52px/L has been in-
troduced.

The dc Josephson effect at zero temperature is descr
fully by the F dependence of the ground-state energy,Egr ,
of the system under consideration. Because only the t
U of the energy depends explicitly onF, the persistent cur-
rent J(F)[(2e/\)]Egr /]F can be expressed in terms o
the averagêU& over the ground-state wave function:

J~F!5
2e

\ S 11
L

L*
cosw0D 21K ]U

]w0
L . ~10!
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III. QUALITATIVE ANALYSIS

The behavior ofJ as a functionF is very different in the
two limiting casesL!L* andL@L* , which we will discuss
qualitatively below.

A. The caseL!L *

For a relatively short loop,L!L* , the kinetic energy of
the supercurrent dominates over the Josephson energy
the phase differencew0 across the junction is completel
determined by the flux threading the loop,w0.F, as can be
seen from Eq.~8!. Classically, i.e., in the absence of pha
fluctuations (x50), the dependence of the persistent curr
onF is given byJ(F)5Jc

0sinF, with Jc
052eEJ

0/\. We will
see below that this classical result holds in the lim
1/g→0.

In the quantum casexÞ0, we can neglect the effect o
the Josephson junction on phase fluctuations when calc
ing the average in Eq.~10! for L!L* . In other words, for a
short loop only the term with the integral in Eq.~9!, which
corresponds to the kinetic energy of the supercurrent al
the loop, is important. Substituting Eq.~9! into Eq.~10!, and
neglecting termsO(L/L* ), we find

J~F!5Jc
0^cos@x~2p!2x~0!#&sinF. ~11!

The evaluation of the average^cos@x(2p)2x(0)#& does not
differ in fact from the well-known calculation of the Debye
Waller factor.23 We quantize the fluctuating fieldx(u) in the
standard way as follows:

x~u!5x01
1

Ag (
n51

`
1

An
cosS nu

2 D @an
†1an#, ~12!

where operatorsan satisfy canonical commutation relation
Using Eq. ~12!, it is straightforward to evaluate
^cos@x(2p)2x(0)#& where the average is taken with respe
to the quadratic Hamiltonian

H5 (
n51

`
\vplnp

L Fan†an1 1

2G .
At low temperatures andL@\vpl /D, we finally obtain
J(F)5JcsinF, with a renormalized critical current

Jc5Jc
0S \vpl
LD D 1/gF pLkBT/\vpl

sinh~pLkBT/\vpl!
G1/g. ~13!

The energyD in Eq. ~13! appears as a high energy cutoff f
the plasmon waves; the result (13) holds for temperatu
kBT!D. The classical resultJc→Jc

0 is recovered in the limit
1/g→0.

At this point we would like to note that the Lagrangia
defined by Eqs.~1! and ~2! has been derived in the limit o
small phase fluctuations,^(¹x)2&!1/j2(0). This poses an
upper bound on the allowed values of 1/g,

1/g!
e2

\vF
~kFa!2

ln~R/a!

e
. ~14!

The right-hand side of this inequality is proportional to t
number (kFa)

2 of quantum channels in the wire, and typ
nd

t

t

at-

g

t

s

cally is large. We will be interested in superconducting wir
characterized byg;1. For such wires, Eq.~14! is satisfied,
and the local quantum fluctuations of the current due to
propagating plasma mode12 are smaller than the critical cur
rent. We therefore neglect phase slip events24,25 in the wire.

Let us estimate the exponent 1/g for an Al wire. If the
wire is very dirty, with a mean free pathl;1 nm, we esti-
mate the zero-temperature coherence length to bej(0);40
nm and the London penetration depth to belL(0);500 nm.
Present-day technology enables one to fabricate wires w
cross-sectional areaS5a2;(50 nm)2. Such wires would be
characterized by an exponent 1/g;1.2. For cleaner wires
with l;a, the exponent can be expressed
1/g5@16/a(nm)#3/2. We conclude that typical values of th
exponent should be in the range 1/g&1.

Quantum fluctuations suppress the maximum Joseph
current below its mean-field valueJc

0 . This suppression de
pends on the loop lengthL; according to Eq.~13! Jc→0
whenL→`. As we will discuss below, this is an artefact o
the lowest order of perturbation theory, where the effect
the junction on the fluctuations in the attached wire is dis
garded completely.

B. The caseL@L *

As we have seen above, ifL!L* , the solutionw0(F) of
Eq. ~8! that provides the absolute minimum of energy var
continuously withF. For a large loop withL@L* , the so-
lution w0(F) has discontinuities:

w0.
L*

L
F if 0<F,p,

w0.2p1
L*

L
~F22p! if p<F,2p. ~15!

