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Finite-size effects in layered magnetic systems
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F-54506 Vandœuvre le`s Nancy Cedex, France
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Thermal and magnetic effects in a system consisting of thin layers of coupled Ising spins withS51/2 and
S51 are considered. The specific heat and the correlation length display maxima at two different temperatures.
It is discussed in what sense these maxima can be interpreted as a finite-size rounding of a thermodynamic
singularity associated with a phase transition. The connection with ordinary, extraordinary, and special surface
phase transitions is made. In two dimensions~2D!, the surface critical exponents are calculated from conformal
invariance. The bulk and surface finite-size scaling of the order-parameter profiles at the transition points is
discussed. In 2D, an exact scaling function for the profiles is suggested through conformal invariance argu-
ments for the~extra!ordinary transition.@S0163-1829~97!00810-2#
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I. INTRODUCTION

Considerable effort has been recently devoted to the
derstanding of magnetic thin films. The behavior of magne
insulators such as the transition-metal difluorides can be
scribed in terms of short-range interaction models wh
makes the comparison with theory considerably simpler.1 In
particular, these materials can be epitaxially grown in v
thin films to the point that specific theoretical concepts su
as finite-size scaling close to a second-order critical poin2,3

become experimentally verifiable. Such a study w
performed1 for the ~FeF2) n~ZnF2) m superlattice, where the
magnetic interactions within a single FeF2 layer can be de-
scribed in terms of a spinS52 bcc Ising model~with the
different FeF2 layers sufficiently far apart that free bounda
conditions can be assumed for each of them!. The data for
the thermal-expansion coefficienta(T), which is experimen-
tally observed1 to be proportional to the magnetic contrib
tion to the specific heat, show finite-size shifts of the critic
point and rounding of the thermodynamic singularity
quantitative agreement with finite-size scaling theory.1 Sub-
sequently, the thermal properties of~FeF2) n ~CoF2) n super-
lattices, where two different magnetic layers interact, w
studied.4 The thermal-expansion coefficient was studied a
function of temperature and of the layer thicknessn. For n
small,a(T) was found to show a single maximum, while fo
n larger, two maxima ofa(T) as a funtion of temperatur
were observed.4 Besides studying thermal properties, it
also possible to explore experimentally the magnetic prop
ties of single monolayers through Mo¨ssbauer spectroscopy5

and to investigate the resulting order-parameter profiles.
In an attempt to provide a theoretical description of the

layered magnetic systems beyond mean-field theory, we
sider here as a simple toy model two coupled magnetic s
systems, where each subsystem containsn parallel layers of
classical Ising spins, withS51/2 andS51, respectively. We
assume nearest-neighbor couplings between the spins
simplicity, we also assume that the coupling between sp
within a layer is independent ofS. We cannot expect with
such a simple model to reproduce quantitatively any of
experiments mentioned above, but we shall use our mode
550163-1829/97/55~10!/6429~11!/$10.00
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a means to obtain and to test scaling descriptions of the
perimentally observed phenomena. Scaling should appl
more realistic situations. We shall thus write down the mo
in the form best suited for numerical treatment.

Two main simplifications are employed. First, we work
two dimensions, considering layers of spin chains rather th
the three-dimensional layers of films studied experimenta
We expect that the scaling picture used to describe the c
cal behavior can be applied in two as well as in three dim
sions. Second, an extreme anisotropic limit is used,6 where
coupling constants between different layers are becom
very small, while within a layer they become large. Then t
task of calculating the thermal behavior of the syste
amounts to studying the ground-state properties of the qu
tum Hamiltonian

H52
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n21
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z 1 (
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1t(
l 51

n

~s l
x1Sl 1n

x !1g~sn
zSn11

z 1s1
zS2n

z !G , ~1!

wheresx,z are the spin-1/2 Pauli matrices andSx,z are spin-1
matrices. It is well known6,7 that the critical behavior of this
quantum chain is in the same universality class as the t
dimensional~2D! model of classical Ising spins describe
above ~experimentally, this correspondence has recen
been demonstrated8 for the dipolar-coupled 3D Ising ferro
magnet LiHoF4), but the numerical treatment ofH is con-
siderably easier than the corresponding calculation in
classical spin model using the transfer matrix. The criti
behavior of several coupled Ising systems with spin 1/2 in
subsystems had been investigated earlier.9–11

Let us explain the terms arising inH by making the anal-
ogy with the two-dimensional model of classical Ising spin
The termss l

zs l 11
z describe the interactions between spi

in different layers and the termss l
x describe the interaction

within a single spin layer~and similarly for theSx,z). The
coupling t plays the role of a temperature. TheS indepen-
dence of the transverse fieldt reflects our assumption that th
6429 © 1997 The American Physical Society
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6430 55DRAGI KAREVSKI AND MALTE HENKEL
spin-spin coupling within a layer is spin independent.
nally, g describes the coupling between the two subsyste
The spatial coordinatel corresponds to the direction perpe
dicular to the magnetic layers.

The following symmetries ofH are immediate. First,H is
invariant under the global spin reversalsz→2sz,
Sz→2Sz, sx→sx, Sx→Sx. Those states which are invar
ant under this transformation are said to beeven, all other
states are said to beodd. ThusH is block diagonalized into
an even and an odd sector. Second, the spectrum ofH is
independent of the sign ofg, becauseH(g) is changed
into H(2g) through the similarity transformation
sz→2sz, Sz→Sz.

For each subsystem alone, that is, forg50 andn→`,
there is a critical point att5tc,S with

12,13

tc,1/251, tc,1 /k51.325 87~1!, ~2!

respectively. Varyingk thus allows us to change the rat
between the critical pointstc,S in the S51/2,1 systems. Fi-
nally, z is a normalization constant which will be need
below in connection with the conformal invariance descr
tion of the spectrum ofH at criticality.

We are interested in the following observables which w
be studied through their quantum analogs.6,7 The free energy
of the two-dimensional classical spin model corresponds
the ground-state energyE0 of H. Similarly, thermal average
^X& correspond to ground-state expectation values^0uXu0&.
We also need the characteristic lengthsj1,2 of the spin-spin
and energy-energy correlations~for r→`)

Gs~r !5^s~r !s~0!&2^s~r !&^s~0!&;e2r /j1,

Ge~r !5^e~r !e~0!&2^e~r !&^e~0!&;e2r /j2, ~3!

where r is parallel to the individual layers. One ha
j1,2

215E1,22E0, whereE1,2 are the energies of the first ex
cited states in the odd and the even sectors, respectivel

The numerical technique used is completely standard,
Refs. 14,7 for details. We use the La´nczos algorithm to find
the first few lowest eigenvalues ofH and the corresponding
eigenvectors. Finite-size scaling is then used to obtain e
mates for the critical quantities which are then numerica
extrapolated forn→`.

This paper is organized as follows. In Sec. II, we discu
the phase diagram and comment on a subtlety in finite-
scaling. Section III describes the calculation of the surfa
critical exponents in 2D through conformal invariance tec
niques. In Sec. IV, we present our results for the ord
parameter profiles. Finally, we give our conclusion in Sec.

II. THE PHASE DIAGRAMS

Our starting point is the experimental observation4 that
the specific heatC as a function of the temperature will sho
one or two maxima depending on the thicknessn. We there-
fore begin with a consideration of this quantity. Howev
the explicit calculation of the second derivativ
2t]2E0(t)/]t

2 of the free energy is cumbersome. To avo
this, recall the fluctuation-dissipation relationC;( rWGe(rW)
together with the scaling form, which should be valid ne
criticality
-
s.
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Ge~r !5r22xeg~r /j2! ~4!

wherexe5(12a)/n anda,n are conventional critical expo
nents. Then, up to nonsingular background terms, the r
tion

C~ t !;„j2~ t !…
a/n ~5!

should hold.15 Since we are here only interested in the lea
ing critical behavior, it is sufficient for us to consider th
secondgapj2

215E22E0 of H. The scaling behavior ofj2 is
simply related to the scaling of the specific heatC and more-
over the temperature dependence not too far away from
critical region of bothj2(t) andC(t) should be qualitatively
similar. Finally,j2 is readily calculated through the La´nczos
algorithm.14,7 We point out that the spin-correlation leng
j1 doesnotenter into the scaling form~4!, because it couples
to quantities which are odd under spin reversal whileGe is
even.16

In Fig. 1 we show lnj2 as a function oft for different
layer thicknessesn. We observe that for a very thin laye
(n52,3), there is only a single maximum present, while tw
maxima develop for larger values ofn. Comparing the loca-
tion of the maxima forn finite with the known values from
Eq. ~2! for their n→` limit, we see that the shift in the
effective critical temperatures are quite large. Both maxi
appear to show a systematic build-up normally conside
typical of a thermodynamic singularity rounded by finite-si
effects.2 These observations, of one or two maxima depe
ing on the value ofn, large finite-size shifts of the pseud
ocritical temperatures and a rounding of the thermodyna
singularity, are in qualitative agreement with experiment.4,17

Before we can make this conclusion however, one sho
realize that the models usually considered in theoretical
culations and the superlattices studied experimentally are
ferent. We shall refer to these as case A and case B, res
tively. These cases differ in the way one goes from the fin
system to an infinite one and it is only for the infinite syste
where a true phase transition can occur. Consequently,
phase diagrams for cases A and B are different.~We reem-

FIG. 1. The energy correlation lengthj2 as a function oft and
different layer thicknessesn for k54 andg51. The size of the
layers isn52, . . . ,7 from bottom to top.
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55 6431FINITE-SIZE EFFECTS IN LAYERED MAGNETIC SYSTEMS
phasize that in the following discussion we refer to tw
dimensional systems, while experiments are carried ou
three dimensions.!

~A! We take a layer ofn spins 1/2 and a layer ofn spins
1. Periodic boundary conditions as explicitly written in E
~1! are used. The phase diagram which results whenn→` is
given in Fig. 2~a!.

~B! In experiments,4,1,5 a procedure analogous to the fo
lowing is used. One takesn spins 1/2 andn spins 1 and
repeats this double layerm times. Typically,n is small and
fixed butm is large, and formally, one should take a lim
m→`. This leads to the phase diagram in Fig. 2~b!.

We first consider case A. Then, each of the two s
systems can develop long-range order by itself. Con
quently, the phase diagram@Fig. 2~a!# will show four differ-
ent phases. There is a paramagnetic phase where the w
system is disordered, two distinct phases where either
spin-1/2 variables (̂s&Þ0) or the spin-1 variables (^S&
Þ0) are ordered, while the other subsystem is disorde
and a ferromagnetic phase where the system is fully orde
The transition lines are given by Eq.~2! ~full line for tc,1/2
and dashed line fortc,1). In this case, the maxima observe
in Fig. 1 should be interpreted as true thermodynamic sin
larities rounded by finite-size effects. Since we shall bel
concentrate on the properties of the order parameter clos
the subsystem boundaries, we label these transitions by
surface critical properties, following the theory of surfa
phase transitions.18 For the transitions from the paramagne
phase to one of the partially ordered phases, one of the
systems is still disordered and the order parameter of
subsystem which undergoes ordering will vanish at
boundary between the two subsystems. Along this line
have anordinary transition. On the other hand, for the tra
sitions from the partially ordered phases to the ferromagn
phase one subsystem is already ordered which fixes the o
parameter of the other subsystem at the subsystem boun
Here we have anextraordinary transition. At the meeting
point of the transition lines there is aspecialtransition.19 The
scaling of the order parameter close to the subsystem bo
aries is described by a different exponent than for the b
see Ref. 18. These local critical exponents are in 2D rea
calculated using conformal invariance techniques, see
III.

FIG. 2. Phase diagrams for the two thermodynamic limits,
two-dimensional systems.~a! Two layers withn spins each, peri-
odic boundary conditions andn→`. ~b! Superlattice ofm bilayers
of n spins of each kind andm→`.
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For case B, corresponding to Fig. 2~b! however, the situ-
ation is different. Since each of the subsystems only conta
a finite number of layers, the superlattice can only order a
whole. Thus the phase diagram contains a paramagn
phase and a single ordered ferromagnetic phase. Ift is suf-
ficiently small, a layer ofn spins may act as a giant spin an
produce a strong thermal signal leading to afinitemaximum
of the specific heat or of related quantities. Sincen is finite,
however, there is no long-range order and the magnetic
ments of each layer are independent of each other. Then
specific heat as a function of temperature will show tw
peaks, but only the one atlower temperatures will then cor
respond to a~shifted and rounded! phase transition and wil
develop a true singularity asm→`. Working in the frame-
work of case B, it is misleading to call the location of th
larger temperature maximum a~pseudo!critical point.

From now on we always consider case A. Then, b
maxima in j2 can be interpreted as signaling a transitio
Also, we shall perform the subsequent scaling analyses
for the two-dimensional system, since the changes wh
might be needed in three dimensions are immediate and
cussed in detail in the literature.2,3

How can one find the critical points from the finite-lattic
data, when the Hamiltonians are more complicated and
cise information on their location such as Eq.~2! is not avail-
able a priori? Practically, the transition points are locate
using phenomenological renormalization as derived fr
finite-size scaling.2,3 Consider the quantity R(t;n)
5n/j(t;n). Then finite-size estimates for the critical poi
tc can be found by solving fort the equation

R~ t;n!5R~ t;n11!, ~6!

if n sufficiently large. A final value fortc is then obtained by
extrapolating the resulting sequence forn→`. Carrying out
this procedure, a further subtlety is encountered as illustra
in Fig. 3.

r

FIG. 3. Scaled inverse correlation lengthsn/j1,2(t) as a function
of t, for k54 andg51 and several layer thicknessesn. The critical
points are labeledtc

o and tc
e corresponding to the ordinary and ex

traordinary transitions. The lower~upper! curves correspond toj1
(j2).
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6432 55DRAGI KAREVSKI AND MALTE HENKEL
Considering the finite-size scaling of the spin-correlat
length j1 ~lower curve!, we see that the curvesR1(t;n) in-
tersect close to the critical pointtc

o . This is the conventiona
behavior found, e.g., in simple Ising models.2,3 For smaller
values oft, j1

21 vanishes exponentially fast withn, which
reflects the ordering of theS51 subsystem in this case. Thu
in order to findtc

e , the second gapj2
21 is the natural quantity

to look at and in fact represents in the partially order
phases the lowest physical excitation, just asj1

21 does in the
paramagnetic phase. Nevertheless, the curvesR2(t;n) go
through a minimum close totc and will eventually touch
each other in then→` limit, but do not intersect. Although
this isnot in contradiction with the theory of finite-size sca
ing @at t5tc , Eq. ~6! is strictly valid for n→` only#, it is
remarkable that at this point the conventional finite-size te
niques are no longer applicable. In order to get an estimat
tc , one has to rely on locating a minimum ofR2(t) or some
other criterion. We stress that att5tc

e is theonly phase tran-
sition occuring in the model for case B.

This type of behavior should be generic and although
example given does suggest that finite-size techniques
be fruitfully employed in analyzing experimental data, it al
shows that some care may be required. We shall see in
next section that in spite of the slightly unusual finite-s
scaling, the spectrum ofH at all these critical points is in ful
agreement with the conformal invariance predictions.

To illustrate to what extent quantitative information abo
the critical behavior can be extracted from our still relative
small systems (n<7), we consider the determination of th
correlation length exponentn. We look at the local maxima
tmax(n) of j2 near to the pointt5tc

o . Finite-size scaling
predicts2,3 that the temperature shift

Dt~n!5tc
o2tmax~n!;n21/n, n→`. ~7!

In Fig. 4, we show a log-log plot ofDt(n) vs n and find
that the asymptotic behavior~7! is already realized for smal
n in our toy model, although thetc(n) are not at all close to
then→` value tc

o , see Fig. 3. From the slope in Fig. 4, w
read off n.1.03, in good agreement with the exact res

FIG. 4. Determination ofn from the finite-size scaling of
tc(n) near the ordinary transition fork54.
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n51. We point out that also~3D! data for the thermal-
expansion coefficient for FeF2/ZnF2 superlattices were suc
cessfully analyzed this way,1 although also in this case
Dt(n) is large,17 leading ton50.64(4) in agreement with
the theoretical valuen.0.63 for the 3D Ising model.

III. CRITICAL EXPONENTS AND CONFORMAL
INVARIANCE

We now describe the calculation of the critical exponen
Since we work with a two-dimensional classical spin mod
universality class, we can use conformal invarian
techniques7,20–22for that purpose. Here the use of the qua
tum Hamiltonian rather than the classical spin model
comes advantageous, since the surface critical expon
which describe the local scaling close to the boundary
tween the two subsystems and in which we are mainly in
ested are easily obtained from the low-lying excitation sp
trum ofH. We can thus avoid the cumbersome procedure
calculating first an averagêX& and then subtracting from i
its bulk contributionXb in order to get the surface term
Xs5^X&2Xb and then analyze its scaling behavior. In t
next two subsections, we shall first briefly collect the nec
sary background knowledge and shall then apply it to
problem at hand.

A. Ordinary and extraordinary transitions

In two dimensions~and consequently also for quantu
chains! conformal invariance specifies completely the sc
ing dimensions of all local observables. For a given mo
the first few exponents are very easily identified from t
spectrum of the HamiltonianH. For free or fixed boundary
conditions one has23

j i
215Ei2E05n21pxi , ~8!

where the exponentsxi are thelocal critical exponents which
describe scaling near the boundary between the two s
systems and the indexi labels the various scaling field
which occur in the model~usually, i51 corresponds to the
order parameter andi52 to the energy density and highe
gaps correspond to the scaling fields which gener
correction-to-scaling terms!. The scaling of the gaps@Eq. ~8!#
goes withn andnot with L because only half of the system
is critical at either the ordinary or extraordinary transition
However, in order to be able to apply Eq.~8! to the spectrum
of a quantum chain such as Eq.~1!, the normalization ofH
must be chosen such that energies and momenta are
sured in the same units. One way of doing this is to rec
that the surface scaling dimension of the energy density

xe,s52, ~9!

which fixes the normalizationz. Furthermore, once the nor
malization is fixed accordingly, the conformal algebra acts
a dynamical symmetry which determines the spectrum
H at criticality, viz.

Ei2E05
p

n
L01o~n21! ~10!

with L0 being one of the generators of the Virasoro algeb



e
m

. E

d
ue
f
s
c

2
th
at

f

, w
o

d

ns
es

re
x-
e

of

r de-
at
-
r-

ary
r is
ing
e, it
s in
e

om
is
nts,
rum,
m.

ical
the

vi-
ith
d-

ing
el
as

rgy

in-

ed
he
ian
s,
-
a

for

iv

55 6433FINITE-SIZE EFFECTS IN LAYERED MAGNETIC SYSTEMS
@L j ,Lk#5~ j2k!L j1k1
c

12
~ j 32 j !d j1k,0 . ~11!

The universality class is determined by the value of thecen-
tral charge c, for the 2D Ising model7,20,21c51/2.

Furthermore, the spectrum ofH at criticality can be found
from the representations of the Virasoro algebra, see R
20, 21, 7 for details. These representations are built fro
highest weight stateuD& which is defined through

L0uD&5DuD&, L j uD&50 if j.0 ~12!

and acts as the ground state for a certain representation
cited states are generated by acting with theL2 j ( j.0) on
uD&. Now, the principle of unitarity of the underlying fiel
theory restricts through the Kac formula the possible val
of c and for each value ofc only permits a finite number o
possible values ofD. For c51/2, the only possible value
areD50, 1/16, 1/2. This leads to the three unitary irredu
ible representations(0), (1/16), and (1/2) of thec51/2 Vi-
rasoro algebra. Now, the spectrum ofH for the ordinary and
the extraordinary transitions is given by24,10

H ~o!5~0!1~1/2!, ordinary

H ~e!52~0!, extraordinary, ~13!

where the trivial prefactorp/n is suppressed. The factor
for the spectrum at the extraordinary transition means
each level has the double degeneracy of the represent
(0). Combining these predictions with the formula~8! for
the energy gaps, the critical exponentsxi can be read off.

These predictions, which had already been checked
the spin 1/2 before,24,10are fully reproduced in our model, in
agreement with the expected universality. As an example
takek54 andg51, but the results for the exponents do n
depend on these parameters. The values fort at the ordinary
and extraordinary transition are from Eq.~2! tc

o

55.303 48(4) andtc
e51. The energy gap which is relate

through Eq.~8! to the exponentxe,s is the lowest gap in the
even sector. Lattices with up ton57 were used. After
extrapolation,7,25 we find z (o)52.319(6) and z (e)

50.996(5) for the ordinary and the extraordinary transitio
respectively.26 In Table I, we give the extrapolated estimat
for the first four rescaled gapsxi5(Ei2E0)n/(zp) for the
ordinary and extraordinary transitions together with the p
dictions following from conformal invariance. For the e
traordinary transition, all levels were found to be doubly d

TABLE I. Conformal spectrum of the surface exponentsxi for
the ordinary and extraordinary transitions atk54 andg51. The
numbers in brackets give the estimated uncertainty in the last g
digit.

Ordinary Extraordinary
i Numerical Expected Numerical Expected

0 0 0 0 0
1 0.4994~6! 1/2 2 2
2 1.496~7! 3/2 3.01~2! 3
3 2 2 3.95~6! 4
4 2.505~9! 5/2 4.9~2! 5
fs.
a

x-

s

-

at
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or

e
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-

-

generate in then→` limit but with an exponentially small
splitting between pairs of levels forn finite. As should be
expected from the algebraic construction of the spectrum
H, the differences between values of thexi which belong to
the same representation are integers. This reconfirms ou
termination of z. For the ordinary transition, we see th
xe,s5x352 andx15xs,s5b1 /n51/2 is the surface magne
tization exponent, whereb1 describes the scaling of the o
der parameter at the surface,m1;(Tc2T)b1, and n is the
bulk correlation length exponent.18

For the extraordinary transition, a little care is necess
in identifying the surface exponents. The order paramete
odd under spin reversal and the most local of all scal
operators. When this operator acts on the ground stat
creates the state with the lowest gap in the spectrum. Thu
our modelxs,s

(1)5x050. On the other hand, in the literatur
~e.g., Ref. 18 and references therein!, the extraordinary tran-
sition is defined with respect to those degrees of freed
which become critical in the presence of a boundary which
already ordered. To read off the corresponding expone
one should discard the double degeneracy of the spect
which is merely due to the ordering of the other subsyste
We then havexe,s5xs,s

(2)5x152. This is in agreement with
the expected scaling relation27,18 xs,s5b1

ex/n522a52.

B. Special transition

At the special transition, both subsystems become crit
simultaneously. In addition, the Ising quantum chain has
peculiarity that the boundary couplingg is marginal. The
critical behavior of the model can be described using pre
ous results for the scaling behavior of an Ising model w
~semi-!infinite defect lines, which has been extensively stu
ied for a long time,9–11,28–32see Ref. 22 for a review. The
local critical exponents depend continuously on the coupl
g. The mapping of coupled Ising layers to a 2D Ising mod
with a starlike configuration of semi-infinite defect lines w
exactly derived for coupled spin-1/2 Ising models.9–11 The
surface critical exponents can be read off the ene
spectrum29

j i
215Ei2E05L212pxi~g!, ~14!

provided that the normalizationz is fixed such that confor-
mal invariance is applicable. We findz from the requirement
xe,s51, which is also a necessary condition for the marg
ality of the couplingg.

The conformal theory is in this case more complicat
than for the ordinary or extraordinary transitions. For t
spin-1/2 Ising model, one can construct the Hamilton
spectrum either through nonunitary Virasoro generator30

Kac-Moody algebras33 or alternatively rely on boundary con
formal field theory.32 Here we shall restrict ourselves to
simple way to characterize the spectrum.

Taking the spin-1/2 case as a guide, we expect that
n large, the low-lying excitation spectrum ofH can be re-
covered from the free fermion Hamiltonian30,31

en
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H5
2p

L (
r50

` F S r1
1

2
2D Dnr~2 !1S r1

1

2
1D Dnr~1 !G

2
p

6L S 1226D2D , ~15!

wherenr
(6) are fermionic number operators andD depends

on g. Nonuniversal terms which do not enter into the ga
are already subtracted. In general, for states in the even
tor ~with an even number of occupied fermionic states! and
in the odd sector, there will be different valuesD0(g) and
D1(g), respectively. Now the lowest levels ofH can be eas-
ily written down in terms ofD0,1. For example, the lowes
exponents in the odd sector are

xs,s5
1
2 ~D121!22 1

2 D0
2,

xs8,s5
1
2 ~D111!22 1

2 D0
2 , ~16!

and the lowest exponents in the even sector are

xe,s51, xe8,s5222D0 , xe9,s5212D0 . ~17!

All these exponents correspond to conformal highest we
states. In addition, conformal invariance implies that if t
exponentxi of a highest weight state occurs in the spectru
also xi1k with k51,2,3, . . . is present, with a known de
generacy which only depends onk ~and which is 1 for the
lowest two levels!. From Eqs.~16!,~17!, the values ofD0,1
for a giveng are found. While these are known exactly f
the spin-1/2 case,31,9–11these have been determined nume
cally for the case at hand.

TABLE II. Scaled and extrapolated lowest gapAeven5pz in the
even sector at the special transition for several values ofg. The
numbers in brackets give the estimated extrapolation error in
last digit.

g 0.5 0.65 0.754 222 0.877 111 1
Aeven 1.945~3! 1.889~7! 1.8731~8! 1.8745~5! 1.88~2!
s
ec-

ht

,

-

We first fix the normalization constantz from the condi-
tion xe,s51. This condition means that the scaled lowest g
Aeven5nDEeven5(1/2)LDEeven in the even sector should b
equal topz, see Eq.~14!. In Table II, we giveAeven for
several values ofg. We find that within our numerical accu
racy, its value is independent ofg ~the apparent deviation
seen forg50.5 is an artifact from the extrapolation of ou
short sequences and should disappear if larger lattices c
be taken into account! and conclude that the normalizatio
z is independent ofg. That is only to be expected from
earlier results for spin-1/2 Ising models with defe
lines.31,9,10The final value ofz is taken from the values o
g50.75 . . . , andg50.87 . . . ,where convergence is bes
and we obtainz50.5964(2).

The numerical estimation for the higher gaps is made
ficult by ~a! the relatively short sequences available (n<7)
and ~b! the fact that forn finite, level crossings betwee
different sequences occur. In Table III we give the extrap
lated results for the critical exponentsxi5L/(2pz)(Ei
2E0) for several values ofg. When no information is given
our sequences did not converge reliably. We now wan
compare these with the spectrum following from Eq.~15!.
First, we use Eqs.~16!,~17! to determineD0,1, which are also
given in Table III. Depending on the value ofg, it turned out
to be numerically preferable to fix firstD0 from Eq.~17! and
then use this value and the estimate ofxs to find D1 or
alternatively determineD1 from the differencexs8,s2xs,s ,
which is independent ofD0. The values ofD0,1 were then
used to calculate the other exponents which are listed
Table III as ‘‘expected.’’ When no error is given in thes
columns, the expected value is exact.

We see that in general the extrapolated estimates for
higher gaps agree with the conformal invariance predict
to within a few percent. A particular problem arises f
g50.5, where the converge forxe is particularly slow. In
that case, we are not able to sensibly specify accuracies
D0,1 and the correspondence between the ‘‘numerical’’ a
the ‘‘expected’’ data is more qualitative. The situation he
could only be improved by going to larger lattices. On t
other hand, for the other values ofg, we obtain a nice agree
ment between the numerical data and the expected free f

e

cted
TABLE III. Conformal spectrum of the scaling dimensionsxi(g) at the special point
t51, k50.754 222. The values ofD0,1 used in comparing with the free fermion Hamiltonian~15! are also
given. The numbers in brackets give the estimated uncertainty in the last given digit.

g50.5 g50.754 222 g50.877 111 g51
i Numerical Expected Numerical Expected Numerical Expected Numerical Expe

1 0.231~1! 0.20 0.1436~6! 0.144~2! 0.1103~7! 0.1103~5! 0.0841~5! 0.084~5!

2 0.971~3! 0.91 0.999~1! 1 1.000~1! 1 1.00~2! 1
3 1.034~5! 1 1.10~3! 1.072~4! 1.113~6! 1.1103~5! 1.11~2! 1.084~5!

4 1.095~3! 1.20 1.12~2! 1.144~2! 1.168~5! 1.168~2! 1.232~5! 1.232~5!

5 1.72~3! 1.70 1.94~1! 1.94~1! 1.92~1! 1.92~1! 1.9~1! 1.78~4!

6 1.92~3! 1.91 1.995~5! 2 2.00~2! 2 2.0~1! 2
7 1.99~2! 2 2.03~3! 2.06~1! 2.11~1! 2.08~1! 2.1~1! 2.084~5!

8 2.20 2.11 2.072~4! 2.1103~5! 2.18~3! 2.22~4!

9 2.30 2.145~8! 2.144~2! 2.168~2! 2.232~5!

D0 0.15 0.030~5! 0.040~5! 0.11~3!

D1 0.36 0.464~2! 0.529~1! 0.574~4!
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55 6435FINITE-SIZE EFFECTS IN LAYERED MAGNETIC SYSTEMS
ion spectrum. We point out that the beginning of seve
conformal towers~that is, with xi also xi11 and even
xi12 are found in the spectrum! is observed. The fact tha
this level spacing comes out correctly is a further confirm
tion of our determination of the normalization constantz. On
the other hand, we have not been able to go sufficiently h
in the spectrum to check the degeneracies of the exc
states.

We see that the scaling behavior of our model is descri
in terms of a free fermion system. This should be expec
on the basis of universality, although this free fermion d
scription of a spin-1 model is not at all obvious from th
lattice formulation. Nevertheless, there is an important d
tinction with respect to the spin-1/2 case. Recall that
value ofg is the same at both subsystem boundaries. Had
coupled two spin-1/2 systems, we would have found31,9,10

D050, which is not the case in our model, see Table III.

IV. ORDER-PARAMETER PROFILES

So far, we have calculated the critical exponents wh
describe the scaling of observables close to the subsy
boundary. We now ask for the form of the order-parame
profiles close to that interface.

A. Generalities

The calculation of the order parameter on a finite latt
poses a conceptual problem. The natural candid
^M &5^0uM u0&50 on any finite lattice. This difficulty can
be overcome by first introducing a small magnetic fieldh,
calculating^M & in the presence ofh, take the infinite system
limit L→` and only then leth→0. In practice, rather than
performing numerically this double limit, the following tric
which goes back to Yang is used. In the ordered phase~s!, the
ground state is already on a finite lattice almost degener
where the energy splitting decreases exponentially withL.
Introducing an infinitesimal magnetic fieldh into H and
working within degenerate first-order perturbation theory
h, the order parameter on the sitei is given by34

m~ i !5^1uM ~ i !u0&, ~18!

whereu0& andu1& are the lowest eigenstates in the even a
odd sectors, respectively. For our model~1!, the magnetiza-
tion operatorM ( i ) is

M ~ i !5H s i
z ; spin-1/2 region

Si
z ; spin-1 region,

~19!

so thatM ( i ) is normalized such thatuM ( i )u<1 for all sites.
It is well known35 that the finite-lattice order parameter ca
culated from Eq.~18! has the correct scaling behavior. Th
dependence of the order-parameter profiles onS deep in the
ordered phase has also been studied.36

Practically, for the computation of the eigenvecto
u0&,u1&, it is not necessary to store all the intermediate La´nc-
zos vectors. This can be avoided by running the La´nczos
algorithm twice, where the first pass furnishes the weights
which the intermediate vectors contribute tou0&,u1& and in
the second pass the eigenvectors themselves can
accumulated.14
l
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B. Ordinary and extraordinary transitions

Before presenting our results for the order-parameter p
files at the various transitions, let us adapt the predicti
from finite-size scaling theory2,3,35 to the situation at hand
We are interested in the local order parameterm( i ) rather
than the full magnetizationm5( im( i ). One should distin-
guish whetherm( i ) is measured far away or close to th
subsystem boundary. In the first case, when the sitei is well
in the bulk, we expect

m~ i !5n2xsMS 2i21

4n D . ~20!

In the second case, wheni is close to the boundary, we
should have37

m~ i !5a2xsS naD
2xs,s

M̃S i2n21/2

a D . ~21!

Here,xs andxs,s are the bulk and surface critical exponen
calculated in the previous section,M and M̃ are scaling
functions,i51,2, . . . ,2n is measured from the left boundar
of theS51 subsystem,n is the layer thickness anda is the
lattice constant. We point out that the arguments of the t
scaling functions are different.37 In the first case, the scaling
is such that the total system size is kept fixed and the lat
constanta→0, while in the second case,a is kept fixed and
the system sizeL52n→`.

These predictions are confirmed by our numerical resu
Consider first the ordinary transition. Again, we takek54
andg51 as an example. In Fig. 5, we rescale our magn
zation profiles according to Eq.~20! with xs51/8 and we see
that indeed for the portion of the lattice which is far enou
for the subsystem boundaries, a data collapse occurs eve
the small lattices considered here. Also, we see that in

FIG. 5. Order parameter for the ordinary transition, scaled w
the bulk exponentxs51/8 for k54 and g51 as a function of
m5(2i21)/4n. The regions of spinS51 andS51/2 are indicated
and the boundary between them is shown by the dotted line.
symbols correspond ton54 ~diamonds!, n55 ~triangles!, n56
~squares!, andn57 ~circles!.
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6436 55DRAGI KAREVSKI AND MALTE HENKEL
immediate vicinity of the subsystem boundaries, the sca
description~20! no longer applies. Similar plots for the bul
scaling can be obtained for the other transitions but will
be presented here, but see Fig. 9 below.

In Fig. 6, we display the local scaling of the order para
eter close to one of the subsystem boundaries accordin
Eq. ~21!. For the ordinary transition,xs,s51/2 and we set
a51. We see that in the first two monolayers around b
sides of the interface, the data collapse onto the scaling f
~21!. However, going beyond the first two monolayers, it
apparent that there is a crossover towards the bulk sca
form ~20!. It is apparent that the surface scaling only occ
in a very thin layer close to the boundary. We remark t
this is consistent with experimental observations that t
magnetic layers on a nonmagnetic substrate show t
dimensional critical behavior for layer thicknesses of le
than about two monolayers and cross over to thr
dimensional criticality for only slightly thicker layers.38

A similar behavior is also found for the extraordina
transition. However, as already mentioned in discussing
spectra, it is sensible to distinguish two ‘‘order parameter
These are

m~1!~ i !5^1uM ~ i !u0&,

m~2!~ i !5^1uM ~ i !u08&.^18uM ~ i !u0&, ~22!

where u08& and u18& are the first excited states in the ev
and odd sectors and the approximate equality between
two forms form(2) holds up to terms exponentially small i
L. Note that here the ordering at the subsystem bounda
provided through the subsystem already in its ordered ph
for n→` andnot through fixing the spins at the boundar
The profile form(1), where the surface exponentxs,s

(1)50, is
shown in Fig. 7. Again, we see that for theS51/2 sub-
system, we have a data collapse according to Eq.~21! for the
first two monolayers next to the boundary and for larg
values ofi , the is a rapid crossover toward the bulk scali
~20!. Since theS51 subsystem is ordered, finite-size effec
are exponentially small there.

C. Special transition

This case is of particular interest, since the expon
xs,s does depend ong. It is therefore interesting to as
whether the profiles are affected by changingg as well. The
bulk scaling behavior~20! with xs51/8 is recovered as in
the other transitions.

In Fig. 8, we show for three values ofg the local scaling
of the order parameter, where the values ofxs,s are taken
from Table III. On both sides of the boundary, we find a d
collapse according to Eq.~21! for the first few boundary
layers and for larger values ofi , a crossover towards the bul
scaling~20!. In addition, we see that the form of the scalin
function M̃ does depend ong. For g.0.87, we have
xs,s.xs51/8 ~see Table III! and the distinction betwee
local and bulk scaling is somewhat washed out.

Concerning the shape of the scaling functionM̃(m̃), we
see that for the special transition, it can be a nonmonoton
function of m̃. For the ordinary and the extraordinary tran
tions, however, it is a monotonous function ofm̃ and this
g

t

-
to

h
m

ng
s
t
n
o-
s
-

e
’’

he

is
se

r

t

a

us

holds independently of the value ofg. For the special tran-
sition, M̃(m̃) is only monotonous ifg.kc . Qualitatively,
this can be explained as follows.

First, if g.kc , the boundary coupling takes the effectiv
mean value which smoothly interpolates between the
different regimes. Since both systems become critical sim
taneously at the special transition, the scaling functions s
ply interpolates smoothly between the values of the mag
tization finite-size scaling amplitudes in the two subsystem
Since these amplitudes are different, even forxs,s(g)51/8,
the scaling functionM̃(m̃) will not become a constant. Sec
ond, considerg.kc . Then the spins on both sides of th
boundary are more strongly coupled together than two sp
in either subsystem. Since theS50 state in the spin-1 sub
system does not contribute to the energy, this leads to
enhancement of states where the boundary spins on
sides are up. Indeed, we checked that already forg54, the
local order parameter on both sides of the boundary is c
to saturation. Thus, we have a large value ofm( i ) close to
the boundary which then falls back to an average value
each of the subsystems, in agreement with Fig. 8. Finally,
g,kc , the spins on both sides of the boundary are m
weakly coupled than average spins. This favors states wi
smaller value ofm( i ) close to the subsystem boundary.

On the other hand, for the ordinary or the extraordina
transition, one subsystem is much more ordered than
other one. Ifg is large, the first spin across the boundary
strongly aligned with the spins of the more ordered su
system and ifg is small, the coupling of the first spin to th
more ordered subsystem is reduced. This leads to an e
tive translation of the order-parameter profile without affe
ing its form.

D. Magnetization profiles and conformal invariance

In 2D, conformal invariance states that the profile of
local scaling operatorw with bulk scaling dimensionxw is on
an infinitely long strip of finite widthL and with the same
type of boundary conditions on both sides~and in particular
for free boundary conditions! given by39

^w~v !&5AwF LpsinS pv
L D G2xw

;v2xw, v→0, ~23!

wherev measures the position across the strip andAw is a
nonuniversal constant. The scaling function for mix
boundary conditions is also known for minimal conform
theories.40 This result only depends on the transformati
properties of the scaling operatorw. Furthermore, this resul
carries over to the profiles on quantum chains.

When we try to apply this to the order parameter at
ordinary transition, we should findAs50 due to symmetry.
However, the finite-lattice estimates form( i ) obtained from
Eq. ~18! above involved an infinitesimal magnetic fieldh,
which ~a! invalidates the above symmetry argument and~b!
leads to a new effective exponentxw5xs2xs,s . This is seen
as follows. From our numerical data, we have found the s
ing form ~20!

mL~z!5L2xsM~m!, m5z/L. ~24!
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55 6437FINITE-SIZE EFFECTS IN LAYERED MAGNETIC SYSTEMS
On the other hand, close to the boundary, the order par
eter should show surface finite-size scalingmL;L2xs,s. This
implies for the scaling function, e.g., Ref. 18,

M~m!;mxs,s2xs, m→0 ~25!

from which xw can be identified. Equation~25! was also
confirmed within the« expansion44 and for the Ising quan-
tum chain with an aperiodic modulation generated by
Fredholm sequence.41 For the 2D Ising model, we remar
that also in the presence of a small surface magnetic fie42

h1 the spatial dependence of the magnetization near to
surface scales asz318, which is the same as obtained fro
Eq. ~25!.

One can extend Eq.~25!, derived for small values ofm
only, to larger values ofm. Accepting43 that the estimate Eq
~18! for the spontaneous magnetization transforms cov
antly under conformal transformations, we can combine E
~23!,~25!. Then the exact finite-size scaling function at t
ordinary transition is43

M~m!5As~sin 2pm!xs,s2xs, ~26!

taking into account that for our model, only the secti
0<m<1/2 is actually critical at the ordinary transition fo
k.kc .

In Fig. 9~a!, we compare Eq.~26! to the numerical data
First, we observe a data collapse from several system s
onto a single curve. Second, the form of the scaling funct
agrees nicely with Eq.~26!. The same result has also be
found for the Hilhorst–van Leeuven model.43,41Since for the
2D Ising model, Eq.~25! remains unchanged even in th
presence of a small surface magnetic field,42M should be
independent of a smallh1 for the ordinary transition.

Let us compare the finite-size scaling functions for t
profiles coming from Eqs.~23! and ~26!. The first one is
based on a continuum description of the profile in the h
infinite system which is then conformally transformed on
the strip.39 Very close to the boundary, a continuum descr
tion may no longer be applicable. Indeed, for unitary conf
mal theories such as the Ising model, the critical expone
xw.0 and the profile as it stands will diverge at the boun
ary, in disagreement with existing numerical data. On
other hand, the second form is constructed to be consis
with both bulk finite-size scaling deep inside the system a
surface finite-size scaling close to the boundary. In orde
match this with the functional form required from conform
invariance, it is necessary to assume that the expo
xs2xs,s governs the scaling of the matrix element Eq.~18!
~calculated in an infinitesimal magnetic field which brea
global symmetry! used to estimate the finite-size order p
rameter, rather than the conventional order-parameter sca
dimensionxs.0. This approach is in agreement with th
numerical data for the whole strip.

In addition, we find that the same functional form al
describes the order-parameter profiles for the extraordin
transition, as shown in Fig. 9. The numerical data are ag
consistent with scaling@note that the overall scale in Fig
9~b! is about an order of magnitude larger than in the ot
two cases#. Specifically, we find from a fit
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M~m!5H As~sin 2pm!3/8, As.0.80 ord.

As
~1!~sin 2pm!21/16, As

~1!.0.98 ex.,m~1!

As
~2!~sin 2pm!9/8, As

~2!.0.49 ex.,m~2!.
~27!

Tentatively, the profile form(1) @which isnotgiven by Eq.
~23! because the ‘‘ordered’’ subsystem is still finite, see E
~22!# can be explained as follows. This order parameter
sensible to the ordering which occurs at the ordinary tran
tion. At the extraordinary transition, these degrees of fre
dom have become massive and thus have a short effec
correlation lengthjeff . Then the fluctuating spins would see
a fixed boundary on one side but becausejeff!L the other
boundary should appear as open. However, for mixed bou

FIG. 6. Scaled profile of the order parameter for the ordina
transition, fork54 andg51 as a function ofm̃5 i2n21/2. The
inset shows the location of the transition point in the phase diagra
The correspondence of the symbols to the layer thicknessn is the
same as in Fig. 5.

FIG. 7. Profile for the order parameterm(1) at the extraordinary
transition fork54 andg51 as a function ofm̃. The inset shows
the location of the transition point in the phase diagram. The co
respondence of the symbols to the layer thicknessn is the same as
in Fig. 5.
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6438 55DRAGI KAREVSKI AND MALTE HENKEL
ary conditions, it is known that24,7 xs,s51/16. Then
2xw51/1621/8521/16 in agreement with the numeric
data.

Finally, the above argument does not reproduce the p
files for the special transition. This is due to the fact that
two-point correlation functions are more complicated32 than
the simple power-law form which underlies the derivation39

of Eq. ~23!.

V. SUMMARY

We have studied the transitions arising in a pair of m
netic layers, coupled through short-range interactions and

FIG. 8. Scaled profiles for the order parameter at the spe
transition for several values ofg as a function ofm̃. The dotted
curves with full symbols correspond tog51/2, the full curves with
open symbols tog50.877 111 and the dash-dotted curves w
open symbols correspond tog52. The correspondence of the sym
bols to the layer thicknessn is the same as in Fig. 5.
o-
e

-
e-

scribed by Ising models. This study was motivated by on
ing experiments on similar systems. We have found
variation of the ‘‘specific heat’’ with the temperature an
studied the scaling of the order-parameter profiles at
phase transition points. Our aim was to check out a sca
analysis which should also be applicable to experimen
data in 3D.

We have reemphasized that the systems usually studie
experiments and the models best suited for theoretical an
sis are not completely identical and care is needed in
comparison of the two, as exemplified in the two phase d
grams in Fig. 2.

To simplify the theoretical analysis, we used a tw
dimensional model of layers of spin chains, although
experiments4,38,5 involve two-dimensional layers stacked
the third dimension. This was for us no serious disadvanta
since the scaling arguments used here can be extende
three dimensions in a well-known way.1–3 In addition, con-
formal invariance techniques could be used to simplify
calculation of the surface critical exponents we were int
ested in. This calculation reconfirmed the expected univ
sality of the surface critical exponents found for the ordina
extraordinary, and special transitions~where in the 2D Ising
model, the surface coupling is marginal!.

Our results on how the ‘‘specific heat’’ depends on t
layer thicknessn are qualitatively the same as see
experimentally.4 Our results also suggest that if the lay
thickness can be precisely controlled, one might ge
tradeoff in no longer having to achieve a very fine tempe
ture control and still being able to measure fluctuatio
dominated critical exponents to good accuracy.

Our study for the order-parameter profiles was motiva
by the existing experimental techniques to measure the m
netic moments of a single monolayer.5 While for an infinite
system, the critical point magnetization vanishes, for fin
lattices a nontrivial finite-size scaling behavior of the ord

al
FIG. 9. Comparison of the conformal invariance prediction for the scaled order-parameter profilesm( i )n1/8. Only the part of the system
which is critical is shown. The graphs give for~a! the ordinary transition,~b! the extraordinary transition withm(1) and ~c! for m(2) at
k54 andg51. The correspondence of the symbols to the layer thicknessn is the same as in Fig. 5.
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55 6439FINITE-SIZE EFFECTS IN LAYERED MAGNETIC SYSTEMS
parameter profiles is obtained. We found two types of finit
size scaling at the transitions. Far away from the subsyst
boundaries, we get a bulk finite-size scaling~20! governed
by the bulk exponentxs5b/n51/8. In the immediate vicin-
ity ~and onboth sides! of the boundary, however, the order
parameter finite-size scaling~21! is governed by the surface
critical exponentxs,s5b1 /n whose value depends on th
type of the surface transition.

For the ordinary and the extraordinary transitions, the d
for finite-size scaling of the order-parameter profile scali
functionM ~measured in an infinitesimal magnetic field!
suggest in 2D an exact scaling function from consisten
hy

y

e

J
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n

y

ot

a

-
m

ta
g

y

with bulk and surface finite-size scaling and with conform
invariance. It remains a challenge to derive a similar res
for the special transition. It is not yet clear how to addre
the problem of calculating the surface scaling functionM̃. In
any case, a continuum approach, which underlies the con
mal invariance arguments used for the determination ofM,
does not seem to be feasible in that case.
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*Unité de recherche associe´e au CRNS no. 155.
1D. Lederman, C.A. Ramos, V. Jaccarino, and J.L. Cardy, P
Rev. B48, 8365~1993!.

2M.N. Barber, inPhase Transitions and Critical Phenomena, ed-
ited by C. Domb and J. Lebowitz~Academic, New York, 1983!,
Vol. 8, Chap. 2.

3Finite Size Scaling and Numerical Simulation of Statistical S
tems, edited by V. Privman~World Scientific, Singapore, 1990!.

4D. Lederman, C.A. Ramos, and V. Jaccarino, J. Phys. Cond
Matter5, A373 ~1993!.

5Ph. Bauer, S. Andrieu, and M. Piecuch, Nuovo Cimento18D, 299
~1996!; Ph. Bauer, S. Andrieu, M. Lemine, and M. Piecuch,
Magn. Magn. Mater.~to be published!.

6M. Suzuki, Prog. Theor. Phys.46, 1337~1971!; E. Fradkin and L.
Susskind, Phys. Rev. D17, 2637~1978!.

7P. Christe and M. