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Finite-size effects in layered magnetic systems
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Thermal and magnetic effects in a system consisting of thin layers of coupled Ising spirS=wif& and
S=1 are considered. The specific heat and the correlation length display maxima at two different temperatures.
It is discussed in what sense these maxima can be interpreted as a finite-size rounding of a thermodynamic
singularity associated with a phase transition. The connection with ordinary, extraordinary, and special surface
phase transitions is made. In two dimensi@), the surface critical exponents are calculated from conformal
invariance. The bulk and surface finite-size scaling of the order-parameter profiles at the transition points is
discussed. In 2D, an exact scaling function for the profiles is suggested through conformal invariance argu-
ments for the(extrgordinary transition[S0163-182@7)00810-3

[. INTRODUCTION a means to obtain and to test scaling descriptions of the ex-
perimentally observed phenomena. Scaling should apply to
Considerable effort has been recently devoted to the unmore realistic situations. We shall thus write down the model
derstanding of magnetic thin films. The behavior of magnetidn the form best suited for numerical treatment.
insulators such as the transition-metal difluorides can be de- Two main simplifications are employed. First, we work in
scribed in terms of short-range interaction models whicHwo dimensionsconsidering layers of spin chains rather than
makes the comparison with theory considerably simpler. the three-dimensional layers of films studied experimentally.
particular, these materials can be epitaxially grown in veryWe expect that the scaling picture used to describe the criti-
thin films to the point that specific theoretical concepts suclttal behavior can be applied in two as well as in three dimen-
as finite-size scaling close to a second-order critical pdint sions. Second, an extreme anisotropic limit is Usedhere
become experimentally verifiable. Such a study wascoupling constants between different layers are becoming
performed for the (FeF,) ,(ZnF,) ., superlattice, where the very small, while within a layer they become large. Then the
magnetic interactions within a single Fekyer can be de- task of calculating the thermal behavior of the system
scribed in terms of a spi®=2 bcc Ising modelwith the  amounts to studying the ground-state properties of the quan-
different FeF, layers sufficiently far apart that free boundary tum Hamiltonian
conditions can be assumed for each of thefWhe data for

the thermal-expansion coefficiea{T), which is experimen- 1 [zt 2n—1

tf'illy observed t(_)_be proportiona_ll to the magnetic contri_bu- H=- 2 Z a?/a?/+l+/_2 kS'S)

tion to the specific heat, show finite-size shifts of the critical /=1 =n+l

point and rounding of the thermodynamic singularity in n

quantitative agreement with finite-size scaling thebBub- +t/21 (0%+SS, )+ y(0iSh +aiSs) |, (D)

sequently, the thermal properties(&®eF,) , (CoF,) , super-
lattices, where two different magnetic layers interact, were
studied* The thermal-expansion coefficient was studied as avhereo™* are the spin-1/2 Pauli matrices agti* are spin-1
function of temperature and of the |ayer thicknesgor n matrices. It is well kl’]OW?'I7 that the critical behavior of this
small, «(T) was found to show a single maximum, while for quantum chain is in the same universality class as the two-
n larger, two maxima ofx(T) as a funtion of temperature dimensional(2D) model of classical Ising spins described
were observed.Besides studying thermal properties, it is @bove (experimentally, this correspondence has recently
also possible to explore experimentally the magnetic propetbeen demonstratédor the dipolar-coupled 3D Ising ferro-
ties of single monolayers through Msbauer spectroscopy Magnet LiHoR), but the numerical treatment &f is con-
and to investigate the resulting order-parameter profiles. Siderably easier than the corresponding calculation in the
In an attempt to provide a theoretical description of theselassical spin model using the transfer matrix. The critical
layered magnetic systems beyond mean-field theory, we cofehavior of several coupled Ising systems with spin 1/2 in all
sider here as a simple toy model two coupled magnetic susubsystems had been investigated eatlit.
systems, where each subsystem contaipsrallel layers of Let us explain the terms arising kh by making the anal-
classical Ising spins, witB= 1/2 andS= 1, respectively. We 09y with the two-dimensional model of classical Ising spins.
assume nearest-neighbor couplings between the spins. Fbhe termso’o7 ., describe the interactions between spins
simplicity, we also assume that the coupling between spinin different layers and the terms; describe the interactions
within a layer is independent . We cannot expect with within a single spin layefand similarly for theS“?). The
such a simple model to reproduce quantitatively any of thecouplingt plays the role of a temperature. Teindepen-
experiments mentioned above, but we shall use our model atence of the transverse figldeflects our assumption that the
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spin-spin coupling within a layer is spin independent. Fi- 0.5
nally, y describes the coupling between the two subsystems. : vy
The spatial coordinate corresponds to the direction perpen- i v s v
dicular to the magnetic layers. - O s
The following symmetries off are immediate. Firstl is [ 480 oo, Ty
invariant under the global spin reversar®’— —o?, L ° o:°'
F— -5, o*—o*, S-S Those states which are invari- o~ [ o, %x v
ant under this transformation are said to daeen all other nd 05 | iw"""’“g’%g;é% XXAMAAAAAAAA
i °o°°°°°o

states are said to bmdd ThusH is block diagonalized into - i o " 6
an even and an odd sector. Second, the spectrui of L * °%% %‘3’9@5 5
independent of the sign of, becauseH(y) is changed i ‘e, °°°oo°om :
into H(—v) through the similarity transformation L ‘o, 3
O'Z—>—O'z, (S AN : n...’. )

For each subsystem alone, that is, for0 andn—oo, L ]
there is a critical point at=t, s with'?*3 S A ; 3 , : p

tc,1/2:1! tc,l/K:1'325 8-(1), (2) t

respectively. V?fyingK FhUS a_"0WS us to change the ra_tio FIG. 1. The energy correlation length as a function ot and
between the critical pointg; s in the S=1/2,1 systems. Fi- different layer thicknesses for k=4 and y=1. The size of the

nally, ¢ is a normalization constant which will be needed |ayers isn=2, .. .,7from bottom to top.
below in connection with the conformal invariance descrip-
tion of the spectrum oH at criticality. G (r)=r"2g(r/&,) (4)

We are interested in the following observables which will _ -
be studied through their quantum anal8gshe free energy Wwherex.=(1-a)/v ande, v are conventional critical expo-
of the two-dimensional classical spin model corresponds t@ients. Then, up to nonsingular background terms, the rela-
the ground-state enerdy, of H. Similarly, thermal averages tion
(X) correspond to ground-state expectation val@X]0).
st in-spi C(H)~ (&) (5
We also need the characteristic leng#is of the spin-spin 2

and energy-energy correlatioffer r — ) should hold® Since we are here only interested in the lead-