Because the Josephson energy dominates over the ki
energy of the supercurrents, the phasew0 remains ‘‘pinned’’
to the minima of the cosine potential. Correspondingly,
the absence of fluctuations the equilibrium persistent cur
J(F) has cusps,

J~F!.Jc
0L*

L
F if 0<F,p,

J~F!.Jc
0L*

L
~F22p! if p<F,2p. ~16!

We expect quantum fluctuations~i! to renormalize the bare
Josephson energy and thus to suppress the slope of the
tooth dependence;~ii ! to smear the cusps atF5(2n11)p,
as quantum tunneling will remove the degeneracy betw
pairs of states having the same values of energy but diffe
values ofw0. This is shown schematically in Fig. 1.

However, due to the fact that the Josephson energy is
a weak perturbation ifL.L* , we have to take its effect on
the quantum fluctuations into account. This is very similar
the problem of pinning of a 1D crystal.15 The decrease in
^cos@x(2p)2x(0)#& with a growing length of the loopL
should saturate whenL exceeds the characteristic leng
L* . The saturation occurs because the Josephson cou
pins the low-frequency modes, thus preventing the logar
mic divergence of the phase fluctuations at the junction.
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IV. RENORMALIZATION OF THE JOSEPHSON ENERGY

In this section we will analyze the renormalization of t
Josephson energy by the charge fluctuations in the fra
work of the renormalization group~RG! approach. This ap-
proach will enable us to treat both casesL,L* andL.L*
in a unifying manner. We will restrict our analysis first
zero applied flux,F50. It is convenient to perform a Wick
rotation to imaginary timet and to consider the Euclidea
action S for the fluctuating field x̃(u,t)[x(u,t)
2x(2p2u,t), which can be easily obtained from the L
grangian L. Next one integrates out the fluctuations
x̃(u,t) away from the junction, and obtains the effecti
action for the fieldx̃(u50),

S5
\g

4pE dv

2p
ux̃~v!u2uvu2E dtEJ

0cosx̃~u50,t!. ~17!

This action can be studied by a standard perturbative
method.13 We introduce a running cutoff energym, and find
a flow equation26 for the dimensionless Josephson coupli
energyĒJ[EJ /m:

dĒJ
dl

5~121/g!ĒJ1O~ĒJ
3!, dl52dm/m. ~18!

This equation describes how the Josephson couplingEJ is
renormalized when high energy degrees of freedom are i
grated out.27 From Eq.~18! it follows that, upon decreasing
m, the energyĒJ flows to zero ifg,1, whereasĒJ increases
if g.1.28 Note that in the latter case perturbation theo
breaks down as soon asĒJ;1.

In order to investigate these cases in more detail, we
tegrate Eq.~18! from the high energy cutoffmh5D at which
EJ5EJ

0 down to a valuem l5\vpl / l 0, characterized by som
length l 0. As a result, we find

EJ~m l !5EJ
0S \vpl
l 0D

D 1/g. ~19!

The case g,1. In this case, the result~19! remains valid
for m l→0, i.e., for the largest possible values ofl 0. Putting
l 0;L we thus recover our earlier result~13! atT50. At any
finite lengthL.\vpl /D, the renormalized Josephson ener
EJ is smaller than the plasmon level spacing of the lo

FIG. 1. Schematic dependence of the Josephson currentJ on
F for a large loop,L@L* : ~a! sawtooth dependence, found in th
absence of fluctuations;~b! quantum fluctuations suppress the slo
of the sawtooth dependence and smear the cusps over a ty
width dFs .
e-

G

e-

-

,

\vpl /L. Therefore the perturbative analysis of Sec. III
applies, and we find for the flux-dependent Josephson cur

J~F!5
2eEJ

0

\ S \vpl
LD D 1/gsinF. ~20!

We see that quantum fluctuations will completely suppr
the Josephson current asL→` if g,1.

The case g.1. In this case, the situation is quite differen
The RG procedure should be stopped whenĒJ;1, i.e., when
the cutoff energym reaches a valuem l which satisfies the
conditionm l5EJ(m l). As a resultEJ is renormalized down
to a valueEJ

eff , and should be determined from the conditio
of self-consistency,

EJ
eff5EJ

0SEJ
eff

D D 1/g, ~21!

which yields

EJ
eff5EJ

0SEJ
0

D D 1/~g21!

