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A superconducting ring, biased in an external fluxF0/2, can be in either of two energetically degenerate
fluxoid states. In one state, the supercurrent flows in a clockwise direction with a resulting downward magnetic
moment; the current in the other state flows in a counterclockwise direction and its moment points up. There
is thus a strong analogy between such a ring and an Ising spin. Two nearby but electrically isolated rings can
interact magnetically; this interaction favors an antiparallel alignment of moments and is thus analogous to an
antiferromagnetic spin-spin interaction. Regular arrays of such rings may thus be expected to exhibit effects of
lattice geometry and geometrical frustration. To study these issues, we have fabricated arrays containing up to
2.4 3105 aluminum rings, each approximately 1.6mm across. We have used a sensitive superconducting
quantum interference device-based magnetometer to probe the global magnetic properties of the arrays; local
information about particular spin configurations was obtained using a high-resolution scanning Hall probe
microscope. The magnetic measurements show that individual rings do indeed behave as Ising spins, showing
a paramagnetic susceptibility which freezes out only a few milliKelvin below the critical temperatureTc . This
illustrates that the ring dynamics is dominated by an energy barrier between the two states which rises rapidly
as the temperature is lowered belowTc . The magnetic measurements also show a hysteretic field dependence
of the susceptibility which can be quantitatively interpreted in terms of an antiferromagnetic interaction be-
tween the rings. To explore possible ordering of the spins, we have used the Hall microscope to directly image
specific configurations of spins. We find significant antiferromagnetic nearest-neighbor correlations, but no
evidence for any long-range ordering. We attribute this to a significant degree of disorder in the system related
to small fluctuations in the areas of the aluminum rings. The effective disorder may be increased by working
at higher fractions ofF0. The observed short-range correlations drop rapidly at these higher fractions.
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I. INTRODUCTION

An array of closely spaced but electrically isolated sup
conducting rings forms a novel type of extended superc
ducting microstructure.1 Unlike Josephson-junction arrays o
wire networks where the individual elements of the array
coupled directly through the superconducting order para
eter, isolated rings can only couple magnetically. In an
plied flux nearF0/2 the rings behave like Ising spins and
ring array becomes a model two-dimensional~2D! Ising an-
tiferromagnet. In this paper we describe experiments on
rays of micron-size aluminum rings that demonstrate t
Ising spin analogy, and show that the distribution of fl
quanta in the array is influenced by the interactions betw
the rings.

The Ising spin analogy arises because in an applied m
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netic fluxF nearF0/2, a superconducting ring has two stat
that are close in energy. One of these states contains
fluxoid quanta (n50), and the other contains one fluxo
quantum (n51). The induced supercurrents in these tw
states flow in opposite directions, and the ring’s magne
moment points either along the applied field or against it. F
F,F0/2 the n50 state is energetically favored, and fo
F.F0/2 then51 state is favored. Exactly atF0/2, they are
energetically degenerate. Because then50 state has its mag
netic moment antiparallel to the field we label it ‘‘spi
down;’’ likewise, because the moment of then51 state is
parallel to the field, we call this state ‘‘spin up.’’ At low
temperatures, the fluxoid state of the ring cannot chang
the familiar case of flux trapping—and the spin is ‘‘frozen
but as we shall see, very close toTc flux quanta move in and
out of the ring in a thermally activated fashion, and the ri
6518 © 1997 The American Physical Society
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55 6519MAGNETIC CORRELATIONS, GEOMETRICAL . . .
can flip between spin up and spin down. It is in this regi
where the inter-ring interactions can have an influence,
possible cooperative effects can occur.

To see how the rings can interact, consider two superc
ducting rings in close proximity in an applied flux ofF0/2,
as illustrated in Fig. 1. The induced supercurrent in each
generates an additional magnetic flux through the other r
this is the source of the magnetic interaction. Suppose
first ring is spin down, with its moment antiparallel to th
applied fieldH. Because of the dipolar nature of the field
ring generates, the additional field from the first ring mak
the net flux through the second ring larger thanF0/2, and
biases it into the spin up state. The field from the second
then reduces the flux through the first ring to less th
F0/2, favoring its spin down state. There is thus a net a
ferromagnetic~AFM! interaction between any pair of rings
and an array of rings may be thought of as a two-dimensio
Ising antiferromagnet.

Because such a ‘‘spin system’’ is made lithographica
one has considerable freedom in its design, and this open
the possibility of doing detailed experimental tests of imp
tant questions in magnetism involving the effects of latt
geometry and geometrical frustration on antiferromagn
ordering. This paper describes experiments on arrays
micron-sized aluminum rings using superconducting qu
tum interference device~SQUID! susceptometry and scan
ning Hall probe microscopy to probe the rings’ dynamics a
correlations. We find that there are significant short-ran
antiferromagnetic correlations in all the arrays studied. Th
is no long-range order, however, even on bipartite lattic
This is due to quenched disorder, which arises from sli
variations in the rings’ areas. These variations lead
slightly different fields for a half a flux quantum for differen
rings. This amounts to an effective random field, and
arrays are therefore random field Ising antiferromagnets
the temperature where the spins freeze and can no lo
flip, the magnetic interactions are not strong enough to ov
come the random field, and only short-range correlations
be established. Nevertheless, we were able to observe

FIG. 1. Shown are two nearby rings in an applied flux
F0/2. Ring 1, with its currentI and momentm as shown, generate
a dipole magnetic field pointingup at ring 2. Thus the flux through
ring 2 is greater thanF0/2, stabilizing it in the ‘‘spin up’’ configu-
ration. The dipole field from ring 2 then points down at ring 1; th
stabilizes ring 1 in its downward orientation. Thus it is energetica
favorable for the two rings to have opposite spin orientations,
the rings have anantiferromagneticcoupling.
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duction in the antiferromagnetic correlations on the ge
metrically frustrated triangular and kagome´ lattices as com-
pared to the unfrustrated honeycomb and square lattices

This paper is organized as follows. Section II explains
analogy between Ising spin systems and the supercondu
ring arrays in more detail, and describes the appropr
model for the arrays: interacting classical two-level syste
in a random field plus an external field. Section III describ
the fabrication of the arrays and the measurement techniq
used. Section IV presents magnetization and susceptib
measurements, and Sec. V presents magnetic images o
ring arrays.

II. THEORY

A. Superconducting rings as Ising spins

We are interested in the properties of arrays of superc
ducting rings nearTc , where the rings’ moments can fli
freely. NearTc , the properties of a superconducting rin
may be calculated from Ginzburg-Landau~GL! theory. A
detailed calculation for the rings in this experiment is giv
in Appendix A; here we discuss some of the main results
thermal equilibrium, rings will tend to populate states wi
the lowest free energyF. Figure 2~a! showsF(F) at four
temperatures nearTc(F0/2), for a ring in either then50 or
n51 state. In this calculation we have used parameters
propriate for the aluminum rings used in our experimen
There is a local minimum inTc(F) atF0/2 ~the Little-Parks
effect2!, and thus as the curves forTc(F0/2)13 mK show,
aboveTc(F0/2) there is a region nearF0/2 where there is no
superconducting state. AtTc(F0/2) the n50 and n51
curves first meet, and at that temperature and below, the
states are degenerate atF0/2. If we move slightly away from
F0/2, then the free energy may be writte
F65F(F0/2)2(H2H1/2)m6 , where m652]F6 /]H is
the magnetic moment of the ring in the up (1) or down
(2) state, andH1/2 is the magnetic field required to apply
flux F0/2 to the ring.F6 thus has the form of a Zeema
energy.m is plotted in Fig. 2~b!. Note that the moments in
the up and down states atF0/2 are not the same. This arise
from a nonuniform current density in the ring, and will b
seen directly in measurements to be discussed in Sec. IV
F0/2, althoughm1Þm2 , in our calculation thetotal current
I flowing in the two states is equal, as may be seen in F
2~c!. We also note that nearTc(H), F;@12T/Tc(H)#

2,
I;12T/Tc(H), andm;12T/Tc(H), which means that the
magnetic moment of the Ising spins is temperature dep
dent.

The essential physics of the ring arrays nearF0/2 ~or any
odd half-integer multiple ofF0) is contained in the antifer-
romagnetic Ising Hamiltonian

H5(
iÞ j

Vi j sisj2(
i

~H2H1/2
i !m~si !si , ~2.1!

whereVi j is the magnetic coupling energy between rings
sitesi and j , si(561) is the Ising variable assigned to rin
i , andH1/2

i is the magnetic field needed to produceF0/2 in
ring i . The coupling energy isVi j5Mi j I i I j , whereMi j is the
mutual inductance. Since the currents in the two spin sta
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6520 55DRAGOMIR DAVIDOVIĆ et al.
are the same, we can writeI i5Isi , andVi j5Mi j I
2. Note

that this coupling istemperature dependent.

B. Random field

In a real ring array, there will be small random variatio
in the effective areasAi of the rings, due to imperfections i
the fabrication process. SinceH1/2

i 5F0/2Ai , this will lead to
small variations in the flipping fieldsH1/2

i from ring to ring.
This randomness turns out be very important in determin
the ground state configuration of the arrays. Its effect is
lustrated in Fig. 3~a!. Here, the ring on the left has a slight
smaller area than the ring on the right. Thus,H1/2 for the first
ring is larger thanH1/2 for the second ring. It is then possib
to apply a magnetic field that generates a flux smaller t
F0/2 in the first ring, but larger thanF0/2 in the second ring.
In such a field, the first ring will tend to cool down in th
spin-down state, and the second ring will tend to cool do
in the spin-up state.

