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A superconducting ring, biased in an external ffhiy/2, can be in either of two energetically degenerate
fluxoid states. In one state, the supercurrent flows in a clockwise direction with a resulting downward magnetic
moment; the current in the other state flows in a counterclockwise direction and its moment points up. There
is thus a strong analogy between such a ring and an Ising spin. Two nearby but electrically isolated rings can
interact magnetically; this interaction favors an antiparallel alignment of moments and is thus analogous to an
antiferromagnetic spin-spin interaction. Regular arrays of such rings may thus be expected to exhibit effects of
lattice geometry and geometrical frustration. To study these issues, we have fabricated arrays containing up to
2.4 X 10 aluminum rings, each approximately 1:6m across. We have used a sensitive superconducting
quantum interference device-based magnetometer to probe the global magnetic properties of the arrays; local
information about particular spin configurations was obtained using a high-resolution scanning Hall probe
microscope. The magnetic measurements show that individual rings do indeed behave as Ising spins, showing
a paramagnetic susceptibility which freezes out only a few milliKelvin below the critical tempefaturenis
illustrates that the ring dynamics is dominated by an energy barrier between the two states which rises rapidly
as the temperature is lowered beldw. The magnetic measurements also show a hysteretic field dependence
of the susceptibility which can be quantitatively interpreted in terms of an antiferromagnetic interaction be-
tween the rings. To explore possible ordering of the spins, we have used the Hall microscope to directly image
specific configurations of spins. We find significant antiferromagnetic nearest-neighbor correlations, but no
evidence for any long-range ordering. We attribute this to a significant degree of disorder in the system related
to small fluctuations in the areas of the aluminum rings. The effective disorder may be increased by working
at higher fractions of®,. The observed short-range correlations drop rapidly at these higher fractions.
[S0163-18297)01710-4

[. INTRODUCTION netic flux® neard /2, a superconducting ring has two states
that are close in energy. One of these states contains zero
An array of closely spaced but electrically isolated superfluxoid quanta (=0), and the other contains one fluxoid
conducting rings forms a novel type of extended superconquantum (=1). The induced supercurrents in these two
ducting microstructuré.Unlike Josephson-junction arrays or states flow in opposite directions, and the ring’s magnetic
wire networks where the individual elements of the array argnoment points either along the applied field or against it. For
coupled directly through the superconducting order param® <®/2 the n=0 state is energetically favored, and for
eter, isolated rings can only couple magnetically. In an ap®>®,/2 then=1 state is favored. Exactly dty/2, they are
plied flux near®,/2 the rings behave like Ising spins and a energetically degenerate. Becauserike) state has its mag-
ring array becomes a model two-dimensio(&D) Ising an- netic moment antiparallel to the field we label it “spin
tiferromagnet. In this paper we describe experiments on ardown;” likewise, because the moment of the=1 state is
rays of micron-size aluminum rings that demonstrate thigarallel to the field, we call this state “spin up.” At low
Ising spin analogy, and show that the distribution of fluxtemperatures, the fluxoid state of the ring cannot change—
guanta in the array is influenced by the interactions betweethe familiar case of flux trapping—and the spin is “frozen,”
the rings. but as we shall see, very closeTp flux quanta move in and
The Ising spin analogy arises because in an applied magput of the ring in a thermally activated fashion, and the ring
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duction in the antiferromagnetic correlations on the geo-
metrically frustrated triangular and kagortadtices as com-
pared to the unfrustrated honeycomb and square lattices.
This paper is organized as follows. Section Il explains the
analogy between Ising spin systems and the superconducting
ring arrays in more detail, and describes the appropriate
model for the arrays: interacting classical two-level systems
in a random field plus an external field. Section Ill describes
the fabrication of the arrays and the measurement techniques
used. Section IV presents magnetization and susceptibility
Field due o measurements, and Sec. V presents magnetic images of the
Ring 1 ring arrays.

Field due to
Ring 2

Applied Field

FIG. 1. Shown are two nearby rings in an applied flux of Il. THEORY
®y/2. Ring 1, with its current and momenj as shown, generates
a dipole magnetic field pointingp at ring 2. Thus the flux through
ring 2 is greater tham /2, stabilizing it in the “spin up” configu- We are interested in the properties of arrays of supercon-
ration. The dipole field from ring 2 then points down at ring 1; this ducting rings neaf., where the rings’ moments can flip
stabilizes ring 1 in its downward orientation. Thus it is energeticallyfree|y. NearT,, the properties of a superconducting ring
favor'able for the tw_o rings to haye opposite spin orientations, i-e-may be calculated from Ginzburg-Land&GL) theory. A
the rings have aantiferromagneticcoupling. detailed calculation for the rings in this experiment is given

in Appendix A; here we discuss some of the main results. In
can flip between spin up and spin down. It is in this regionthermal equilibrium, rings will tend to populate states with
where the inter-ring interactions can have an influence, an¢he lowest free energ§. Figure 2a) showsF(®) at four
possible cooperative effects can occur. temperatures nedr,(®/2), for a ring in either thex=0 or

To see how the rings can interact, consider two supercom=1 state. In this calculation we have used parameters ap-
ducting rings in close proximity in an applied flux dfo/2,  propriate for the aluminum rings used in our experiments.
as illustrated in Fig. 1. The induced supercurrent in each ringhere is a local minimum i, (D) atdy/2 (the Little-Parks
generates an additional magnetic flux through the other ringgffec?), and thus as the curves fat(d/2)+3 mK show,
this is the source of the magnetic interaction. Suppose thaboveTC(CI)O/Z) there is a region neab,/2 where there is no
first ring is spin down, with its moment antiparallel to the syperconducting state. At .(®o/2) the n=0 and n=1
applied fieldH. Because of the dipolar nature of the field a curves first meet, and at that temperature and below, the two
ring generates, the additional field from the first ring makeSStateS are degenera’[e@éjz_ If we move S||ght|y away from
the net flux through the second ring larger thdg/2, and ®y/2, then the free energy may be written
biases it into the spin up state. The field from the second ring: , = F(®,/2)— (H—Hy)u., where u.=—dF./dH is
then reduces the flux through the first ring to less thanhe magnetic moment of the ring in the up-Y or down
@0/2, favoriﬂg its Spin down state. There is thus a net anti'(_) state, andH 112 is the magnetic field required to app|y a
ferromagnetid AFM) interaction between any pair of rings, flux &./2 to the ring.F. thus has the form of a Zeeman
and an array of rings may be thought of as a two-dimensionanergy. .. is plotted in Fig. 2b). Note that the moments in
Ising antiferromagnet. _ . . the up and down states @,/2 are not the same. This arises

Because such a “spin system” is made lithographically,from a nonuniform current density in the ring, and will be
one has considerable freedom in its design, and this 0pens Waen directly in measurements to be discussed in Sec. IV. At
the possibility of doing detailed experimental tests of impor- /2. althoughu, # 1 _ , in our calculation theotal current
tant questions in magnetism involving the effects of lattice| fiowing in the two states is equal, as may be seen in Fig.
geometry and geometrical frustration on antiferromagnetio ) we also note that neaf (H), F~[1—T/T.(H)]?,
ordering. This paper describes experiments on arrays qf~1—T/TC(H), andu~1—T/T.(H), which means that the
micron-sized aluminum rings using superconducting quaniagnetic moment of the Ising spins is temperature depen-
tum interference devicéSQUID) susceptometry and scan- gent.
ning Hall probe microscopy to probe the rings’ dynamics and  The essential physics of the ring arrays ndaf2 (or any

correlations. We find that there are significant short-rangg,qq half-integer multiple ofb) is contained in the antifer-
antiferromagnetic correlations in all the arrays studied. Ther‘?omagnetic Ising Hamiltonian

is no long-range order, however, even on bipartite lattices.
This is due to quenched disorder, which arises from slight

variations in the rings’ areas. These variations lead to H:z Vijsisj_z (H—H' ) u(s)si, 2.0
slightly different fields for a half a flux quantum for different i#] [

rings. This amounts to an effective random field, and the

arrays are therefore random field Ising antiferromagnets. AwhereV;; is the magnetic coupling energy between rings at
the temperature where the spins freeze and can no longsitesi andj, si(==1) is the Ising variable assigned to ring
flip, the magnetic interactions are not strong enough to overi, andH';, is the magnetic field needed to produbg/2 in
come the random field, and only short-range correlations caringi. The coupling energy i¥;; =M;;1;l;, whereM; is the

be established. Nevertheless, we were able to observe a neutual inductance. Since the currents in the two spin states

A. Superconducting rings as Ising spins
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FIG. 3. Due to imperfections in their fabrication, different rings
in the array will have slightly different aredkere greatly exagger-
ated. (a) The applied field is such that the flux through the left ring
is less thanb /2, stabilizing it in a down-spin orientation, while the
flux through the right ring is greater thab,/2, stabilizing its spin
in an upward direction(b) The situation in(a) is equivalent to rings
of equal areas, but acted upon by a small random field component
h" in addition to the applied fielch" points downward for smaller-
than-average rings, and upwards for larger-than-average ones.

1 (107'% emu)
(qwy .01 M

The physics of this situation is identical to one wherein
the rings areidentical but each has a small extra fieft
applied to it Fig. 3(b)]. This field points parallel tt1 for the
right-hand ring, yielding a slightly larger flux than average;
similarly, it points opposite tad for the left-hand ring, pro-
ducing a smaller-than-average flux. The effect of this will be
a tendency for each ring to polarize in the direction of its
local extra field. For an array of rings, weak disorder in the
ring areas can thus be modeled byramdom fieldterm,
FIG. 2. Calculated properties of a square superconducting rin%Ef“(si)_hirsi . Wherehy is a fixed random field, which can
near T.(®o/2) with dimensions the same as those measuf@d. D€ described by some statistical distribution function. For the
Superconducting free energy relative to normal state. Curves withings studied here, a Gaussian distributiorhpfis satisfac-
positive slope are fon=0 state, and curves with negative slope aretory. For a particular ring in the arrayy is the field that
for n=1 state(b) Magnetic moment of ringc) Total current flow-  corresponds to the difference between the fielg, for that
ing in ring. ring and the array-averaged value lgf,,, which we will
denote byH,,. The Hamiltonian for the ring arrays then
becomes the random-field Ising motlel

I (nA)

are the same, we can wrile=1s;, and Vij=MijI2. Note
that this coupling igemperature dependent