_ _ a—rlE ing critical behavior, it is sufficient for us to consider the
G,(r)=(a(r)a(0))—=(a(r)){a(0))~e ", secondyapé, *=E,—E, of H. The scaling behavior o, is
G.(r)=(e(r)e(0))—(e(r)){e(0))~e e, ) simply related to the scaling of the specific h€aand more-
over the temperature dependence not too far away from the
where r is parallel to the individual layers. One has critical region of bothé,(t) andC(t) should be qualitatively
§1_’§=E1,2— Eo, WhereE, , are the energies of the first ex- similar. Finally, &, is readily calculated through the hezos
cited states in the odd and the even sectors, respectively. algorithm*? We point out that the spin-correlation length
The numerical technique used is completely standard, seg§ doesnotenter into the scaling forrtd), because it couples
Refs. 14,7 for details. We use theéngzos algorithm to find to quantities which are odd under spin reversal wislgis
the first few lowest eigenvalues &f and the corresponding even!®
eigenvectors. Finite-size scaling is then used to obtain esti- In Fig. 1 we show Ig, as a function oft for different
mates for the critical quantities which are then numericallylayer thicknesses. We observe that for a very thin layer
extrapolated fon— oo, (n=2,3), there is only a single maximum present, while two
This paper is organized as follows. In Sec. Il, we discussnaxima develop for larger values nf Comparing the loca-
the phase diagram and comment on a subtlety in finite-sizéon of the maxima fom finite with the known values from
scaling. Section Il describes the calculation of the surfacedEq. (2) for their n—co limit, we see that the shift in the
critical exponents in 2D through conformal invariance tech-effective critical temperatures are quite large. Both maxima
niques. In Sec. IV, we present our results for the orderappear to show a systematic build-up normally considered
parameter profiles. Finally, we give our conclusion in Sec. V typical of a thermodynamic singularity rounded by finite-size
effects? These observations, of one or two maxima depend-
Il. THE PHASE DIAGRAMS ing on the value o, large finite-size shifts of the pseud-
ocritical temperatures and a rounding of the thermodynamic
Our starting point is the experimental observatiohat  singularity, are in qualitative agreement with experinfetit.
the SpECifiC heat as a function of the temperature will show Before we can make this conclusion however, one should
one or two maxima depending on the thicknas§Ve there-  realize that the models usually considered in theoretical cal-
fore begin with a consideration of this quantity. However, cylations and the superlattices studied experimentally are dif-
the explicit calculation of the second derivative ferent. We shall refer to these as case A and case B, respec-
—td?Eq(t)/ 9t* of the free energy is cumbersome. To avoidtively. These cases differ in the way one goes from the finite
this, recall the fluctuation-dissipation relati@®~>;G_(r)  system to an infinite one and it is only for the infinite system
together with the scaling form, which should be valid nearwhere a true phase transition can occur. Consequently, the
criticality phase diagrams for cases A and B are differéMe reem-
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FIG. 2. Phase diagrams for the two thermodynamic limits, for
two-dimensional systemga) Two layers withn spins each, peri-

odic boundary conditions ana— . (b) Superlattice ofn bilayers
of n spins of each kind anth— .

phasize that in the following discussion we refer to two- , : ,
dimensional systems, while experiments are carried out in, F'G- 3. Scaled inverse correlation lengtifs, ,(t) as a function
three dimension. of t for k=4 andy=1 and several Iayer thlcknessesThe critical
(A) We take a layer of spins 1/2 and a layer of spins pomts. are Iabeleatg andt¢ corresponding to the ordinary and ex-
1. Periodic boundary conditions as explicitly written in Eq. traordinary transitions. The lowduppey curves correspond tg,
(1) are used. The phase diagram which results whenwe is (&2):
given in Fig. Za).
(B) In experiment$;'® a procedure analogous to the fol-
lowing is used. One takes spins 1/2 anch spins 1 and
repeats this double layen times. Typically,n is small and

fixed bUtm s large, and formally_, one S_hOUI_d take a limit phase and a single ordered ferromagnetic phaseislfsuf-

mTNm' ;I.-h's Ieadsdto the phise_r(;l]lagram 'E F'f@f bficiently small, a layer ofi spins may act as a giant spin and
syste?ns:rs(:a(r:tor(]j?alvglrosalsoeng .rangeen,ofdaecr b(; }tsile%:#Séproduce a strong thermal signal leading tfirite maximum
quently. the phase diagraffig. 2(a)] will show four differ- of the specific heat or of related quantities. Sincis finite,

toh Th ) tic ph here the wh owever, there is no long-range order and the magnetic mo-
ent phases. There IS a paramagnetic phase where the w nts of each layer are independent of each other. Then the
system is disordered, two distinct phases where either th

Specific heat function of t t il show t
spin-1/2 variables ((c)#0) or the spin-1 variables(§) pecific heal as @ funciion o7 temperauire Wi Snow two

: e eaks, but only the one &wer temperatures will then cor-
#0) are ordered,_whlle the other subsystem is disordere spond to ashifted and roundddphase transition and will
and a ferre_mageetm phase where the system Is fully Ordere<Etevelop a true singularity as— . Working in the frame-
The transition lines are given by E) (full line for t; 4,

. . . work of case B, it is misleading to call the location of the
and dashed line fot, ;). In this case, the maxima observed larger temperature maximum(aseudacritical point.

in Fig. 1 should be interpreted as true thermodynamic singu- From now on we always consider case A. Then, both

larities rounded by finite-size effects. Since we shall be'°Wmaxima in&, can be interpreted as signaling a transition.

concentrate on the properties of the order parameter close Fﬂso, we shall perform the subsequent scaling analyses just
the subsystem boundaries, we label these transitions by th%r the two-dimensional system, since the changes which

sm;rface critical g@srgper'ﬂes, folleyvmgfthe tneory of surface o he needed in three dimensions are immediate and dis-
phase transition¥’ For the transitions from the paramagnetic o, Sced in detail in the literatufé

phase to one of the partially ordered phases, one of the sub- How can one find the critical points from the finite-lattice

systems is still disordered and the order parameter of tha&ata, when the Hamiltonians are more complicated and pre-

Eubs;(;stemb which urr:dergoes borderlng v'\glll vanlhs_h l_at thecise information on their location such as Eg).is not avail-
oundary between the two subsystems. Along this line We, o 5 hriori? Practically, the transition points are located

he_ve arordinary transition. On the other hand, for the tran'.using phenomenological renormalization as derived from
sitions from the part|aII_y ordered phases to the fe,rromag”et"ﬁnite-size scaling® Consider the quantity R(t:n)
phase one subsystem is already ordered which fixes the Ordgrnlg(t;n). Then finite-size estimates for the critical point
parameter of the other sul;_tsystem at_t_he subsystem bo_undalE)C/.Can be found by solving for the equation

Here we have arextraordinary transition. At the meeting
point of the transition lines there isspecialtransition!® The R(t:n)=R(t:n+1) ©)
scaling of the order parameter close to the subsystem bound- ' ' '

aries is described by a different exponent than for the bulkif n sufficiently large. A final value fot, is then obtained by
see Ref. 18. These local critical exponents are in 2D readilgxtrapolating the resulting sequence for«©. Carrying out
calculated using conformal invariance techniques, see Sethis procedure, a further subtlety is encountered as illustrated
[l in Fig. 3.