FIG. 2. Calculated properties of a square superconducting
nearTc(F0/2) with dimensions the same as those measured.~a!
Superconducting free energy relative to normal state. Curves
positive slope are forn50 state, and curves with negative slope a
for n51 state.~b! Magnetic moment of ring.~c! Total current flow-
ing in ring.
g
l-

n

n

The physics of this situation is identical to one where
the rings areidentical, but each has a small extra fieldhr

applied to it@Fig. 3~b!#. This field points parallel toH for the
right-hand ring, yielding a slightly larger flux than averag
similarly, it points opposite toH for the left-hand ring, pro-
ducing a smaller-than-average flux. The effect of this will
a tendency for each ring to polarize in the direction of
local extra field. For an array of rings, weak disorder in t
ring areas can thus be modeled by arandom field term,
2(m(si)hi

rsi , wherehi
r is a fixed random field, which can

be described by some statistical distribution function. For
rings studied here, a Gaussian distribution ofhi

r is satisfac-
tory. For a particular ring in the array,hi

r is the field that
corresponds to the difference between the fieldH1/2

i for that
ring and the array-averaged value ofH1/2, which we will
denote byH̄1/2. The Hamiltonian for the ring arrays the
becomes the random-field Ising model3

H5(
iÞ j

Vi j sisj2(
i

m~si !~h1hi
r !si , ~2.2!

where the effective external field ish5H2H̄1/2. It has been
shown that the lower critical dimension for the random fie
Ising model isD52,4 and that the ground state in a wea
random field is broken into domains of Ne´el order. It turns
out for our ring arrays that in the temperature range wh
the rings can flip, the random field term and the interact
term are of the same order of magnitude and only ne
neighbor correlations are measurably different from zero

C. Ring dynamics

The dynamics of the Ising model in Eq.~2.2! is deter-
mined by the energy barrier between the rings’ spin-up a
spin-down states. Unlike spins in conventional magnetic m

g

th

FIG. 3. Due to imperfections in their fabrication, different ring
in the array will have slightly different areas~here greatly exagger
ated!. ~a! The applied field is such that the flux through the left rin
is less thanF0/2, stabilizing it in a down-spin orientation, while th
flux through the right ring is greater thanF0/2, stabilizing its spin
in an upward direction.~b! The situation in~a! is equivalent to rings
of equal areas, but acted upon by a small random field compo
hr in addition to the applied field;hr points downward for smaller-
than-average rings, and upwards for larger-than-average ones.
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TABLE I. Parameters of square and hexagonal rings.H1/2 is field for F0/2. Ĩ , J̃, and K̃ are defined in
Appendix A. For our square ringsa50.8mm, andb51.6mm. For our hexagonal ringsa50.538mm, and
b51.0mm.

Square Hexagon

H1/2 @F0ln(b/a)#/(b
22a2) @2F0ln(b/a)#/@3A3(b22a2)#

Ĩ (n,H) (n2/8)ln(b/a)2n@H(b22a2)#/(8F0) @n2/(4A3)# ln(b/a)2n@3H(b22a2)#/(8F0)

1@H2(b42a4)#/(32F0
2) 1@27H2(b42a4)#/(64A3F0

2)

J̃(n,H) (n/8)ln(b/a)2@H(b22a2)#/(16F0) @n/(4A3)# ln(b/a)2@3H(b22a2)#/(16F0)

K̃(n,H) @(b22a2)/16#$n2@H(b21a2)#/(2F0)% @3(b22a2)/16#$n2@3A3H(b21a2)#/(4F0)%

calculatedH1/2 7.48 G 6.95 G

measuredH1/2 7.53 G 6.98 G

measuredj(0) 0.24mm 0.235mm
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terials, the spin state of a superconducting ring involve
macroscopic number of particles. To change the spin stat
a ring, a flux quantum must move in or out of it, whic
means that it is necessary to break all the Cooper pairs
are contained in a volume of orderdwj, whered andw are
the wire thickness and width, respectively, andj is the GL
coherence length. This leads to atemperature-dependenten-
ergy barrierEB;uecudwj;@12T/Tc(F0/2)#

2 between the
two spin states,5 whereec is the condensation energy. Th
frequency of thermally induced spin transitions is then

G5Ve2EB /kBT, ~2.3!

whereV is an attempt frequency. In most of the superco
ducting phase diagram this barrier is so large that a r
never spontaneously flips its spin. The only exception is v
nearTc , and very nearF0/2 ~or any other half-integer frac
tion!, when the energy barrier becomes small enough so
spontaneous spin transitions can take place. However, s
EB rises rapidly asT is lowered belowTc , andG depends
exponentially onEB , there is a rather well-defined temper
tureTf where the rings’ moments will freeze out.

The energy barrier between different fluxoid states tha
appropriate for a ring with circumferenceL much longer
than the coherence length was originally calculated
Langer and Ambegaokar.5 They assumed that during th
transition the order parameter passes through a saddle
of the free-energy functional. The saddle point functions a
satisfy the GL equations, and the energy barrier is the dif
ence between the energies of the fluxoid states and the
ergy of the saddle point solutions. For an infinitely long wi
this energy barrier isEB53.77uecuwdj. Using time-
dependent GL theory, McCumber and Halperin6 determined
the attempt frequency to be

V5
L

j
A EB

kBT

1

ts
, ~2.4!

wherets5p\/8kB(Tc2T) is the relaxation time of the su
perconductor. Tarlieet al.7 have extended the calculation o
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the energy barrier to rings with smaller values ofL/j. Our
measurements of the frequency dependence of the ac su
tibility ~Sec. IV B! show that the barrier isEB'uFu/3, where
F is the total superconducting free energy of then50 or
n51 state. Although the saddle point solutions have
been examined exhaustively to find the minimum barr
height, there is one such state that gives good quantita
agreement with our data.8 This will be described in more
detail in Sec. IV B. In the discussions that immediately fo
low, we will estimate the flipping rates takingEB'uFu/3
with V given by Eq. ~2.4!, and assuming tha
ts5p\/8kB@Tc(H)2T#.

D. Estimate of the Néel ordering temperature

We now estimate the ordering temperatureTN for the
Ising transition in a bipartite superconducting ring array, n
glecting the random field. We show that this temperature
well above the freezing temperatureTf ; this gives us confi-
dence that, absent any randomness, the Ne´el state is experi-
mentally accessible. As is well known,9 for the near-
neighbor Ising model,TN occurs atkBTN52.27Vi j for the
square lattice, and atkBTN51.52Vi j for the honeycomb lat-
tice. Unlike the usual Ising model, however, for the rings t
interaction strengthVi j is temperature dependent. From E
~A10!, the temperature dependence of the rings’ superc
rents nearTc(F0/2) is

I i5I ~0!S 12
T

Tc~F0/2! D , ~2.5!

whereI (0) can be obtained from Eq.~A10! and Table I. The
ring-ring interaction is then

Vi j ~T!5Vi j
0 S 12

T

Tc~F0/2! D
2

, ~2.6!

with Vi j
05Mi j I

2(0). Therefore, asT decreases, the couplin
energies increase very rapidly. The near-neighbor mutua
ductance for both our square and honeycomb arrays is a
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68 fH. The current prefactor isI (0)'5 mA. The near-
neighbor interaction is thenVNN

0 51.7310218 J. Hence,
12TN /Tc(F0/2)'231023 for the square lattice, and
12TN /Tc(F0/2)'2.531023 for the honeycomb lattice
The magnetic ordering temperatures are thus very clos
Tc(F0/2).

To observe the ordered spin state experimentally, the t
peratureTf when the individual rings freeze must be belo
TN . Because the flipping is thermally activated, as shown
Eq. ~2.3!, the freezing of the individual rings occurs muc
more rapidly than the increase of the ring interactions.
can estimate the flipping rate atTN , taking EB'uFu/3 as
outlined in the previous section. From Appendix A, for t
square lattice the free energy per ring
F'5.06310217@12T/Tc(F0/2)#

2 J. Note that this is much
larger than the coupling energy V. Then,
EB(TN)/kBTN'4.2, andG'1.63108 Hz. Thus, the corre-
lated state could easily be realized in experimental ti
scales if the random field were not present. Similarly, for
honeycomb lattice, we find that at the Ising transiti
G'33107 Hz.

For Ising spins on nonbipartite lattices, such as
kagomé and triangular lattices, the ground state is n
unique10 and there is no long-range antiferromagnetic ord
The absence of long-range order originates from geomet
frustration. The magnetic behavior of the ring arrays on th
lattices should be different from the magnetic behavior
bipartite ring lattices. Direct observations of spin corre
tions, using the scanning Hall microscope technique, will
described in Sec. V.

III. FABRICATION AND MEASUREMENT TECHNIQUES

A. Ring array fabrication

Our main goal in designing the ring lattices was to ma
mize the magnetic coupling between the rings at the freez
temperature. Thus the parameter to be maximized is the
of the ring-ring coupling energyV to the energy barrier
EB . Both EB and V are temperature dependent, but th
ratio is not. Using Table I, Eqs.~A7! and ~A10!, and taking
EB'uFu/3, we find that this ratio is approximately

V

EB
'3pS j

l D 2wdMc2

L3
, ~3.1!

wherel/j is the Ginzburg Landau parameter. To maximi
j/l, we chose aluminum, because it is a strongly type-I
perconductor. The ratiowdMc2/L3 depends only on the
rings’ geometry. We calculatedM numerically, assuming
that the current density distribution is given by Eq.~A2!,
although the result obtained assuming a uniform current d
sity is not appreciably different.M is a decreasing function
of w andd, and an increasing function ofL, but these de-
pendences are weaker than the prefactorwd/L3. To maxi-
mizeV/EB the rings should therefore have small circumfe
ence and large thickness and width. Of course, to maxim
M the rings should be as close together as possible.

Figure 4 shows scanning electron microscope~SEM! im-
ages of the four basic lattices that we constructed: hon
comb, kagome´, square, and triangular. Note that in the ho
eycomb, kagome´, and triangular lattices the rings
to
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dimensions and near-neighbor spacings are identical, an
presumably, are the near-neighbor couplings. Only the lat
connectivity is changed. We can also hold the ring size a
lattice connectivity constant, and vary the inter-ring spaci
The inset to Fig. 4 shows a portion of a ‘‘sparse’’ array
square rings identical to those in the square lattice in Fig

To maximize the mutual inductance on the dense
packed lattices, the rings were made in square or hexag
shapes. The outer sides of the square rings are 1.6mm and
the outer sides of the hexagonal rings are 1mm. For both
shapes, the wire widths are 0.4mm, the film thicknesses are
0.23mm and the gap between rings is 0.2mm. For the sparse
square array shown in the inset to Fig. 4, the gap between
rings is 2.4mm. Assuming that the current distribution in th
rings is given by Eq.~A2!, the self inductance of both th
square and the hexagonal rings isLs'1.6 pH. For the square
lattice in Fig. 4, the first, second, and third nearest-neigh
mutual inductances are 68, 18, and 4 fH, respectively. V
similar numbers were obtained in a calculation with unifo
current densities. The near-neighbor coupling between
rings in the sparse array is 18 times smaller than the coup
between the closely spaced rings. For the three hexagon
lattices, the first and second nearest-neighbor mutual ind
tances are 68 and 4 fH, respectively.

The ring arrays were produced at the Cornell Nanofab
cation Facility. They were made on sapphire substrates
electron beam lithography using a single layer resist, f
lowed bye-beam evaporation of the aluminum and lift of
The dense square arrays had 160 000 rings, and the ho
comb, kagome´, and triangular lattices had 170 000, 182 00
and 243 000 rings, respectively. The sparse square arrays
40 000 rings.

