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Mode-locking transitions and vortex flows in current-driven Josephson-junction arrays
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The dynamical behavior of overdamped dc-driven Josephson-junction arrays is studied numerically in two
dimensions. Currents varying linearly along an edge are injected into the array and drawn out at the opposite
edge either uniformly or through a busbar. The system is found to undergo a series of dynamical transitions as
the gradient of the current drive is increased. We show that, for ladder arrays, these transitions mark the loss
of mode locking across specific bonds. The transitions can, alternatively, be associated with the onset of
well-defined vortex flows. Spatial localization of vortices in individual plaquettes of a ladder, driven in the
direction of its length, is seen to stablize quasiperiodicity of oider3 in a certain region of the underlying
parameter space. We also discuss the extension of each of these features to full-fledged rectangular arrays.
[S0163-18207)04110-9

l. INTRODUCTION periodic (QP®) attractor, there exist arbitrarily small?
perturbationg® which convert the attractor to one which is

It has long been believed that the dynamics of complexstrange and structurally stable. R& 4, these perturbations
systems is, in large part, determined by that of their colleccan be chosen to b&”. The existence of these perturbations
tive excitations. For example, in hydrodynamics, vorticesnotwithstanding, the occurrence of chaos in these systems is
and structures using vortices as building blocks, enter cruactually quite rare. Indeed, applying nonlinear perturbations
cially into descriptions of the system’s behavior in differentto maps orN tori, Grebogi, Ott, and Yorke found that, for
dynamical regimesS. Two-dimensional (2D) Josephson- small to moderate nonlinearity, the attractors encountered,
junction arrays(JJA'S provide somewhat simpler experi- ordered through frequency of occurrence, are NOP
mental systems in which this belief can be critically exam-QPN"1, ..., QP' equivalent to P(periodi9. The chaotic
ined and articulated. They are simpler because the basiattractor is seen very seldom fé¢=3 but slightly more
variables are, first, anguldr.e., confined to ¢ m,7]) and, often for N=4. For larger nonlinearity, Q¥ becomes less
second, defined only on a 2D lattice. Several authors haveommon and disappears altogether when the map becomes
accordingly, studied current-driven JJA’s numerically, keep-noninvertible. Finally, among different types of chaotic at-
ing track of vortices, which are the relevant collective tractors, the most common are those whose limit set coin-
excitations>~” Mehrotra and Shendy have pictured the on- cides with theN torus itself.
set of turbulence in nonuniformly driven JJA's at zero tem- A detailed connection between the two approaches was
perature in terms of the mixing of vortices at the current-established, for the simplest case of an overdamped triangu-
driven edge. Xia and Leatfi have studied current flow past lar network!® The underlying parameter space was mapped
linear defects and found that a periodic flow of vortices inand each region interpreted in terms of vortices. This analy-
the central defect corriddiCDC) marks the transition from sis was subsequently extended tousmledamped triangular
fixed-point to limit cycle behavior. Moreover, the nucleation network?’ as well.
and flow of vortices, for large input currents, in columns In this paper, we synthesize the insights produced by all
adjoining the CDC produce quasiperiodic and chaotic behavthese investigations into a single coherent picture. We work
iors. This investigation was carried forward by Dattzal.?®  with uniform, defect-free, overdamped arrays subject to non-
who accessed and explored the multiple-vortex fixed-pointuniform dc drives, i.e., a current varying along thelirec-
sectors of these arrays by extending the size of both arrajon is injected in thex direction at thex=0 edge of the
and defect. array (see Fig. 1 A current drive has nonzeréi,/dy and

A second approach to the dynamics of JJA’s results if wenence carries a net vorticity. Since uniform drives applied to
view them as sets of globally coupled nonlineararrays with linear defects automatically become nonuniform,
oscillators®~1" which tend to rotate in a mode-locked fashion and maximally so at the CDC—the analog of the drive edge,
unless driven by highly unequal torques. The motion of thes¢he configuration we consider accords us a hosgeferal
systems is restricted t®l tori and has been extensively dynamical insights aminimal computational cost. A further
studied!®=2° As a result, theN=2 case has come to be well saving of computer time can be achieved by realizing that
understoodit gives rise to only two types of flows—periodic certain features of larger arrays are faithfully captured by
and quasiperiodjc and a number of facts have been discov-smaller ones. Some of the features studied in this paper are,
ered about theN=3 case'®?'~?%|n particular, it has been in fact, of precisely this type and we point this out wherever
showrf®24 that for a system with a three-frequency quasi-relevant. As for the choice of the nonuniform drive, we find
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y The paper is organized as follows. We discuss the model
system and the governing equations in Sec. Il. Investigations
for ladder arrays are carried out in Sec. Ill. The cases of
vertical (Sec. 1l A) and horizontal ladderéSec. 1l B) rela-