For case B, corresponding to Figib2 however, the situ-
ation is different. Since each of the subsystems only contains
a finite number of layers, the superlattice can only order as a
whole. Thus the phase diagram contains a paramagnetic
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v=1. We point out that alsq3D) data for the thermal-

e T expansion coefficient for FefZnF, superlattices were suc-
i ] cessfully analyzed this way,although also in this case
! At(n) is largel’ leading tor=0.64(4) in agreement with
r the theoretical value=0.63 for the 3D Ising model.
—_ 08 v ~1,03
é [ ] lll. CRITICAL EXPONENTS AND CONFORMAL
T 06 L ] INVARIANCE
= ]
= L We now describe the calculation of the critical exponents.
0.4 1 ] Since we work with a two-dimensional classical spin model
r 1 universality class, we can use conformal invariance
0.2 | 1 technique52°~—?2for that purpose. Here the use of the quan-
- ] tum Hamiltonian rather than the classical spin model be-
o bl v v v v L] comes advantageous, since the surface critical exponents
! 1.2 L4 1.6 1.8 2 which describe the local scaling close to the boundary be-
In (n) tween the two subsystems and in which we are mainly inter-

ested are easily obtained from the low-lying excitation spec-
FIG. 4. Determination ofy from the finite-size scaling of trum of H. We can thus avoid the cumbersome procedure of
t.(n) near the ordinary transition fot=4. calculating first an averageX) and then subtracting from it
its bulk contributionX, in order to get the surface term
Considering the finite-size scaling of the spin-correlationX,=(X)— X, and then analyze its scaling behavior. In the
length &; (lower curve, we see that the curvd®;(t;n) in- next two subsections, we shall first briefly collect the neces-
tersect close to the critical poitt. This is the conventional sary background knowledge and shall then apply it to the
behavior found, e.g., in simple Ising modé$For smaller  problem at hand.
values oft, 51_1 vanishes exponentially fast with, which
reflects the ordering of th8=1 subsystem in this case. Thus A. Ordinary and extraordinary transitions
in order to findt$, the second ga@gl is the natural quantity

to look at and in fact represents in the partially ordered.paing conformal invariance specifies completely the scal-

phases the lowest physical excitation, justas does in the ing dimensions of all local observables. For a given model
paramagnetic phase. Nevertheless, the cuRgs;n) go  the first few exponents are very easily identified from the

through a minimum close to; and will eventually touch  spectrum of the Hamiltoniakl. For free or fixed boundary
each other in the— o limit, but do not intersect. Although gnditions one hasd

this isnotin contradiction with the theory of finite-size scal-
ing [at t=t., Eq. (6) is strictly valid for n—o only], it is & 1=E—Eo=n"1mx, (8)
remarkable that at this point the conventional finite-size tech-
niques are no longer applicable. In order to get an estimate d¥here the exponents are thelocal critical exponents which
t., one has to rely on locating a minimum B(t) or some describe scaling near _the boundary b_etween the two sub
other criterion. We stress that ¢ t¢ is theonly phase tran-  SyStéms and the index labels the various scaling fields
sition occuring in the model for case B. which occur in the modefusually,i=1 corresponds to the
This type of behavior should be generic and although th&rder parameter and=2 to the energy density and higher
example given does suggest that finite-size techniques m&aPs correspond to the scaling fields which generate
be fruitfully employed in analyzing experimental data, it alsocorrection-to-scaling termsThe scaling of the gag€q. (8)]
shows that some care may be required. We shall see in tH#€s withn andnotwith L because only half of the system
next section that in spite of the slightly unusual finite-size!S critical z_it either the ordinary or extraordinary transitions.
scaling, the spectrum 1 at all these critical points is in full HOwever, in order to be able to apply H§) to the spectrum
agreement with the conformal invariance predictions. of a quantum chain such as Ed), the normalization oH
To illustrate to what extent quantitative information aboutMust be chosen such that energies and momenta are mea-
the critical behavior can be extracted from our still relativelySured in the same units. One way of doing this is to recall
small systemsr{<7), we consider the determination of the that the surface scaling dimension of the energy density

correlation length exponent. We look at the local maxima

In two dimensions(and consequently also for quantum

tmad{N) Of & near to the point=t?. Finite-size scaling Xes=2, ©
predict$ that the temperature shift which fixes the normalizatiod. Furthermore, once the nor-
malization is fixed accordingly, the conformal algebra acts as
At(N) =td—tma(n)~n"1,  n—oo. (1) a dynamical symmetry which determines the spectrum of

. ) H at criticality, viz.
In Fig. 4, we show a log-log plot aAt(n) vs n and find

that the asymptotic behavid¥) is already realized for small T

n in our toy model, although thg(n) are not at all close to Ei—Bo=j Lot o(n™Y) (10
then— valuet?, see Fig. 3. From the slope in Fig. 4, we

read off v=1.03, in good agreement with the exact resultwith Ly being one of the generators of the Virasoro algebra
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TABLE I. Conformal spectrum of the surface exponextdor  generate in thé@— oo limit but with an exponentially small

the ordinary and extraordinary transitionset4 andy=1. The  gplitting between pairs of levels far finite. As should be

numbers in brackets give the estimated uncertainty in the last giveaxpected from the algebraic construction of the spectrum of

digit. H, the differences between values of thewhich belong to
. . the same representation are integers. This reconfirms our de-
Ordinary Extraordinary . . .

: , . termination of {. For the ordinary transition, we see that

i Numerical Expected Numerical Expected .
Xes=X3=2 andx; =X, s=B1/v=1/2 is the surface magne-

0 0 0 0 0 tization exponent, wherg; describes the scaling of the or-

1 0.49946) 1/2 2 2 der parameter at the surfage;~ (T.—T)%1, and v is the

2 1.4987) 312 3.012) 3 bulk correlation length exponef.