= GG — ) "s
B. Random field H_gj Viisis Eu w(s)(h+hi)si, @2

_Inareal ring array, there will be small random variations, e the effective external field fs=H — Hyp. It has been

in the effective aread, of the rings, due to imperfections in " ; ; !
oo o o shown that the lower critical dimension for the random field

the fabrication process. Sineg ;,= ®(/2A;, this will lead to

- . e i . ) Ising model isD=2.* and that the ground state in a weak
small variations in the flipping fieldsly, from ring to ring. y4nq0m field is broken into domains of Bleorder. It turns
This randomness turns out be very important in determining) i+ tor our ring arrays that in the temperature range where

the ground state configuration of the arrays. Its effect is ilyhe rings can flip, the random field term and the interaction
lustrated in Fig. 8). Here, the ring on the left has a slightly (orm are of the same order of magnitude and only near-

smaller area than the ring on the right. Thiis,, for the first  pejghpor correlations are measurably different from zero.
ring is larger tharH ,,, for the second ring. It is then possible

to apply a magnetic field that generates a flux smaller than ) _

®4/2 in the first ring, but larger thai® /2 in the second ring. C. Ring dynamics

In such a field, the first ring will tend to cool down in the  The dynamics of the Ising model in E.2) is deter-
spin-down state, and the second ring will tend to cool dowrmined by the energy barrier between the rings’ spin-up and
in the spin-up state. spin-down states. Unlike spins in conventional magnetic ma-
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TABLE |. Parameters of square and hexagonal rirtg, is field for<I>0/2.T, 3, andK are defined in
Appendix A. For our square rings=0.8 um, andb=1.6 um. For our hexagonal rings=0.538 um, and

b=1.0 um.
Square Hexagon

Hip [D,In(b/a)]/(b*—ad) [2d,In(b/a)J[3V3(b2—a?)]
T(n,H) (n2/8)In(b/a)—n[H(b?—a%))/(8Dy) [n?/(4+/3)]In(bla)—n[3H(b?—a?) J/(8Dq)

+[H?(b*—a%]/(3203) +[27H2(b*—a%)]/(64/3D2)
J(n,H) (n/8)In(bla) —[H(b?>—a?) /(16D ) [n/(4+/3)]In(b/a)—[3H(b?>—a?) /(16D )
K(n,H) [(b*—a®)/16){n—[H(b?+a?)]/(2®g)} [3(b*—a?)/16]{n—[33H(b?+a%)]/(4®Dc)}
calculatedH 7.48 G 6.95 G
measured 4/, 753 G 6.98 G
measured(0) 0.24um 0.235um

terials, the spin state of a superconducting ring involves @he energy barrier to rings with smaller valueslgf. Our
macroscopic number of particles. To change the spin state aheasurements of the frequency dependence of the ac suscep-
a ring, a flux quantum must move in or out of it, which tibility (Sec. IV B) show that the barrier iEg~|F|/3, where
means that it is necessary to break all the Cooper pairs th&t is the total superconducting free energy of e 0 or

are contained in a volume of orddw¢, whered andw are n=1 state. Although the saddle point solutions have not
the wire thickness and width, respectively, afiis the GL  been examined exhaustively to find the minimum barrier
coherence length. This leads tdeanperature-dependeeh-  height, there is one such state that gives good quantitative
ergy barrierEg~|e |dwé~[1—T/T(Po/2)]? between the agreement with our dafaThis will be described in more

two spin states,where e, is the condensation energy. The detail in Sec. IV B. In the discussions that immediately fol-

frequency of thermally induced spin transitions is then low, we will estimate the flipping rates takingg~|F|/3
T with Q given by Eg. (2.4, and assuming that
I'=Qe "', (2.3 7= mhi8kg[To(H)—T].
where() is an attempt frequency. In most of the supercon-
ducting phase diagram this barrier is so large that a ring D. Estimate of the Neel ordering temperature

never spontaneously flips its spin. The only ex.ception iSVery \we now estimate the ordering temperatdig for the

nearT., and very neafo/2 (or any other half-integer frac- |sjng transition in a bipartite superconducting ring array, ne-

tion), when the energy barrier becomes small enough so thgfiecting the random field. We show that this temperature is

spontaneous spin transitions can take place. However, singga|| above the freezing temperatufe; this gives us confi-

Eg rises rapidly asT is lowered belowT, andI' depends dence that, absent any randomness, thel Nfate is experi-

exponentially orEg, there is a rather well-defined tempera- mentally accessible. As is well knownfor the near-

ture T where the rings’ moments will freeze out. neighbor Ising modelTy occurs atkgTy=2.27V;; for the
The energy barrier between different fluxoid states that isquare lattice, and & Ty= 1.52v;; for the honeycomb lat-

appropriate for a ring with circumferende much longer tice. Unlike the usual Ising model, however, for the rings the

than the coherence length was originally calculated bynteraction strengthv;; is temperature dependent. From Eq.

Langer and AmbegaokarThey assumed that during the (A10), the temperature dependence of the rings' supercur-

transition the order parameter passes through a saddle poi¥nts neaiT.(dy/2) is

of the free-energy functional. The saddle point functions also

satisfy the GL equations, and the energy barrier is the differ-

ence between the energies of the fluxoid states and the en- |i=|(0)( 1- m) (2.9

ergy of the saddle point solutions. For an infinitely long wire, o

this energy barrier isEg=3.77€/wdé. Using time-  wherel (0) can be obtained from E¢AL10) and Table I. The

dependent GL theory, McCumber and Halp&rietermined  ring-ring interaction is then

the attempt frequency to be

T 2
Vi-(T):ViO-(l——) , (2.6
-t /Eel (2.4 : N Tl @02
kBT Ts

¢ with V?j = MijIZ(O). Therefore, ad decreases, the coupling
where 7= 77 /8kg(T.—T) is the relaxation time of the su- energies increase very rapidly. The near-neighbor mutual in-
perconductor. Tarliet al.” have extended the calculation of ductance for both our square and honeycomb arrays is about
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68 fH. The current prefactor i$(0)~5 mA. The near-
neighbor interaction is then/%,=1.7x10"'% J. Hence,
1-Ty/Te(Po/2)=2%x10" 2 for the square lattice, and
1-Ty/Te(Py/2)=2.5x10 2 for the honeycomb lattice.

T(Dy/2).

To observe the ordered spin state experimentally, the tem- B ¥
peratureT; when the individual rings freeze must be below &
Tn . Because the flipping is thermally activated, as shown by
Eqg. (2.3, the freezing of the individual rings occurs much
more rapidly than the increase of the ring interactions. We
can estimate the flipping rate at,, taking Eg~|F|/3 as
outlined in the previous section. From Appendix A, for the
square lattice the free energy per ring is
F~5.06x10 11— T/T.(®,/2)]? J. Note that this is much
larger than the coupling energy V. Then,
Eg(Tn)/kgTy~4.2, and'~1.6x 10 Hz. Thus, the corre-
lated state could easily be realized in experimental time
scales if the random field were not present. Similarly, for the
honeycomb lattice, we find that at the Ising transition
'~3x10" Hz.

For Ising spins on nonbipartite lattices, such as the
kagome and triangular lattices, the ground state is not FIG. 4. SEM micrographs of arrays of aluminum rings. All rings
unique® and there is no long-range antiferromagnetic orderhave 0.4um linewidth and are 0.24m thick. Top left: honey-
The absence of long-range order originates from geometricaiomb lattice; top right: kagomattice; bottom left: triangular lat-
frustration. The magnetic behavior of the ring arrays on theséce; bottom right: square lattice. Inset: unit cell of a “sparse” array
lattices should be different from the magnetic behavior ofof square rings used to study effect of interring separation on inter-
bipartite ring lattices. Direct observations of spin correla-actions.
tions, using the scanning Hall microscope technique, will be

described in Sec. V. dimensions and near-neighbor spacings are identical, and so,
presumably, are the near-neighbor couplings. Only the lattice
lll. FABRICATION AND MEASUREMENT TECHNIQUES connectivity is changed. We can also hold the ring size and

lattice connectivity constant, and vary the inter-ring spacing.
The inset to Fig. 4 shows a portion of a “sparse” array of
Our main goal in designing the ring lattices was to maxi-square rings identical to those in the square lattice in Fig. 4.
mize the magnetic coupling between the rings at the freezing To maximize the mutual inductance on the densely-
temperature. Thus the parameter to be maximized is the ratipacked lattices, the rings were made in square or hexagonal
of the ring-ring coupling energy to the energy barrier shapes. The outer sides of the square rings areinand
Eg. Both Eg and V are temperature dependent, but theirthe outer sides of the hexagonal rings arg.rh. For both
ratio is not. Using Table I, EqgA7) and(A10), and taking  shapes, the wire widths are Qu4m, the film thicknesses are

A. Ring array fabrication

Eg~|F|/3, we find that this ratio is approximately 0.23um and the gap between rings is uBn. For the sparse
square array shown in the inset to Fig. 4, the gap between the
\% £\ 2wdMc@ rings is 2.4um. Assuming that the current distribution in the
E_B%37T L 3.9 rings is given by Eq(A2), the self inductance of both the

square and the hexagonal ringd.is= 1.6 pH. For the square

where\/§ is the Ginzburg Landau parameter. To maximizelattice in Fig. 4, the first, second, and third nearest-neighbor
&I\, we chose aluminum, because it is a strongly type-lI sumutual inductances are 68, 18, and 4 fH, respectively. Very
perconductor. The ratisvdMc?/L® depends only on the similar numbers were obtained in a calculation with uniform
rings’ geometry. We calculate® numerically, assuming current densities. The near-neighbor coupling between the
that the current density distribution is given by Hé2), rings in the sparse array is 18 times smaller than the coupling
although the result obtained assuming a uniform current derbetween the closely spaced rings. For the three hexagon ring
sity is not appreciably differentM is a decreasing function lattices, the first and second nearest-neighbor mutual induc-
of w andd, and an increasing function @&f, but these de- tances are 68 and 4 fH, respectively.
pendences are weaker than the prefagtdfL>. To maxi- The ring arrays were produced at the Cornell Nanofabri-
mize V/Eg the rings should therefore have small circumfer-cation Facility. They were made on sapphire substrates by
ence and large thickness and width. Of course, to maximizelectron beam lithography using a single layer resist, fol-
M the rings should be as close together as possible. lowed by e-beam evaporation of the aluminum and lift off.

Figure 4 shows scanning electron microsc6EM) im-  The dense square arrays had 160 000 rings, and the honey-
ages of the four basic lattices that we constructed: honeyeomb, kagomgand triangular lattices had 170 000, 182 000,
comb, kagomgsquare, and triangular. Note that in the hon-and 243 000 rings, respectively. The sparse square arrays had
eycomb, kagome and triangular lattices the rings’ 40 000 rings.
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B. SQUID Magnetometer

The magnetic moment and ac susceptibiligyH,T) of 0.5
the arrays was measured as a function of dc fléldand
temperaturel with a SQUID magnetometer mounted on a
dilution refrigerator.H and the ac measuring field,; were 5
produced by separate superconducting solenoids. The dc§
magnet was operated in persistent mode to produce a stablez, -05},
field, and to provide magnetic shielding. Induced currents in i
a gradiometer consisting of a pair of five-turn pickup coils 59676 (4z7ay OO
(radius 0.5 cthwere measured with a commerci@TI) dc or cora basee) T 1
SQUID. Additional magnetic screening was provided by Pb 7546 onaey 02[

7.234 G (0.5180,)

0.0

edOe>m
IIIIIZT
Wy

and p-metal shields. 151 | 8'576(: oered 'O'ﬁ.;s X I1.I17 e
The sample was mounted on a sapphire rod and placed in 0.95 1.00 1.05 110 1.15 1.20
the center of one of the pickup coils. The rod was heat sunk T(K)

to the mixing chamber of the dilution refrigerator. Tempera-
- " : d
tcure staﬁlllty of _%O MK W?SdaChltived .Wlth ah LaIE)EShore. FIG. 5. Field-cooled dc magnetic moment per riagvs tem-
ernox er_mlome_ er moug ('-:‘d on g mixing champer, uslllngerature for a kagomiattice in the region around /2 applied flux
a commercia resistance bridge and temperature controllef, ring. Inset shows linear dependenceuwodn T very nearT, .
With H,.=6 mG rms at frequenc§=3 Hz, the ac response

was linear for alH andT, and the total ac moment produced A. Magnetic moment measurements
by the arrays was=1x 10°° emu forT<T.. The low fre- Figure 5 shows the magnetic moment per riagas a
quency sensitivity of the gradiometer was 10 emuA/Hz. function of temperature nedr, for a kagomdattice of hex-

agonal rings. The rings were cooled in a fixed applied mag-
netic fieldH. The average field for half a flux quantum for
this array isH,=6.977 G, as determined from SHM mea-
The low-temperature spin configurations of the arrayssurementgSec. V B. If H is less tharH,,,, u is negative
were imaged using a scanning Hall probe microscdpe. indicating that a majority of the rings are in tine=0 state
Scanning Hall probe microscod$HM) is a technique suit-  with their spins pointing in the direction opposite to the ap-
able for spatial imaging of magnetic fields with micron spa-pjied field. If H is greater tharH,,,, w is positive and a
tial resolution*? A similar microscope has been used to im- majority of the rings are in the=1 state with their spins
age vortices in superconducting wire netwotkshe Hall ointing parallel to the field. IH=H,, practically no net
probe is made of a GaAIAs/GaAs heterostructurg patterne agnetic moment appears beldw. This occurs because
into a Hall geometry by photolithography. The size of thehalf of the rings in the array cool into the spin up state and

Hall probe is X1 um. The active area of the probe is within : ;
~7 um of the comer of the GaAs chip: this allows the probe_ah‘ cool into the spin down state. Note that the value of

to be brought very closé~0.5 um) to the upper surface of H,, value agrees very well with the calculated valig, =

. : . - . 1.95 G(see Table)l
the rings. This close approach is necessary to obtain hlgﬁ ) ;
spatial resolution and large field modulations. The inset to Fig. 5 shows that very neBy(®o/2) the

The microscope’s scan range at 4.2 K is approximatelfverage magnetic moment per ring, and thus the average

150x150 um. The sensitivity of the Hall probe is about 5 current per ring, is a linear function df. One can also see
mG/yHz. The Hall voltage was measured using a Oligitalthe minimum inT. at ®,/2, characteristic of the Little-Parks
lockin arﬁplifier atf =1 kHz, with a 3-ms time constant. The effect” We can calculate the coh.er'ence length by comparing
entire microscope was attached tdtde cryostat, and could the measured'(H) to the predictions of GL theory. We

b casycooled o abov, 1 about 650 mk where he 208 SI0)7 05 W 2 Ve L
images were taken. ' y

effects. Table | summarizes these results for both the square
and hexagonal rings.
We also find that the magnetic moment in the spin down
stateu_ is noticeably larger than the magnetic moment in
In this section we describe magnetic measurements madbe spin up state., , consistent with the GL analysis sum-
on the arrays with the SQUID magnetometer. Several typemarized in Fig. 2. This can be seen most clearly by compar-
of measurements were performed. From measurements of tlrg the data at 0.49%, and 0.504d in Fig. 5. This asym-
dc magnetic moments of the arrays as a function of temperanetry arises because in a ring with finite wire width, the
ture and field, we show that individual rings do indeed be-current distributions are different in the up and down states.
have like Ising spins. We then probe tdgnamicsof the = The measured ratio of the magnetic moments in the spin up
rings using the temperature dependence of the ac susceptibénd the spin down states fig., /u_|=0.69 just belowT.
ity. Such measurements clearly show the freezeout of thén our approximate calculation within GL theotyee Table |
spins as the temperature is lowered only slightly beflqw  and Fig. 2, the total currents flowing in the two states of a
Finally, from the field dependence of the ac susceptibility wering are identical in magnitude, but the magnetic moments
can obtain information about the magnitude and sign of theare not. For the hexagonal rings our calculation gives
inter-ring magnetic interactions. |, I |=0.78.

C. Scanning Hall probe microscope

IV. MAGNETIC MEASUREMENTS
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ﬂ]}gggﬁ FIG. 7. ac susceptibility of kagomeand triangulafinse} ring
1.0 o) = 1174 K 0T -11700K arrays neafl . . In zero applied dc flux, only a diamagnetic response
ol®o/2) =1. is observed. Atby/2, a large paramagnetic spike 1 appears as
1 1 ! | 1 . H . . .
0.95 1.00 105 110 115 the rings flip in response to the ac field. The freezing temperature

T(K) T; (dashed lingis defined by the peak iy” (open circles The
data are normalized tg,, the value ofy atT=1 K.

FIG. 6. Determination of temperature range where rings can flip. . R )
(a) Dashed arrows: path ifl-T plane traversed by array to first at T"=1.170 K,x% =0.5 which means that the energy bar-
prepare it in a state with all rings spin down, and then to warm tofier between the up and down states has been reduced suffi-

T* to allow rings to flip. Solid arrow: line along which(T) shown  ciently to allow the rings to reach thermal equilibrium. This
in (b) was measuredc) Fraction of rings that flipped from spin temperature is about 4 mK beloW,(®y/2). As T* is re-
down to spin up for different™. duced, howeven. drops rapidly to zero; foll *<1.158 K
no rings could flip. Thus there is only a narrow temperature
At low temperatures, the magnetic moment per ring isregion within about 10 mK of . where the energy barrier is
nearly temperature independent. Using Table | we can calcusmall enough to allow the rings to reconfigure thermally.
late the current corresponding to the measured magnetic mrhis is a crucial result, and should be born in mind in all
ment, and hence estimate the self-induced flux in a ring. Abubsequent discussion. Notice that the freezing process is
T=0.95 K, we find that®=L=0.45D,, which is ap- gradual as the temperature decreases. This suggests that the
proaching the perfectly screened limit of GIg,. spin freezing temperature is not the same for each ring, i.e.,
Magnetization measurements can also give us the range @fat there is a distribution of thermal relaxation times.
temperatures nedr.(®o/2) where the rings can flip. To do
this, the rings were first cooled down to 0.95 K in zero field,
as sketched in Fig. (8). In this way, all the rings were B. ac susceptibility: temperature dependence
trapped in then=0 state. The applied field was then set By measuring the ac susceptibility(H,T), we could
to Hy». Since the rings are strongly hysteretic at this lowprobe the rings’ dynamics directly. This section describes the
temperature, no rings flipped when the field was increasedemperature dependence of the susceptibility at fixed field,
Next, the temperature was increased to some valuahich gives us quantitative information on the average dy-
T*<T.(Po/2). This was done carefully, making sure that namic response of individual rings.
the temperature was always less than or equal*toThe To measure y(H,T), a magnetic field H(t)=H
rings were kept aff* for one minute, and then they were +H_coswt was applied to the sample, and the resulting ac
cooled back to 0.95 K while the magnetic moment was mearesponse from the SQUID was measured with a lockin am-
sured. Figure @) shows the magnetic moment per ring mea-plifier. The dc fieldH was typically near the field corre-
sured in this way for a kagomarray. Initially atT=0.95 K sponding toD,/2 (7.0 or 7.5 G, andH .. was typically 6 mG
andH=H,,,, all the rings are in the spin down state with rms.
magnetic momeng _ . After cycling to T* and back, some Figure 7 shows the temperature dependence of the real
of the rings have flipped, and the average moment per ring ipart of the susceptibilityy’ for the hexagonal rings at
pw=xipu,+(1-x3)u_, wherex’ is the fraction of the w/2m=3 Hz in average applied fluxeb=0 and® = 0.5
rings that flipped to the up state &t. Solving forx’. gives  ®,. ® is defined such thab=® /2 when half the spins are
up and half down in a field-cooled magnetizatidtig. 5 or
P S Ty TA SHM (Fig. 19 measurement. The main part of the figure
+ :m- (4. shows data for a kagoniattice very neafT., and the inset
shows data for a triangular lattice over a broader temperature
p*lu_ is obtained from the data in Fig. 6, and range. At zero flux per ring the ac susceptibility in the su-
mylp_=—0.73:0.01 at 0.95 K from the data in Fig. 5. perconducting state is negative. This differential Meissner
The results fox’; vs T* are shown in Fig. &@). We see that effect arises as the ac flux is screened from passing through
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the rings. Atdy/2, however, they’ vs T curve is very dif- 25—
ferent: there is a dramatic paramagnetic spikeg ifjust be- B

low T.. Then, as the temperature is decreased furjter ool PPo=12

becomes negative, and the differential Meissner effect is re-

covered. 15

The paramagnetic signal jp’ at 0.5® occurs precisely
in the temperature range where thgT) measurements 2 10
show that the rings can reorient. It arises because the rings =
are switching between the=0 andn=1 fluxoid states in 05
response to the ac field. This flipping leads to a paramagnetic
response, just as for spins in a magnetic system. Unlike or- 0.0
dinary spins, however, the temperature dependence of the
rings’ magnetic momento1—T/T, leads to a much faster 05
rise in y than the usual Curie-type response. At first glance,
the peak iny’ might appear to signify a cooperative ordering T(K)
transition. However, we observed this peak in all of the ar-
rays, irrespective of lattice geometry or inter-ring F!G. 8. Frequency dependence of the ac susceptibilitp g2
Separatior'}f‘ The peak is in fact a single-ring effect that re- for the no.nlnteractlng “.spz.alrse” array of. square rings shown in the
flects the temperature dependence of the rings’ dynamics. inset to Fig. 4. The solid lines are the fit described in the text.

As for any two-level systefl the dynamics are deter-
mined by the transition rat€ [Eq. (2.3)] between the two
states. For the rings, the dominant influencdois the tem-
perature dependence &y, Eg~[1—T /T (Po/2)]? (see
Sec. Il Q. Just belowT ; whenEg is small,T" is large. When
I'> w, the population of up and down spins stays in thermal
equilibrium as the ac field changes, and the ac response mesR
sures the dc, or isothermal, susceptibility. HoweverEgs
grows with decreasing temperatulle,decreases extremely
rapidly. WhenI'~ w, the amplitude ofy’ drops and a phase
shift marked by a peak ig” appears, as shown in Fig. 7. The
temperature of the peak i’ defines the freezing tempera-
ture T; at frequencyw (dotted ling. As Eg grows further at

PR S S R T S R
1.155 1.160 1.165

wherex, andx_ are the concentration of rings in the up and
down spin states, and., u., andy’, are the correspond-
ing free energy, magnetic moment, and adiabatic susceptibil-
ity of those states. Whew =0, the last term is the dc sus-
ceptibility derived from the statistical mechanics of one Ising
in.

Direct application of Eq(4.2) does not fit the data in Fig.

8, because it gives a drop ji below T; that is much more
rapid than the observed behavior. However, intrinsic disorder
in the arrays can give a distribution of flipping ratésThis

will tend to broaden the peak. The lines in Fig. 8 were ob-
tained fitting all the data in the figure simultaneously to a two

lower temperatured; becomes much smaller than Then parameter mo.dellthat_averag_es ,E(@}_.Z) over assumed
Gaussian distributions in the rings’ dimensions and coher-

the rings can no longer flip in response k., and that i
contribution toy is suppressed. There is a second contribu*"¢® lengths:
tion to the ac susceptibility, however, which is equal to the
field derivative of the magnetic moment of the rings trapped x’(T,H,w)zf f dé(0)dLy'(T,H,w,I',£(0),L)
in the up and/or down states. We see from Fidp) 2hat near

®y/2, the slope of the, vs @ curve ispositive This “adia- 1

bat!c Sl_JspeptibiIity” thus gives rise to the residyaramag- XW

netictail in y(T) below the peak. o o
Because of the stronf dependence dg, the transition (£(0)—£(0))?>  (L—L)?

from dynamic to frozen spins happens in a region only a few X - 2(5¢(0))2 - 2(6L)2 |

mK wide. Nonetheless, the frequency dependencer of
characteristic of this type of dynamic freezing can be ob- 4.3

served. The frequency dependence6fis shown in Fig. 8,  pare | is the average circumference of a ring, and hence the

for a sparse array of sguare rings. Asis reduced Ty be- integral overL averages over the equivalent random field.
comes lower, and the peak jri shifts to lower temperature. e \ire width was kept constant for simplicity. The value

We can model the ac response of the rings with a Stra'g.htSL/L=0.55A/A=0.0027 was fixed based on the rms varia-
forward extension of the theory of paramagnetic

relaxation’>1® The susceptibilityy’ as a function of fre- tion in the ring areasA/A determined independently from

Lencve for an ensemble GHenticalnoninteracting fings is the field scans of’ described in the next section. The varia-
q y gring tion in flipping rate comes primarily from the distribution of

coherence lengths in the rings, which presumably also arises
from imperfections in the rings. Taking faf(0) the value
given in Table |, the only free parameters left in the fit are
(s —p_)? 1 0¢(0) and an overall scale factor. The fit gave

X' (T,H,0,T)=x, x +x_x"

(wl2I')%+ coshw The calculated frequency dependence bfis very sensi-
B

tive to the energy barrier used to determiiie We found
(4.2 empirically that to obtain a good fit t9' (w,T) it was nec-
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essary to tak&gz=|F|/3. We propose an explanation for this
value by noting that there is a possible intermediate state in
which the order parameter goes to zero at one point on the
ring circumferencé.As such a state carries zero current, it is
a plausible intermediate for a ring to pass through during the
current reversal associated with a spin flip. For an infinitesi- = 44
mally thin ring, the free energy of this state is approximately =
2/3 of the free energy of the spin statesbgf2, which means
thatEg~|F|/3 as needed for the fit. The ratio of the energies

of the intermediate state and the spin states is very weakly 0.5
dependent onL/¢, varying from 0.67 to 0.71 F for
7<L/£<6. Thus, we expect that approximately the same

barrier is valid even for wide superconducting rings. It turns 1.5
out that this state is a special case of the general saddle point
states considered by Tarlk al,!” and thus it is possible that
this state does not represent the true barrier. A full explora-
tion of the saddle point states is beyond the scope of the
present analysis, but in light of the good agreement of the fit
with the data, it is likely that this zero-current intermediate
state is close to the true barriér. 05

1.5

I
= 1.0

C. Field-dependent susceptibility 0.490 0.495 0'55?21)0 0.505 0.510

The magnetic measurements discussed in the previous
sections demonstrate that individual rings are indeed analo- F|G. 9. Field-dependence of the ac susceptibility of noninteract-
gous to Ising spins. However, those measurements do not telg rings: y’ for a “sparse” array of square rings vs applied dc flux
us anything about the nature of possibiteractionsbetween  for fixed temperatureéa) above andb) below the temperaturg,,
the rings. To investigate this aspect of the problem, we havef the peak iny(T). Open symbols: increasing field; filled symbols:
explored thdield dependencef the magnetic susceptibility, decreasing field. Solid lines are fits to Gaussians plus a linear back-
x(H). We find a broadening of the peak y{H), as well as  ground. The widths of the Gaussians are independefi, aind
a hysteretic behavior between field sweeps up and down. Wkeflect the distribution of the rings’ areas and hence the random
show that both effects provide clear evidence of antiferrodfield.
magnetic interactions between the rings.

Figure 9 shows the field dependence yoffor a sparse find the standard deviation of the Gaussians for the sparse
array of square rings. Since, as we have seen, the magnetiag array to be 2.X10 3®,=5.4x10 3®,/2. Since
interactions between these sparsely spaced rings are about 48,=d,/2A, this implies that the rms fluctuations in the
times smaller than in dense arrays of rings, we expect that ifing areas is8A,,s/ A=0.0054, or about half a percent.
these arrays interactions will be negligible. The upper graph In this treatment we have assumed thattthermalwidth
shows field scans at temperatures higher than the peak it y is small compared to this disorder-induced width. This
x(T). At these temperatures we expect those rings that arng reasonable, since the width due to disorder is about eight
nearH,, to flip freely with the ac field. The lower graph is times the thermal width, as can be calculated from B®),
obtained at temperatures below the peak temperalyre or obtained experimentally as described in Sec. VD. We
Here, rings are beginning to freeze out and we might expeciiso note that field sweeps up and down appear identical.
slow dynamics and hysteresis to become important. The field Field scans on arrays of closely spaced rings exhibit much
was swept up(open symbols and down(filled symbols.  more complex behavior than the sparse arrays, because of the
The lines between the points are fits to a Gaussian with @ter-ring coupling. Figure 10 shows the effects of ring cou-
sloping background. The Gaussian shape in all #iel)  pling on the susceptibility of a triangular lattice array. Again
curves comes from the distribution of the random fields field sweeps up and down are shown, both above and below
which again are related to the distribution in the rings’ areasthe temperature of the peak §=1.172 K. We note two
Thus, at low applied fields, only those few rings with areasimportant differences between this dense ring data and that
rather larger than the average size will feel an applied flux ofrom the sparse array@ig. 9). First, the peak widths are
®,/2 and thus be able to flip readily and hence contribute tavider for the dense array scans. Second, while afigvthe
the susceptibility. When the applied flulk=®4/2, then a up and the down sweeps yield identical resuttslow T, a
large number of rings with areas equal to the average aresplitting develops between the two sweep directions. Note
can participate, leading to a peak jn Finally, for large that this splitting is such that the peak occursfore the
applied fields, there is a contribution from only the few applied flux is equal toby/2 for the sweep up, buafter
rather small rings. Thus the Gaussian shapg(éf) directly  ®/2 for the sweep down. We now show how these facts can
reflects an evidently Gaussian distribution of ring areas, orbe interpreted as evidence for antiferromagnetic interactions
equivalently, of random fields. We have also added a slopingnodified by dynamical freezing of rings.
linear background to these fits to model the adiabatic limits Let us first discuss the broadening of the peak width. This
of x inthen=0 andn=1 states. From the data in Fig. 9, we effect is due to an average magnetic field generated by the
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FIG. 10. Field-dependence of the ac susceptibility of interacting F!G- 11. (@) Broadening of the peak due to interactions. The
rings: x' for a triangular lattice vs applied dc flux for fixed tem- dotted curve represenjg(H) for a noninteractindi.e., sparsgar-
peraturega) above andb) below the temperaturg, of the peak in ray. Here the_broa_ldenlng is due to dls_orgler only. In the m_teractlng
¥(T). Open symbols: increasing field; filled symbols: decreasing®@S€; an applied fieldl below the peak is increased by the interac-
field. Solid lines are fits to Gaussians. The temperature dependend@n field to an actual field,; the measured susceptibility is then

of both the peak widths and the peak positions demonstrates thg(Ha), but it is plottedat H. As shown, this leads to an apparent
presence of interactions between the rings. broadening of the peak. A similar argument holds for applied fields

above the peakb) There are three “classes” of spins: those with

very small barriers atl,,,, which flip freely atH,,, and contribute
currents in the rings themselves. When we start a sweep & y; those with large barriers, which never flip at contribute noth-
low fields, almost all the spins will point down. As we have ing to the dynamics; and those with intermediate barriers, too large
seen, the dipolar nature of these downward-pointing mofor the small ac field to flip, but which can flip once as the dc field
ments leads to a magnetic field pointing at neighboring ranges somewhat past théls,,. The excess number of such once-
rings. Thus, when all the rings point down, there is a ratheflipping spins is shown irfc). As the field is swept up, there is an
uniform “mean field” pointing up. This means that the ac- excess of down spins, leading to an average upward mean field
tual field H,, felt by the rings idarger than the applied field Which persists well past the peak 1 Upon sweeping down, how-
H [Fig. 11(@)]. The largest rings in the distribution will €ver, there is a deficit of such spins, so that the mean field points up.
therefore reach their flipping fielth,,, at a lower applied This leads to hyst(_aresis i(H) at lower temperatures where the
field than they would have without interactions, and the susfing dynamics begin to freeze out.
ceptibility will begin to rise sooner. This effect persists as
long as there are more spins down than up, that is, untibelow Ty, a splitting develops between up and down
®d=dy/2. Here, there are as many up spins as down and theweeps. The above ideas cannot explain this, since in this
mean field is zero. As we move pab/2, an excess of up picture the mean field is zero dt=®/2, and so the peak
spins develops, leading to a downward-pointing mean fieldposition should be the same for both sweep directions. To
This means the actual field is somewlextsthan the applied understand this splitting, we need to invoke the idea that
field, implying that the last few small rings will readth;;,  below Tp, rings are beginning to freeze out. We have al-
only at a larger applied field than would be the case with naeady seer{Sec. IV B that there is a distribution of coher-
interactiond Fig. 11(a)]. Thus the noninteracting Gaussian of ence lengths or, equivalently, of barrier heights. Thus, for
Fig. 9 is spread out by interactions to the wider Gaussian of <T, we can think schematically of there being three
Fig. 10. “classes” of rings[Fig 11(b)]. Some rings will have barriers