FIG. 4. SEM micrographs of arrays of aluminum rings. All ring
have 0.4mm linewidth and are 0.24-mm thick. Top left: honey-
comb lattice; top right: kagome´ lattice; bottom left: triangular lat-
tice; bottom right: square lattice. Inset: unit cell of a ‘‘sparse’’ arr
of square rings used to study effect of interring separation on in
actions.
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B. SQUID Magnetometer

The magnetic moment and ac susceptibilityx(H,T) of
the arrays was measured as a function of dc fieldH and
temperatureT with a SQUID magnetometer mounted on
dilution refrigerator.H and the ac measuring fieldHac were
produced by separate superconducting solenoids. The
magnet was operated in persistent mode to produce a s
field, and to provide magnetic shielding. Induced currents
a gradiometer consisting of a pair of five-turn pickup co
~radius 0.5 cm! were measured with a commercial~BTI! dc
SQUID. Additional magnetic screening was provided by
andm-metal shields.

The sample was mounted on a sapphire rod and place
the center of one of the pickup coils. The rod was heat s
to the mixing chamber of the dilution refrigerator. Tempe
ture stability of620 mK was achieved with a Lakeshor
Cernox thermometer mounted on the mixing chamber, us
a commercial resistance bridge and temperature contro
With Hac56 mG rms at frequencyf53 Hz, the ac respons
was linear for allH andT, and the total ac moment produce
by the arrays was'131029 emu forT!Tc . The low fre-
quency sensitivity of the gradiometer was 10211 emu/AHz.

C. Scanning Hall probe microscope

The low-temperature spin configurations of the arra
were imaged using a scanning Hall probe microscop11

Scanning Hall probe microscopy~SHM! is a technique suit-
able for spatial imaging of magnetic fields with micron sp
tial resolution.12 A similar microscope has been used to im
age vortices in superconducting wire networks.13 The Hall
probe is made of a GaAlAs/GaAs heterostructure patter
into a Hall geometry by photolithography. The size of t
Hall probe is 131 mm. The active area of the probe is with
'7 mm of the corner of the GaAs chip; this allows the pro
to be brought very close~'0.5mm! to the upper surface o
the rings. This close approach is necessary to obtain h
spatial resolution and large field modulations.

The microscope’s scan range at 4.2 K is approximat
1503150 mm. The sensitivity of the Hall probe is about
mG/AHz. The Hall voltage was measured using a digi
lockin amplifier atf51 kHz, with a 3-ms time constant. Th
entire microscope was attached to a3He cryostat, and could
be easily cooled from aboveTc to about 650 mK where the
images were taken.

IV. MAGNETIC MEASUREMENTS

In this section we describe magnetic measurements m
on the arrays with the SQUID magnetometer. Several ty
of measurements were performed. From measurements o
dc magnetic moments of the arrays as a function of temp
ture and field, we show that individual rings do indeed b
have like Ising spins. We then probe thedynamicsof the
rings using the temperature dependence of the ac suscep
ity. Such measurements clearly show the freezeout of
spins as the temperature is lowered only slightly belowTc .
Finally, from the field dependence of the ac susceptibility
can obtain information about the magnitude and sign of
inter-ring magnetic interactions.
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A. Magnetic moment measurements

Figure 5 shows the magnetic moment per ringm as a
function of temperature nearTc for a kagome´ lattice of hex-
agonal rings. The rings were cooled in a fixed applied ma
netic fieldH. The average field for half a flux quantum fo
this array isH̄1/256.977 G, as determined from SHM mea
surements~Sec. V B!. If H is less thanH̄1/2, m is negative
indicating that a majority of the rings are in then50 state
with their spins pointing in the direction opposite to the ap
plied field. If H is greater thanH̄1/2, m is positive and a
majority of the rings are in then51 state with their spins
pointing parallel to the field. IfH5H̄1/2, practically no net
magnetic moment appears belowTc . This occurs because
half of the rings in the array cool into the spin up state an
half cool into the spin down state. Note that the value
H̄1/2 value agrees very well with the calculated valueH1/2 5
6.95 G~see Table I!.

The inset to Fig. 5 shows that very nearTc(F0/2) the
average magnetic moment per ring, and thus the aver
current per ring, is a linear function ofT. One can also see
the minimum inTc atF0/2, characteristic of the Little-Parks
effect.2 We can calculate the coherence length by compari
the measuredTc(H) to the predictions of GL theory. We
obtainj(0)5 0.235mm, which is a typical value for thin Al
films. All of the arrays that we measured showed simil
effects. Table I summarizes these results for both the squ
and hexagonal rings.

We also find that the magnetic moment in the spin dow
statem2 is noticeably larger than the magnetic moment
the spin up statem1 , consistent with the GL analysis sum
marized in Fig. 2. This can be seen most clearly by comp
ing the data at 0.495F0 and 0.504F0 in Fig. 5. This asym-
metry arises because in a ring with finite wire width, th
current distributions are different in the up and down state
The measured ratio of the magnetic moments in the spin
and the spin down states isum1 /m2u50.69 just belowTc .
In our approximate calculation within GL theory~see Table I
and Fig. 2!, the total currents flowing in the two states of
ring are identical in magnitude, but the magnetic momen
are not. For the hexagonal rings our calculation giv
um1 /m2u50.78.

FIG. 5. Field-cooled dc magnetic moment per ringm vs tem-
perature for a kagome´ lattice in the region aroundF0/2 applied flux
per ring. Inset shows linear dependence ofm on T very nearTc .
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At low temperatures, the magnetic moment per ring
nearly temperature independent. Using Table I we can cal
late the current corresponding to the measured magnetic m
ment, and hence estimate the self-induced flux in a ring.
T50.95 K, we find thatF5LsI50.45F0, which is ap-
proaching the perfectly screened limit of 0.5F0.

Magnetization measurements can also give us the rang
temperatures nearTc(F0/2) where the rings can flip. To do
this, the rings were first cooled down to 0.95 K in zero field
as sketched in Fig. 6~a!. In this way, all the rings were
trapped in then50 state. The applied field was then se
to H̄1/2. Since the rings are strongly hysteretic at this lo
temperature, no rings flipped when the field was increas
Next, the temperature was increased to some va
T!,Tc(F0/2). This was done carefully, making sure tha
the temperature was always less than or equal toT!. The
rings were kept atT! for one minute, and then they were
cooled back to 0.95 K while the magnetic moment was me
sured. Figure 6~b! shows the magnetic moment per ring mea
sured in this way for a kagome´ array. Initially atT50.95 K
andH5H̄1/2, all the rings are in the spin down state with
magnetic momentm2 . After cycling toT! and back, some
of the rings have flipped, and the average moment per ring
m!5x1

! m11(12x1
! )m2 , wherex1

! is the fraction of the
rings that flipped to the up state atT!. Solving forx1

! gives

x1
! 5

12m!/m2

12m1 /m2
. ~4.1!

m!/m2 is obtained from the data in Fig. 6, and
m1 /m2520.7360.01 at 0.95 K from the data in Fig. 5.
The results forx1

! vs T! are shown in Fig. 6~c!. We see that

FIG. 6. Determination of temperature range where rings can fl
~a! Dashed arrows: path inH-T plane traversed by array to first
prepare it in a state with all rings spin down, and then to warm
T! to allow rings to flip. Solid arrow: line along whichm(T) shown
in ~b! was measured.~c! Fraction of rings that flipped from spin
down to spin up for differentT!.
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at T!51.170 K,x1
! 50.5 which means that the energy ba

rier between the up and down states has been reduced
ciently to allow the rings to reach thermal equilibrium. Th
temperature is about 4 mK belowTc(F0/2). As T

! is re-
duced, however,x1

! drops rapidly to zero; forT!,1.158 K
no rings could flip. Thus there is only a narrow temperatu
region within about 10 mK ofTc where the energy barrier i
small enough to allow the rings to reconfigure thermal
This is a crucial result, and should be born in mind in
subsequent discussion. Notice that the freezing proces
gradual as the temperature decreases. This suggests th
spin freezing temperature is not the same for each ring,
that there is a distribution of thermal relaxation times.

B. ac susceptibility: temperature dependence

By measuring the ac susceptibilityx(H,T), we could
probe the rings’ dynamics directly. This section describes
temperature dependence of the susceptibility at fixed fi
which gives us quantitative information on the average
namic response of individual rings.

To measure x(H,T), a magnetic field H(t)5H
1Haccosvt was applied to the sample, and the resulting
response from the SQUID was measured with a lockin a
plifier. The dc fieldH was typically near the field corre
sponding toF0/2 ~7.0 or 7.5 G!, andHacwas typically 6 mG
rms.

Figure 7 shows the temperature dependence of the
part of the susceptibilityx8 for the hexagonal rings a
v/2p53 Hz in average applied fluxesF̄50 andF̄ 5 0.5
F0. F̄ is defined such thatF̄5F0/2 when half the spins are
up and half down in a field-cooled magnetization~Fig. 5! or
SHM ~Fig. 19! measurement. The main part of the figu
shows data for a kagome´ lattice very nearTc , and the inset
shows data for a triangular lattice over a broader tempera
range. At zero flux per ring the ac susceptibility in the s
perconducting state is negative. This differential Meiss
effect arises as the ac flux is screened from passing thro

.

o

FIG. 7. ac susceptibilityx of kagoméand triangular~inset! ring
arrays nearTc . In zero applied dc flux, only a diamagnetic respon
is observed. AtF0/2, a large paramagnetic spike inx8 appears as
the rings flip in response to the ac field. The freezing tempera
Tf ~dashed line! is defined by the peak inx9 ~open circles!. The
data are normalized tox0, the value ofx at T51 K.
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the rings. AtF0/2, however, thex8 vs T curve is very dif-
ferent: there is a dramatic paramagnetic spike inx8 just be-
low Tc . Then, as the temperature is decreased furtherx8
becomes negative, and the differential Meissner effect is
covered.

The paramagnetic signal inx8 at 0.5F0 occurs precisely
in the temperature range where them(T) measurements
show that the rings can reorient. It arises because the r
are switching between then50 andn51 fluxoid states in
response to the ac field. This flipping leads to a paramagn
response, just as for spins in a magnetic system. Unlike
dinary spins, however, the temperature dependence of
rings’ magnetic momentm}12T/Tc leads to a much faste
rise inx than the usual Curie-type response. At first glan
the peak inx8 might appear to signify a cooperative orderin
transition. However, we observed this peak in all of the
rays, irrespective of lattice geometry or inter-rin
separation.14 The peak is in fact a single-ring effect that r
flects the temperature dependence of the rings’ dynamic

As for any two-level system15 the dynamics are deter
mined by the transition rateG @Eq. ~2.3!# between the two
states. For the rings, the dominant influence onG is the tem-
perature dependence ofEB , EB;@12Tc /Tc(F0/2)#

2 ~see
Sec. II C!. Just belowTc whenEB is small,G is large. When
G@v, the population of up and down spins stays in therm
equilibrium as the ac field changes, and the ac response
sures the dc, or isothermal, susceptibility. However, asEB
grows with decreasing temperature,G decreases extremel
rapidly. WhenG'v, the amplitude ofx8 drops and a phas
shift marked by a peak inx9 appears, as shown in Fig. 7. Th
temperature of the peak inx9 defines the freezing tempera
tureTf at frequencyv ~dotted line!. As EB grows further at
lower temperatures,G becomes much smaller thanv. Then
the rings can no longer flip in response toHac, and that
contribution tox is suppressed. There is a second contri
tion to the ac susceptibility, however, which is equal to t
field derivative of the magnetic moment of the rings trapp
in the up and/or down states. We see from Fig. 2~b! that near
F0/2, the slope of them vsF curve ispositive. This ‘‘adia-
batic susceptibility’’ thus gives rise to the residualparamag-
netic tail in x(T) below the peak.