3 2 2 3.9%6) 4 For the extraordinary transition, a little care is necessary

4 2.50%9) 5/2 4.92) 5 in identifying the surface exponents. The order parameter is
odd under spin reversal and the most local of all scaling
operators. When this operator acts on the ground state, it

C

(i%=j)s (11) creates the state with the lowest gap in the spectrum. Thus in
12 j+k,0-

our modelx{*}=x,=0. On the other hand, in the literature

The universality class is determined by the value ofdae-  (€:9- Ref. 18 and references thejethe extraordinary tran-

tral charge ¢ for the 2D Ising modéiZ?Lc=1/2. sition is defined with respect to those degrees of freedom
Furthermore, the spectrum Bf at criticality can be found which become critical in the presence of a boundary which is

from the representations of the Virasoro algebra, see Ref&lréady ordered. To read off the corresponding exponents,
20, 21, 7 for details. These representations are built from gne should discard the double degeneracy of the spectrum,

[Lj, L= =KLkt

highest weight statgA) which is defined through which is merely due to the ordering of the other subsystem.
. We then havex, ;=x?)=x,=2. This is in agreement with
LolA)=A[A), LjA)=0 if j>0 (120 the expected scaling relatidi®x,, ;= B v=2—a=2.

and acts as the ground state for a certain representation. Ex-

cited states are generated by acting with thg (j>0) on _ -

|A). Now, the principle of unitarity of the underlying field B. Special transition

theory restricts through the Kac formula the possible values At the special transition, both subsystems become critical
of ¢ and for each value af only permits a finite number of = gjmyltaneously. In addition, the Ising quantum chain has the
possible values of. For c=1/2, the only possible values pecyliarity that the boundary coupling is marginal. The
areA=0, 1/16, 1/2. This leads to the three unitary irreduc-cjtica| behavior of the model can be described using previ-
ible representationf0), (1/16), and (1/2) of the=1/2 Vi- s yesyits for the scaling behavior of an Ising model with
rasoro algeb_ra. Now, th? spe_ctru_mH)fforOthe ordinary and (semijinfinite defect lines, which has been extensively stud-
the extraordinary transitions is given 8y ied for a long timé-1-%-32see Ref. 22 for a review. The

H©=(0)+(1/2), ordinary local critical exponents depend continuously on the coupling
' v. The mapping of coupled Ising layers to a 2D Ising model
H(®=2(0), extraordinary, (13)  With a starlike configuration of semi-infinite defect lines was

exactly derived for coupled spin-1/2 Ising mod&fé! The

where the trivial prefactotr/n is s_uppressed_._The factor 2 g\ rface critical exponents can be read off the energy
for the spectrum at the extraordinary transition means tha§pectrurﬁ9

each level has the double degeneracy of the representation

(0). Combining these predictions with the formul@) for

the energy gaps, the critical exponertscan be read off. “l_E _Ea=L 12mx 14
These predictions, which had already been checked for & b0 mi(7), (14

the spin 1/2 beforé*are fully reproduced in our model, in

agreement with the expected universality. As an example, Wgrovided that the normalizatiof is fixed such that confor-
takex=4 andy=1, but the results for the exponents do not ma| invariance is applicable. We firidfrom the requirement
depend on these parameters. The values &irthe ordinary  x__=1 which is also a necessary condition for the margin-
and extraordinary transiton are from Eq(2) t2 aIi'ty of the couplingy.

=5.303 48(4) and¢=1. The energy gap which is related  The conformal theory is in this case more complicated
through Eq.(8) to the exponenk, ¢ is the lowest gap in the than for the ordinary or extraordinary transitions. For the
even sector. Lattices with up ta=7 were used. After spin-1/2 Ising model, one can construct the Hamiltonian
extrapolation;”® we find ¢(®=2.319(6) and (®  spectrum either through nonunitary Virasoro generators,
=0.996(5) for the ordinary and the extraordinary transitions Kac-Moody algebras or alternatively rely on boundary con-
respectively’® In Table I, we give the extrapolated estimatesformal field theory*? Here we shall restrict ourselves to a
for the first four rescaled gaps=(E;—Egy)n/({m) for the  simple way to characterize the spectrum.

ordinary and extraordinary transitions together with the pre- Taking the spin-1/2 case as a guide, we expect that for
dictions following from conformal invariance. For the ex- n large, the low-lying excitation spectrum &f can be re-
traordinary transition, all levels were found to be doubly de-covered from the free fermion Hamiltoni&rs®
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TABLE Il. Scaled and extrapolated lowest gap,e= ¢ in the We first fix the normalization constagtfrom the condi-
even sector at the special transition for several valuey.ofhe  tion x_ ;=1. This condition means that the scaled lowest gap
numb_er_s in brackets give the estimated extrapolation error in th%\even:'nA Eever= (1/2)LAEqenin the even sector should be

last digit. equal tow{, see Eq.(14). In Table Il, we giveAgyen for
several values of. We find that within our numerical accu-
racy, its value is independent gf (the apparent deviation
seen fory=0.5 is an artifact from the extrapolation of our
short sequences and should disappear if larger lattices could
be taken into accouptand conclude that the normalization
{ is independent ofy. That is only to be expected from
earlier results for spin-1/2 Ising models with defect
lines319%1°The final value of{ is taken from the values of
l(}_GAz) (15) v=0.75..., andy=0.87...,where convergence is best
2 ' and we obtairy =0.59642).

Yy 0.5 0.65 0.754 222 0.877 111 1
Aqven 1.9453) 1.8897) 1.87318) 1.874%5) 1.882)

ni*)

1 (=) 1
r+§—A n, '+ r+§+A

(£) o The numerical estimation for the higher gaps is made dif-
wheren;~’ are fermionic number operators aAddepends ficylt by (a) the relatively short sequences availabte<(7)
on y. Nonuniversal terms which do not enter into the gapsand (b) the fact that forn finite, level crossings between
are already subtracted. In general, for states in the even Se@ifferent sequences occur. In Table Il we give the extrapo_
tor (with an even number of occupied fermionic statesd  |ated results for the critical exponents = L/(2¢) (E;
in the odd sector, there will be different valuag(y) and  —E) for several values of. When no information is given,
A4(), respectively. Now the lowest levels bff can be eas-  our sequences did not converge reliably. We now want to
ily written down in terms ofA, ;. For example, the lowest compare these with the spectrum following from E#j5).