. ~22!

The valueEJ
eff is reached forl 0;(L* /g)(D/EJ

0)1/(g21). We
thus conclude that ifg.1, the result~13! at T50 holds as
long asL&L* ; for larger values ofL, the decrease of the
Josephson coupling slows down, and eventuallyEJ saturates
at the valueEJ

eff given by Eq.~22!. Further suppression of th
Josephson energy is prevented by the fact that the mo
x̃(v) at frequenciesv,EJ

eff/\ are pinned by the Josephso
coupling, and hence cannot participate in the renormal
tion.

When usingD as an upper energy cutoff in the derivatio
of Eqs.~19! – ~22!, we assumed condition~4! to be satisfied.
In fact, the above treatment remains valid, even if Eq.~4! is
violated, but the weaker conditionL*@C, holds; in this
case,D should be replaced withEc in Eqs.~19! – ~22!.

Result~16! for the flux-dependent Josephson current in
loop with L.L* remains valid for values of flux away from
the cusp atF5p; we just should replaceEJ

0 by EJ
eff . The

behavior ofJ(F) for F;p is strongly affected by quantum
tunneling, which we will study in the next section.

V. QUANTUM TUNNELING OF PHASE

As we have seen in Sec. III B, in the classical limit th
flux dependence of the persistent current has cusps
F5(2n11)p for a large loop,L@L* . At these values of
F, a degeneracy occurs: Two states having a phase di
ence at the junction given by w052np and
w052(n11)p, respectively, have the same energy. This d
generacy may be lifted by the quantum fluctuations of ph
at 1/gÞ0. Tunneling between the two macroscopic sta
characterized by different values ofw0 induces a shiftdE of
the ground-state energy of the system. As a result, the c
in the functionJ(F) will be smeared. We will show below
that the tunnel splittingdE!\vpl /L, i.e., it is smaller than
the gap between the degenerate ground state and the
excited state of the loop with the junction. Thus, at ze
temperature, we are dealing with an effective two-state s

cal
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tem, and the flux dependence ofJ(dF[F2p) near
F5p will be given by29

J~dF!'
2eEJ

\

L*

L
dF

3H 12
p

A~L* /L !2dF21@dE/~pEJ!#
2 J .

~23!

In particular, we see that the smearing is characterized b
width dFs;(L/L* )(dE/EJ), see Fig. 1.

The tunnel splittingdE is proportional to the amplitude
t for tunneling through a barrier of heightEJ . This tunneling
involves a varying phase fieldw(x) along the loop, and
therefore occurs in a multidimensional potential landsca
The dominant contribution to the tunneling action gro
logarithmically with the system sizeL. For largeL the am-
plitude t can thus be obtained within the WKB approxim
tion. However the preexponential factor has to be retained
the leading term of the WKB approximation yields a powe
law, rather than an exponential, decay oft with L. The cal-
culation ofdE is therefore conveniently performed with th
use of instanton techniques16 which generalize the WKB
method to higher dimensions and enable one to evaluate
preexponential factor directly.

We start our anaysis by introducing a new phase varia
f(x)[w(x)2w(L2x)1(2x/L21)F @note that f(L/2)
50#. In imaginary time, the Lagrangian for this phase fie
reads

L5
\gvpl
4p E

0

L/2

dxF 1vpl2 S ]f

]t D 21S ]f

]x D 2G1EJcosf~0,t!.

~24!

Here, we putF5p, i.e., we consider the degeneracy poi
The Josephson coupling energyEJ appearing in Eq.~24! is
assumed to be renormalized by the high energy degree
freedom of the loop. It is a complicated problem to actua
perform such a renormalization procedure, due to the str
anharmonicity of the potentialU @Eq. ~2!# close to the de-
generacy point. For our subsequent treatment of the quan
tunneling process the following qualitative description of t
renormalization scheme will be sufficient. We imagine in
grating out high energy degrees of freedom in the spirit
Sec. IV, starting fromD down to a cutoffm l , which satisfies
the inequalityEJ

eff!m l!D. These degrees of freedom are
fast that they ‘‘follow’’ the tunneling process and mere
adiabatically renormalize the Josephson energyEJ

0 down to
the valueEJ , whereEJ

eff,EJ,EJ
0 . As will be discussed

below, the tunneling process itself consists of a slow part
a fast part. The former involves the remaining low ener
degrees of freedom with energies up toEJ , whereas the
latter involves those with energies betweenEJ andm l .