This explanation is adequate above the peak temperatusenaller tharkgT, and these can flip freely &t,,, and con-

Tp, where we expect the energy barrier for flipping to betribute to the peak iny. Other rings will have very large
small, and for each ring to contribute to the peakyiwwvhen  barriers, and will never flip during the sweep. Some fraction,
the applied field is near itd ,,. However, we have seen that however, will have intermediate-sized barriers. These barri-
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rises as +T/T.. Thus the peak width, which as we have
seen is proportional to the interaction field, grows linearly
with falling T. Of course, a sparse array has negligible inter-
actions, and its width reflects only the disorder in the ring
areas. A similar explanation holds for the initial rise of the
peak splitting shown in Fig. 18). The splitting is propor-
tional to the interaction field, which grows with fallinf.

5| (o) den'se array We note, however, that neither the peak width nor split-
6x10 - N ting continue to grow as the temperature is further lowered,

X0

E’ and indeed both appear to begin to fall at the lowest tempera-
g 4 | tures in Fig. 12. This is because at these temperatures the
£ __— Sparse aay energy barrie_rs .of all rings are rising rapidly. Thus, ‘many
H e T S S = [ R rings are beginning to freeze out entirely, and never flip dur-
2 : : ' : ing the course of the sweep. The fraction of freely flipping
0.501 © ¢ decreasing field _| spins, which determines the peak width, and of once-flipping

spins, which determines the splitting, are both dropping.
To compare the strength of the random field to that of the
interaction field, we may apply a quantitative analysis of the

0.500

center (d/d,)

0.499 o increasing field ideas shown schematically in Fig. 11. Let the field on a ring
L due to the current flowing in one of its neighbors be

-8 -6 -4 2 0 Hix=MI/A, with A the average ring area. Then we can
T-Tc (mK) compute themean effective fieldh, at a ring due to both

the effective applied fieldh and the fields due ta nearest-
FIG. 12. Results of fits to field-dependent susceptibility of tri- N€ighbor rings as
angular lattice shown in Fig. 10a) ac susceptibilityx(T). (b)
Width of peak. Also shown is width of peaks for sparse array from ha=h+zHin(X- =X ), (4.4

Fig. 9. (c) Splitting of peak. .
9. 9. (c) Splitting of p where x, and x_ are the concentration of up and down

ers are too large to allow the spins to follow the ac field, andP'"S: respectively. If we assume a purely Gaussian distribu-

they make no contribution tey. However, they are small tion of r!ng sizes 'or flipping field$d}, (as Fig. 9.implie}';. .
enough to allow the spin to flip from down to up after the thenx, is proportional to the area of the Gaussian which is

applied dc field passes some distance beyidpd. This is Pelow h.. This is because all spins which have flipping
illustrated in Fig. 11b). We see that such a spin starts in its fi€lds belowh, will have flipped up, while all those above

down “well,” which is much lower than the up well at low "€main down. Thus we can write
applied fields. As the field is increased to this ringlg,,

the bottoms of the two wells become the same depth. How- .=~ 1 (Ha o o, Lterf(hy/\20)

L S X4 = exp —yl2o°)dy=—F7——.
ever, the barrier is still large enough to prevent any flipping. Pra) -« 2
Only when the dc field is somewhgteaterthanH,, does (4.5)

the spin suddenly flip. Once it does so, however, it is how in

the deeper “up” well, and cannot flip back. Given the dis- Here,o is the random Gaussian widtm field) determined
tribution of barrier heights and ring areas, we expect then affom the noninteracting sparse array sweeps. Inserting this
excess of such down spins which persists pbgt2, as in  into Eq. (4.4) yields

Fig. 11(c). This implies a mean field pointing up, even at

® /2. This means the actual field is somewhat larger than the ha=h—2zHy erf(h,/\20). (4.6
applied field, and the peak occurs befabg/2. When the _ ) ) o

field is swept back down, a similar argument holds, except This equation yield$1,(h) only implicitly. We can, how-
there is now an excess of up spins which persists belov@ver, expand this function aroumd=0, which yields

®,/2. This moves the peak to a higher value®fon the
downward sweep. h.— h

In Figs. 12a)—12c) we plot (a) the susceptibilityy(T), 1+ z2Im(Hyylo
(b) the width of the peak, antt) the peak splitting for the
sweeps on the triangular array shown in Fig. 10. Shown fohus to second order, the shape of the interacting-ring peak
comparison in Fig. 1) is the peak width for the sparse Will be thesameas that of the noninteracting peak, as seen in
square array data of Fig. 9. Note that the temperature scale ige data where Gaussian fits work well for both cases. The
expanded to 8 mK. At high temperatures the peak width ofatio of the widths of the peaks is then given by
the densdinteracting array is similar to that of the sparse

) +0(h3). 4.7

(noninteractiny array, but for the dense array the width be- _ width of interacting peak
gins to grow roughly linearly with falling temperature. The o = width of noninteracting peak
width of the sparse arrays is independenflofThese tem-

perature dependences reflect the fact that the currents in the 1422/ M

rings—and thus the interaction field caused by the rings— o
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MI
=1+2z\2/m —, (4.9
T

where oy is the random width measured in units of flux.

From Fig. 12 we see that d.—T~3 mK the width of
the interacting(dense array peak is about %10 3®,
while the width of the noninteractin(sparse arrgypeak is
0p=2.7X103®,. Thus the ratioR is 1.9, yielding
MI1=0.1974=1.05x10 8 Tm?. With M=68 fF for the
hexagonal rings, we find thdt=15uA. Thus the rate of
increase in current with falling temperature is abdlitd T
=15 uA/3 mK=5 mA/K.

We may compare this with the currents per ring derived
directly from magnetization measurements. The best esti-
mate of the ”.‘O’“er.“ of onering nedg/2 can be fou_nd from FIG. 13. (a) Magnetic image of a honeycomb lattice in an ap-
the data of Fig. 6, in which the arrays were zero-field cooled lied flux of 04360 h I the ri i the spin d ot

d then had the field turned on. The [aW=1.1578 K data  ~y . -ox O =422 P0: NIEre, @1Ihe TIngs are i te Spin Gown S1ate.
a_n "1 ) The triangular lattice of bright spots shows the lattice holes, i.e., the
yields a slopaedu/dT=1.3X 10" -~ emu/K. We may convert

; positions of the missing rings in the honeycomb lattit®.Image
from moment to current using EqEA10) and (A13), cOM-  (piained at 0.4913,, in the same region of the array. The few

puting u=1K(0,H)/cJ(0H). The ratioK(0,H)/J(0H) thus  triangular-shaped bright spots are rings containing a single flux
plays the role of an effective ring area for the: O state, and quantum, that is, they are “up spins(¢) The difference between
can be computed from Table I. For the hexagonal ringsthe two images. Here, the up spins are quite obvious as roughly
R(O,H)/E(O,H)=3\/§(b2+ a?)/4=1.68<10 2 m?2 We elliptical white spots. Also shown are field profiles through two
find that dI/dT computed this way is 7.7 mA/K, which Spins in both horizontall) and vertical(2) directions. The circles
agrees quite well with the 5 mA/K found from the previous are _the field valugs, and the curves are _Gaussian fits to the field
method. The broadening of the susceptibility peaks in thérofiles. The amplitude of the Gaussians is 0.53 G.
dense(interacting arrays is thus seequantitativelyto be

caused by the dipolar interactions between rings. shots of the configurations at the freezeout temperature.
Also, at the scan temperature #f0.6 K, the flux configura-
V. MAGNETIC IMAGING tion is frozen in, so that the Hall probe was noninvasive

during the scans. The measuring current of /68 through

The magnetic measurements—magnetization anthe Hall probe results in a maximum field at the rings of
susceptibility—presented in the previous section have estalabout 0.16 G, which is completely negligible at low tempera-
lished first, that individual rings in the arrays behave analotures. A typical scan covered an area equal tx @8 um?,
gously to spins in a random-field Ising model; and secondand took five minutes to perform. The data were stored as
that there are magnetic interactions between rings which fat28x 128 pixel raster scans.
vor antiparallel alignment, that is, that there existsaauti-
ferromagnetic coupling between the rings. The magnetic
measurements could not determine, however, whether short-
or long-range order in the spin orientations exists in the ar- To compute accurate statistical measures of the correla-
rays. To answer this question, we have used scanning Hallons, we need to be able to determine the correct orientation
probe microscopy to image directly specific “spin” configu- of each magnetic spin in the array. Figure(@3shows the
rations in the arrays. We can then analyze these real-spasceagnetic field distribution over a honeycomb lattice field
configurations to explore the degree of spin-spin correlationsooled in 6.1 G, which is equal to an applied flux of 0.436
present. ®,. TheX andY axes are the voltages applied to the scan-

Field-cooled images of the ring arrays were taken with thener, which are nominally proportional to theandy posi-
scanning Hall probe microscog8HM) at low temperatures tions. The image was obtained by scanning from left to right
(T~0.5T.), where the currents flowing in each ring are largein lines from top to bottom. The full scale field modulation in
enough to be measured by the Hall probe. An external magrig. 13a) is 0.1 G. Brighter regions of the image correspond
netic field was applied to the array by a home-built superto regions of higher field. The distortion of the measured
conducting magnet which was used in the persistent modgattern on the left side is caused by hysteresis in the piezo-
This way the field was very stable and the magnetic nois&lectric scanner. Because the voltage responses of the scan-
was very small. The field nonuniformity over the entire areaner in theX andY directions are not the same, the distance
of the array was about one part in*1@hich is much smaller scanned in the direction is about 1.4 times that scanned in
than any other field scale in the measurements. At each valuge X direction. This far belowb /2, all the rings cooled in
of the applied field, the rings were cooled through at then=0 state. We immediately notice a triangular array of
typical cooling rates of 30-50 mK/s. However, cooling bright spots. These appear at the position of the empty spaces
through the transition region at the much slower rate of(holeg in the honeycomb lattice, which form a triangular
0.017 mK/s had no effect on the resulting correlations. Sincéattice. Since the rings screen out the applied magnetic field,
as we have seen, the ring dynamics freeze out only some 18e field is pushed into the holes, and the field through the
mK below T, the images we obtained are essentially snapholes is greater than the applied field. Figur¢t}3hows the