Because of the strongT dependence ofEB , the transition
from dynamic to frozen spins happens in a region only a f
mK wide. Nonetheless, the frequency dependence ofTf
characteristic of this type of dynamic freezing can be o
served. The frequency dependence ofx8 is shown in Fig. 8,
for a sparse array of square rings. Asv is reduced,Tf be-
comes lower, and the peak inx8 shifts to lower temperature
We can model the ac response of the rings with a strai
forward extension of the theory of paramagne
relaxation.15,16 The susceptibilityx8 as a function of fre-
quencyv for an ensemble ofidenticalnoninteracting rings is

x8~T,H,v,G!5x1x18 1x2x28

1
~m12m2!2

4kBT

1

~v/2G!21S coshF12F2

2kBT
D 2 ,

~4.2!
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wherex1 andx2 are the concentration of rings in the up an
down spin states, andF6 , m6 , andx68 are the correspond
ing free energy, magnetic moment, and adiabatic suscept
ity of those states. Whenv50, the last term is the dc sus
ceptibility derived from the statistical mechanics of one Isi
spin.

Direct application of Eq.~4.2! does not fit the data in Fig
8, because it gives a drop inx8 belowTf that is much more
rapid than the observed behavior. However, intrinsic disor
in the arrays can give a distribution of flipping ratesG. This
will tend to broaden the peak. The lines in Fig. 8 were o
tained fitting all the data in the figure simultaneously to a t
parameter model that averages Eq.~4.2! over assumed
Gaussian distributions in the rings’ dimensions and coh
ence lengths:

x8~T,H,v!5E E dj~0!dLx8~T,H,v,G,j~0!,L !

3
1

2pdj~0!dL

3expF2
„j~0!2 j̄~0!…2

2„dj~0!…2
2

~L2L̄ !2

2~dL !2
G .

~4.3!

Here,L is the average circumference of a ring, and hence
integral overL averages over the equivalent random fie
The wire width was kept constant for simplicity. The valu
dL/L̄50.5dA/A50.0027 was fixed based on the rms var
tion in the ring areasdA/A determined independently from
the field scans ofx8 described in the next section. The vari
tion in flipping rate comes primarily from the distribution o
coherence lengths in the rings, which presumably also ar
from imperfections in the rings. Taking forj̄(0) the value
given in Table I, the only free parameters left in the fit a
dj(0) and an overall scale factor. The fit gav
dj(0)50.03j̄(0).

The calculated frequency dependence ofx8 is very sensi-
tive to the energy barrier used to determineG. We found
empirically that to obtain a good fit tox8(v,T) it was nec-

FIG. 8. Frequency dependence of the ac susceptibility atF0/2
for the noninteracting ‘‘sparse’’ array of square rings shown in
inset to Fig. 4. The solid lines are the fit described in the text.
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6526 55DRAGOMIR DAVIDOVIĆ et al.
essary to takeEB.uFu/3. We propose an explanation for th
value by noting that there is a possible intermediate stat
which the order parameter goes to zero at one point on
ring circumference.8 As such a state carries zero current, it
a plausible intermediate for a ring to pass through during
current reversal associated with a spin flip. For an infinite
mally thin ring, the free energy of this state is approximat
2/3 of the free energy of the spin states atF0/2, which means
thatEB'uFu/3 as needed for the fit. The ratio of the energ
of the intermediate state and the spin states is very we
dependent onL/j, varying from 0.67 to 0.71 F for
p,L/j,6. Thus, we expect that approximately the sa
barrier is valid even for wide superconducting rings. It tur
out that this state is a special case of the general saddle
states considered by Tarlieet al.,17 and thus it is possible tha
this state does not represent the true barrier. A full explo
tion of the saddle point states is beyond the scope of
present analysis, but in light of the good agreement of the
with the data, it is likely that this zero-current intermedia
state is close to the true barrier.18

C. Field-dependent susceptibility

The magnetic measurements discussed in the prev
sections demonstrate that individual rings are indeed an
gous to Ising spins. However, those measurements do no
us anything about the nature of possibleinteractionsbetween
the rings. To investigate this aspect of the problem, we h
explored thefield dependenceof the magnetic susceptibility
x(H). We find a broadening of the peak inx(H), as well as
a hysteretic behavior between field sweeps up and down.
show that both effects provide clear evidence of antifer
magnetic interactions between the rings.

Figure 9 shows the field dependence ofx for a sparse
array of square rings. Since, as we have seen, the mag
interactions between these sparsely spaced rings are abo
times smaller than in dense arrays of rings, we expect tha
these arrays interactions will be negligible. The upper gra
shows field scans at temperatures higher than the pea
x(T). At these temperatures we expect those rings that
nearH1/2 to flip freely with the ac field. The lower graph i
obtained at temperatures below the peak temperatureTp .
Here, rings are beginning to freeze out and we might exp
slow dynamics and hysteresis to become important. The fi
was swept up~open symbols! and down~filled symbols!.
The lines between the points are fits to a Gaussian wit
sloping background. The Gaussian shape in all thex(H)
curves comes from the distribution of the random fiel
which again are related to the distribution in the rings’ are
Thus, at low applied fields, only those few rings with are
rather larger than the average size will feel an applied flux
F0/2 and thus be able to flip readily and hence contribute
the susceptibility. When the applied fluxF̄5F0/2, then a
large number of rings with areas equal to the average
can participate, leading to a peak inx. Finally, for large
applied fields, there is a contribution from only the fe
rather small rings. Thus the Gaussian shape ofx(H) directly
reflects an evidently Gaussian distribution of ring areas,
equivalently, of random fields. We have also added a slop
linear background to these fits to model the adiabatic lim
of x in then50 andn51 states. From the data in Fig. 9, w
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find the standard deviation of the Gaussians for the sp
ring array to be 2.731023F055.431023F0/2. Since
H1/25F0/2A, this implies that the rms fluctuations in th
ring areas isdArms/A50.0054, or about half a percent.

In this treatment we have assumed that thethermalwidth
of x is small compared to this disorder-induced width. Th
is reasonable, since the width due to disorder is about e
times the thermal width, as can be calculated from Eq.~4.2!,
or obtained experimentally as described in Sec. V D. W
also note that field sweeps up and down appear identica

Field scans on arrays of closely spaced rings exhibit m
more complex behavior than the sparse arrays, because o
inter-ring coupling. Figure 10 shows the effects of ring co
pling on the susceptibility of a triangular lattice array. Aga
field sweeps up and down are shown, both above and be
the temperature of the peak (TP51.172 K!. We note two
important differences between this dense ring data and
from the sparse arrays~Fig. 9!. First, the peak widths are
wider for the dense array scans. Second, while aboveTP the
up and the down sweeps yield identical results,below TP a
splitting develops between the two sweep directions. N
that this splitting is such that the peak occursbefore the
applied flux is equal toF0/2 for the sweep up, butafter
F0/2 for the sweep down. We now show how these facts
be interpreted as evidence for antiferromagnetic interacti
modified by dynamical freezing of rings.

Let us first discuss the broadening of the peak width. T
effect is due to an average magnetic field generated by

FIG. 9. Field-dependence of the ac susceptibility of nonintera
ing rings:x8 for a ‘‘sparse’’ array of square rings vs applied dc flu
for fixed temperatures~a! above and~b! below the temperatureTp
of the peak inx(T). Open symbols: increasing field; filled symbol
decreasing field. Solid lines are fits to Gaussians plus a linear b
ground. The widths of the Gaussians are independent ofT, and
reflect the distribution of the rings’ areas and hence the rand
field.
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currents in the rings themselves. When we start a swee
low fields, almost all the spins will point down. As we hav
seen, the dipolar nature of these downward-pointing m
ments leads to a magnetic field pointingup at neighboring
rings. Thus, when all the rings point down, there is a rat
uniform ‘‘mean field’’ pointing up. This means that the a
tual fieldHa felt by the rings islarger than the applied field
H @Fig. 11~a!#. The largest rings in the distribution wil
therefore reach their flipping fieldH1/2 at a lower applied
field than they would have without interactions, and the s
ceptibility will begin to rise sooner. This effect persists
long as there are more spins down than up, that is, u
F̄5F0/2. Here, there are as many up spins as down and
mean field is zero. As we move pastF0/2, an excess of up
spins develops, leading to a downward-pointing mean fi
This means the actual field is somewhatlessthan the applied
field, implying that the last few small rings will reachH1/2
only at a larger applied field than would be the case with
interactions@Fig. 11~a!#. Thus the noninteracting Gaussian
Fig. 9 is spread out by interactions to the wider Gaussian
Fig. 10.