We will be interested in tunneling between the initi
phase configurationf i(x,2T/2)52(2p/L)(x2L/2) at
time t52T/2 and the final configurationf f(x,T/2)
5(2p/L)(x2L/2) at time t5T/2. Both are classical con
figurations which minimize the energyU, see Eq.~2!. The
tunneling amplitude is characterized by the matrix eleme
a

e.

as
-

he

le

.

of

g

m

-
f

d
y

^f f ue2HT/\uf i&5NE Dfe2S/\. ~25!

Here,N is a normalization constant,H the Hamiltonian, and
S5*2T/2

T/2 dtL(t) the action. The matrix element~25! can be
used to determine the ground-state energyEgr , because it
decays ase2EgrT/\ for T→`.

The matrix element~25! will be evaluated in the so-called
dilute instanton gas approximation.16 We first will construct
a single instanton~SI!, i.e., a classical trajectory in the in
verted potential2U between the configurationsf i andf f
that passes once, at a timetc , through the minimum of
2U. According to Refs. 14 and 15, the tunneling proce
consists of a fast and a slow part. The actual tunneling at
junction ~i.e., the passage through the minimum att5tc)
happens within a short timet0, and involves a part of the
phase field with a lengthL05vplt0. The lengthL0 is deter-
mined by minimizing the total action of the SI; as we w
see belowL0;L* , in agreement with Refs. 14 and 15. Th
rest of the phase field makes the transitionf i→f f slowly.
Therefore the SI consists of three steps, see Fig. 2:~i!
2T/2,t,tc2t0/2: slow adjustment of the phase fie
away from the junction from the initial configurationf i to
the intermediate configurationf(x.L0)50; ~ii ! tc2t0/2
,t,tc1t0/2: fast tunneling at the junction involving a pa
of the phase field with lengthL0; ~iii ! tc1t0/2
,t,T/2: slow adjustment of the phase field away from t
junction from the intermediate configuration to the final co
figurationf f .

The matrix element~25! for a SI can be written as a
product of two amplitudes, one corresponding to the sl
and one corresponding to the fast contribution.

We describe theslow adjustmentby decomposing the
phase fieldf(x,t) into modes on the loop

f~x,t!5 (
n51

nmax

fn~t!sin~2pnx/L !. ~26!

The upper cutoffnmax;L/L0 indicates that slow adjustmen
involves the phase field away from the junction (x.L0)
only. For the initial ~final! state of each mode we hav
fn(t52(1)T/2)52(1)2/n; the dynamics of the modes i
determined by the Lagrangian~24! without the cos term.

FIG. 2. Four configurations of the phase fieldf which occur
during the tunneling process; these configurations are discusse
the text.
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This is a quadratic problem and the contribution to the m
trix element~25! can be calculated exactly. We find

^f f ue2HT/\uf i&slow
SI 5 )

n51

nmaxAmsvn

p\
e2vnTe2g/n, ~27!

wherems52\gL/(pvpl) is the ‘‘mass’’ of each mode and
vn52pnvpl /L its frequency. The SI action for slow adjus
ment of the phase is easily calculated to be

Sslow
SI .\gln~L/L0!. ~28!

The fast tunnelingof the phase field close to the junctio
(x,L0) can be described by the following ansatz:14

f~x,t!5f0~t!@12x/L0#, 2p,f0,p. ~29!

Substituting this into Eq.~24!, we find the Lagrangian for
f0(t):

L05
\gvpl
4p F L03vpl

2 S df0

dt D 21 1

L0
f0
2G1EJcos~f0!. ~30!

This Lagrangian describes the ‘‘rigid’’ tunneling of a part
the phase field with lengthL0 in terms of the motion of a
particle with ‘‘mass’’mf5\gL0 /(6pvpl) and ‘‘coordinate’’
f0 in an inverted double-well potentia
V(f0)52\gvplf0

2/(4pL0)2EJcos(f0). The action corre-
sponding to a single passage through the minimum ofV at
f050 can be estimated to be14

Sfast
SI .EJL0 /vpl1a\g, ~31!

wherea is a constant of order unity. Minimizing the total S
action St

SI5Sslow
SI 1Sfast

SI with respect to L0 we find
L05\gvpl /EJ;L* . Following the standard treatment fo
tunneling in a 1D double-well potential outlined in Ref. 1
one can easily estimate the fast SI contribution to Eq.~25!,

^f f ue2HT/\uf i& fast
SI ;Ag

vplT
L*

expH 2
vplT
2L* J expH 2

Sfast
SI

\ J .
~32!