J ® 4 9 tive to the current applied in thedirection are studied sepa-
| ) 3 rately. In Sec. llIC, the possibility of higher-order quasi-
‘ periodicity in ladder arrays is discussed. We extend some of
—e \ { 1 the results for ladder arrays to general rectangular arrays in
4 5 6 |—» Sec. llID. Section IV contains a summary and discussion of
our results.
—» ® * q
7 8 ? II. THE MODEL
! 0,0) ¢ ¢ ¢ The equation governing the dynamics of a single over-

damped resistively-shunted-Josephson juncti®8J, link-

. . in rconducting sitesands, at zero temperature and in
FIG. 1. Geometrical representation of a JJA wNR=N,=4. g superconducting sitesands, at zero temperature and

The dots denote the superconducting islands and the bonds den&gro magnetic field, is given by the RSJ mdget as
Josephson junctions. A linearly varying dc current profile is applied

at thex=0 edge. Thex=L, edge is shorted by a busbar. The dérs
plaquettes are numbered as shown. dt

+SiNgrs=1 s, 1)

: . . : ; where ¢,s= ¢, — ¢4 is the phase difference across the junc-
that, for the points we wish to make, a drive with a Slmpletion, and! .. the total current carried by the bons. Al

linear profile is sufficient. Finally, we emphasize that, since i led in t f the sinale iuncti itical
chaotic oscillations are altogether absent for individual dc_current§ are (sjc?e In terms o d e S'F‘? edéL/mcRm_)n Clg Ica
driven overdamped junctions, the obsenamhtinuousfre- currentic, and time is expressed in units ot/@eRk),

guencies result exclusively from the interactions betweelpemg the shu_nt resistance. . L
junctions, which are the primary foci of this investigation. For an arbitrary array, this equation applies individually

The picture we develop can now be outlined. For Iowtc_J each bond. Thus, for aN,X Ny array of supe_:rcon_ducting_
values of the input drive, the system displays fixed-poin ites, connected by overdamped Josephson junctions, driven

vortex-free behavior. Time dependence first results from th y'externql currents®™, the corresponding equations can be
flow of vortices, which enter through one of the nondriven'V/ittén using total current conservatitras

free boundaries, travel along a column and leave the array at d

the opposite edge(This process can equivalently be de- > ¢rs+sin(¢ y=1e @)
scribed as the nucleation and annihilation of vortices and {rsy dt e

imageantivortices at the array boundanegach frequency . . .
seen in the Fourier transform of any voltage time series igvhere(rs) implies that the sum is over ne_arest_nelghbors of
associated with one such vortex flow. As long as the injectea' Note that ¢ and_ hence Eq(1) are m_varlant under
vorticity is small, the junctions along each column of the #r— @+ @, wherea is a constant. In solving Eq2) nu-

array remain 1/1 mode locked. Locking of this type turns themerically, it is important to eliminate this freedom. This can

associated bonds separating the columns, effectively intB€ done €asily, for example, by setting the phase at an arbi-

closed gates for vortices. All vortex flows thus occur coI—trarlly ch_osen site to zero. . .

umnwise at this point, the corresponding frequencies remain, Eduation(2) can alternatively be written in terms of the

spatially separated and, for an array Nfcolumns, the at- discrete Laplacia®, -, as

tractor is QP'. With increasing vorticity of the input, some

of the ju_nctions a_llong the drive edge come mode _unlocked, E (GEI)rs¢s= —d, 3)

and vortices begin to flow through the corresponding bonds T

in the direction of the external current. This leads to flows ) o )

which mix and generate an infinite range of incommensuraté/here X the divergence term at each site is given by

frequencies, and hence chaos. To the extent that junctiorﬂzr:|$X—E<rs>8'n¢rs-

away from the drive edge are still mode locked at this stage, For an array of sizeN,XNy=N, each integration time

the flow and mixing of vortices can be spatially isolated. AsStep of Eq.(3) has a complexityO(N?) (since at every

further mode-locking transitions occur, the region of mixingupgradation of theN phase variablesg, the constant

extends deeper into the array. NN matrix G, has to be multiplied by the divergence vec-
With the help of this picture, we have been able to plottor [d]). However, using the special properties G,

the phase diagram of our system, with a reasonable degree ister algorithms have been evolved wherein the above mul-

resolution. For some small arrays we have, in fact, seen Attiplication is carried out ifO(N InN) steps or fastet'**Fast

nold tongues merging and overlapping to produce chaos. Walgorithms have also been developed for the case of busbars

should mention that although parts of this picture were anand defects in the form of missing bontistor small arrays

ticipated in Ref. 3, the mode locking between junctions, asvith only a few plaquettes, we use the dir&@¢N?) algo-

also its connection with vortex flows and with features of therithm. Faster algorithms are resorted to only when studying

associated phase diagram were missed altogether. larger arrays.
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In this paper, we choose a transversely varying dc current

drive I,(y)=i—Ay/L,, A=i—], applied to thex=0 edge

of the array. The current thus varies linearly, framat 1
y=0toj aty=L, (see Fig. 1L This is a simple form of J
nonuniformity. More complex nonuniform time-dependent 2|1
current profiles exist in the neighborhood of defeotissing - 5
bonds contained in uniformly driven arrays. i_g‘

The choice of the drive made, the Laplacian matrix is
inverted numerically, once and for all, for a given array size <] !
with a reference phase fixed to prevent the ma(t}g}&, from 12203)
becoming singular. We keep the phases all alongxthé
edge fixed at zero. Physically, this corresponds to shorting A,
out these sites with a busbar. All other phases, including
those at the free boundarieg=0 andy=L,, evolve ac-
cording to the Eq(3). The differential equations are inte-
grated by a fourth order Adams-Moulton predictor-corrector SS
routine. The integration time step chosen is 0.05 and the
dynamics is studied for typically 2Ointegration steps per
run (after discarding, typically, the first #&teps, which cor-
respond to transients

1/1

i

A . . FIG. 2. Schematic phase diagrdnot to scal¢for a 2X 3 con-
We note that2¢,s=0 identically, for a summation car- figuration as depicted in the inset with the islands and plaquettes

ried out around any closed path, or, in particular around & mpered as shown. The region marked SS is the steady-state re-
plaquette. If we restrict all phase differences to lie in thegion while the region marked 1/1 represents voltage locking. The
range (- m, ] say, this condition must however be general-gher frequency locked zones are shaded regions in the figohe

ized to read® ¢, s=2mn (n=—1,0,1). This is used to iden- few of these are shownFor A, (i)<A<A,,(i), they are charac-

tify the existence of a vortex in a plaquette. The transverselyerized by two winding numbers (1/1p,/q,) whereas for
varying current drive under consideration, injects vorticity A>A,_ , they are of the typep;/d;, P2/0y).

al(y)/dy=—A into the array. This manifests itself as a
non-neutral system of vortices. Far>0, these are predomi-

nantly positive. other (voltage/frequency locking i.e., (&.)/{(¢s)=p/q

(wherer,s=1,2,3 andp, q are small integeds The second is
characterized by all three winding rates bearing irrational
I1l. THE DYNAMICS OF LADDER ARRAYS ratios to one another, with motion regular in behavior and
. . . . power spectra for time-dependent voltages discrete in fre-
nar?qzlmi?]téor\lﬁ?hm t_hze Z;r(;)ﬂluc_“gnh;zebs;?npliens’ég;t\\/’:’a?rk’quency. The third, once again, has average rates of winding
y X v Y" in irrational ratios to one another, but this is now accompa-

e A e e e hed by an apparent randomness of moton, nayinous
) P 9 P spectra, and a sensitivity to initial conditiofise., at least

steady-state regime, and an infinity of Arnold tongues whichOne positive Lyapunov expongntn geometric terms, coher-
merge at the _steady—state boqndary. .Thg b‘?ha‘('or In the M&hce corresponds to trajectories which form closed curves on
gions separating the tongues is quasiperiodic with two inde;

endent frequencies. The quasiperiodicity is intermittent ahe three torus or, when only two junctions are locked,
P 9 ) q P y losed curves in the 2D subspace of the pair of locked junc-
the edges of the tongues.

In this section. we present results showing that man in_tions. Triply periodic trajectories fill the entire three torus
) ’ P ) Ing Y N3nd are associated with volume conservation in time. Finally,
teresting features of the above configuration carry over t

. . . haotic motion results in stran ractors, i.e., an attractiv
arrays of larger size. We do so by extending the smglc(e% aotic motion results In strange attractors, I.e., an attractive

I tte in th dv directi telv before di set with fractal dimension and self-similar structure.
plaquet’e In th& andy directions separately belore GISCUSS- g penavior of the 2 3 system is represented schemati-
ing full-fledged rectangular arrays.

cally by thei—A(=i—j) phase diagram shown in Fig. 2.
The region marked SS corresponds to the time-independent
A. 2XNy ladders fixed-point regime wherep, =0Vr. The rest of the phase

We begin with the simplé\,=3 case(see Fig. 2 We diagram is divided into various regions of frequency locking,
arbitarily choose the reference phasg,=0 whence 9uasiperiodicity, and chaos. The mode-locked behavior of
bro= b, VT, the system in these regions warrants a detailed description.

Since Eqs(3) describing the evolution of the three phases N Fig. 3 we show the variation of the winding number
¢1, ¢,, and @5 are periodic in each phase with periogr2  Ws=( )/ ¢s) with the gradient of the applied current pro-
the dynamics is confined to a three-dimensional toroidafile, A, fori=1.8. ForA=0, Egs.(3) can readily be used to
phase space. Accordingly, three types of motion are possiblghow that¢,= ¢,= ¢3 is a possible stable solution. We see
for this system: coherenfperiodic, or quasiperiodic with that the phase-locked state,(=1) from Fig. 3 persists sta-
only two independent frequenclesQP? and chaotic. The bly over a fairly large interval inA. At a critical value,
first is characterized by two or more of the average rates oA =A,, (i), of the gradient, the locking between junctions
winding of the three phases, bearing a rational ratio to eacB-0 and 3-0 breaks and,; falls below unity. The junctions
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FIG. 3. Variation of the winding numbew,s=( ¢,)/( $<) with FIG. 4. Variation of the winding numbev, as a function of the

the gradientA in a 2x3 array fori=1.8. The steps mark the gradientA, for i=1.9, in a 2<3 array. The existence of the
periodic tongues with specific winding ratios shown against eact1/2, 2/3 and(2/3, 3/4 frequency-locked regions is clearly seen for
step. Note that the axes do not start at zero. The locking,gtind ~ two disjoint domains ofA.

wy, breaks atA,, andA,, , respectively. . ]
nonlinear sine terms are not of the same order as the external

1-0 and 2-0 however continue to remain synchronous all th@pplied currents. The mode-locked regions with values of
way out toA=A,, (i) [barring a smallA interval, in which ~ winding number other thaw,,=1 are relatively rare, pre-
mode locking occurs when both,, and w,5 are rationals sumably, because the condition mdirwise mode locking is
€(0,1)]. The difference in the critical valuesd,, and difficult to satisfy.[This immediately becomes clear if we
A,,, decreases as the valueiaf increased and eventually work out the asymptotic values ofwg,,w,3) for various
the phase locking between both pairs of junctions becomeli demanding as we do so, that,q;,p,,0, be small inte-
unstable simultaneously. The values &f, and A,,, for  gers. The mode-locking regions, which are clearly manifest
different i, define curves in thei(A)-parameter space, in our numerical simulations, all havew(,,w,3) values
which start out from the steady-state boundary as distinciyvhich are ratios of small integers with =p, . In Fig. 4, we
but eventually merge together for large values ¢ee Fig. display the clear existence of periodic regions corresponding
2). The system shows voltage locking in the entireto (2/3, 3/4 and(1/2, 2/3. It is interesting to note that each
0<A<A,,(i) domain,outsidethe steady-state region. of these regions exists for two distinct domains of the param-
Between thed;, andA,, curves(see Fig. 2, we see the eterA, i.e., they reappear for higher values &f Hence,
clear existence of various mode-locked tongues, all of whickeach of these tongues is forked.
emanate from the steady-state curve boundary and terminate We have, on occasion, observed period doubling at the
on theA,, curve. In between these tongues, the behavior ig€dges of these tongues, e.g., fer1.9 andA=1.846. The
quasiperiodic with two independent frequencié@P?),  winding number remains unchanged as the bifurcation se-
much as for an overdamped triangle driven by independerquence advances but the period doubling can be deduced
current source¥ This similarity of behavior is no coinci- from the projection of the phase space trajectories on any 2D
dence. Indeed, with junctions 1-0 and 2-0 mode locked, théubspace of the three torus. The system switches from a tra-
system behaves effectively like the overdamped triangle anjctory which is 2r periodic to one which is # periodic,
the phase diagram of the former has embedded within it thend so on. After théth bifurcation, the dc voltages across
entire phase diagram of the latter. This further implies thathe bondsr-0, i.e., <¢r>(k)_>2k<¢r>(0) (r=1,2,3). We ob-
the quasiperiodicity with three frequencig@P®) and chaos serve, within our numerical resolution, only a few low-order
feasible for this system all occur outside this region, as indoublings (typically three or fouy before the system be-
deed they do. comes chaotic. Similar phenomena are observed in the case
The frequency locking foA> A, (i) is characterized by of an underdamped triangle driven by independent dc current
two winding numbers \W1,,Wo3)=(p1/q1, P»/0,). These sources’
correspond to the two pairs of junctions 1-0, 2-0 and 2-0, The dynamics of the system in terms of vortices can be
3-0, respectively.(In the region betweem\,, and A,,, inferred from the behavior of the latter in each of the
p1/dq,=1 while p,/qg, takes on different values, such that plaquettesseparately The region,A<A,,(i), and outside
p1=q1=p,.). At large values of the parametaérandA, the  the fixed-point regime, corresponds to periodic nucleation of
nonlinearities of the system become insignificant and the revortices at they=0 edge(bond 3-0 followed by their mo-
sulting equations can then be solved exactly. From E)s. tion in a direction perpendicular to the externally applied
the winding numbersv,, and w,3 can be determined, to current. This results in a well-defined 1/1 limit cycle with a
zeroth order, to have valuesi+3j)/(2i+2j) and period which exactly matches that of vortex nucleation. In
(2i+2j)/(3i+]), respectively. The motion is largely GP the region betweenh,,(i) and A, (i), the drive is able to
in this asymptotic limit. This statement holds as we moveinject/extract vortices through the bond 2-3 but not through
inward from infinity in the parameter space, so long as theébond 1-2. The dynamics is now governed by the interaction
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FIG. 5. Plaquette number through which vortices first get in- F/G- 6. Variation of the winding numbev,s as a function of the
jected by the drive as a function of the length of the column. Thisgra_d'enté' for_l =18 andNy:7. The existence of the mode-lockgd
injection channel is stable at a given plaquette over a range df€9ions is evident as foN, =3 but over much smaller ranges in
Ny, as is evident from the steps. A.

of these vortex flows — one in the direction of current, thefrom the top(the region with low current biago start with,
other perpendicular to it — and the observed quasiperiodichut shifts downwards aBl, is increased. The figure shows
ity with two independent frequencies is, in fact, an outcomepyell-defined steps in the plaquette number, i.e., the injection
of the interaction of the two associated independent timgyways takes place through a given plaquette for a range of
scales. For mode lockindcharacterized by Wi,,W29)  values inN,. The breakdown gradually shifts to a plaquette
=(1, p2/9p)] in this region, the number of vortices injected away from the edges only whe, exceeds a critical value.

by the drive through bond 2-3 in each repeating sequence gffter one of the junctions has become madsocked, the

q vortices is precisely,— p,."® Since there is no flow of next to follow suit are the adjacent ones, on the drive edge.
vortices across bond 1-2, all the vortices, that leave the secFhe breakdown continues alternately until phase locking for
ond plaquette through bond 2-0, have also to pass througll junctions in the column is broken. This sequence of
bond 1-0. Hencep;=0q;=p,, as observed. Fak>A,,(i),  breakdowns is characterized bi,}, r=1,2,... ,N,—1.

the drive starts injecting additional vortices through bond For N,>3, the system shows locking with winding num-
1-2. As aresult, we have three independent frequeriiiee  pers even less than 1/2, in the region betweeny and
scales existing in the system. This is also the minimum A, . For example, consider the cade,= 7, for which the
number required for a system to display chaos. The interplayoltage locking in the column breaks first at the bond 3-4
among these three frequencies can thus produce any one @kee Fig. 5. In Fig. 6, we have accordingly shown the varia-
P, QP?, QP® or chaos. For drive parameters inside ation of wa, with A. We clearly see that the winding number
frequency-locked tongue, the drive injeds—p, vortices  \, has plateaus at various rationals betweeroand unity.
through bond 2-3 and; —p; vortices through bond 1-2 in  The winding number 0 corresponds to the case where junc-
such a way that the locking is stable. tion 3-0 is executing harmonic motion while junction 4-0 is

The existence of the critical parametets, and A,, running.
shows up additionally in the variation of the time-averaged
vortex occupancyn _) of negative vortices imny plaquette
as a function of the injected vorticityA. The occupancies
(n1) and(n?) show sharp jumps from zero, &, and We now investigate the behavior of JJA’s, which have
A,,, respectively. A similar study for positive vortices al- Ny=2 but are extended along the direction, i.e., in the
lows us to associate the corresponding discontinuities witldirection of the injected current. To start with, we take
the edges of the mode-locked tongues. N,=3 and once again we séi,=0 (see inset of Fig. )/

Many of the qualitative features of this configuration The schematic phase diagram for this configuration is
carry over to a longer column of Josephson junctions drivershown in Fig. 7. This contains prominent regions of steady-
by a linear current profile. As the length of the column isstate(SS and QP behavior. In addition, we see the exist-
increased, the region of voltage locking characterized by &nce of two well-defined boundaries &g,(i) and A, (i),
gradient valued,,, decreases. It is interesting to pinpoint whose significance is best understood from ¢iwe;) versus
the pair of junctions where the phase locking first breaks ana plot, given in Fig. 8, fori=1.8. In interpreting this dia-
vortex injection across the drive edge takes place. We shogram, it is useful to recall that fok =0, two rows of junc-
this in Fig. 5. More precisely, we plot the number of the tions decouple, by symmetry, and the whole array behaves
plaguette into which a vortex is first injected by the driee  like a single Josephson junction. From E{3, this clearly
equivalently that of they bond connecting the pair of junc- corresponds tog,= ¢z, ¢,= 4, and ¢,=2¢,, i.e., to
tions across which phase locking first breeés a function of  wq3=w,,=1 andw;,=w3,=1/2. In other words, the junc-
N, . The point of injection is located at the second plaquettdions in each column are perfectly synchronausnding

B. N, x 2 ladders
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FIG. 7. Schematic phase diagrdnot to scalg for a 3X2 con-

figuration shown in the inset,=0, by choicg. The region with A for i =8.0. The filled symbols corresponds to positive vor-

marked SS is the steady-state region. The regionAferA (i) . . ) .
N - , . tices, while the open ones represent negative vortices. The numbers
corresponds to quasiperiodic behavior with two frequencies. The

boundariesh ;1 (i) andA (i) represent the loss of phase locking in marke_d aga_lns_t various sets of data denote the plaguette concerned.
) . The discontinuities occur at;,=2.0 andA,,=6.4.
the first and second columns, respectively.

FIG. 9. Variation of the time-averaged vortex occupaqgy )

