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Mode-locking transitions and vortex flows in current-driven Josephson-junction arrays
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The dynamical behavior of overdamped dc-driven Josephson-junction arrays is studied numerically in two
dimensions. Currents varying linearly along an edge are injected into the array and drawn out at the opposite
edge either uniformly or through a busbar. The system is found to undergo a series of dynamical transitions as
the gradient of the current drive is increased. We show that, for ladder arrays, these transitions mark the loss
of mode locking across specific bonds. The transitions can, alternatively, be associated with the onset of
well-defined vortex flows. Spatial localization of vortices in individual plaquettes of a ladder, driven in the
direction of its length, is seen to stablize quasiperiodicity of orderN.3 in a certain region of the underlying
parameter space. We also discuss the extension of each of these features to full-fledged rectangular arrays.
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I. INTRODUCTION

It has long been believed that the dynamics of comp
systems is, in large part, determined by that of their coll
tive excitations. For example, in hydrodynamics, vortic
and structures using vortices as building blocks, enter c
cially into descriptions of the system’s behavior in differe
dynamical regimes.1 Two-dimensional ~2D! Josephson-
junction arrays~JJA’s! provide somewhat simpler exper
mental systems in which this belief can be critically exa
ined and articulated. They are simpler because the ba
variables are, first, angular~i.e., confined to (2p,p#) and,
second, defined only on a 2D lattice. Several authors h
accordingly, studied current-driven JJA’s numerically, kee
ing track of vortices, which are the relevant collecti
excitations.2–7 Mehrotra and Shenoy2,3 have pictured the on
set of turbulence in nonuniformly driven JJA’s at zero te
perature in terms of the mixing of vortices at the curre
driven edge. Xia and Leath4,5 have studied current flow pas
linear defects and found that a periodic flow of vortices
the central defect corridor~CDC! marks the transition from
fixed-point to limit cycle behavior. Moreover, the nucleatio
and flow of vortices, for large input currents, in colum
adjoining the CDC produce quasiperiodic and chaotic beh
iors. This investigation was carried forward by Dattaet al.,8

who accessed and explored the multiple-vortex fixed-po
sectors of these arrays by extending the size of both a
and defect.

A second approach to the dynamics of JJA’s results if
view them as sets of globally coupled nonline
oscillators,9–17which tend to rotate in a mode-locked fashio
unless driven by highly unequal torques. The motion of th
systems is restricted toN tori and has been extensive
studied.18–20As a result, theN52 case has come to be we
understood~it gives rise to only two types of flows—periodi
and quasiperiodic!, and a number of facts have been disco
ered about theN>3 case.16,21–25 In particular, it has been
shown23,24 that for a system with a three-frequency qua
550163-1829/97/55~10!/6541~10!/$10.00
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periodic ~QP3) attractor, there exist arbitrarily smallC2

perturbations,26 which convert the attractor to one which
strange and structurally stable. ForN>4, these perturbations
can be chosen to beC`. The existence of these perturbatio
notwithstanding, the occurrence of chaos in these system
actually quite rare. Indeed, applying nonlinear perturbatio
to maps onN tori, Grebogi, Ott, and Yorke25 found that, for
small to moderate nonlinearity, the attractors encounte
ordered through frequency of occurrence, are QPN,
QPN21, . . . , QP1 equivalent to P~periodic!. The chaotic
attractor is seen very seldom forN53 but slightly more
often for N54. For larger nonlinearity, QPN becomes less
common and disappears altogether when the map beco
noninvertible. Finally, among different types of chaotic a
tractors, the most common are those whose limit set co
cides with theN torus itself.

A detailed connection between the two approaches
established, for the simplest case of an overdamped trian
lar network.18 The underlying parameter space was mapp
and each region interpreted in terms of vortices. This ana
sis was subsequently extended to anunderdamped triangular
network,27 as well.

In this paper, we synthesize the insights produced by
these investigations into a single coherent picture. We w
with uniform, defect-free, overdamped arrays subject to n
uniform dc drives, i.e., a current varying along they direc-
tion is injected in thex direction at thex50 edge of the
array ~see Fig. 1!. A current drive has nonzero] i x /]y and
hence carries a net vorticity. Since uniform drives applied
arrays with linear defects automatically become nonunifo
and maximally so at the CDC—the analog of the drive ed
the configuration we consider accords us a host ofgeneral
dynamical insights atminimal computational cost. A further
saving of computer time can be achieved by realizing t
certain features of larger arrays are faithfully captured
smaller ones. Some of the features studied in this paper
in fact, of precisely this type and we point this out wherev
relevant. As for the choice of the nonuniform drive, we fin
6541 © 1997 The American Physical Society
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6542 55SHANTILAL DAS, DESHDEEP SAHDEV, AND RAVI MEHROTRA
that, for the points we wish to make, a drive with a simp
linear profile is sufficient. Finally, we emphasize that, sin
chaotic oscillations are altogether absent for individual
driven overdamped junctions, the observedcontinuousfre-
quencies result exclusively from the interactions betwe
junctions, which are the primary foci of this investigation