The total matrix element~25! can now be calculated in th
dilute instanton approximation.16 One sums over all configu
rations of single instantons and anti-instantons that invo
transitionsf i→f f andf f→f i , respectively. This is done
under the assumption that SI’s do not overlap, which is j
tified as long asSt

SI@\, i.e., for (L/L* )g@1. As a result we
find

^f f ue2HT/\uf i&;AgexpH 2
vplT
2L* J )

n51

nmax HAmsvn

p\
e2vnTJ

3FexpH vplTL* e2St
SI/\J

2expH 2
vplT
L*

e2St
SI/\J G . ~33!
-

e

-

From the behavior of Eq.~33! for T→` we infer that
there are two low-lying energy eigenstates with energ
Egr

65Egr
0 6dE, whereEgr

0 is an irrelevant reference energ
and

dE;
\vpl
L*

e2St
SI
;

\vpl
L S L*L D g21

. ~34!

We see that indeeddE!\vpl /L for largeL, consistent with
the assumption leading to Eq.~23!.

VI. DISCUSSION

The interplay between disorder and Coulomb correlatio
strongly influences the properties of low-dimensional sup
conductors. This is well known for thin films:30 A transition
from superconducting (S) to insulating (I ) behavior occurs
upon decreasing the thickness of the film. Only recen
developments in fabrication techniques made experime
studies onin situ grown quasi-1D wires31,32 possible. These
indicate that a similar transition might occur in a superco
ducting wire upon decreasing its cross-sectional areaS. Cor-
respondingly, one may expect that if the parameterg is
smaller than a certain threshold valuegc , the wire should
behave as an insulator on length scales even shorter tha
loop circumferenceL, and the theory presented above cea
to be valid.

Recent attempts to extend the description ofTc suppres-
sion in homogeneous thin films30 to include quasi-1D homo-
geneous wires have met with considerable difficulties.33 On
the other hand, in a 1D boson system disorder is known
induce a localized-delocalized transition, which occurs
strongly attractive interactions between the bosons.34 More
specifically, in terms of our model, the results of Ref.
would correspond to a transition to insulating behavior a
value gc53/2. This threshold in interaction strength is r
duced in the case of two coupled chains,35 and one may
conjecture a reduction togc51 for a multimode wire, in
agreement with Ref. 25.

An interesting model system which shows aS-I transition
is a 1D array of Josephson junctions.36,37 The behavior of
such an array is determined by a competition of the Jose
son couplingEj between the islands~which favors a phase
coherent superconducting state! with the electrostatic energy
E0 ~which localizes Cooper pairs on the superconducting
lands!. If the array is superconducting, (Ej /8E0)

1/2.2p, its
low lying excitations are ‘‘phase waves’’ with a linear dis
persion,v(k);A8EjE0k. We therefore speculate that a 1
array containing a junction which is weakly coupled to
neighbors could be used to study the renormalization of
Josephson energy discussed in this paper. An advantag
this system is that the energiesEj andE0, which depend on
properties of the array, are well known and controllable in
typical experiment;38 in particular the Josephson couplin
Ej can be chosen from a large range of values. This a
would enable one to systematically probe the regime clos
theS-I transition.

In conclusion, we considered a thin superconducting lo
which contains a Josephson junction. The ‘‘environme
modes’’ of the loop, which consist of propagating plasm
modes with a soundlike dispersion, were found to renorm
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ize the Josephson energy of the junction. The strength of
renormalization is determined by the dimensionless ze
frequency impedance of the loop. In order to observe
renormalization we propose to phase bias the junction
threading the loop with a flux and measure the correspond
Josephson current. For a relatively short loop, the kin
energy of the supercurrent dominates over the Josephso
ergy and the phase difference across the junction is c
pletely determined by the flux threading the loop. The sup
current depends on flux in a sinusoidal fashion. Quant
fluctuations suppress the amplitude of this dependence
the opposite limit of a large loop, the phase difference
mains more or less ‘‘pinned’’ to the minima of the Josephs
energy. Correspondingly the persistent current shows a s
tooth dependence on flux in the classical limit. Quant
fluctuations not only suppress the amplitude of the osci
tions, but also affect their shape. While the impedance of
loop increases, the cusps of the sawtooth dependence
smeared; as the impedance tends to the quantum unit v
rti
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the shape of the oscillations approaches a sinusoidal form
any finite length of the loop, the renormalized current amp
tude is finite and shows a power-law dependence on
junction conductance, with an exponent depending on
impedance of the loop.
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