exponents in the odd sector are First, we use Eqg16),(17) to determine, ;, which are also
given in Table Ill. Depending on the value ¢f it turned out
Xy s=3(A;—1)2— 3 A3, to be numerically preferable to fix firdt, from Eq.(17) and
then use this value and the estimatexgf to find A; or
_1 2_ 12 alternatively determiné\; from the differencex,, s—X, s,
Xors= 2 (A2t 172 8o, 18 which is independent oA,. The values ofA,; were then
and the lowest exponents in the even sector are used to calculate the other exponents which are listed in

Table IIl as “expected.” When no error is given in these
Xes=1, Xos=2—2Ag, Xas=2+2A,. (17 columns, the expected value is exact.
We see that in general the extrapolated estimates for the

All these exponents correspond to conformal highest weighhigher gaps agree with the conformal invariance prediction
states. In addition, conformal invariance implies that if theto within a few percent. A particular problem arises for
exponeni; of a highest weight state occurs in the spectrum,y=0.5, where the converge fot, is particularly slow. In
alsox;+k with k=1,2,3 ... is present, with a known de- that case, we are not able to sensibly specify accuracies for
generacy which only depends én(and which is 1 for the A, and the correspondence between the “numerical” and
lowest two levels From Egs.(16),(17), the values ofAp;  the “expected” data is more qualitative. The situation here
for a giveny are found. While these are known exactly for could only be improved by going to larger lattices. On the
the spin-1/2 cas#;*!*these have been determined numeri-other hand, for the other values of we obtain a nice agree-
cally for the case at hand. ment between the numerical data and the expected free ferm-

TABLE Ill. Conformal spectrum of the scaling dimensiong;(y) at the special point
t=1, k=0.754 222. The values df,, used in comparing with the free fermion Hamiltoni@b) are also
given. The numbers in brackets give the estimated uncertainty in the last given digit.

y=0.5 y=0.754 222 vy=0.877 111 y=1
Numerical Expected Numerical Expected Numerical Expected Numerical Expected

1 0.2311) 0.20  0.14366) 0.1442) 0.11037) 0.11035) 0.08415) 0.0845)
2 0.9713) 0.91 0.9991) 1 1.00G1) 1 1.002) 1

3 1.0345) 1 1.1G3)  1.0724) 1.1136) 1.11035) 1.112)  1.0845)
4 1.0953) 1.20 1.122) 1.1442) 1.1685 1.1682) 1.2335)  1.2325)
5 1.723) 1.70 1.941)  1.941)  1.921) 1.921) 1.91) 1.784)
6 1.923) 1.91 1.99%5) 2 2.002) 2 2.01) 2

7 1.992) 2 2.033) 2061  21%1)  2.081) 211  2.0845)
8 2.20 2.11 2.07@) 211035 2.183)  2.224)
9 2.30 2.1483)  2.1442) 2.1682) 2.2325)
Ao 0.15 0.0305) 0.0405) 0.113)

A, 0.36 0.4642) 0.5291) 0.5744)
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ion spectrum. We point out that the beginning of several
conformal towers(that is, with x; also x;+1 and even <« S=1 — < S5=12 —
xj+2 are found in the spectrunis observed. The fact that 1
this level spacing comes out correctly is a further confirma-
tion of our determination of the normalization const&4n©n

the other hand, we have not been able to go sufficiently high
in the spectrum to check the degeneracies of the excited
states.

We see that the scaling behavior of our model is described
in terms of a free fermion system. This should be expected
on the basis of universality, although this free fermion de-
scription of a spin-1 model is not at all obvious from the
lattice formulation. Nevertheless, there is an important dis-
tinction with respect to the spin-1/2 case. Recall that the
value ofy is the same at both subsystem boundaries. Had we
coupled two spin-1/2 systems, we would have fotid®
Ay=0, which is not the case in our model, see Table IlI.

m(i) n'®

IV. ORDER-PARAMETER PROFILES

So far, we have calculated the critical exponents which FIG. 5. Order parameter for the ordinary transition, sc_aled with
W'e bulk exponentk,=1/8 for k=4 and y=1 as a function of

describe the scaling of observables close to the subsyste (2i—1)/4n. The regions of spitS=1 andS— 1/2 are indicated

boundary. We now a§k for the form of the Order_pa‘rametergnd the boundary between them is shown by the dotted line. The
profiles close to that interface.

symbols correspond ta=4 (diamonds, n=5 (triangles, n=6
(squares andn=7 (circles.
A. Generalities

The calculation of the order parameter on a finite lattice B. Ordinary and extraordinary transitions
poses a conceptual problem. The natural candidate, Before presenting our results for the order-parameter pro-
(M)=(0[M|0)=0 on any finite lattice. This difficulty can files at the various transitions, let us adapt the predictions
be overcome by first introducing a small magnetic field  from finite-size scaling theofy** to the situation at hand.
calculating(M) in the presence df, take the infinite system We are interested in the local order parametgi) rather
limit L—oc and only then leh— 0. In practice, rather than than the full magnetizatiom==;m(i). One should distin-
performing numerically this double limit, the following trick guish whethem(i) is measured far away or close to the
which goes back to Yang is used. In the ordered plsastbe  subsystem boundary. In the first case, when thei sitavell
ground state is already on a finite lattice almost degeneratén the bulk, we expect
where the energy splitting decreases exponentially With
Introducing an infinitesimal magnetic field into H and . X i—1
working within degenerate first-order perturbation theory in m(i)=n"""M an |- (20)
h, the order parameter on the sités given by*

In the second case, wheanis close to the boundary, we
m(i)=(1|M(i)|0), (18)  should hav&

odd sectors, respectively. For our mod#), the magnetiza- m(i)=a"" a (21)

where|0) and|1) are the lowest eigenstates in the even and n) Xmsf/l( i—n—1/2
tion operatorM (i) is

Here,x, andx, s are the bulk and surface critical exponents
of; spin-1/2 region calculated in the previous sections and M are scaling
S;  spin-1 region, (19 functions,i=1,2,...,2n is measured from the left boundary
of the S=1 subsystemn is the layer thickness aralis the
so thatM (i) is normalized such thai (i)|<1 for all sites. lattice constant. We point out that the arguments of the two
It is well knowr?® that the finite-lattice order parameter cal- scaling functions are differeft.In the first case, the scaling
culated from Eq(18) has the correct scaling behavior. The is such that the total system size is kept fixed and the lattice
dependence of the order-parameter profilesSateep in the constanta— 0, while in the second casa,is kept fixed and
ordered phase has also been studfed. the system sizé =2n—o.
Practically, for the computation of the eigenvectors These predictions are confirmed by our numerical results.
|0),]1), it is not necessary to store all the intermediated-a  Consider first the ordinary transition. Again, we take 4
zos vectors. This can be avoided by running thexdzms andy=1 as an example. In Fig. 5, we rescale our magneti-
algorithm twice, where the first pass furnishes the weights byation profiles according to E0) with x,= 1/8 and we see
which the intermediate vectors contribute|@,|1) and in  that indeed for the portion of the lattice which is far enough
the second pass the eigenvectors themselves can Ifigr the subsystem boundaries, a data collapse occurs even for
accumulated? the small lattices considered here. Also, we see that in the