A. Image reconstruction
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FIG. 14. A sequence of field-
cooled images of the honeycomb
lattice, taken in increasing applied
fluxes near ®y/2. The flux
increases from left to right starting
at the upper left corner where
$=0.4913P, and ending in the
lower right corner at @
=0.5066bP,. There is a clear
progression from a few up spins
(white spoty at low fields,
through rather disordered-
appearing states nedr,, to only
a few down spingdark spots at
the highest applied fields.

field distribution at a somewhat higher field corresponding towidth of the Gaussians along th¢ and Y directions are
0.4913®d,. Here, a few rings in the array cooled in the spin different by the factor of 1.4 mentioned previously.
up state. Those rings appear as large bright spots. The super- Figure 14 shows a set of 20 images of the honeycomb
position of the field from the up spin with the field from the lattice, obtained in different fields aroumel,/2 spanning the
three neighboring holes causes the spots to have a triangulenge 0.4913b, to 0.5066d,. At low fields, only a few up
shape. The full-scale field here is 0.42 G. spins (bright spot$ are visible on the dark background of
The positions of the underlying rings can be obtaineddown spins, and the faint lattice of holes. At larger fields, the
from Fig. 13a) by finding the center of every bright spot number of up spins increases until at the highest fields most
(hole) in the image. These determine the ring locations, sincef the rings are spin up, with only a few dark down spins. In
on a honeycomb lattice, the rings lie at the center of thehis case, the hole lattice appears as a regular array of gray
equilateral triangle formed by the three neighboring holesspots. To determine the spin state of each ring, we developed
The image contains 680 rings. The SHM is sufficiently stablethe following image reconstruction algorithm. First, we make
that the ring positions determined in this way can be used tan initial guess at the correct spin configuration. When there
analyze a series of images of the same portion of the arragre only few up spins as for the smallest field in Fig. 14, the
taken at different fields. spin configuration is straightforward to determine. Near
The difference image formed by subtracting Fig.(@3 ®/2, the initial guess was the spin configuration determined
from Fig. 13b) is shown in Fig. 1&). The triangular lattice at the previous field. After the initial guess, we construct a
of holes is absent in the difference image, and the remainingorresponding synthetic imageby the superposition of
bright spots are the magnetic field produced by the up spincomputer-generated Gaussian field profiles of the appropriate
The full scale magnetic field modulation in this image is 0.53sign at each site. The difference image of data minus model
G. The measured field profile of a single ring is well- is computed, and used to determine how to modify any in-
described empirically by a 2D Gaussian. This profile is illus-correctly chosen spins. These steps are iterated until the dif-
trated in two plots along lines 1 and 2 in Fig.(&8 also ference image is flat. This procedure is illustrated in Fig. 15.
shown are the Gaussian fits to these two slices. Note that thehe top left image is the measured magnetic field distribu-
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FIG. 16. Magnetic images of a triangular latticetat7 G (a)
andH=7.013 G(b). The difference imagéb)—(a) is shown below.
Bright spots in difference image are rings that flipped up and dark
spots are rings that flipped down between these two field-cooled
images. The spot positions accurately define the positions of the

rings.

FIG. 15. Top left: A magnetic image measuredda/2 for a
honeycomb lattice. Top right: The synthetic image which model
the data, as described in the text. Bottom left: The spin configura

tion inferred from the data. Dark hexagons represent down spinﬁattice in Fig. 14, and the positions of all the rings can be

and bright hexagons up spins; gray hexagons are the holes of the " . )
honeycomb lattice. Bottom right: The difference between the synr-}ou.rl])d' dane these pct)sm?ns alre k?r?r\rl1vn thebprewolyscliy de
thetic and the measured images. We have purposely set one sp?n‘f” ed 1mage reconstruction aigori may be applied.

incorrectly in the synthetic image; this error shows up very clearly . . : .
in the difference image as an isolated dark spot. B. Analysis of the spin configurations
Figures 17 and 18 show the magnetic field images and
tion C4 of Fig. 14 stretched along the vertical axis to correctcorresponding spin configurations at five different fields near
for the anisotropy of the scanner. The top right image is thaby/2, for the honeycomb, kagomériangular, and square
final synthetic image, and the computed spin configuration if¢attices. Again, the magnetic images have been stretched
shown at the bottom left. Dark hexagons are down spins andlong the vertical axis to correct for the anisotropy of the
white hexagons are up spins. The difference between thpiezoelectric scanner. As the field increases the concentration
synthetic image and the measured image is shown at thef up spins increases. Aby/2, by definition the fraction of
bottom right. To demonstrate the effectiveness of our modup spins in the array is the same as the fraction of down
eling procedure, one spin was deliberately set incorrectly irspins. At the highest field, the down spins appear as a few
the synthetic image; this error shows up very clearly in thedark spots. Each lattice was scanned over two different re-
difference image. gions of the array. In these two figures we show the field
A similar image reconstruction algorithm was used in thescans over one area for each lattice only.
analysis of the kagomiattice. However, the triangular and Figure 19 shows the concentration of up spinsfor all
the square lattice do not have holes, and the ring positionthe arrays, as a function of magnetic field. was deter-
were determined using a different method. First, we note thatined by simply counting the number of up spins in each
images taken at two nearby fields are very similar, and thémage. The data for the honeycomb lattice was obtained
difference image of two such images typically shows only afrom the images in Fig. 14. The lines are fits to an error
small number of flipped rings. In Fig. 16 we show two im- function, i.e., to the integral of a Gaussian. The Gaussian
ages of a triangular lattice taken ldt=7.000 and 7.013 G. widths in Fig. 19 are shown in Table Il. As explained in
The corresponding difference image shows both bright an&ec. IV C, the widths are larger for higher coordination num-
dark spots, indicating that some rings flipped from down tobers due to the larger average interaction field. That these
up, and some from up to down. The positions of these spotsurves are well fit by an integral of a Gaussian again reflects
determine the locations of the flipped rings. This procedureéhe Gaussian distribution of ring sizes as described in Sec.
was repeated for the difference images from a series of imV C. Only a few very large rings will point up at applied
ages taken at fields that spdrny/2. In such a series every average fluxes well below,/2, and only a few small ones
ring flips at least once, as can be seen for the honeycombill still be down at fluxes well aboveb /2.
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FIG. 17. The magnetic field above the arrays for the honeycomb and Kdgtiioes, at several increasing applied fluxes. Up spins again
appear here as white spots, and down spins as black ones. The spin configurations as deduced from the images are shown under each imag
Here, white hexagons represent up spins, and black hexagons down ones. Gray hexagons represent the holes of each lattice.

The field-cooled images corresponding to successivéhermal width of the spin distribution function. By thermal
fields in Fig. 19 appeared very similar, and the differencewidth we mean the width that the (H) curve would have
images show that only a very small fraction of spins changéor an array of perfectly identical rings. Hence, the ac sus-
from point to point. Figure 20 shows the difference betweerceptibility measurements in Sec. IV were done in the regime
the images at 0.5008, and 0.5®, on the honeycomb where uH, <kgT; we have already seen that the response
lattice (panels D2 and C4 in Fig. 14The field change be- was linear with ac field. The thermal width will be discussed
tween these two imagd8 mG) is close to the rms amplitude in more detail in the next section. Because the great majority
of the ac field(6 mG) that was used in the susceptibility of the rings did not change between the two fields, this
measurements in Sec. IV. We see that most of the ringmeans that the width of the distribution function in Fig. 19
cooled down in the same spin state, and only 50 out of 68@omes mostly from the disorder, i.e., from the random field.
actually changed. Of these, 35 changed from down to up, and The reconstructed ring configurations shown in Figs. 17
15 changed from up to down, resulting in a net gain of 20and 18 show that there are no long-range correlations in the
spins up. Since not all the rings that changed flipped fromarrays. Indeed, at first glance the distribution of spins appears
down to up, evidently the field increment is smaller than therandom. However, the appearance oftdy random configu-
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FIG. 18. The magnetic field above the triangular and square lattices; see Fig. 17 for details.

ration is noticeably different. In Fig. 28 we show a real
magnetic imagegthe same shown in Fig. 15and in Figs.

of x, . The difference between the three random images and
the real image is clear: the random configurations have rather

21(b)—21(d) we show three synthetic images generated usindarge ‘“ferromagnetic” patches of up spirfight areas and
completely random spin configurations, but at the same valudown spins(dark areas due simply to the statistics of a

TABLE Il. Gaussian widths of the distribution of fields fdr,/2 and the bond order parameter for the

ring arrays.

Honeycomb Kagome Triangular Square
width (G) 0.0697 0.0754 0.1018 0.1031
o(Hyp) —0.18+ 0.02 —0.15+ 0.02 —0.15+ 0.02 —0.18+ 0.02
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FIG. 19. Up spin concentration, vs field for the ring arrays.
Each data point corresponds to a field-cooled image; the dd& in
are from the images in Fig. 14. Solid lines are Gaussian fits as
described in text; the resulting widths are given in Table II.

random configuration. The real data, however, lacks such
large areas of parallel spins, and has a much “finer-grained”

appearance. This is due to the presence of short-range anti- S (c) ) oh (d)
ferromagnetic correlations which favor antiparallel align-
ments of neighboring spins. FIG. 21. (8 A magnetic image of the honeycomb lattitthe

same as C4 of Fig. 24Also shown[(b)—(d)] are three synthetic
images constructed from completely random data with the same
fraction of up spins asa). They are characterized by noticeably
larger regions of adjacent up spins and adjacent down spins than the
real data in(a). The spins in(a have correlations which favor
antiparallel orientations of spins, and discourage the growth of any
large ferromagnetic patches.