The picture we develop can now be outlined. For lo
values of the input drive, the system displays fixed-po
vortex-free behavior. Time dependence first results from
flow of vortices, which enter through one of the nondriv
free boundaries, travel along a column and leave the arra
the opposite edge.~This process can equivalently be d
scribed as the nucleation and annihilation of vortices a
imageantivortices at the array boundaries!. Each frequency
seen in the Fourier transform of any voltage time serie
associated with one such vortex flow. As long as the injec
vorticity is small, the junctions along each column of t
array remain 1/1 mode locked. Locking of this type turns
associated bonds separating the columns, effectively
closed gates for vortices. All vortex flows thus occur c
umnwise at this point, the corresponding frequencies rem
spatially separated and, for an array ofN columns, the at-
tractor is QPN. With increasing vorticity of the input, som
of the junctions along the drive edge come mode unlock
and vortices begin to flow through the corresponding bo
in the direction of the external current. This leads to flo
which mix and generate an infinite range of incommensu
frequencies, and hence chaos. To the extent that junct
away from the drive edge are still mode locked at this sta
the flow and mixing of vortices can be spatially isolated.
further mode-locking transitions occur, the region of mixi
extends deeper into the array.

With the help of this picture, we have been able to p
the phase diagram of our system, with a reasonable degr
resolution. For some small arrays we have, in fact, seen
nold tongues merging and overlapping to produce chaos.
should mention that although parts of this picture were
ticipated in Ref. 3, the mode locking between junctions,
also its connection with vortex flows and with features of t
associated phase diagram were missed altogether.

FIG. 1. Geometrical representation of a JJA withNx5Ny54.
The dots denote the superconducting islands and the bonds d
Josephson junctions. A linearly varying dc current profile is appl
at the x50 edge. Thex5Lx edge is shorted by a busbar. Th
plaquettes are numbered as shown.
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The paper is organized as follows. We discuss the mo
system and the governing equations in Sec. II. Investigati
for ladder arrays are carried out in Sec. III. The cases
vertical ~Sec. III A! and horizontal ladders~Sec. III B! rela-
tive to the current applied in thex direction are studied sepa
rately. In Sec. IIIC, the possibility of higher-order quas
periodicity in ladder arrays is discussed. We extend som
the results for ladder arrays to general rectangular array
Sec. IIID. Section IV contains a summary and discussion
our results.

II. THE MODEL

The equation governing the dynamics of a single ov
damped resistively-shunted-Josephson junction~RSJ!, link-
ing superconducting sitesr ands, at zero temperature and i
zero magnetic field, is given by the RSJ model28,29 as

df rs

dt
1sinf rs5I rs , ~1!

wheref rs5f r2fs is the phase difference across the jun
tion, and I rs the total current carried by the bondrs. All
currents are scaled in terms of the single junction criti
current i c , and time is expressed in units of (\/2eRic), R
being the shunt resistance.

For an arbitrary array, this equation applies individua
to each bond. Thus, for anNx3Ny array of superconducting
sites, connected by overdamped Josephson junctions, d
by external currentsI ext, the corresponding equations can
written using total current conservation30 as

(̂
rs&

df rs

dt
1sin~f rs!5I r

ext ;r ~2!

where^rs& implies that the sum is over nearest neighbors
r . Note that f rs and hence Eq.~1! are invariant under
f r→f r1a, wherea is a constant. In solving Eq.~2! nu-
merically, it is important to eliminate this freedom. This ca
be done easily, for example, by setting the phase at an a
trarily chosen site to zero.

Equation~2! can alternatively be written in terms of th
discrete LaplacianG0

21, as

(
r

~G0
21!rsḟs52dr ~3!

where the divergence term at each site is given
dr5I r

ext2(^rs&sinfrs .
For an array of sizeNx3Ny[N, each integration time

step of Eq. ~3! has a complexityO(N2) ~since at every
upgradation of theN phase variables,f, the constant
N3N matrixG0 has to be multiplied by the divergence ve
tor @d#). However, using the special properties ofG0

21,
faster algorithms have been evolved wherein the above m
tiplication is carried out inO(N lnN) steps or faster.31,32Fast
algorithms have also been developed for the case of bus
and defects in the form of missing bonds.33 For small arrays
with only a few plaquettes, we use the directO(N2) algo-
rithm. Faster algorithms are resorted to only when study
larger arrays.
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55 6543MODE-LOCKING TRANSITIONS AND VORTEX FLOWS . . .
In this paper, we choose a transversely varying dc cur
drive I x(y)5 i2Dy/Ly , D5 i2 j , applied to thex50 edge
of the array. The current thus varies linearly, fromi at
y50 to j at y5Ly ~see Fig. 1!. This is a simple form of
nonuniformity. More complex nonuniform time-depende
current profiles exist in the neighborhood of defects~missing
bonds! contained in uniformly driven arrays.

The choice of the drive made, the Laplacian matrix
inverted numerically, once and for all, for a given array s
with a reference phase fixed to prevent the matrixG0

21, from
becoming singular. We keep the phases all along thex5Lx
edge fixed at zero. Physically, this corresponds to shor
out these sites with a busbar. All other phases, includ
those at the free boundaries,y50 and y5Ly , evolve ac-
cording to the Eq.~3!. The differential equations are inte
grated by a fourth order Adams-Moulton predictor-correc
routine. The integration time step chosen is 0.05 and
dynamics is studied for typically 105 integration steps pe
run ~after discarding, typically, the first 104 steps, which cor-
respond to transients!.