This explanation is adequate above the peak tempera
TP , where we expect the energy barrier for flipping to
small, and for each ring to contribute to the peak inx when
the applied field is near itsH1/2. However, we have seen tha

FIG. 10. Field-dependence of the ac susceptibility of interact
rings: x8 for a triangular lattice vs applied dc flux for fixed tem
peratures~a! above and~b! below the temperatureTp of the peak in
x(T). Open symbols: increasing field; filled symbols: decreas
field. Solid lines are fits to Gaussians. The temperature depend
of both the peak widths and the peak positions demonstrates
presence of interactions between the rings.
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below TP , a splitting develops between up and dow
sweeps. The above ideas cannot explain this, since in
picture the mean field is zero atF̄5F0/2, and so the peak
position should be the same for both sweep directions.
understand this splitting, we need to invoke the idea t
below TP , rings are beginning to freeze out. We have
ready seen~Sec. IV B! that there is a distribution of coher
ence lengths or, equivalently, of barrier heights. Thus,
T,TP we can think schematically of there being thr
‘‘classes’’ of rings@Fig 11~b!#. Some rings will have barriers
smaller thankBT, and these can flip freely atH1/2 and con-
tribute to the peak inx. Other rings will have very large
barriers, and will never flip during the sweep. Some fractio
however, will have intermediate-sized barriers. These ba

g

g
ce
he

FIG. 11. ~a! Broadening of the peak due to interactions. T
dotted curve representsx(H) for a noninteracting~i.e., sparse! ar-
ray. Here the broadening is due to disorder only. In the interac
case, an applied fieldH below the peak is increased by the intera
tion field to an actual fieldHa ; the measured susceptibility is the
x(Ha), but it is plottedat H. As shown, this leads to an appare
broadening of the peak. A similar argument holds for applied fie
above the peak.~b! There are three ‘‘classes’’ of spins: those wi
very small barriers atH1/2, which flip freely atH1/2 and contribute
to x; those with large barriers, which never flip at contribute no
ing to the dynamics; and those with intermediate barriers, too la
for the small ac field to flip, but which can flip once as the dc fie
ranges somewhat past theirH1/2. The excess number of such onc
flipping spins is shown in~c!. As the field is swept up, there is a
excess of down spins, leading to an average upward mean
which persists well past the peak inx. Upon sweeping down, how
ever, there is a deficit of such spins, so that the mean field points
This leads to hysteresis inx(H) at lower temperatures where th
ring dynamics begin to freeze out.
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6528 55DRAGOMIR DAVIDOVIĆ et al.
ers are too large to allow the spins to follow the ac field, a
they make no contribution tox. However, they are smal
enough to allow the spin to flip from down to up after th
applied dc field passes some distance beyondH1/2. This is
illustrated in Fig. 11~b!. We see that such a spin starts in
down ‘‘well,’’ which is much lower than the up well at low
applied fields. As the field is increased to this ring’sH1/2,
the bottoms of the two wells become the same depth. H
ever, the barrier is still large enough to prevent any flippi
Only when the dc field is somewhatgreater thanH1/2 does
the spin suddenly flip. Once it does so, however, it is now
the deeper ‘‘up’’ well, and cannot flip back. Given the di
tribution of barrier heights and ring areas, we expect then
excess of such down spins which persists pastF0/2, as in
Fig. 11~c!. This implies a mean field pointing up, even
F0/2. This means the actual field is somewhat larger than
applied field, and the peak occurs beforeF0/2. When the
field is swept back down, a similar argument holds, exc
there is now an excess of up spins which persists be
F0/2. This moves the peak to a higher value ofF̄ on the
downward sweep.

In Figs. 12~a!–12~c! we plot ~a! the susceptibilityx(T),
~b! the width of the peak, and~c! the peak splitting for the
sweeps on the triangular array shown in Fig. 10. Shown
comparison in Fig. 12~b! is the peak width for the spars
square array data of Fig. 9. Note that the temperature sca
expanded to 8 mK. At high temperatures the peak width
the dense~interacting! array is similar to that of the spars
~noninteracting! array, but for the dense array the width b
gins to grow roughly linearly with falling temperature. Th
width of the sparse arrays is independent ofT. These tem-
perature dependences reflect the fact that the currents in
rings—and thus the interaction field caused by the ring

FIG. 12. Results of fits to field-dependent susceptibility of t
angular lattice shown in Fig. 10.~a! ac susceptibilityx(T). ~b!
Width of peak. Also shown is width of peaks for sparse array fr
Fig. 9. ~c! Splitting of peak.
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rises as 12T/Tc . Thus the peak width, which as we hav
seen is proportional to the interaction field, grows linea
with falling T. Of course, a sparse array has negligible int
actions, and its width reflects only the disorder in the ri
areas. A similar explanation holds for the initial rise of th
peak splitting shown in Fig. 12~c!. The splitting is propor-
tional to the interaction field, which grows with fallingT.

We note, however, that neither the peak width nor sp
ting continue to grow as the temperature is further lower
and indeed both appear to begin to fall at the lowest temp
tures in Fig. 12. This is because at these temperatures
energy barriers of all rings are rising rapidly. Thus, ma
rings are beginning to freeze out entirely, and never flip d
ing the course of the sweep. The fraction of freely flippi
spins, which determines the peak width, and of once-flipp
spins, which determines the splitting, are both dropping.

To compare the strength of the random field to that of
interaction field, we may apply a quantitative analysis of t
ideas shown schematically in Fig. 11. Let the field on a r
due to the currentI flowing in one of its neighbors be
H int5MI /A, with A the average ring area. Then we ca
compute the~mean! effective fieldha at a ring due to both
the effective applied fieldh and the fields due toz nearest-
neighbor rings as

ha5h1zHint~x22x1!, ~4.4!

where x1 and x2 are the concentration of up and dow
spins, respectively. If we assume a purely Gaussian distr
tion of ring sizes or flipping fieldsH1/2

i ~as Fig. 9 implies!,
thenx1 is proportional to the area of the Gaussian which
below ha . This is because all spins which have flippin
fields belowha will have flipped up, while all those abov
remain down. Thus we can write

x15
1

A2ps
E

2`

Ha
exp~2y2/2s2!dy5

11erf~ha /A2s!

2
.

~4.5!

Here,s is the random Gaussian width~in field! determined
from the noninteracting sparse array sweeps. Inserting
into Eq. ~4.4! yields

ha5h2zHint erf~ha /A2s!. ~4.6!

This equation yieldsha(h) only implicitly. We can, how-
ever, expand this function aroundh50, which yields

ha5
h

11zA2/p~H int /s!
1O~h3!. ~4.7!

Thus to second order, the shape of the interacting-ring p
will be thesameas that of the noninteracting peak, as seen
the data where Gaussian fits work well for both cases. T
ratio of the widths of the peaks is then given by

R5
width of interacting peak

s 5 width of noninteracting peak

511zA2/p
H int

s
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511zA2/p
MI

sF
, ~4.8!

wheresF is the random width measured in units of flux.
From Fig. 12 we see that atTc2T'3 mK the width of

the interacting~dense array! peak is about 531023F0 ,
while the width of the noninteracting~sparse array! peak is
sF52.731023F0. Thus the ratio R is 1.9, yielding
MI50.19sF51.05310218 T m2. With M568 fF for the
hexagonal rings, we find thatI515mA. Thus the rate of
increase in current with falling temperature is aboutdI/dT
515 mA/3 mK55 mA/K.

We may compare this with the currents per ring deriv
directly from magnetization measurements. The best e
mate of the moment of one ring nearF0/2 can be found from
the data of Fig. 6, in which the arrays were zero-field coo
and then had the field turned on. The lowT!51.1578 K data
yields a slopedm/dT51.3310211 emu/K. We may convert
from moment to current using Eqs.~A10! and ~A13!, com-
putingm5IK̃ (0,H)/cJ̃(0,H). The ratioK̃(0,H)/ J̃(0,H) thus
plays the role of an effective ring area for then50 state, and
can be computed from Table I. For the hexagonal rin
K̃(0,H)/ J̃(0,H)53A3(b21a2)/451.68310212 m2. We
find that dI/dT computed this way is 7.7 mA/K, which
agrees quite well with the 5 mA/K found from the previo
method. The broadening of the susceptibility peaks in
dense~interacting! arrays is thus seenquantitatively to be
caused by the dipolar interactions between rings.

V. MAGNETIC IMAGING

The magnetic measurements—magnetization
susceptibility—presented in the previous section have es
lished first, that individual rings in the arrays behave ana
gously to spins in a random-field Ising model; and seco
that there are magnetic interactions between rings which
vor antiparallel alignment, that is, that there exists ananti-
ferromagneticcoupling between the rings. The magne
measurements could not determine, however, whether s
or long-range order in the spin orientations exists in the
rays. To answer this question, we have used scanning
probe microscopy to image directly specific ‘‘spin’’ configu
rations in the arrays. We can then analyze these real-s
configurations to explore the degree of spin-spin correlati
present.

Field-cooled images of the ring arrays were taken with
scanning Hall probe microscope~SHM! at low temperatures
(T'0.5Tc), where the currents flowing in each ring are lar
enough to be measured by the Hall probe. An external m
netic field was applied to the array by a home-built sup
conducting magnet which was used in the persistent mo
This way the field was very stable and the magnetic no
was very small. The field nonuniformity over the entire ar
of the array was about one part in 104, which is much smaller
than any other field scale in the measurements. At each v
of the applied field, the rings were cooled throughTc at
typical cooling rates of 30–50 mK/s. However, coolin
through the transition region at the much slower rate
0.017 mK/s had no effect on the resulting correlations. Si
as we have seen, the ring dynamics freeze out only som
mK belowTc , the images we obtained are essentially sn
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shots of the configurations at the freezeout temperat
Also, at the scan temperature of'0.6 K, the flux configura-
tion is frozen in, so that the Hall probe was noninvasi
during the scans. The measuring current of 50mA through
the Hall probe results in a maximum field at the rings
about 0.16 G, which is completely negligible at low tempe
tures. A typical scan covered an area equal to 48362 mm2,
and took five minutes to perform. The data were stored
1283128 pixel raster scans.

A. Image reconstruction

To compute accurate statistical measures of the corr
tions, we need to be able to determine the correct orienta
of each magnetic spin in the array. Figure 13~a! shows the
magnetic field distribution over a honeycomb lattice fie
cooled in 6.1 G, which is equal to an applied flux of 0.4
F0. TheX andY axes are the voltages applied to the sca
ner, which are nominally proportional to thex and y posi-
tions. The image was obtained by scanning from left to rig
in lines from top to bottom. The full scale field modulation
Fig. 13~a! is 0.1 G. Brighter regions of the image correspo
to regions of higher field. The distortion of the measur
pattern on the left side is caused by hysteresis in the pie
electric scanner. Because the voltage responses of the s
ner in theX andY directions are not the same, the distan
scanned in theY direction is about 1.4 times that scanned
theX direction. This far belowF0/2, all the rings cooled in
the n50 state. We immediately notice a triangular array
bright spots. These appear at the position of the empty sp
~holes! in the honeycomb lattice, which form a triangula
lattice. Since the rings screen out the applied magnetic fi
the field is pushed into the holes, and the field through
holes is greater than the applied field. Figure 13~b! shows the

FIG. 13. ~a! Magnetic image of a honeycomb lattice in an a
plied flux of 0.436F0; here, all the rings are in the spin down sta
The triangular lattice of bright spots shows the lattice holes, i.e.,
positions of the missing rings in the honeycomb lattice.~b! Image
obtained at 0.4913F0 in the same region of the array. The fe
triangular-shaped bright spots are rings containing a single
quantum, that is, they are ‘‘up spins.’’~c! The difference between
the two images. Here, the up spins are quite obvious as rou
elliptical white spots. Also shown are field profiles through tw
spins in both horizontal~1! and vertical~2! directions. The circles
are the field values, and the curves are Gaussian fits to the
profiles. The amplitude of the Gaussians is 0.53 G.
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FIG. 14. A sequence of field-
cooled images of the honeycom
lattice, taken in increasing applie
fluxes near F0/2. The flux
increases from left to right starting
at the upper left corner where
F̄50.4913F0 and ending in the
lower right corner at F̄
50.5066F0. There is a clear
progression from a few up spin
~white spots! at low fields,
through rather disordered
appearing states nearF0, to only
a few down spins~dark spots! at
the highest applied fields.
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field distribution at a somewhat higher field corresponding
0.4913F0. Here, a few rings in the array cooled in the sp
up state. Those rings appear as large bright spots. The s
position of the field from the up spin with the field from th
three neighboring holes causes the spots to have a trian
shape. The full-scale field here is 0.42 G.