®/D, = 0.5000

. i % i

To quantify these considerations, we measure the correla-
tions in this disordered system using the the near-neighbor
bond order parametet®? It is defined as

XaF XAF
a o=1— XX 1_Xf£d' (5.1

wherex, andx_ are the fractions of up and down spins, and
Xar IS the fraction of antiferromagnetic near-neighbonds
that is, bonds between an up spin and a down spin. For a
completely random spin distributiongaz=x3"%=2x, x_,
which gives the second form of E(.1). It is clear from this
definition that for a completely random configuration of
spins o=0. If there is an excess of ferromagnetic bonds
(over the random cas¢heno>0, and if there is an excess
b -a of antiferromagnetic bonds them<0. Indeed, whenr<0

one can interpret the magnitude of the order parameter as the
excess fraction of AFM bonds as compared with the purely
®, (b), and their difference image. Most of the spins in the two random case. The bond order parameter is related to the

images are the same, resulting in a gray color in the differenc&®@rest-neighbor  spin-spin  correlation  function  as
image. Spins which flipped from down to up appear as white spotéSiSj) —(Si){Sj)=4oXx.x_, wheres; ands; are Ising spins

in the difference; those which flipped from up to down as darkOn sitesi andj, respectively. The averaging here is over the
spots. Because the external field was increased between these t&Bins in the arrays.

images, most of the spins which flipped up. However, a few flipped At any value ofx, , there is a most-negative possible
down due to thermal fluctuations. value of o, which ranges fronmo=0 whenx, =0 or 1 to

FIG. 20. Images in an applied flux of 0.50@g, (a) and 0.5006
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o for all lattices are well abover,,,, but are nonetheless
clearly negative within the scatter over the entire range of
X, . The fact thato is negative means that the spins are
correlated antiferromagnetically. The valuescohear® /2
on the various lattices are summarized in Table Il. Thas

far from o ,,i, is due mostly to the effects of the random field;
kagome as we show in Sec. V D, the effects of thermal fluctuations
08 () honeysom 1 are relatively small.
1.0 : . | | - To obtain the uncertaintyo of the bond order parameter,
we first note that for each data set in Fig. 22, consecutive
. values of o are not statistically independent because they
% PN come from images taken in the same part of the array, and

-0.2

-0.4

0.6 triangular

» m O X
4 ® O M

£ 00 hence all have the same realization of the random field. Since
] we scanned at only two different parts of each lattice, we
a mg O have only two realizations of the random field. There will be
-0.10} m ™ w m X Yop - differences inoc as measured in different areas of the array
Fuhze ! 4oz g oo due simply to the finite number of spins in one area. Thus we
0.15| #a? 0w oo x 0 80 4 calculated the fluctuatiodo by averagingo over many
PN SRS A A computer-simulated realizations of the random field on 680
020 eo%’m *C | spins (with no interactions The standard deviation was
' . . | . found to beso=0.03. Since we have two realizations of the
0 0.2 0.4 0.6 0.8 1.0 random field, So0~0.03//2~0.02. We also measured the
+ next-near-neighbor bond order parameter for each array, and
find that it is consistent with zero. Therefore, the correlations
FIG. 22. (a) Bond order parameter vs up spin concentration are short range only.
X4 near®y/2. ¢<0 for all arrays, indicating AFM correlations. Since the honeycomb, kagonend triangular ring arrays
Solid lines are maximally negative possible valuegdbr bipartite  \yere made of the same kind of rings with the same near-
lattices. Frustrated lattices have an additional constraint i”dicateﬁeighbor spacing, the only difference between them is the
by the dashed line(b) Expanded view of data showing greater lattice geometry. Therefore, we can compare the bond pa-
AFM correlatiops for bipartite hopeycpmb and square lattices thar}ameter for these lattices directly. Although there is some
for frustrated triangular and kagontattices. scatter, Fig. 22 indicates that the bond order parameter on the
bipartite honeycomb lattice is more negative than the order
o=—1 whenx, =0.5, for bipartite geometries such as the parameter on the triangular and kagohattices, which are
square lattice. This is becauffer x, <0.5) the most anti- nonbipartite.(Additionally, near®y/2, o is approximately
ferromagnetic possible case is when each up spin is suthe same on the bipartite honeycomb and square laftices.
rounded by down spins, i.e., the up spins never abut. Thu$his is direct evidence for a suppression in the ordering due
X2L 2x . . The most-negative value af, o, will occur  only to effects of geometrical frustration. We note, however
in this case. As we have seem®=2x,x_, so that [Fig. 22a)], that disorder evidently prevents(®o/2) from
Omin=1—XBIx"a=y  /(x, —1). In the bipartite lattices it COmMing particularly close to , in any case. Only when the
is in fact always possible whex, <0.5 to arrange the up bipartite lattices approach the frustrated-lattice value of
spins so that they do not abut, and so it is theoretically pos?min(®o/2)=—1/3 would we expect there to be very strong
sible for o to reacho;,. This minimum value ofr is shown  differences between the lattices.
as the solid line in Fig. 22). In general, however, because
of disorder and thermal fluctuations, will lie above this
lower bound.
For the frustrated triangular and kagortattices, geo- In addition to the applied flux equal tby/2, we measured
metrical constraints do not allow up spins to avoid each othethe spin configurations at higher flux fractions=3/2, 5/2,
all the way up tox, =0.5. At x, =1/3, it becomes impos- 7/2, and 9/2. At higher fractions, the region of fields where
sible to place one more up spin such that it does not abute see both up spins and down spins is wider. The concen-
another up spin. The best one can do is to Icéﬁﬁconstant tration of up spins as a function of field at higher fluxoid
in the range 1/ x, <2/3. This leads to a small hump in the states is shown in Fig. 23 for the honeycofapand kagome
Omin VS X4 CUrve, as shown by the dashed line in Fig(@2 (b) lattices. The lines between the points are fits to error
One would then expect to see strong differencesribe-  functions. The widthsw determined from these fits are
tween the bipartite and frustrated lattices wheneweap-  shown in the insets. The widths as a function of field appear
proached this part of the diagram. to be a linear function of fraction. This is because the
For each image and its equivalent spin configuration waandom field is caused by the differences in the ring areas,
calculate bothx, and o, from simple counting of spins and and grows withy. The field forv flux quanta in a ring with
bonds, and using the definition in E¢p.1). We then plot areaA is equal toH,=v®y/A. If the spread of the areas in
o as a function of,. . The results for each of two different the array iséA, and if it is small, then we can estimate the
areas of all the lattices are shown in Fig. 22. The values o$pread in fieldssH,: 6H,= v®,5A/A2,

-0.05

C. Higher fractions of ®
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FIG. 23. Up spin concentration, vs field at different flux
fractionsv for the honeycomlga) and kagomeb) lattices. Data for FIG. 24. Bond order parametervs up spin concentratiox, at
different fractions have been shifted to permit direct comparison oflifferent flux fractionsv for the honeycomia and kagome(b)
widths ofx_.(H) distributions. Insets show widths determined from lattices.o is reduced with increasing indicating increasing effec-
Gaussian fitgsolid lines. tive disorder.

Therefore, the widths of the Gaussian distributions arg, 1 are
linear with the fraction number. Since the interaction be-
tween the rings does not grow with field, one expects to see
a reduction in the short-range correlation function at higher
fractions. Indeed, Fig. 24 shows thatat higher fractions is
much smaller thawr at ®y/2. The disorder in the ring arrays
is therefore a tunable parameter. from Eq. (2.2

Figure 25 shows images of 2 of 20 cooldowns taken in
one region of a honeycomb lattice array &t 0.5005b,,.

The distribution function of up-spin concentration vs field The difference image is shown below. The dark spots in the
that is shown in Figs. 19 and 23 originates from three effectsdifference image are rings that flipped from up to down be-
(1) the random field that comes from the distribution of ring tween cooldowns, and the bright spots are rings that flipped
areas around the average aré®), the ring-ring coupling, from down to up. Most rings cool down in the same state
which has the tendency to widen the Gaussian distribution asvery time; in the twenty repetitions that were done, 75% of
shown in Sec. IV B, and3) thermal fluctuations. In this the 653 rings in the imaged area always cooled in the same
Section, we analyze the statistics of repeated cooldowns atate, that is, hag, =0 or 1. Other values o, were less
®=d /2 to estimate the thermal width relative to the com-common; by counting the number of times each ring cooled
bined effects of the disorder and the interactions. into the spin-up state we may construct a histogram of the

The ac susceptibility measurements in Sec. IV B showedraction F(p.) of rings that had probability, for being
that the freezing temperatui® is very weakly frequency spin up. This is shown in Fig. 26, where we again note the
dependent. In this analysis we will assume that the dynamitarge values ofF at p, =0 andp,=1. We find there are
freezing occurs suddenly at;, and that the rings are in interesting spatial correlations between rings which tend to
equilibrium aboveT;. In this case, the spin configurations flip more often. To illustrate this, we plot in Fig. & a
measured with the SHM reflect the Boltzmann distributiongrayscale map of the probabili;=2p_ (1—p.) that each
function atT¢, and the probability that a ring will cool into ring changed its state between any two cooldowns. Dark

FemFo=22 Vis=(usmp)(hth) (63

D. Repetitive cooling experiments

its spin up state is gray corresponds t®;=0, i.e., to rings that never change
state, and white corresponds Bx=0.5, that is, to rings
D, = 1 (5.2 which flip quite readily abovel;. The gray levels in be-
+ T 14 eF+FlkgTy" .

tween represent the intermediate probabilities.
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FIG. 27. (a Grayscale map of the probability
Pi=2p,(1—p,) that a ring changes state between two
cooldowns. Data was obtained from 20 cooldowns of a region of a
honeycomb lattice containing 653 rings. Black hexagons are holes

in the honeycomb lattice. Scale runs from dark gr&#¢=0) to
a-— b white (P;=0.5).(b) Spin configuration for one of the 20 cooldowns

o [Fig. 25b)]. Note the region of local N& order that corresponds to
FIG. 25. (a), (b): Two magnetic images of the honeycomb lat- the region of high flipping probability ira).

tice, obtained after cooldowns in the same applied flux

®=0.5005b,. The differences between these images is shown begrom data shown in F|g Za), we can calculate the correla-

low. Thermal fluctuations cause some spins to change their orienjons between flipping probabilities. For example, if a ring
tation between successive cooldowns, although the majority ofiins with probabilityP;=0.45, then its nearest neighbor will

spins cool into the same state. flip with probability 0.14, which is much larger than the

. ) ) average flipping probability given by E¢.4). This correla-
Figure 27a) shows that the rings that have a higher prob-(, in' prohabilities can only come from the interaction be-

ability to flip tended to be grouped together in the array. Th&yeen the rings. If a ring flips 50% of the time, then the field

probability(Py) that a randomly chosen ring in the array will ¢ it generates on its neighboring rings will fluctuate from

flip after thermal cycling can be obtained from Fig. 26. Itis ¢oq|down to cooldown. This must reduce the magnitude of
the random field on those rings 50% of the time, and will