We note that,((f rs50 identically, for a summation car
ried out around any closed path, or, in particular aroun
plaquette. If we restrict all phase differences to lie in t
range (2p,p# say, this condition must however be gener
ized to read((f rs52pn (n521,0,1). This is used to iden
tify the existence of a vortex in a plaquette. The transvers
varying current drive under consideration, injects vortic
]I x(y)/]y52D into the array. This manifests itself as
non-neutral system of vortices. ForD.0, these are predomi
nantly positive.

III. THE DYNAMICS OF LADDER ARRAYS

As mentioned in the Introduction, the simplest netwo
namely one withNx52 and Ny52 has been intensively
studied in terms of both the basic phase variables and
vortices.18 The i -D phase diagram consists of a fixed-po
steady-state regime, and an infinity of Arnold tongues wh
merge at the steady-state boundary. The behavior in the
gions separating the tongues is quasiperiodic with two in
pendent frequencies. The quasiperiodicity is intermitten
the edges of the tongues.

In this section, we present results showing that many
teresting features of the above configuration carry ove
arrays of larger size. We do so by extending the sin
plaquette in thex andy directions separately before discus
ing full-fledged rectangular arrays.

A. 23Ny ladders

We begin with the simpleNy53 case~see Fig. 2!. We
arbitarily choose the reference phasef050 whence
f r05f r;r .

Since Eqs.~3! describing the evolution of the three phas
f1, f2, andf3 are periodic in each phase with period 2p,
the dynamics is confined to a three-dimensional toroi
phase space. Accordingly, three types of motion are poss
for this system: coherent~periodic, or quasiperiodic with
only two independent frequencies!, QP3 and chaotic. The
first is characterized by two or more of the average rate
winding of the three phases, bearing a rational ratio to e
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other ~voltage/frequency locking!, i.e., ^ḟ r&/^ḟs&5p/q
~wherer ,s51,2,3 andp, q are small integers!. The second is
characterized by all three winding rates bearing irratio
ratios to one another, with motion regular in behavior a
power spectra for time-dependent voltages discrete in
quency. The third, once again, has average rates of wind
in irrational ratios to one another, but this is now accomp
nied by an apparent randomness of motion, noisy~continous!
spectra, and a sensitivity to initial conditions~i.e., at least
one positive Lyapunov exponent!. In geometric terms, coher
ence corresponds to trajectories which form closed curve
the three torus or, when only two junctions are locke
closed curves in the 2D subspace of the pair of locked ju
tions. Triply periodic trajectories fill the entire three toru
and are associated with volume conservation in time. Fina
chaotic motion results in strange attractors, i.e., an attrac
set with fractal dimension and self-similar structure.

The behavior of the 233 system is represented schema
cally by the i2D(5 i2 j ) phase diagram shown in Fig. 2
The region marked SS corresponds to the time-indepen
fixed-point regime whereḟ r50;r . The rest of the phase
diagram is divided into various regions of frequency lockin
quasiperiodicity, and chaos. The mode-locked behavior
the system in these regions warrants a detailed descripti

In Fig. 3 we show the variation of the winding numb
wrs5^ḟ r&/^ḟs& with the gradient of the applied current pro
file, D, for i51.8. ForD50, Eqs.~3! can readily be used to
show thatf15f25f3 is a possible stable solution. We se
that the phase-locked state (wrs51) from Fig. 3 persists sta
bly over a fairly large interval inD. At a critical value,
D5D1v( i ), of the gradient, the locking between junction
2-0 and 3-0 breaks andv23 falls below unity. The junctions

FIG. 2. Schematic phase diagram~not to scale! for a 233 con-
figuration as depicted in the inset with the islands and plaque
numbered as shown. The region marked SS is the steady-sta
gion, while the region marked 1/1 represents voltage locking. T
other frequency locked zones are shaded regions in the figure~only
few of these are shown!. ForD1v( i ),D,D2v( i ), they are charac-
terized by two winding numbers (1/1,p2 /q2) whereas for
D.D2v , they are of the type (p1 /q1 , p2 /q2).
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6544 55SHANTILAL DAS, DESHDEEP SAHDEV, AND RAVI MEHROTRA
1-0 and 2-0 however continue to remain synchronous all
way out toD5D2v( i ) @barring a smallD interval, in which
mode locking occurs when bothv12 and v23 are rationals
P(0,1)#. The difference in the critical values,D1v and
D2v , decreases as the value ofi is increased and eventually
the phase locking between both pairs of junctions becom
unstable simultaneously. The values ofD1v and D2v , for
different i , define curves in the (i ,D)-parameter space
which start out from the steady-state boundary as distin
but eventually merge together for large values ofi ~see Fig.
2!. The system shows voltage locking in the enti
0,D,D1v( i ) domain,outsidethe steady-state region.