M(i)=
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immediate vicinity of the subsystem boundaries, the scalingiolds independently of the value gf For the special tran-
description(20) no longer applies. Similar plots for the bulk  sition, M (%) is only monotonous ify= k.. Qualitatively,
scaling can be obtained for the other transitions but will nothis can be explained as follows.

be presented here, but see Fig. 9 below. First, if y=«., the boundary coupling takes the effective

In Fig. 6, we display the local scaling of the order param-mean value which smoothly interpolates between the two
eter close to one of the subsystem boundaries according Hifferent regimes. Since both systems become critical simul-
Eq. (21). For the ordinary transitiornx, s=1/2 and we set taneously at the special transition, the scaling functions sim-
a=1. We see that in the first two monolayers around bothply interpolates smoothly between the values of the magne-
sides of the interface, the data collapse onto the scaling formzation finite-size scaling amplitudes in the two subsystems.
(21). However, going beyond the first two monolayers, it is Since these amplitudes are different, evenxpg(y)=1/8,
apparent that there is a crossover towards the bulk scalinge scaling functionVt() will not become a constant. Sec-
form (20). It is apparent that the surface scaling only occursyng, considery>«.. Then the spins on both sides of the
in a very thin layer close to the boundary. We remark that,ondary are more strongly coupled together than two spins
this is 90n5|stent with expenmenta_l observations that thing, either subsystem. Since t1§=0 state in the spin-1 sub-
magnetic layers on a nonmagnetic substrate show tWosystem does not contribute to the energy, this leads to an
dimensional critical behavior for layer thicknesses of lessspnnancement of states where the boundary spins on both
than about two monolayers and cross over to threegjges are up. Indeed, we checked that alreadyyfe#t, the
dimensional criticality for only slightly thicker layerE. _ local order parameter on both sides of the boundary is close

A similar behavior is also found for the extraordinary , saturation. Thus, we have a large valuedi) close to
transition. However, as already mentioned in discussing thg, o boundary which then falls back to an average value for
spectra, it is sensible to distinguish two “order parameters.”o5ch of the subsystems, in agreement with Fig. 8. Finally, for
These are y<k., the spins on both sides of the boundary are more
weakly coupled than average spins. This favors states with a
smaller value oim(i) close to the subsystem boundary.

On the other hand, for the ordinary or the extraordinary
m@(i)=(1|M(i)|0")=(1'[M(i)|0), (22 transition, one subsystem is much more ordered than the
other one. Ify is large, the first spin across the boundary is
strongly aligned with the spins of the more ordered sub-

m®(i)=(1|M(i)|0),

where|0’) and|1’) are the first excited states in the even

and odd sector(sz)and the approximate equality between thgqiem and ify is small, the coupling of the first spin to the
two forms form'® holds up to terms exponentially small i qre ordered subsystem is reduced. This leads to an effec-

L. Note that here the ordering at the subsystem boundary i translation of the order-parameter profile without affect-
provided through the subsystem already in its ordered phas,ﬁg its form.

for n—o and not through fixing the spins at the boundary.
The profile form™®), where the surface exponexff1=0, is
shown in Fig. 7. Again, we see that for tt&=1/2 sub-
system, we have a data collapse according to(Et).for the In 2D, conformal invariance states that the profile of a
first two monolayers next to the boundary and for largerlocal scaling operatop with bulk scaling dimensiow,, is on
values ofi, the is a rapid crossover toward the bulk scalingan infinitely long strip of finite widthL and with the same
(20). Since theS=1 subsystem is ordered, finite-size effectstype of boundary conditions on both sid@nd in particular

D. Magnetization profiles and conformal invariance

are exponentially small there. for free boundary conditionsyiven by*®
C. Special transition N A L . (770) e 0, (23
. . . . . v))= —SIin| — ~v "¢, v—0,
This case is of particular interest, since the exponent (e flar L

X, s does depend ory. It is therefore interesting to ask

whether the profiles are affected by changings well. The wherev measures the position across the strip ahdis a

bulk scaling behaviof20) with x,=1/8 is recovered as in nonuniversal constant. The scaling function for mixed

the other transitions. boundary conditions is also known for minimal conformal
In Fig. 8, we show for three values gfthe local scaling theories®® This result only depends on the transformation

of the order parameter, where the valuesxgf; are taken properties of the scaling operater Furthermore, this result

from Table Ill. On both sides of the boundary, we find a datacarries over to the profiles on quantum chains.

collapse according to Eq21) for the first few boundary When we try to apply this to the order parameter at the

layers and for larger values bfa crossover towards the bulk ordinary transition, we should find ,=0 due to symmetry.

scaling(20). In addition, we see that the form of the scaling However, the finite-lattice estimates foi(i) obtained from

function M does depend ony. For y=0.87, we have EQ. (18) above involved an infinitesimal magnetic fiefd

X, s=X,=1/8 (see Table Il and the distinction between Which (a) invalidates the above symmetry argument &nd

local and bulk scaling is somewhat washed out. leads to a new effective exponent=x,—X, s. This is seen
Concerning the shape of the scaling functibt(zz), we S follows. From our numerical data, we have found the scal-

see that for the special transition, it can be a nonmonotonou89 form (20)

function of . For the ordinary and the extraordinary transi-

tions, however, it is a monotonous function jaf and this m (2)=L *M(n), p=2z/L. (24



55 FINITE-SIZE EFFECTS IN LAYERED MAGNETIC SYSTEMS 6437
On the other hand, close to the boundary, the order param-

eter should show surface finite-size scaling~L ~*«s. This <« S=1 —» <— S5=12 —»
implies for the scaling function, e.g., Ref. 18, 2 g T g T

M(p)~p s, u—0 (25

from which x, can be identified. Equatio25) was also Q

confirmed within thes expansioff* and for the Ising quan- =
tum chain with an aperiodic modulation generated by the =
Fredholm sequenc®.For the 2D Ising model, we remark =
that also in the presence of a small surface magnetic*field
h; the spatial dependence of the magnetization near to the
surface scales as'® which is the same as obtained from
Eq. (25). :
One can extend Eq25), derived for small values of: S % = 1 o 1 2 3 . 4
only, to larger values of.. Accepting® that the estimate Eq.
e o oWy 10,6, sal e o e rder parameter ot e rday
(23),(25). Then the exact finite-size scaling function at the ' 2"tion: forc=4 andy=1 as a function ofu=i—n—1/2. The
ordinary transition 43 inset shows the location of the transition point in the _phas_e diagram.
The correspondence of the symbols to the layer thickneissthe

same as in Fig. 5.