The positions of the underlying rings can be obtain
from Fig. 13~a! by finding the center of every bright spo
~hole! in the image. These determine the ring locations, si
on a honeycomb lattice, the rings lie at the center of
equilateral triangle formed by the three neighboring hol
The image contains 680 rings. The SHM is sufficiently sta
that the ring positions determined in this way can be use
analyze a series of images of the same portion of the a
taken at different fields.

The difference image formed by subtracting Fig. 13~a!
from Fig. 13~b! is shown in Fig. 13~c!. The triangular lattice
of holes is absent in the difference image, and the remain
bright spots are the magnetic field produced by the up sp
The full scale magnetic field modulation in this image is 0.
G. The measured field profile of a single ring is we
described empirically by a 2D Gaussian. This profile is illu
trated in two plots along lines 1 and 2 in Fig. 13~c!; also
shown are the Gaussian fits to these two slices. Note tha
o
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width of the Gaussians along theX and Y directions are
different by the factor of 1.4 mentioned previously.

Figure 14 shows a set of 20 images of the honeyco
lattice, obtained in different fields aroundF0/2 spanning the
range 0.4913F0 to 0.5066F0. At low fields, only a few up
spins ~bright spots! are visible on the dark background o
down spins, and the faint lattice of holes. At larger fields, t
number of up spins increases until at the highest fields m
of the rings are spin up, with only a few dark down spins.
this case, the hole lattice appears as a regular array of
spots. To determine the spin state of each ring, we develo
the following image reconstruction algorithm. First, we ma
an initial guess at the correct spin configuration. When th
are only few up spins as for the smallest field in Fig. 14,
spin configuration is straightforward to determine. Ne
F0/2, the initial guess was the spin configuration determin
at the previous field. After the initial guess, we construc
correspondingsynthetic imageby the superposition of
computer-generated Gaussian field profiles of the approp
sign at each site. The difference image of data minus mo
is computed, and used to determine how to modify any
correctly chosen spins. These steps are iterated until the
ference image is flat. This procedure is illustrated in Fig.
The top left image is the measured magnetic field distri
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tion C4 of Fig. 14 stretched along the vertical axis to corr
for the anisotropy of the scanner. The top right image is
final synthetic image, and the computed spin configuratio
shown at the bottom left. Dark hexagons are down spins
white hexagons are up spins. The difference between
synthetic image and the measured image is shown at
bottom right. To demonstrate the effectiveness of our m
eling procedure, one spin was deliberately set incorrectly
the synthetic image; this error shows up very clearly in
difference image.

A similar image reconstruction algorithm was used in t
analysis of the kagome´ lattice. However, the triangular an
the square lattice do not have holes, and the ring posit
were determined using a different method. First, we note
images taken at two nearby fields are very similar, and
difference image of two such images typically shows onl
small number of flipped rings. In Fig. 16 we show two im
ages of a triangular lattice taken atH57.000 and 7.013 G
The corresponding difference image shows both bright
dark spots, indicating that some rings flipped from down
up, and some from up to down. The positions of these sp
determine the locations of the flipped rings. This proced
was repeated for the difference images from a series of
ages taken at fields that spanF0/2. In such a series ever
ring flips at least once, as can be seen for the honeyc

FIG. 15. Top left: A magnetic image measured atF0/2 for a
honeycomb lattice. Top right: The synthetic image which mod
the data, as described in the text. Bottom left: The spin config
tion inferred from the data. Dark hexagons represent down sp
and bright hexagons up spins; gray hexagons are the holes o
honeycomb lattice. Bottom right: The difference between the s
thetic and the measured images. We have purposely set one
incorrectly in the synthetic image; this error shows up very clea
in the difference image as an isolated dark spot.
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lattice in Fig. 14, and the positions of all the rings can
found. Once these positions are known, the previously
scribed image reconstruction algorithm may be applied.

B. Analysis of the spin configurations

Figures 17 and 18 show the magnetic field images
corresponding spin configurations at five different fields n
F0/2, for the honeycomb, kagome´, triangular, and square
lattices. Again, the magnetic images have been stretc
along the vertical axis to correct for the anisotropy of t
piezoelectric scanner. As the field increases the concentra
of up spins increases. AtF0/2, by definition the fraction of
up spins in the array is the same as the fraction of do
spins. At the highest field, the down spins appear as a
dark spots. Each lattice was scanned over two different
gions of the array. In these two figures we show the fi
scans over one area for each lattice only.

Figure 19 shows the concentration of up spinsx1 for all
the arrays, as a function of magnetic field.x1 was deter-
mined by simply counting the number of up spins in ea
image. The data for the honeycomb lattice was obtain
from the images in Fig. 14. The lines are fits to an er
function, i.e., to the integral of a Gaussian. The Gauss
widths in Fig. 19 are shown in Table II. As explained
Sec. IV C, the widths are larger for higher coordination nu
bers due to the larger average interaction field. That th
curves are well fit by an integral of a Gaussian again refle
the Gaussian distribution of ring sizes as described in S
IV C. Only a few very large rings will point up at applie
average fluxes well belowF0/2, and only a few small ones
will still be down at fluxes well aboveF0/2.

s
a-
s,
the
-
pin
y

FIG. 16. Magnetic images of a triangular lattice atH57 G ~a!
andH57.013 G~b!. The difference image~b!–~a! is shown below.
Bright spots in difference image are rings that flipped up and d
spots are rings that flipped down between these two field-coo
images. The spot positions accurately define the positions of
rings.
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FIG. 17. The magnetic field above the arrays for the honeycomb and kagome´ lattices, at several increasing applied fluxes. Up spins ag
appear here as white spots, and down spins as black ones. The spin configurations as deduced from the images are shown under
Here, white hexagons represent up spins, and black hexagons down ones. Gray hexagons represent the holes of each lattice.
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The field-cooled images corresponding to success
fields in Fig. 19 appeared very similar, and the differen
images show that only a very small fraction of spins chan
from point to point. Figure 20 shows the difference betwe
the images at 0.5006F0 and 0.5F0 on the honeycomb
lattice ~panels D2 and C4 in Fig. 14!. The field change be
tween these two images~8 mG! is close to the rms amplitud
of the ac field~6 mG! that was used in the susceptibilit
measurements in Sec. IV. We see that most of the ri
cooled down in the same spin state, and only 50 out of
actually changed. Of these, 35 changed from down to up,
15 changed from up to down, resulting in a net gain of
spins up. Since not all the rings that changed flipped fr
down to up, evidently the field increment is smaller than
e
e
e
n

s
0
nd
0

e

thermal width of the spin distribution function. By therm
width we mean the width that thex1(H) curve would have
for an array of perfectly identical rings. Hence, the ac s
ceptibility measurements in Sec. IV were done in the regi
wheremHac,kBT; we have already seen that the respon
was linear with ac field. The thermal width will be discuss
in more detail in the next section. Because the great majo
of the rings did not change between the two fields, t
means that the width of the distribution function in Fig. 1
comes mostly from the disorder, i.e., from the random fie

The reconstructed ring configurations shown in Figs.
and 18 show that there are no long-range correlations in
arrays. Indeed, at first glance the distribution of spins appe
random. However, the appearance of atruly random configu-
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FIG. 18. The magnetic field above the triangular and square lattices; see Fig. 17 for details.
in
lu

and
ther
ration is noticeably different. In Fig. 21~a! we show a real
magnetic image~the same shown in Fig. 15!, and in Figs.
21~b!–21~d! we show three synthetic images generated us
completely random spin configurations, but at the same va
g
e

of x1 . The difference between the three random images
the real image is clear: the random configurations have ra
large ‘‘ferromagnetic’’ patches of up spins~light areas! and
down spins~dark areas!, due simply to the statistics of a
e
TABLE II. Gaussian widths of the distribution of fields forF0/2 and the bond order parameter for th
ring arrays.

Honeycomb Kagome´ Triangular Square

width ~G! 0.0697 0.0754 0.1018 0.1031
s(H1/2) 20.186 0.02 20.156 0.02 20.156 0.02 20.186 0.02
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6534 55DRAGOMIR DAVIDOVIĆ et al.
random configuration. The real data, however, lacks su
large areas of parallel spins, and has a much ‘‘finer-graine
appearance. This is due to the presence of short-range a
ferromagnetic correlations which favor antiparallel align
ments of neighboring spins.

FIG. 19. Up spin concentrationx1 vs field for the ring arrays.
Each data point corresponds to a field-cooled image; the data in~a!
are from the images in Fig. 14. Solid lines are Gaussian fits
described in text; the resulting widths are given in Table II.

FIG. 20. Images in an applied flux of 0.5000F0 ~a! and 0.5006
F0 ~b!, and their difference image. Most of the spins in the tw
images are the same, resulting in a gray color in the differen
image. Spins which flipped from down to up appear as white sp
in the difference; those which flipped from up to down as da
spots. Because the external field was increased between these
images, most of the spins which flipped up. However, a few flipp
down due to thermal fluctuations.
h
’’
nti-

To quantify these considerations, we measure the corr
tions in this disordered system using the the near-neigh
bond order parameter.19,20 It is defined as

s512
xAF

2x1x2
512

xAF
xAF
rand, ~5.1!

wherex1 andx2 are the fractions of up and down spins, a
xAF is the fraction of antiferromagnetic near-neighborbonds,
that is, bonds between an up spin and a down spin. Fo
completely random spin distribution,xAF5xAF

rand52x1x2 ,
which gives the second form of Eq.~5.1!. It is clear from this
definition that for a completely random configuration
spins s50. If there is an excess of ferromagnetic bon
~over the random case! thens.0, and if there is an exces
of antiferromagnetic bonds thens,0. Indeed, whens,0
one can interpret the magnitude of the order parameter as
excess fraction of AFM bonds as compared with the pur
random case. The bond order parameter is related to
nearest-neighbor spin-spin correlation function
^sisj&2^si&^sj&54sx1x2 , wheresi andsj are Ising spins
on sitesi and j , respectively. The averaging here is over t
spins in the arrays.