Between theD1v andD2v curves~see Fig. 2!, we see the
clear existence of various mode-locked tongues, all of wh
emanate from the steady-state curve boundary and termi
on theD2v curve. In between these tongues, the behavio
quasiperiodic with two independent frequencies~QP2),
much as for an overdamped triangle driven by independ
current sources.18 This similarity of behavior is no coinci-
dence. Indeed, with junctions 1-0 and 2-0 mode locked,
system behaves effectively like the overdamped triangle a
the phase diagram of the former has embedded within it
entire phase diagram of the latter. This further implies th
the quasiperiodicity with three frequencies~QP3) and chaos
feasible for this system all occur outside this region, as
deed they do.

The frequency locking forD.D2v( i ) is characterized by
two winding numbers (w12,w23)[(p1 /q1 , p2 /q2). These
correspond to the two pairs of junctions 1-0, 2-0 and 2
3-0, respectively.~In the region betweenD1v and D2v ,
p1 /q151 while p2 /q2 takes on different values, such tha
p15q15p2.!. At large values of the parametersi andD, the
nonlinearities of the system become insignificant and the
sulting equations can then be solved exactly. From Eqs.~3!,
the winding numbersw12 and w23 can be determined, to
zeroth order, to have values (i13 j )/(2i12 j ) and
(2i12 j )/(3i1 j ), respectively. The motion is largely QP3

in this asymptotic limit. This statement holds as we mo
inward from infinity in the parameter space, so long as t

FIG. 3. Variation of the winding numberwrs5^ḟ r&/^ḟs& with
the gradientD in a 233 array for i51.8. The steps mark the
periodic tongues with specific winding ratios shown against ea
step. Note that the axes do not start at zero. The locking ofw23 and
w12 breaks atD1v andD2v , respectively.
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nonlinear sine terms are not of the same order as the exter
applied currents. The mode-locked regions with values
winding number other thanw1251 are relatively rare, pre-
sumably, because the condition ofpairwisemode locking is
difficult to satisfy. @This immediately becomes clear if we
work out the asymptotic values of (w12,w23) for various
j / i demanding as we do so, thatp1 ,q1 ,p2 ,q2 be small inte-
gers#. The mode-locking regions, which are clearly manifes
in our numerical simulations, all have (w12,w23) values
which are ratios of small integers withq15p2 . In Fig. 4, we
display the clear existence of periodic regions correspondi
to ~2/3, 3/4! and~1/2, 2/3!. It is interesting to note that each
of these regions exists for two distinct domains of the param
eter D, i.e., they reappear for higher values ofD. Hence,
each of these tongues is forked.

We have, on occasion, observed period doubling at t
edges of these tongues, e.g., fori51.9 andD51.846. The
winding number remains unchanged as the bifurcation s
quence advances but the period doubling can be dedu
from the projection of the phase space trajectories on any
subspace of the three torus. The system switches from a
jectory which is 2p periodic to one which is 4p periodic,
and so on. After thekth bifurcation, the dc voltages across
the bondsr -0, i.e., ^ḟ r&

(k)→2k^ḟ r&
(0) (r51,2,3). We ob-

serve, within our numerical resolution, only a few low-orde
doublings ~typically three or four! before the system be-
comes chaotic. Similar phenomena are observed in the c
of an underdamped triangle driven by independent dc curre
sources.27

The dynamics of the system in terms of vortices can b
inferred from the behavior of the latter in each of th
plaquettesseparately. The region,D,D1v( i ), and outside
the fixed-point regime, corresponds to periodic nucleation
vortices at they50 edge~bond 3-0! followed by their mo-
tion in a direction perpendicular to the externally applie
current. This results in a well-defined 1/1 limit cycle with a
period which exactly matches that of vortex nucleation. I
the region betweenD1v( i ) andD2v( i ), the drive is able to
inject/extract vortices through the bond 2-3 but not throug
bond 1-2. The dynamics is now governed by the interactio

h

FIG. 4. Variation of the winding numberwrs as a function of the
gradient D, for i51.9, in a 233 array. The existence of the
~1/2, 2/3! and~2/3, 3/4! frequency-locked regions is clearly seen fo
two disjoint domains ofD.
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55 6545MODE-LOCKING TRANSITIONS AND VORTEX FLOWS . . .
of these vortex flows — one in the direction of current, th
other perpendicular to it — and the observed quasiperiod
ity with two independent frequencies is, in fact, an outcom
of the interaction of the two associated independent tim
scales. For mode locking@characterized by (w12,w23)
5(1, p2 /q2)# in this region, the number of vortices injected
by the drive through bond 2-3 in each repeating sequence
q2 vortices is preciselyq22p2.

18 Since there is no flow of
vortices across bond 1-2, all the vortices, that leave the s
ond plaquette through bond 2-0, have also to pass throu
bond 1-0. Hence,p15q15p2, as observed. ForD.D2v( i ),
the drive starts injecting additional vortices through bon
1-2. As a result, we have three independent frequencies~time
scales! existing in the system. This is also the minimum
number required for a system to display chaos. The interpl
among these three frequencies can thus produce any on
P, QP2, QP3 or chaos. For drive parameters inside
frequency-locked tongue, the drive injectsq22p2 vortices
through bond 2-3 andq12p1 vortices through bond 1-2 in
such a way that the locking is stable.

The existence of the critical parametersD1v and D2v
shows up additionally in the variation of the time-average
vortex occupancŷn2& of negative vortices inanyplaquette
as a function of the injected vorticity,D. The occupancies
^n2

1 & and ^n2
2 & show sharp jumps from zero, atD2v and

D1v , respectively. A similar study for positive vortices al
lows us to associate the corresponding discontinuities w
the edges of the mode-locked tongues.

Many of the qualitative features of this configuration
carry over to a longer column of Josephson junctions driv
by a linear current profile. As the length of the column i
increased, the region of voltage locking characterized by
gradient valueD1v , decreases. It is interesting to pinpoin
the pair of junctions where the phase locking first breaks a
vortex injection across the drive edge takes place. We sh
this in Fig. 5. More precisely, we plot the number of th
plaquette into which a vortex is first injected by the drive~or
equivalently that of they bond connecting the pair of junc-
tions across which phase locking first breaks! as a function of
Ny . The point of injection is located at the second plaquet

FIG. 5. Plaquette number through which vortices first get in
jected by the drive as a function of the length of the column. Th
injection channel is stable at a given plaquette over a range
Ny , as is evident from the steps.
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from the top~the region with low current bias! to start with,
but shifts downwards asNy is increased. The figure show
well-defined steps in the plaquette number, i.e., the injec
always takes place through a given plaquette for a rang
values inNy . The breakdown gradually shifts to a plaque
away from the edges only whenNy exceeds a critical value
After one of the junctions has become modeunlocked, the
next to follow suit are the adjacent ones, on the drive ed
The breakdown continues alternately until phase locking
all junctions in the column is broken. This sequence
breakdowns is characterized by$D rc%, r51,2, . . . ,Ny21.

ForNy.3, the system shows locking with winding num
bers even less than 1/2, in the region betweenD1v and
D2v . For example, consider the case,Ny57, for which the
voltage locking in the column breaks first at the bond 3
~see Fig. 5!. In Fig. 6, we have accordingly shown the vari
tion of w34 with D. We clearly see that the winding numbe
w34 has plateaus at various rationals betweenzeroand unity.
The winding number 0 corresponds to the case where ju
tion 3-0 is executing harmonic motion while junction 4-0
running.

B. Nx32 ladders

We now investigate the behavior of JJA’s, which ha
Ny52 but are extended along thex direction, i.e., in the
direction of the injected current. To start with, we ta
Nx53 and once again we setf050 ~see inset of Fig. 7!.

The schematic phase diagram for this configuration
shown in Fig. 7. This contains prominent regions of stea
state~SS! and QP2 behavior. In addition, we see the exis
ence of two well-defined boundaries atD1h( i ) andD2h( i ),
whose significance is best understood from the^wrs& versus
D plot, given in Fig. 8, fori51.8. In interpreting this dia-
gram, it is useful to recall that forD50, two rows of junc-
tions decouple, by symmetry, and the whole array beha
like a single Josephson junction. From Eqs.~3!, this clearly
corresponds tof15f3, f25f4, and f152f2, i.e., to
w135w2451 andw125w3451/2. In other words, the junc
tions in each column are perfectly synchronous~winding

-
s
of

FIG. 6. Variation of the winding numberwrs as a function of the
gradientD, for i51.8 andNy57. The existence of the mode-locke
regions is evident as forNy53 but over much smaller ranges i
D.
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6546 55SHANTILAL DAS, DESHDEEP SAHDEV, AND RAVI MEHROTRA
number unity!, while those across neighboring columns a
mode locked with rational winding numbers. For finiteD,
the phase locking along the columns, characteristic of
D50 line, continues and is stable. However, the mode lo
ing between junctions in neighboring columns breaks a
their relative motion is now characterized by an irration
winding number. Hence, the ‘‘completely inphase’’ solutio
~all winding numbers rational! observed earlier in Sec. III A
does not exist in the strict sense here, forD.0.

Instead, the motion is largely quasiperiodic with two i
dependent frequenciesf 1 and f 2. Each of these frequencie
increases in magnitude withi but their differencef 12 f 2
decreases. From Fig. 8, we note that the locking between
voltages at sites 1 and 3 breaks atD1h52 and the winding
numberw13 thereafter starts decreasing continuously. T
voltages at sites 2 and 4, however, remain locked unt
much higher valueD2h(56.4) of D. As D is increased fur-
ther, both winding number ratios,w13 and w24, decrease.

FIG. 7. Schematic phase diagram~not to scale! for a 332 con-
figuration shown in the inset (f050, by choice!. The region
marked SS is the steady-state region. The region forD,D1h( i )
corresponds to quasiperiodic behavior with two frequencies.
boundariesD1h( i ) andD2h( i ) represent the loss of phase locking
the first and second columns, respectively.

FIG. 8. Variation of the winding numberwrs as a function of the
gradientD, for i58 in a 332 array.D1h( i ) andD2h( i ) are the
critical values at which the phase lockings in the columns brea
e
-
d
l

he

e
a

The behavior of the system now also shows QP3/chaos. The
frequency-locked zones, which exist in large measure for
23Ny ladders, are very rare for the 332 case. It is notewor-
thy that in the parameter region, 0,D,D2h( i ), this configu-
ration can be thought of as the overdamped triangle with
~apparent! reference point~bond 2-4! itself undergoing peri-
odic motion. The latter tends to wash out all rational lockin
between voltages at sites 1 and 3, other thanw1351.

To gain further insights, we focus on the behavior of vo
tices in this system. The time average of the vortex oc
pancy ~both positive and negative!, ^n6&, in a given
plaquette, as a function of the injected vorticity,D, is shown
for plaquette 1 in Fig. 9. ForD,D1h , the density of nega-
tive vortices in this plaquette is negligible, i.e., there is
injection/extraction of vortices by the drive. However, po
tive vortices nucleate at they50 edge forD.0. They enter
through the bond 3-4 and leave through the bond 1-2. T
vortex occupancy of positive vortices keeps increasing u
D5D1h . For D.D1h , the drive starts injecting negativ
vortices and sucking out positive ones. This is evident fr
the sharp increase in̂n2&, and the accompanying decrea
in ^n1&, in the first plaquette. This trend continues until t
value D5D2h is reached. AsD is increased beyondD2h ,
^n2& gradually decreases and tends to saturate, while^n1&
starts increasing again.

In plaquette 2, which is further away from the drive edg
the variation of̂ n6& with D follows a different pattern~see
Fig. 9!. Viewed at higher resolution, this figure shows th
for D,D1h , the negative vortex occupancy of this plaquet
^n2

2 &, is very low while ^n1
2 & is strictly zero. The negative

vortices enter through bond 2-0 and exit through bond 4
OnceD exceedsD1h , this flow of negative vortices stop
and^n2

2 & drops to zero. On the other hand, positive vortic
now start nucleating at they50 edge. They enter the arra
through bond 4-0 and annihilate with their images at bo
2-0. Their number increases with increase inD and peaks at
D2h . For D.D2h , ^n2

2 & registers a sharp increase, whi
^n1

2 & begins to decay gradually.

e

FIG. 9. Variation of the time-averaged vortex occupancy^n6&
with D for i58.0. The filled symbols corresponds to positive vo
tices, while the open ones represent negative vortices. The num
marked against various sets of data denote the plaquette conce
The discontinuities occur atD1h52.0 andD2h56.4.
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It may be noted that the magnitude of the maximum ne
tive vortex occupancy in plaquette 1 is about a factor o
higher than that in the plaquette 2. Furthermore, the
critical values ofD, viz. D1h andD2h , identified by the loss
of phase locking in the first and second columns, resp
tively, are sharply demarcated by transitions in the vor
~both positive and negative! occupancies in the two
plaquettes. They represent the threshold values ofD required
to inject vortices along the direction of the current, in
plaquettes 1 and 2, respectively. One could, alternativ
think of plaquette 2 in this configuration as being driven
plaquette 1 via an ‘‘effective’’ time-dependent curren
source. This way of viewing the system makes the simila
in the behavior of̂ n6& in plaquette 2 forDP@D1h ,D2h# to
that in plaquette 1 forDP@0,D1h# plausible.

It is of interest at this stage to point out that the vort
flows we have mapped provide natural explanations for s
eral observations made by Mehrotra and Shenoy3 on the
433 array they studied. These authors plotted the b

power spectraSrs(v)5uḟ rs(v)u2, i.e., the Fourier transform
of the voltage time series$ḟ rs(t)%, as also the vortex spec
trum, C(v), obtained by Fourier transforming the vorte
vortex correlation functionC66(t)5^N6

T (t)N6
T (0)&, where

NT(t) is the total number of vortices in the array. They ve
fied that in the QP3 regime, both spectra have promine
peaks at exactly matching frequenciesf r(r51,2,3) and that
all higher frequency peaks are the harmonics off r . Exam-
ining next the distribution of vortex-appearance times
various plaquettes, i.e., the time intervals between cons
tive changes from zero to nonzero vortex occupancy, t
found this to be sharply peaked at values,t r(r51,2,3),
which were precisely the inverse frequencies of the peak
the voltage spectra, i.e.,t r5 f r

21.
These observations can all be straightforwardly und

stood in terms of the periodic flow of vortices along t
individual columns, discussed by us in this paper. Indeed,
periodicity of the flow ensures that a vortex appears at w
defined intervals in a given plaquette. Since these flows
always accompanied by changes in thef r , they invariably
induce voltages which are transmitted to all points of
array because the coupling between junctions is long ra
The ~inverse! periods associated with these flows are he
seen in all spectra related to the system. To see why no o
frequencies are seen, we note that a system of overdam
junctions cannot sustain either inertial oscillations or sin
junction chaos. In addition, if the array is dc driven, no e
ternal frequencies are introduced. Thus, any frequency
chaos generated in the systemmustresult from the collective
behavior and nonlinear dynamics of the array as a wh
The frequencies both discrete~QP2) and continuous~chaos!
must, therefore come exclusively from vortex flows, or mo
specifically, vortex lifetimes.

It may be further noted that the mixing of vortices flowin
along columns, with those injected by the drive invariab
produces vortex-antivortex annihilationinside the array, in
addition to those at its boundaries. This generates vortex
times over a continuous range. Consequently, there is a
stantial rise in the noise background in both the voltage
vortex spectra and a broadening in the distribution of vort
-
5
o

c-
x

y,

y

v-

d

u-
y

in

r-

e
l-
re

e
e.
e
er
ed
e
-
or

e.

e-
b-
d
-

appearance times. This had been noticed in Ref. 3 and d
nosed as a signature of chaos.

The behavior of the (Nx32) ladder forNx.3 has many
of the features discussed above forNx53. For allNx , the
locking in columns breaks sequentially, starting at the dr
edge and moving towards the busbar, as the value ofD is
increased. These breakdowns are characterized by$D rh%,
r51,2, . . . ,Nx21. The values ofD rh , for different values
of i , form distinct boundaries in the (i ,D) phase diagram.
The behavior of the system changes qualitatively across e
of these boundaries, which are, interestingly enough, inv
ant with respect to an increase inNx , i.e., incrementingNx
by unity adds one new critical parameterDNxh

to the se-
quence, but leaves the rest of it unaltered. Moreover, fo
given Nx , D rh2D (r21)h.D (r21)h2D (r22)h . For example,
the criticalD values corresponding to breakdown in the fi
four columns are given by 2.0, 6.4, 23.2, 96.1, respective

The breakdowns continue to be equally well marked
discontinuous jumps in the positive as well as negative v
tex occupancy of various plaquettes, as functions ofD. For
values ofD belowD rh , the motion of vortices in the direc
tion of the external current is confined to the first (r21)
plaquettes, counting from the drive edge. Their motion in
remaining columns is perpendicular to this current. Incre
ing D beyondD rh injects vortices into ther th plaquette and
leads to a ‘‘mixing’’ of positive and negative vortices ther
The larger the value ofr , the ~disproportionately! higher the
associated threshold,D rh , for vortex injection. Finally, it
may be mentioned that, with these vortex flows in pla
each plaquette in the ladder can be thought of as being dr
by an effective time-dependent current source to its left, a
having a periodically oscillating reference point to its righ

C. Higher-order quasiperiodicity and chaos

In the previous section, we saw explicitly that in the tim
dependentD,D1h regime, the 332 ladder has two indepen
dent frequenciesf 1 and f 2, localizedspatially in plaquettes 1
and 2, respectively. An extension of this behavior in ladd
with Nx.3 opens up the possibility of sustainin
QPN (N.3) in such systems. In Fig. 10, we show the vo
age power spectrum forNx55 at (i ,D)5~1.9, 1.78!. The
spectrum contains four independent frequenciesf 1
50.075 07, f 250.025 15, f 350.022 49, andf 450.022 31
with an uncertainty of60.000 03. All other spectral frequen
cies can be expressed as linear combinations of these
Although it is conceivable that, for suitable values ofi and
D, two or more of these frequencies may lock, to produ
quasiperiodicity of lower order, our investigations indica
that f 3→ f 4 only asi→`. The issue can, unfortunately, no
be settled numerically because its resolution requires spe
of voltage time series, whose length eventually becomes
hibitive.

A plot of the distribution of vortex-appearance-time inte
vals confirms that these frequencies are associated with
four plaquettes in the ladder and correspond to vortex mo
perpendicular toi ext. ForD.D1h , the drive is able to inject
vortices into the first plaquette, and to thereby introduce n
time scales in the system. The onset of chaos forD.D1h
occurs as a result of interaction between vortex flows in
direction of, and perpendicular to, the current. A similar ph
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nomenon is observed forNx56, where we see five indepen
dent frequencies withf 42 f 5 much smaller thanf 32 f 4.

To conclude, anNx32 laddercan, for D,D1h , sustain
higher order quasiperiodicity with (Nx21) noninteracting
frequencies. This behavior becomes unstable as soon a
D.D lh , a new interacting frequency is introduced. In
(23Ny) ladders interactions are unavoidable from the v
outset, and the system inevitably passes from QP3 to chaos.

D. Nx3Ny arrays of Josephson junctions

Having studied the 23Ny andNx32 lattices, we look at
general Nx3Ny arrays, whose behavior has features of b
ladders. ForD50, the array equations have the solutio
f r5f r1Nx21 andf152f25 . . .5(Nx21)fNx21. AsD is
increased, the locking between junctions in each colum
initially retained, while that between junctions in differe
columns is broken.@The existence of columnwise lockin
has also been reported for uniformly driven arrays with d
order in i c ~Ref. 9!#. This corresponds to vortices nucleatin
at they50 edge of each column, moving up the latter to t
y5Ly edge and annihilating there. The (Nx21) noninteract-
ing vortex flows, which thus come into existence, lead
quasiperiodicity with (Nx21) independent frequencies.

The subsequent pattern of modeunlocking, under a con-
tinuous increase inD, is quite interesting: The first bond t
unlock is the one at the center of the drive edge~henceforth
numbered 1!. This is followed by those adjacent, and then

FIG. 10. ~a! The voltage power spectrum and~b! a magnified
portion of it, for a 532 array withi51.9 andD51.78,D1h . The
spectrum has four frequencies atf 150.075 07 ~not shown!,
f 250.025 15,f 350.022 49, andf 450.022 31 and linear combina
tion of these four frequencies. The frequenciesf 3 and f 4 are re-
solved from runs of typically 106 steps.
for

y

h
:

is

-

the central bond of column 2. More bonds now give wa
symmetrically, in column 1, and likewise in column 2, b
fore the central bond of column 3 loses synchronicity. T
set of bonds which come unlocked thus has, for all su
ciently large values ofD, the shape of an isoceles triang
with one or three junctions at the leading edge.~This was
verified by running on a large, 32332, lattice!. Since a new
channel of vortex injection opens up each time a bond
unlocked, this is also the region of maximal mixing and tu
bulence. Finally, our numerical studies indicate that
value ofD, at which the locking breaks in a given colum
decreases, quite generally, withNy .