M(lu') = AU(Sin ZWM)XU’S_XU! (26)

A, (sin 2 )%, A,=0.80 ord.

taking into account that for our model, only the section (1) o -1/16 (1) (1)
0=<pu=<1/2 is actually critical at the ordinary transition for M(p)=9 Ag(sin 2mu) 75 A;7=0.98 ex.,m
K> K. A(sin 27r)%8,  AP=0.49 ex., m?,

In Fig. Aa), we compare Eq(26) to the numerical data. (27
First, we observe a data collapse from several system sizes
onto a single curve. Second, the form of the scaling function Tentatively, the profile fom®) [which isnotgiven by Eq.
agrees nicely with Eq(26). The same result has also been (23) because the “ordered” subsystem is still finite, see Eq.
found for the Hilhorst—van Leeuven modéi*' Since for the  (22)] can be explained as follows. This order parameter is
2D Ising model, Eqg.(25 remains unchanged even in the sensible to the ordering which occurs at the ordinary transi-
presence of a small surface magnetic fféldy1 should be tion. At the extraordinary transition, these degrees of free-
independent of a small; for the ordinary transition. dom have become massive and thus have a short effective

Let us compare the finite-size scaling functions for thecorrelation lengthé.;. Then the fluctuating spins would see
profiles coming from Eqgs(23) and (26). The first one is a fixed boundary on one side but becagsg<L the other
based on a continuum description of the profile in the halfboundary should appear as open. However, for mixed bound-
infinite system which is then conformally transformed onto
the strip>® Very close to the boundary, a continuum descrip-
tion may no longer be applicable. Indeed, for unitary confor- <«— S=1 —» «— S=12 —»
mal theories such as the Ising model, the critical exponents 1 - : ; .
X,>0 and the profile as it stands will diverge at the bound- :
ary, in disagreement with existing numerical data. On the
other hand, the second form is constructed to be consistent
with both bulk finite-size scaling deep inside the system and
surface finite-size scaling close to the boundary. In order to 0.9
match this with the functional form required from conformal
invariance, it is necessary to assume that the exponent
X,—X,.s governs the scaling of the matrix element Eb8)
(calculated in an infinitesimal magnetic field which breaks
global symmetry used to estimate the finite-size order pa- 0.8
rameter, rather than the conventional order-parameter scaling
dimensionx,>0. This approach is in agreement with the 075 , , , , , ) ,
numerical data for the whole strip. 4 3 2 A 0 1 2 3 4

In addition, we find that the same functional form also
describes the order-parameter profiles for the extraordinary giG. 7. profile for the order parameter™ at the extraordinary
transition, as shown in Flg 9. The numerical data are agaiﬂ’ansition fork=4 andy=1 as a function of,ZZ. The inset shows
consistent with scalingnote that the overall scale in Fig. the location of the transition point in the phase diagram. The cor-
9(b) is about an order of magnitude larger than in the othefespondence of the symbols to the layer thickmess the same as
two case$ Specifically, we find from a fit in Fig. 5.

~
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scribed by Ising models. This study was motivated by ongo-
ing experiments on similar systems. We have found the
variation of the “specific heat” with the temperature and
studied the scaling of the order-parameter profiles at the
phase transition points. Our aim was to check out a scaling
analysis which should also be applicable to experimental
data in 3D.

We have reemphasized that the systems usually studied in
experiments and the models best suited for theoretical analy-
sis are not completely identical and care is needed in the
comparison of the two, as exemplified in the two phase dia-
grams in Fig. 2.

To simplify the theoretical analysis, we used a two-
dimensional model of layers of spin chains, although the
experiment$®5 involve two-dimensional layers stacked in
the third dimension. This was for us no serious disadvantage,
since the scaling arguments used here can be extended to

FIG. 8. Scaled profiles for the order parameter at the specialhree dimensions in a well-known way?® In addition, con-

transition for several values of as a function ofu. The dotted
curves with full symbols correspond to=1/2, the full curves with

formal invariance techniques could be used to simplify the
calculation of the surface critical exponents we were inter-

open symbols toy=0.877 111 and the dash-dotted curves with ested in. This calculation reconfirmed the expected univer-

open symbols correspond to=2. The correspondence of the sym- sality of the surface critical exponents found for the ordinary,
bols to the layer thickness is the same as in Fig. 5.

ary conditions, it is known th&’ x,,=1/16. Then
—X,=1/16-1/8=—1/16 in agreement with the numerical

data.

Finally, the above argument does not reproduce the pr
files for the special transition. This is due to the fact that th
two-point correlation functions are more complicatethan
the simple power-law form which underlies the derivatfon

of Eqg. (23).

V. SUMMARY

O-

extraordinary, and special transitiofwhere in the 2D Ising
model, the surface coupling is margipal

Our results on how the “specific heat” depends on the
layer thicknessn are qualitatively the same as seen
experimentally’ Our results also suggest that if the layer
thickness can be precisely controlled, one might get a
radeoff in no longer having to achieve a very fine tempera-
ture control and still being able to measure fluctuation-
dominated critical exponents to good accuracy.

Our study for the order-parameter profiles was motivated
by the existing experimental techniques to measure the mag-
netic moments of a single monolayeWhile for an infinite

We have studied the transitions arising in a pair of mag-system, the critical point magnetization vanishes, for finite
netic layers, coupled through short-range interactions and ddattices a nontrivial finite-size scaling behavior of the order-
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FIG. 9. Comparison of the conformal invariance prediction for the scaled order-parameter pn¢ijle&®. Only the part of the system
which is critical is shown. The graphs give fta) the ordinary transition(b) the extraordinary transition witm® and (c) for m® at
x=4 andy=1. The correspondence of the symbols to the layer thickndsgshe same as in Fig. 5.
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parameter profiles is obtained. We found two types of finite-with bulk and surface finite-size scaling and with conformal
size scaling at the transitions. Far away from the subsystenimvariance. It remains a challenge to derive a similar result

boundaries, we get a bulk finite-size scali(&) governed
by the bulk exponermt,= B8/v=1/8. In the immediate vicin-
ity (and onboth sideg of the boundary, however, the order-
parameter finite-size scalif@1) is governed by the surface
critical exponentx, ;= ;/v whose value depends on the
type of the surface transition.