At any value ofx1 , there is a most-negative possib
value of s, which ranges froms50 whenx150 or 1 to

s

e
ts

two
d

FIG. 21. ~a! A magnetic image of the honeycomb lattice~the
same as C4 of Fig. 14!. Also shown@~b!–~d!# are three synthetic
images constructed from completely random data with the sa
fraction of up spins as~a!. They are characterized by noticeab
larger regions of adjacent up spins and adjacent down spins tha
real data in~a!. The spins in~a! have correlations which favo
antiparallel orientations of spins, and discourage the growth of
large ferromagnetic patches.
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s521 whenx150.5, for bipartite geometries such as the
square lattice. This is because~for x1,0.5) the most anti-
ferromagnetic possible case is when each up spin is su
rounded by down spins, i.e., the up spins never abut. Th
xAF
best52x1 . The most-negative value ofs,smin , will occur
in this case. As we have seen,xAF

rand52x1x2 , so that
smin512xAF

best/xAF
rand5x1 /(x121). In the bipartite lattices it

is in fact always possible whenx1,0.5 to arrange the up
spins so that they do not abut, and so it is theoretically po
sible fors to reachsmin . This minimum value ofs is shown
as the solid line in Fig. 22~a!. In general, however, because
of disorder and thermal fluctuations,s will lie above this
lower bound.

For the frustrated triangular and kagome´ lattices, geo-
metrical constraints do not allow up spins to avoid each oth
all the way up tox150.5. At x151/3, it becomes impos-
sible to place one more up spin such that it does not ab
another up spin. The best one can do is to keepxAF

bestconstant
in the range 1/3,x1,2/3. This leads to a small hump in the
smin vs x1 curve, as shown by the dashed line in Fig. 22~a!.
One would then expect to see strong differences ins be-
tween the bipartite and frustrated lattices whenevers ap-
proached this part of the diagram.

For each image and its equivalent spin configuration w
calculate bothx1 ands, from simple counting of spins and
bonds, and using the definition in Eq.~5.1!. We then plot
s as a function ofx1 . The results for each of two different
areas of all the lattices are shown in Fig. 22. The values

FIG. 22. ~a! Bond order parameters vs up spin concentration
x1 nearF0/2. s,0 for all arrays, indicating AFM correlations.
Solid lines are maximally negative possible values ofs for bipartite
lattices. Frustrated lattices have an additional constraint indicat
by the dashed line.~b! Expanded view of data showing greater
AFM correlations for bipartite honeycomb and square lattices tha
for frustrated triangular and kagome´ lattices.
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s for all lattices are well abovesmin , but are nonetheles
clearly negative within the scatter over the entire range
x1 . The fact thats is negative means that the spins a
correlated antiferromagnetically. The values ofs nearF0/2
on the various lattices are summarized in Table II. Thats is
far fromsmin is due mostly to the effects of the random fiel
as we show in Sec. V D, the effects of thermal fluctuatio
are relatively small.

To obtain the uncertaintyds of the bond order paramete
we first note that for each data set in Fig. 22, consecu
values ofs are not statistically independent because th
come from images taken in the same part of the array,
hence all have the same realization of the random field. S
we scanned at only two different parts of each lattice,
have only two realizations of the random field. There will
differences ins as measured in different areas of the arr
due simply to the finite number of spins in one area. Thus
calculated the fluctuationds by averagings over many
computer-simulated realizations of the random field on 6
spins ~with no interactions!. The standard deviation wa
found to beds50.03. Since we have two realizations of th
random field,ds'0.03/A2'0.02. We also measured th
next-near-neighbor bond order parameter for each array,
find that it is consistent with zero. Therefore, the correlatio
are short range only.

Since the honeycomb, kagome´, and triangular ring arrays
were made of the same kind of rings with the same ne
neighbor spacing, the only difference between them is
lattice geometry. Therefore, we can compare the bond
rameter for these lattices directly. Although there is so
scatter, Fig. 22 indicates that the bond order parameter on
bipartite honeycomb lattice is more negative than the or
parameter on the triangular and kagome´ lattices, which are
nonbipartite.~Additionally, nearF0/2, s is approximately
the same on the bipartite honeycomb and square lattic!
This is direct evidence for a suppression in the ordering
only to effects of geometrical frustration. We note, howev
@Fig. 22~a!#, that disorder evidently preventss(F0/2) from
coming particularly close tosmin in any case. Only when the
bipartite lattices approach the frustrated-lattice value
smin(F0/2)521/3 would we expect there to be very stron
differences between the lattices.

C. Higher fractions of F0

In addition to the applied flux equal toF0/2, we measured
the spin configurations at higher flux fractionsn53/2, 5/2,
7/2, and 9/2. At higher fractions, the region of fields whe
we see both up spins and down spins is wider. The conc
tration of up spins as a function of field at higher fluxo
states is shown in Fig. 23 for the honeycomb~a! and kagome´
~b! lattices. The lines between the points are fits to er
functions. The widthsw determined from these fits ar
shown in the insets. The widths as a function of field app
to be a linear function of fractionn. This is because the
random field is caused by the differences in the ring are
and grows withn. The field forn flux quanta in a ring with
areaA is equal toHn5nF0 /A. If the spread of the areas i
the array isdA, and if it is small, then we can estimate th
spread in fieldsdHn : dHn5nF0dA/A
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Therefore, the widths of the Gaussian distributions
linear with the fraction number. Since the interaction b
tween the rings does not grow with field, one expects to
a reduction in the short-range correlation function at hig
fractions. Indeed, Fig. 24 shows thats at higher fractions is
much smaller thans atF0/2. The disorder in the ring array
is therefore a tunable parameter.

D. Repetitive cooling experiments

The distribution function of up-spin concentration vs fie
that is shown in Figs. 19 and 23 originates from three effe
~1! the random field that comes from the distribution of ri
areas around the average area,~2! the ring-ring coupling,
which has the tendency to widen the Gaussian distributio
shown in Sec. IV B, and~3! thermal fluctuations. In this
Section, we analyze the statistics of repeated cooldown
F̄5F0/2 to estimate the thermal width relative to the co
bined effects of the disorder and the interactions.

The ac susceptibility measurements in Sec. IV B show
that the freezing temperatureTf is very weakly frequency
dependent. In this analysis we will assume that the dyna
freezing occurs suddenly atTf , and that the rings are in
equilibrium aboveTf . In this case, the spin configuration
measured with the SHM reflect the Boltzmann distributi
function atTf , and the probability that a ring will cool into
its spin up state is

p15
1

11e~F12F2!/kBTf
, ~5.2!

FIG. 23. Up spin concentrationx1 vs field at different flux
fractionsn for the honeycomb~a! and kagome´ ~b! lattices. Data for
different fractions have been shifted to permit direct comparison
widths ofx1(H) distributions. Insets show widths determined fro
Gaussian fits~solid lines!.
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where

F12F252(
j
Vi j sj2~m12m2!~h1hi

r ! ~5.3!

from Eq. ~2.2!.
Figure 25 shows images of 2 of 20 cooldowns taken i

one region of a honeycomb lattice array atF̄50.5005F0.
The difference image is shown below. The dark spots in th
difference image are rings that flipped from up to down be
tween cooldowns, and the bright spots are rings that flipp
from down to up. Most rings cool down in the same stat
every time; in the twenty repetitions that were done, 75% o
the 653 rings in the imaged area always cooled in the sam
state, that is, hadp150 or 1. Other values ofp1 were less
common; by counting the number of times each ring coole
into the spin-up state we may construct a histogram of th
fraction F(p1) of rings that had probabilityp1 for being
spin up. This is shown in Fig. 26, where we again note th
large values ofF at p150 andp151. We find there are
interesting spatial correlations between rings which tend
flip more often. To illustrate this, we plot in Fig. 27~a! a
grayscale map of the probabilityPf52p1(12p1) that each
ring changed its state between any two cooldowns. Da
gray corresponds toPf50, i.e., to rings that never change
state, and white corresponds toPf50.5, that is, to rings
which flip quite readily aboveTf . The gray levels in be-
tween represent the intermediate probabilities.

f
FIG. 24. Bond order parameters vs up spin concentrationx1 at

different flux fractionsn for the honeycomb~a! and kagome´ ~b!
lattices.s is reduced with increasingn indicating increasing effec-
tive disorder.
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Figure 27~a! shows that the rings that have a higher pro
ability to flip tended to be grouped together in the array. T
probability^Pf& that a randomly chosen ring in the array w
flip after thermal cycling can be obtained from Fig. 26. It

^Pf&5(
p1

2F~p1!p1~12p1!50.0744. ~5.4!

FIG. 25. ~a!, ~b!: Two magnetic images of the honeycomb la
tice, obtained after cooldowns in the same applied fl
F50.5005F0. The differences between these images is shown
low. Thermal fluctuations cause some spins to change their or
tation between successive cooldowns, although the majority
spins cool into the same state.

FIG. 26. Histogram of probabilityp1 that a ring will cool into
the spin-up state.F is fraction of a sample of 653 rings. Soli
circles: data obtained from measurements of 20 cooldowns
honeycomb lattice atF50.5005F0. Curves are obtained from th
model described in the text for different values
Sr5(m12m2)s r /kBTf , the ratio of the random field and therm
widths.
-
e

From data shown in Fig. 27~a!, we can calculate the correla
tions between flipping probabilities. For example, if a rin
flips with probabilityPf>0.45, then its nearest neighbor wi
flip with probability 0.14, which is much larger than th
average flipping probability given by Eq.~5.4!. This correla-
tion in probabilities can only come from the interaction b
tween the rings. If a ring flips 50% of the time, then the fie
that it generates on its neighboring rings will fluctuate fro
cooldown to cooldown. This must reduce the magnitude
the random field on those rings 50% of the time, and w
therefore increase their flipping probabilities.