As before, the breakdowns are well marked by sh
variations in the time-averaged vortex occupancies,^n6&, as
functions ofD. These are shown in Fig. 11, for the topmo
row of a 434 array~see Fig. 1!. ~The qualitative behavior of
^n6& for the other rows is similar!. As for the 432 ladder,
there are three critical values ofD ~2.75, 5.25, and 11.0, in
this case! associated with loss of voltage locking betwe
sites in columns 1, 2, and 3, respectively. The value ofD at
which vortices begin to flow in, through the central bond
the drive edge, is 1.5, for comparison.

IV. SUMMARY AND DISCUSSION

To summarize, we have studied the onset of chaos in
JJA’s at zero temperature and zero magnetic field. By cho
ing all array junctions to be overdamped, we have exclud
individual junction oscillations and focused on collective e
fects arising exclusively from interactions between junctio
We find that in the time-dependent regime, the system

FIG. 11. Variation of the time-averaged vortex occupancy^n&
with D, for Nx5Ny54 and i535.0. The numbers marked again
various sets of data denote the plaquette concerned. The behav
^n& for all plaquettes in a column, for either sign of vortices,
similar.
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55 6549MODE-LOCKING TRANSITIONS AND VORTEX FLOWS . . .
dergoes a series of dynamical transitions, as we increas
injected vorticity. The transitions are all amenable to a d
interpretation. From the viewpoint of the basic field va
ables, f r , these are mode-locking, or rather mod
unlocking, transitions. From the standpoint of collective e
citations, these transitions are marked by the flow of vorti
through the junctions which have come unlocked.

At values of the external current, for which the junctio
along the drive edge are 1/1 mode locked, vortices flow
clusively along columns, and the system exhibits (Nx21)
independent frequencies. Some of these frequencies ca
principle, be commensurate. In practice, however, this se
to happen very rarely. So much so that we have, in fa
never encountered an attractor lower than QPN. It is, never-
theless, of interest to look for regions of parameter spa
where the system displays QPNx21, . . . ,QP1 equivalent to P
behaviors, particularly with a view to determining wheth
they are connected via a continuous path. For if they are
would arrive at a route to chaos which passes through e
of QP1, . . . ,QPN, in partial vindication of the Landau
conjecture.22

To trace vortex paths in their entirety, it is expedient
view an array with free boundaries in an alternative w
namely, as one half of an array of double length in the
rection perpendicular to the external current drive. In
double length array, the dynamics is constrained to be a
symmetric around the middle and the image system now
periodic boundary conditions. In this extended lattice,
vortex number is strictly conserved, i.e., vortices alwa
nucleate and annihilate in pairs and all the frequencies g
erated in the system correspond to vortex lifetimes. Mo
over, vortex motion is effected by changes inf values,
which induce nonzero Ohmic voltages in the array. Owing
the long-range interaction, or equivalently, the global co
pling between junctions, any vortex motion is sensed by
ery array site. The same peaks are consequently seen i
Fourier transforms of the voltage time series, no ma
where the voltage is measured. The height of a given p
however, depends on the distance between the bond ch
ot
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for the voltage measurement, and the path followed by
vortex responsible for that peak.

It is also intuitively clear why mixing is so efficient a
producing new frequencies: In its absence, vortices, a
nucleating at the free boundaries, have to traverse the e
length of the column before being annihilated byimagean-
tivortices. By contrast, once the option of mixing opens u
annihilations can additionally occur on much shorter tim
scales in the bulk of the array. As a result, lifetimes can
generated over an essentially continuous range of val
The quantitative study of mixing as also the connection
tween the resultant vortex flows and the chaotic attractor
clearly topics for future research and have not been d
with in this paper.

Finally, we have supplemented the above picture w
maps of the parameter space associated with these sys
For arrays consisting of single columns, we clearly disc
mode-locked Arnold tongues, which overlap in the chao
regime. Furthermore, the phase diagram for the 233 case,
for example, has, nested inside it, that of the 232 triangular
network. Not surprisingly, for parameter values correspo
ing to the nesting, one of the bonds is closed~through 1/1
mode locking! to vortices. All the tongues outside this regio
seem to be forked.

To conclude, our work has provided explanations for
number of correlations, pointed out by Mehrotra a
Shenoy,2,3 between phase and vortex diagnostics. It h
moreover, generalized the results of Daset al.18 pertaining to
a triangular network of Josephson junctions. It has pla
vortex flows, discussed by Xia and Leath4,5 in the context of
the breakdown of superconductive flow in JJA’s, in a mu
wider framework and given them a much greater sign
cance. Lastly, it has expanded, in some nontrivial ways,
the theme of mode locking, earlier dealt with for harmon
cally driven Josephson junctions or pendula by Bak a
co-workers,34,35 among others. It has, therefore, we believ
synthesized a number of seemingly independent invest
tions into a single coherent picture of array dynamics.
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