number unity, while those across neighboring columns areThe behavior of the system now also shows*@Raos. The
mode locked with rational winding numbers. For finike  frequency-locked zones, which exist in large measure for the
the phase locking along the columns, characteristic of th@ XN, ladders, are very rare for the<® case. It is notewor-
A =0 line, continues and is stable. However, the mode lockthy that in the parameter regions<Q\ <A,,(i), this configu-
ing between junctions in neighboring columns breaks andation can be thought of as the overdamped triangle with the
their relative motion is now characterized by an irrational (apparentreference pointbond 2-4 itself undergoing peri-
winding number. Hence, the “completely inphase™ solution odic motion. The latter tends to wash out all rational lockings
(all winding numbers rationabbserved earlier in Sec. lIlA, petween voltages at sites 1 and 3, other thag=1.
does not exist in the strict sense here, 40r 0. To gain further insights, we focus on the behavior of vor-
Instead, the motion is largely quasiperiodic with two in-tices in this system. The time average of the vortex occu-
dependent frequencids andf,. Each of these frequencies pancy (both positive and negatiye (n.), in a given
increases in magnitude with but their differencef;—f,  plaquette, as a function of the injected vorticity, is shown
decreases. From Fig. 8, we note that the locking between thg, plaquette 1 in Fig. 9. FOA<A,,, the density of nega-
voltages at sites 1 and 3 breaksfaf,=2 and the winding tive vortices in this plaquette is negligible, i.e., there is no
numberw;; thereafter starts decreasing continuously. Thenjection/extraction of vortices by the drive. However, posi-
voltages at sites 2 and 4, however, remain locked until &jye vortices nucleate at the=0 edge forA>0. They enter
much higher value,,(=6.4) of A. As A is increased fur-  through the bond 3-4 and leave through the bond 1-2. The
ther, both winding number ratiosy;3 and wo4, decrease. yortex occupancy of positive vortices keeps increasing until
A=A;,. For A>A,,, the drive starts injecting negative
vortices and sucking out positive ones. This is evident from
Ayn Agp- the sharp increase in_), and the accompanying decrease
1.0 in {n.), in the first plaquette. This trend continues until the
value A=A, is reached. AsA is increased beyond,y,
W24 (n_) gradually decreases and tends to saturate, while
0.9 w3 A starts increasing again.
= In plaguette 2, which is further away from the drive edge,
the variation of(n..) with A follows a different patterrisee
Fig. 9. Viewed at higher resolution, this figure shows that,
for A<Ay,, the negative vortex occupancy of this plaquette,
(n?), is very low while(n?) is strictly zero. The negative
vortices enter through bond 2-0 and exit through bond 4-0.
Once A exceedsAy,, this flow of negative vortices stops
0 2 4 6 8 and(n?) drops to zero. On the other hand, positive vortices
A . now start nucleating at the=0 edge. They enter the array
through bond 4-0 and annihilate with their images at bond
FIG. 8. Variation of the winding numbav, as a function of the ~ 2-0. Their number increases with increaselirand peaks at
gradientA, for i=8 in a 3x2 array.A,(i) and Ay(i) are the  Agn. For A>Ay,, (n?) registers a sharp increase, while
critical values at which the phase lockings in the columns break. (n?) begins to decay gradually.

0.8
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It may be noted that the magnitude of the maximum negaappearance times. This had been noticed in Ref. 3 and diag-
tive vortex occupancy in plaguette 1 is about a factor of 5nosed as a signature of chaos.
higher than that in the plaquette 2. Furthermore, the two The behavior of theN,x 2) ladder forN,>3 has many
critical values ofA, viz. Ay, andA,y,, identified by the loss  of the features discussed above foy=3. For allN,, the
of phase locking in the first and second columns, respedocking in columns breaks sequentially, starting at the drive
tively, are sharply demarcated by transitions in the vortexedge and moving towards the busbar, as the valua o
(both positive and negatiye occupancies in the two increased. These breakdowns are characterized Ay},
plaguettes. They represent the threshold values @fquired " =1.2,....Nx—1. The values of,,, for different values

to inject vortices along the direction of the current, into Of i, form distinct boundaries in thei,) phase diagram.

plaguettes 1 and 2, respectively. One could, aIternativerThe behavior of the system changes qualitatively across each

think of plaquette 2 in this configuration as being driven byOf these boundaries, which are, interestingly enough, invari-

plaquette 1via an “effective” time-dependent current ant with respect to an increase My, i.e., incrementing\,

source. This way of viewing the system makes the similarity?y Unity adds one new critical parametag,, to the se-

in the behavior ofn.. ) in plaguette 2 for e[Ay,,A,,] o duence, but leaves the rest of it unaltered. Moreover, for a
that in plaquette 1 foA e[0,A;,] plausible. given Ny, A=A —1)n>A-1n=Ar-2)n- For example,
It is of interest at this stage to point out that the vortexthe criticalA values corresponding to breakdown in the first
flows we have mapped provide natural explanations for se four columns are given by 2.0, 6.4, 23.2, 96.1, respectively.
The breakdowns continue to be equally well marked by

eral observations made by Mehrotra and Shénoy the . : ) . . .
4x 3 array they studied. These authors plotted the bon@ilscontlnuous Jumps in the positive as well as hegative vor-
S 5 . ) ex occupancy of various plaquettes, as functiona ofor
power spectr&;s(w) =| ¢rs(w)|*, i.e., the Fourier transform  yajues ofA below A, the motion of vortices in the direc-
of the voltage time seriesp,s(t)}, as also the vortex spec- tion of the external current is confined to the first1)
trum, C(w), obtained by Fourier transforming the vortex- plaquettes, counting from the drive edge. Their motion in the
vortex correlation functiorC.. . (t)=(N% (t)NT(0)), where  remaining columns is perpendicular to this current. Increas-
NT(t) is the total number of vortices in the array. They veri- ing A beyondA,, injects vortices into theth plaquette and
fied that in the QB regime, both spectra have prominent !€ads to a “mixing” of positivg and negative vor.tices there.
peaks at exactly matching frequencieér = 1,2,3) and that The Iqrger the value af, the(d|spr0port|pngtelyh|gher thg
all higher frequency peaks are the harmonics af Exam- associated threshold),,,, for vortex injection. Finally, it

ining next the distribution of vortex-appearance times inMay be mentioned that, with these vortex flows in place,

various plaquettes, i.e., the time intervals between consech—ach plaquette in the ladder can be thought of as being driven

tive changes from zero to nonzero vortex occupancy, the yan eﬁectiye t_ime-depe_ndent current source to its left, and
found this to be sharply peaked at values(r =1,2 3)’ aving a periodically oscillating reference point to its right.

which were precisely the inverse frequencies of the peaks in
the voltage spectra, i.er, =f, 1.