For the ordinary and the extraordinary transitions, the data
for finite-size scaling of the order-parameter profile scaling

function M (measured in an infinitesimal magnetic field

for the special transition. It is not yet clear how to address
the problem of calculating the surface scaling functieh In

any case, a continuum approach, which underlies the confor-
mal invariance arguments used for the determinatiofntyf
does not seem to be feasible in that case.

ACKNOWLEDGMENTS

It is a pleasure to thank R. Camley, F. Igland L. Tur-

suggest in 2D an exact scaling function from consistencyan for useful discussions.

*Unite de recherche assoei@u CRNS no. 155.

22F_|gloi, I. Peschel, and L. Turban, Adv. Phy2, 683 (1993.

1D. Lederman, C.A. Ramos, V. Jaccarino, and J.L. Cardy, Phys?3J.L. Cardy, J. Phys. A7, L385 (1984.

Rev. B48, 8365(1993.

2M.N. Barber, inPhase Transitions and Critical Phenome reai-
ited by C. Domb and J. Lebowi{Academic, New York, 1983
Vol. 8, Chap. 2.

24T W. Burkhardt and I. Guim, Phys. Rev. 35, 1799(1987); J.L.
Cardy, Nucl. Phys. BR75 200(1986; G.v. Gehlen and V. Rit-
tenberg, J. Phys. A9, L631(1986.

M. Henkel and G. Schg, J. Phys. A21, 2617(1988.

3Finite Size Scaling and Numerical Simulation of Statistical Sys26These values fo¢ are close to the ones found for the spin-1/2 and

tems edited by V. PrivmarfWorld Scientific, Singapore, 1990

4D. Lederman, C.A. Ramos, and V. Jaccarino, J. Phys. Condens.

Matter 5, A373 (1993.

5Ph. Bauer, S. Andrieu, and M. Piecuch, Nuovo Cimet&®, 299
(1996; Ph. Bauer, S. Andrieu, M. Lemine, and M. Piecuch, J.
Magn. Magn. Mater(to be published

5M. Suzuki, Prog. Theor. Phyd6, 1337(1972); E. Fradkin and L.
Susskind, Phys. Rev. 7, 2637(1978.

7P. Christe and M. Henkelntroduction to Conformal Invariance
and its Applications to Critical Phenomen&pringer, Berlin,
1993.

8D. Bitko, T.F. Rosenbaum, and G. Aeppli, Phys. Rev. Lé.
940 (1996.

9H. Hinrichsen, Nucl. Phys. B36, 377(1990.

108, Berche and L. Turban, J. Phys. 24, 245 (1991).

1p.-G. zhang, B.-Z. Li, and M.-G. Zhao, Phys. Rev.5B, 8161
(1996.

12p_ pfeuty, Ann. Phys57, 79 (1970.

13y, Hofstetter and M. Henkel, J. Phys. 29, 1359(1996.

14E. Dagotto, Rev. Mod. Phy$§6, 763 (1994.

51 @=0 andC has a logarithmic singularity as happens for the 2D
Ising model, a similar analysis shows th@&t-Iné&,.

8|n the simple spin systems usually considered this distinction is

not necessary angl, and ¢, are proportional to each other.
C.A. Ramos, D. Lederman, A.R. King, and V. Jaccarino, Phys
Rev. Lett.65, 2913(1990.
8H.W. Diehl, inPhase Transitions and Critical Phenometealited
by C. Domb and J. Lebowit@cademic, New York, 1986 Vol.
10, Chap. 2.
9Since the model Eq(l) is two dimensional, the layers cannot
order forn finite and thus there is neurfacetransition. This

spin-1 Ising model separate(iRef. 13, thereby confirming that

only the critical degrees of freedom make a contributior.to

27A.J. Bray and M.A. Moore, J. Phys. A0, 1927(1977.

28R.V. Bariev, Sov. Phys. JETS0, 613(1979; B.M. McCoy and
J.H.H. Perk, Phys. Rev. Letl4, 840 (1980; L.P. Kadanoff,
Phys. Rev. B24, 5382 (1981); D.B. Abraham, L.F. Ko, and
N.M. é\/rakic, J. Stat. Phy$6, 563(1989.

21, Turban, J. Phys. A8, L325 (1985.

30M. Henkel and A. Patks, Nucl. Phys. B285, 29 (1987).

31M. Henkel, A. Patks, and M. Schlottmann, Nucl. Phys. B4,
609 (1989.

32G. Delfino, G. Mussardo, and P. Simonetti, Nucl. Phys4®,
518 (1999; M. Oshikawa and |. Affleck, Phys. Rev. Left7,
2604 (1996.

33M. Baake, P. Chaselon, and M. Schlottmann, Nucl. Phy318
625 (1989.

34C.N. Yang, Phys. Rew85, 808 (1952.

35K. Uzelac and R. Jullien, J. Phys. 34, L151(1981); C.J. Hamer,
ibid. 15, L675 (1982.

36H.J. Mikeska, S. Miyashita, and G.H. Ristow, J. Phys. Condens.

Matter 3, 2985(1991); M. Henkel, A.B. Harris, and M. Cieplak,

Phys. Rev. B52, 4371(1995.

%"These forms can be obtained from, (z)=L *®(z/L,L/a)
wherez is the distance across the strip. Equati@f) is recov-
ered in the limita—0. Equation(21) is_obtained in the limit
L—co with a fixed and® (u,v)=u“1w “2d(uv).

38M. Farle and K. Baberschke, Phys. Rev. L&8, 511(1987; W.

Durr, D. Kerkmann, and D. Pescia, Int. J. Mod. Phys4,B101

(1990; Z.Q. Qiu, J. Pearson, and S.D. Bader, Phys. Rev. Lett.

67, 1646(1991); C. Rau and C. Jin, J. Phy&ari9 Collog. 49,

would be different in a three-dimensional model, where surface C8-1627(1988.

transitions may occut®

203 L. Cardy, inPhase Transitions and Critical Phenomereaited
by C. Domb and J. Lebowit@cademic, New York, 1987 Vol.
11, Chap. 2.

21C. Itzykson and J.-M. DrouffeStatistical Field TheoryCam-
bridge University Press, Cambridge, 19890l. 2, Chap. 9.

39T W. Burkhardt and E. Eisenriegler, J. Phys18, L83 (1985.
40T W. Burkhardt and T. Xue, Nucl. Phys. 854, 653 (1991).
4D, Karevski, thee de doctorat, Universitdancy, 1996.

42y, Ritschel and P. Czerner, Phys. Rev. L&&, 3645(1996.
43L. Turban and F. Iglp J. Phys. A.(to be publishel

44G. Gompper, Z. Phys. B6, 217 (1984.