The cluster of rings near the center Fig. 27~a! with large
Pf have large local antiferromagnetic correlations. This
illustrated in Fig. 27~b!, which is the spin configuration cor
responding to the image in Fig. 25~b!. We see that about 30
spins are in a Ne´el ordered state. A quantitative measure
the antiferromagnetic correlations between the rings that
is theweighted bond order parameters8, which is defined in
the same manner ass in Eq. ~5.1!, but with a modified
measure of the antiferromagnetic bond concentrationxAF8 ,
given by

xAF8 51/22
1/~2Npairs!(^ i , j &sisjPf

i Pf
j

(^ i , j &Pf
i Pf

j , ~5.5!

where the sums run over all near-neighbor pairs.s8 thus
contains no contribution from those rings which nev
changed their state, and weights more heavily those ri
with largePf . Averaged over the 20 cooldowns, we find th
s8520.3960.03, which is much larger than the avera
unweightedbond order parameters520.14260.004 com-
puted for the same 20 cooldowns. This suggests that if th
were no disorder, there would be long-range correlations
tween the spins, and that the reason for the absence of l
range order is the spread in the rings’ areas, rather than fr
ing before the Ising ordering temperature is reached. As

e-
n-
of

a

FIG. 27. ~a! Grayscale map of the probability
Pf52p1(12p1) that a ring changes state between tw
cooldowns. Data was obtained from 20 cooldowns of a region o
honeycomb lattice containing 653 rings. Black hexagons are h
in the honeycomb lattice. Scale runs from dark gray (Pf50) to
white (Pf50.5).~b! Spin configuration for one of the 20 cooldown
@Fig. 25~b!#. Note the region of local Ne´el order that corresponds t
the region of high flipping probability in~a!.
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6538 55DRAGOMIR DAVIDOVIĆ et al.
temperature is lowered, the interactions do eventually
come large enough to overcome the disorder, but by then
energy barrier has grown so large that the rings can
equilibrate into a more correlated state.

We now estimate the intrinsic thermal width relative
the disorder. This is an important question, if we want
know how much it is necessary to reduce the disorde
obtain longer range correlations. In the following analys
we will neglect the interaction effects between the rings
Eq. ~5.3!, and will assume that the random field has a Gau
ian distribution

r~hr !5
1

s rA2p
expS 2

~hr !2

2s r
2 D , ~5.6!

wheres r is the random field width. We can now calcula
the probabilitydensity G(p1) that a ring will cool into the
spin up state with probabilityp1 . Sincep1 andhr are re-
lated by the Boltzmann distribution in Eq.~5.2!, we first find
hr as a function ofp1 , and then obtainG(p1) by changing
variables fromhr to p1 : G(p1)5r(hr)udhr /dp1u,

G~p1!5
1

SrA2p

1

p1~12p1!
expS 2

ln2~p1
2121!

2Sr
2 D ,

~5.7!

where Sr5(m12m2)s r /kBTf is the ratio of the random
field and thermal widths. We also have takenh50 for sim-
plicity.

As the solid line in Fig. 26 shows, Eq.~5.7! fits our data
fairly well for Sr58 @after multiplying by .05 to convert
G(p1) to F(p1)#, with most of the weight in the wings o
the distribution nearp150 and p151. Equation~5.7! is
quite sensitive toSr , however, and as the curves forSr52
andSr51 show, modest changes inSr can radically change
the probability distribution by removing the large fraction
spins that never flip and greatly increasing the fraction
rings withp1 near 0.5. This suggests that it may be possi
to achieve a significantly more correlated state through
cremental improvements in the sample fabrication.

VI. SUMMARY AND CONCLUSIONS

In this work, we have opened a laboratory for low
dimensional magnetism. We have explored, using a var
of experimental probes, a two-dimensional array of elec
cally isolated superconducting rings. We have found t
such an array is a physical realization of the 2D Ising mod

By measuring ac susceptibility, we showed that superc
ducting rings do behave like spins, if the applied flux is ne
half of a flux quantum and if the temperature is near
superconducting transition temperature. In this region of
H-T plane, the response of ring arrays to small field pert
bations was found to be paramagnetic. The origin of
paramagnetic response is the quantization of the flux
which allows a ring to have two possible orientations of
magnetic moment; the response of these moments to an
ternal field is equivalent to the response of an Ising spin
such a field.

Susceptibility measurements showed that spins in clo
spaced ring arrays interact. This interaction leads to a bro
e-
he
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o
,
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ening of the susceptibility peak, as well as hysteresis in
peak position as the field is swept up and down. We h
shown quantitatively how these effects are a result of
antiferromagnetic dipolar magnetic coupling between
rings.

The real-space spin configurations on four different l
tices were determined by direct spatial imaging of the arr
with a scanning Hall probe microscope. The calculation
the spin-spin correlation function from the measured s
configurations showed that the correlations were antife
magnetic and short range only. The absence of long-ra
order on bipartite lattices was found to be caused
quenched disorder, in the form of slight variations of the ri
areas in the arrays.

Comparison of the correlation function on the square a
honeycomb~bipartite! lattices, to that on the triangular an
the kagome´ ~nonbipartite! lattices, showed that the nonbipa
tite lattices have weaker short-range correlations than the
partite lattices. Thus we have a direct experimental obse
tion of geometric frustration on Ising antiferromagnets. It
interesting that geometric frustration can be observed eve
the presence of strong disorder.

There are several future projects which may warrant f
ther development. Clearly, one would like to reduce the d
order of the ring areas. As we have seen, it appears that
a rather small reduction is likely required in order for lon
range order to develop. Starting from a more ordered stat
n51/2, one could then do a detailed study of the introdu
tion of disorder into this model system by going to high
flux fractions. It is of course also possible to explore ri
arrays of lower dimensionality~i.e., 1D arrays!. By fabricat-
ing parallel 1D arrays with varying interchain spacings,
entire sequence of arrays, from purely 1D, through hig
anisotropic 2D arrays, to pure 2D arrays can be studied.
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APPENDIX A: FLUX QUANTIZATION
IN WIDE SUPERCONDUCTING RINGS

It is straightforward to show that within Ginzburg-Landa
theory,21 the free energy of an infinitesimally narrow ring o
arbitrary shape is equal to

F15ecs8LF ~2 f 22 f 4!28p2f 2
j2

L2 S n2
F

F0
D 2G1E H2

8p
dV,

~A1!

whereec52Hc
2/(8p)5aC`

2 /2 is the condensation energ
density ~in terms of standard parameters in GL theory21!,
s8 is the wire cross section,L is the ring circumference,j is
the GL coherence length,n is the fluxoid number,
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f5C/C` is the normalized order parameter,21 andF is the
magnetic flux threading the ring. The condensation energ
the superconducting free-energy density relative to the n
mal state, and therefore it is negative belowTc . The right-
most term inside the square brackets represents the ki
energy of the superconductor, and has a positive contribu
to the total free energy, i.e., it reduces the magnitude of
total free energy. This term is the kinetic energy of the
percurrent. The integral on the right-hand side is the m
netic field energy of the induced currents in the ring, and i
equal toLsI

2/2c, whereLs is the self-inductance andI is the
current in the wire (I52]F/]F). Near Tc , this term is
much smaller than the superconducting energy,22 and it can
be neglected. The current in the narrow ring can be obtai
from the second GL equation.21 It is

I 15uecus8c
~4pj!2

F0L
f 2S n2

F

F0
D . ~A2!

To treat rings with finite wire width, we assume thatf is
constant, because nearTc(F) the coherence lengthj is
larger than the wire widthw and thicknessd. Furthermore,
we assume that the current flow lines are a scale factor ti
the inner ring boundary. If the ring has sharp corners,
approximation may be questioned, but comparison with
experiments showed a very good agreement between the
culations and the measurements. With these assumption
can calculate the free energy and current of a wide ring
integrating Eqs.~A1! and ~A2! over the current flow lines
SinceF(L);L2, we see from Eq.~A2! that the current den
sity in a wide ring is not uniform, and that the current
distributed differently in then50 andn51 states. This dif-
ference in the current distribution will cause a difference
the magnetic moments of the spin up and spin down sta
as we see in our magnetization measurements~Sec. IV A!.

For the free energy of the wide ring, we obtain

F5ecdE
w1

w2
dwL~w!F ~2 f 22 f 4!28p2f 2

j2

L2~w!

3S n2
F@L~w!#

F0
D 2G . ~A3!

The integration is carried out from the inner boundary to
outer boundary. We again can neglect the self-inductive
ergy. The integral*L(w)dw5S̃ is just the area enclose
between the inner and outer circumferences of the wire
we define

Ĩ ~n,H !5E
w1

w2
dw

1

L~w! S n2
F@L~w!#

F0
D 2, ~A4!

then the free energy is

F5ecd@~2 f 22 f 4!S̃28p2f 2j2Ĩ ~n,H !#. ~A5!

The equilibrium normalized order parameterf 0 is obtained
by minimizingF with respect tof . It is

f 05A12
4p2j2

S̃
Ĩ ~n,H !. ~A6!
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When the parameterf 0 is inserted back in to Eq.~A5!, then
we obtain for the free energy

F5S̃ecd f0
45S̃ecdS 12

4p2j2

S̃
Ĩ ~n,H !D 2. ~A7!

The general expression forTc(H) is obtained by setting
f 050:

Tc~H !5max$Tc~n,H !%

5maxH Tc~H50!S 12
4p2j2~0!

S̃
Ĩ ~n,H !D J .

~A8!

This formula has the Little-Parks2 Tc oscillation in it. We can
obtain the field forF0/2 by solving the equation

Tc~0,H1/2!5Tc~1,H1/2!. ~A9!

The field for a flux quantumH1 is equal to 2H1/2. From Eq.
~A8! it follows thatTc(H1),Tc(0), because of the paraboli
background superimposed on theTc oscillations.

23

Now we will calculate the total current and the total ma
netic moment of the ring. Using the current density in E
~A2! j5I 1 /s8, we can calculate the total curren
I5d* j (w)dw. The final result is

I5duecuc
~4pj!2

F0
f 0
2J̃~n,H !, ~A10!

J̃(n,H) in Eq. ~A10! is a new geometric factor

J̃~n,H !5E
w1

w2 dw

L~w! S n2
F@L~w!#

F0
D . ~A11!

The magnetic moment of the ring is given by

m5
d

cEw1
w2

j ~w!S~w!dw, ~A12!

which leads to

m5duecu
~4pj!2

F0
f 0
2K̃~n,H !, ~A13!

with K̃(n,H) given as

K̃~n,H !5E
w1

w2
dw

S~w!

L~w! S n2
F@L~w!#

F0
D . ~A14!

S(w) is the area enclosed byL(w), so that
S̃5S(w2)2S(w1). For a square ring with inner sidea and
outer side b, wP@a/2,b/2#, S5b22a2, L(w)58w,
S(w)54w2 andF@L(w)#5HS(w). For a hexagon with in-
ner side a and outer side b, wP@A3a/2, A3b/2],
S53A3(b22a2)/2, L(w)54A3w, S(w)52A3w2, and
F@L(w)#5HS(w). The calculation of the parameters
Eqs.~A4!, ~A11!, and~A14!, is straightforward. The result
for the fieldH1/2 for F0/2 and the other parameters are su
marized in Table I.
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If the applied field isH1/2, then the total currents in the
ring’s two states have the same magnitude, but because
current distributions are not uniform, the magnetic mome
i

s

the
ts

in the two states are not the same. The magnetic momen
the n51 state is smaller than the magnitude of the mom
in then50 state.
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