These observations can all be straightforwardly under- In the previous section, we saw explicitly that in the time-
stood in terms of the periodic flow of vortices along the dependenf <A, regime, the X 2 ladder has two indepen-
individual columns, discussed by us in this paper. Indeed, thdent frequencie$, andf,, localizedspatially in plaquettes 1
periodicity of the flow ensures that a vortex appears at welland 2, respectively. An extension of this behavior in ladders
defined intervals in a given plaquette. Since these flows ar@ith N,>3 opens up the possibility of sustaining
always accompanied by changes in the, they invariably ~QP" (N>3) in such systems. In Fig. 10, we show the volt-
induce voltages which are transmitted to all points of theage power spectrum foN,=5 at (i,A)=(1.9, 1.78. The
array because the coupling between junctions is long rangépectrum contains four independent frequenciés
The (inversg periods associated with these flows are hence=0.075 07, f,=0.025 15, f3=0.022 49, andf,=0.022 31
seen in all spectra related to the system. To see why no oth&ith an uncertainty of- 0.000 03. All other spectral frequen-
frequencies are seen, we note that a system of overdampseies can be expressed as linear combinations of these four.
junctions cannot sustain either inertial oscillations or singleAlthough it is conceivable that, for suitable valuesiaind
junction chaos. In addition, if the array is dc driven, no ex-A, two or more of these frequencies may lock, to produce
ternal frequencies are introduced. Thus, any frequency oguasiperiodicity of lower order, our investigations indicate
chaos generated in the systemustresult from the collective thatf;—f, only asi—«. The issue can, unfortunately, not
behavior and nonlinear dynamics of the array as a wholebe settled numerically because its resolution requires spectra
The frequencies both discret®P?) and continuougchaog  of voltage time series, whose length eventually becomes pro-
must, therefore come exclusively from vortex flows, or morehibitive.
specifically, vortex lifetimes. A plot of the distribution of vortex-appearance-time inter-

It may be further noted that the mixing of vortices flowing vals confirms that these frequencies are associated with the
along columns, with those injected by the drive invariablyfour plaquettes in the ladder and correspond to vortex motion
produces vortex-antivortex annihilatianside the array, in  perpendicular td.,;. ForA>A,, the drive is able to inject
addition to those at its boundaries. This generates vortex lifevortices into the first plaquette, and to thereby introduce new
times over a continuous range. Consequently, there is a subime scales in the system. The onset of chaosAorA 4,
stantial rise in the noise background in both the voltage an@ccurs as a result of interaction between vortex flows in the
vortex spectra and a broadening in the distribution of vortexdirection of, and perpendicular to, the current. A similar phe-

C. Higher-order quasiperiodicity and chaos
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FIG. 10. (a) The voltage power spectrum aifd) a magnified
portion of it, for a 52 array withi=1.9 andA=1.78<A,,. The
spectrum has four frequencies &;=0.07507 (not shown,

f,=0.025 15,f;=0.022 49, and ,=0.022 31 and linear combina- )
tion of these four frequencies. The frequencigsand f, are re-  the central bond of column 2. More bonds now give way,

solved from runs of typically 1Dsteps. symmetrically, in column 1, and likewise in column 2, be-
fore the central bond of column 3 loses synchronicity. The
nomenon is observed fMX:6, where we see five indepen_ set of bonds which come unlocked thus haS, for all suffi-
dent frequencies witli,— f5 much smaller thariz—f . ciently large values of\, the shape of an isoceles triangle
To conclude, arN,x 2 laddercan for A<A,,, sustain With one or three junctions at the leading ed.gEI:ns was
higher order quasiperiodicity withN,—1) noninteracting  Verified by running on a large, 3232, lattice. Since a new
frequencies. This behavior becomes unstable as soon as, fefannel of vortex injection opens up each time a bond is
A>A,,, a new interacting frequency is introduced. In unlocked, tr_ns is also the region of maxlma_l mixing and tur-
(2XN,) ladders interactions are unavoidable from the Ver)})ulence. Finally, our numerical studies indicate that the

outset, and the system inevitably passes fron? @Pchaos.  value ofA, at which the locking breaks in a given column,
decreases, quite generally, with .