_ _ _ therefore increase their flipping probabilities.
(Pr) p2+ 2F(p+)p+(1=p,)=00744. (5.4 The cluster of rings near the center Fig(&@with large

P; have large local antiferromagnetic correlations. This is

illustrated in Fig. 2b), which is the spin configuration cor-

responding to the image in Fig. @3. We see that about 30

) spins are in a N&l ordered state. A quantitative measure of
the antiferromagnetic correlations between the rings that flip
0151 3 is theweighted bond order parameter , which is defined in
[ p

the same manner as in Eq. (5.1), but with a modified

3 . measure of the antiferromagnetic bond concentratifn,
S ey N given by
/! . ) \
001E * 3 i pi
o .o V] T L(2Npaird Z i j)SiS; PP} 55
L L v ] AF— - ) .
1/ . S >0y PiP
2 - S=1 where the sums run over all near-neighbor pairs.thus
0.001 ' o2 oa o8 o8 To contains no contribution from those rings which never
p. changed their state, and weights more heavily those rings

with largeP; . Averaged over the 20 cooldowns, we find that
FIG. 26. Histogram of probabilitp.. that a ring will cool into @ = —0.39+0.03, which is much larger than the average
the spin-up stateF is fraction of a sample of 653 rings. Solid Unweightedoond order parameter= —0.142+0.004 com-
circles: data obtained from measurements of 20 cooldowns of ®uted for the same 20 cooldowns. This suggests that if there
honeycomb lattice a® = 0.50058b,. Curves are obtained from the Were no disorder, there would be long-range correlations be-
model described in the text for different values of tween the spins, and that the reason for the absence of long-
S.=(u,—pu_)o, /kgT¢, the ratio of the random field and thermal range order is the spread in the rings’ areas, rather than freez-

widths. ing before the Ising ordering temperature is reached. As the
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temperature is lowered, the interactions do eventually beening of the susceptibility peak, as well as hysteresis in the
come large enough to overcome the disorder, but by then thegeak position as the field is swept up and down. We have
energy barrier has grown so large that the rings cannathown quantitatively how these effects are a result of the
equilibrate into a more correlated state. antiferromagnetic dipolar magnetic coupling between the
We now estimate the intrinsic thermal width relative to rings.
the disorder. This is an important question, if we want to The real-space spin configurations on four different lat-
know how much it is necessary to reduce the disorder tdgices were determined by direct spatial imaging of the arrays
obtain longer range correlations. In the following analysis,with a scanning Hall probe microscope. The calculation of
we will neglect the interaction effects between the rings inthe spin-spin correlation function from the measured spin
Eq. (5.3, and will assume that the random field has a Gausseonfigurations showed that the correlations were antiferro-

ian distribution magnetic and short range only. The absence of long-range
order on bipartite lattices was found to be caused by
1 (h")2 guenched disorder, in the form of slight variations of the ring
p(h")= exp — —2> (5.6)  areas in the arrays.
o2 207

Comparison of the correlation function on the square and

where o, is the random field width. We can now calculate honeycombl(bipartite) lattices, to that on the triangular and
the probabilitydensity Gp..) that a ring will cool into the the kagomenonbipartite lattices, showed that the nonbipar-
spin up state with probabilitp, . Sincep, andh, are re- lite lattices have weaker short-range correlations than the bi-
lated by the Boltzmann distribution in E¢5.2), we first find ~ Partite lattices. Thus we have a direct experimental observa-
h" as a function op, , and then obtailG(p, ) by changing tion of geometric frustration on Ising antiferromagnets. It is

variables fromh" to p. : G(p,)=p(h")|dh/dp.], interesting that geometric frustration can be observed even in
the presence of strong disorder.
1 1 Inz(pll— 1) There are several future projects which may warrant fur-
G(p.)= ex;{ v ) ther development. Clearly, one would like to reduce the dis-
Sr\/E P+(1—ps) 25 order of the ring areas. As we have seen, it appears that only

(5.7) a rather small reduction is likely required in order for long-
range order to develop. Starting from a more ordered state at

field and thermal widths. We also have takes 0 for sim- = /2, one could then do a detailed study of the introduc-
plicity. ' tion of disorder into this model system by going to higher

As the solid line in Fig. 26 shows, E¢5.7) fits our data flux fractions. It is of course also possible to explore ring
fairly well for S, =8 [after multiplyir{g by .05 to convert arrays of lower dimensionalitii.e., 1D arrays By fabricat-

G to F . with most of the weight in the wings of ing_parallel 1D arrays with varying interchain spacings, an
thfapai)stribugizﬁ)Lemm:O and p+=1.gEquation(5.7)gis entire sequence of arrays, from purely 1D, through .h|ghly
quite sensitive tc, , however, and as the curves f8r=2 anisotropic 2D arrays, to pure 2D arrays can be studied.

andS,=1 show, modest changes $ can radically change
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of experimental probes, a two-dimensional array of electri-

cally isolated superconducting rings. We have found that
such an array is a physical realization of the 2D Ising model.
By measuring ac susceptibility, we showed that supercon-

ducting rings do behave like spins, if the applied flux is near | is straightforward to show that within Ginzburg-Landau

half of a flux quantum and if the temperature is near theneory?! the free energy of an infinitesimally narrow ring of
superconducting transition temperature. In this region of theypitrary shape is equal to

H-T plane, the response of ring arrays to small field pertur-

APPENDIX A: FLUX QUANTIZATION
IN WIDE SUPERCONDUCTING RINGS

bations was found to be paramagnetic. The origin of the , s gy & d\2 H?2
paramagnetic response is the quantization of the fluxoidF1=€co'L| (2F°=1%)=871% | n— = +f§dV,
which allows a ring to have two possible orientations of its 0 (A1)

magnetic moment; the response of these moments to an ex-

ternal field is equivalent to the response of an Ising spin tovhere e,= —H2/(87)=aW2/2 is the condensation energy

such a field. density (in terms of standard parameters in GL thédry
Susceptibility measurements showed that spins in closely’ is the wire cross sectiot, is the ring circumference; is

spaced ring arrays interact. This interaction leads to a broadhe GL coherence lengthn is the fluxoid number,
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f=w/V¥,, is the normalized order parameférand® is the  When the parameter, is inserted back in to EqA5), then
magnetic flux threading the ring. The condensation energy isve obtain for the free energy
the superconducting free-energy density relative to the nor-

mal state, and therefore it is negative beldw. The right-

most term inside the square brackets represents the kinetic F=Se.dfg= Sfcd( 1-
energy of the superconductor, and has a positive contribution

to the total free energy, i.e., it reduces the magnitude of the The general expression fdt.(H) is obtained by setting
total free energy. This term is the kinetic energy of the su-f _

percurrent. The integral on the right-hand side is the mag-

netic field energy of the induced currents in the ring, and itis T (H)=maxT.(n,H)}

equal toL (l2/2c, whereL  is the self-inductance aridis the

2§2

I(n,H) (A7)

current in the wire (=—dF/d®). Near T, this term is 472E%(0) ~
much smaller than the superconducting enéfgand it can =max{ Te(H :0)< 1- s I(n,H) ]
be neglected. The current in the narrow ring can be obtained
from the second GL equatidn.lt is (A8)
(4m§)? This formula has the Little-Parkd . oscillation in it. We can
l,=|elo’c DL fz( - CPT) (A2)  obtain the field for®y/2 by solving the equation
0 0

To treat rings with finite wire width, we assume tHais TelOH12) =Te(LH 1) (A9)
constant, because nedi(®d) the coherence lengtl§ is  The field for a flux quantunii, is equal to H,,,. From Eq.
larger than the wire widthv and thicknessl. Furthermore, (A8) it follows that T (H;) <T.(0), because of the parabolic
we assume that the current flow lines are a scale factor tmd@’a\ckground superimposed on thig oscillations®®
the inner ring boundary. If the ring has sharp corners, this Now we will calculate the total current and the total mag-
approximation may be questioned, but comparison with ounetic moment of the ring. Using the current density in Eg.
experiments showed a very good agreement between the cah2) j=I,/0’, we can calculate the total current
culations and the measurements. With these assumptions, we dfj(w)dw. The final result is
can calculate the free energy and current of a wide ring by

in.tegrating qu(Al) and (A2) over the current flow lines. I=d|eC|C(47T§)2 fgj(n,H), (A10)
Since®(L)~L*, we see from Eq(A2) that the current den- D,

sity in a wide ring is not uniform, and that the current is _

distributed differently in then=0 andn=1 states. This dif- J(n,H) in Eq. (A10) is a new geometric factor
ference in the current distribution will cause a difference in

the magnetic moments of the spin up and spin down states, SRR dw [ P[L(W)] ALY
as we see in our magnetization measureméggs. 1V A). (n,H)= w, L(w) d, (A11)

For the free energy of the wide ring, we obtain
The magnetic moment of the ring is given by

w 2
F=ed le de(w)[(sz—f“)—swsz% d (v
w= Ef J(w)S(w)dw, (A12)
dIL(W)]\2 w
_To) (A3)  \yhich leads to
The integration is carried out from the inner boundary to the 5)2
outer boundary. We again can neglect the self-inductive en- m= d|6c| f2K(n,H), (AL13)

ergy. The integral/L(w)dw= Sis just the area enclosed
between the inner and outer circumferences of the wire. Ifvith K(n H) given as

we define
E(n,H) W2d LS((VV:;(n—q)[;(:V)]

) . (Al9)

~ Wy 1 d[L(w)])\?
I(n,H)= f dw L(W)(n— D ) , (A4)
° S(w) is the area enclosed byL(w), so that
then the free energy is S=S(w,) —S(w,). For a square ring with inner side and
- ~ outer side b, wel[a/2,b/2], S=b’—a? L(w)=8w,
F=ed[(2f?—{%)S—87*f?£%I(n,H)]. (A5)  s(w)=4w? and®[L(w)]=HS(w). For a hexagon with in-

The equilibrium normalized order paramefgris obtained ner side a and outer sideb, we[y3a2, 3b/2],

— 2_ 4,2 — — 2
by minimizing F with respect tof. It is S=3\3(b?-a%)12, L(W)_4‘/§W’ S(w)=2y3w?, and ,
d[L(w)]=HS(w). The calculation of the parameters in
22 Egs.(A4), (Al11), and(A14), is straightforward. The results
fo= \/1_ & I(n,H). (a6)  forthe fieldH,; for ®¢/2 and the other parameters are sum-
marized in Table I.
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If the applied field isH,,,, then the total currents in the in the two states are not the same. The magnetic moment in
ring’s two states have the same magnitude, but because tiige n=1 state is smaller than the magnitude of the moment
current distributions are not uniform, the magnetic momentsn then=0 state.
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