As before, the breakdowns are well marked by sharp
variations in the time-averaged vortex occupangjes,), as

Having studied the XN, andN, X2 lattices, we look at functions ofA. These are shown in Fig. 11, for the topmost
general N XNy arrays, whose behavior has features of bothrow of a 4x 4 array(see Fig. 1 (The qualitative behavior of
ladders. ForA=0, the array equations have the solution:(n.) for the other rows is similar As for the 4x2 ladder,
¢,=q§r+Nx_1 andg,=2¢,= .. .=(NX—1)¢NX_1. AsA is there are three critical values daf (2.75, 5.25, and 11.0, in
increased, the locking between junctions in each column i#his casg¢ associated with loss of voltage locking between
initially retained, while that between junctions in different sites in columns 1, 2, and 3, respectively. The valu@ ait
columns is broken[The existence of columnwise locking Which vortices begin to flow in, through the central bond of
has also been reported for uniformly driven arrays with disthe drive edge, is 1.5, for comparison.
order ini. (Ref. 9]. This corresponds to vortices nucleating
at they=0 edge of each column, moving up the latter to the
y=L, edge and annihilating there. Thi,(—1) noninteract-
ing vortex flows, which thus come into existence, lead to To summarize, we have studied the onset of chaos in 2D
guasiperiodicity with N,—1) independent frequencies. JJA’s at zero temperature and zero magnetic field. By choos-

The subsequent pattern of moddaocking, under a con- ing all array junctions to be overdamped, we have excluded
tinuous increase in, is quite interesting: The first bond to individual junction oscillations and focused on collective ef-
unlock is the one at the center of the drive edgenceforth  fects arising exclusively from interactions between junctions.
numbered L This is followed by those adjacent, and then by We find that in the time-dependent regime, the system un-

D. N,x N, arrays of Josephson junctions

IV. SUMMARY AND DISCUSSION
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dergoes a series of dynamical transitions, as we increase tfier the voltage measurement, and the path followed by the
injected vorticity. The transitions are all amenable to a dualortex responsible for that peak.
interpretation. From the viewpoint of the basic field vari- It is also intuitively clear why mixing is so efficient at
ables, ¢, these are mode-locking, or rather mode-producing new frequencies: In its absence, vortices, after
unlocking, transitions. From the standpoint of collective ex-nucleating at the free boundaries, have to traverse the entire
citations, these transitions are marked by the flow of vorticeqsength of the column before being annihilated inyage an-
through the junctions which have come un!ocked._ _ tivortices. By contrast, once the option of mixing opens up,
At values of the external current, for which the junctions gnpinjlations can additionally occur on much shorter time
along the drive edge are 1/1 mode locked, vortices flow exgcales in the bulk of the array. As a result, lifetimes can be

clusively along columns, and the system exhibt€1)  generated over an essentially continuous range of values.
independent frequencies. Some of these frequencies can, %Pwe quantitative study of mixing as also the connection be-

principle, be commensurate. In practice, however, th|§ S€eMZ een the resultant vortex flows and the chaotic attractor are
to happen very rarely. So much so that we have, in fact

) tlearly topics for future research and have not been dealt
never encountered an attractor lower than\QR is, never- N ;
with in this paper.

theless, of interest to look for regions of parameter space, . . .
9 P P Finally, we have supplemented the above picture with

where the system displays &P 1, ... QP equivalent to P ) :
behaviors, particularly with a view to determining whether Maps of the pargmeter space associated with these §ystems.
Eor arrays consisting of single columns, we clearly discern

they are connected via a continuous path. For if they are, w

would arrive at a route to chaos which passes through eadfode-locked Arnold tongues, which overlap in the chaotic
of QPL,...,QP, in partial vindication of the Landau regime. Furthermore, the phase diagram for the32case,

conjecture?? for example, has, nested inside it, that of the 2 triangular

To trace vortex paths in their entirety, it is expedient tonetwork. Not surprisingly, for parameter values correspond-
view an array with free boundaries in an alternative way,ing to the nesting, one of the bonds is clogétrough 1/1
namely, as one half of an array of double length in the di-mode locking to vortices. All the tongues outside this region
rection perpendicular to the external current drive. In theseem to be forked.
double length array, the dynamics is constrained to be anti- To conclude, our work has provided explanations for a
symmetric around the middle and the image system now hasumber of correlations, pointed out by Mehrotra and
periodic boundary conditions. In this extended lattice, theShenoy’® between phase and vortex diagnostics. It has,
vortex number is strictly conserved, i.e., vortices alwaysmoreover, generalized the results of @asl® pertaining to
nucleate and annihilate in pairs and all the frequencies gera triangular network of Josephson junctions. It has placed
erated in the system correspond to vortex lifetimes. Morevortex flows, discussed by Xia and Le#ttin the context of
over, vortex motion is effected by changes 4¢n values, the breakdown of superconductive flow in JJA’s, in a much
which induce nonzero Ohmic voltages in the array. Owing towider framework and given them a much greater signifi-
the long-range interaction, or equivalently, the global cou-cance. Lastly, it has expanded, in some nontrivial ways, on
pling between junctions, any vortex motion is sensed by evthe theme of mode locking, earlier dealt with for harmoni-
ery array site. The same peaks are consequently seen in thally driven Josephson junctions or pendula by Bak and
Fourier transforms of the voltage time series, no matteco-workers?**> among others. It has, therefore, we believe,
where the voltage is measured. The height of a given pealgynthesized a number of seemingly independent investiga-
however, depends on the distance between the bond chostans into a single coherent picture of array dynamics.
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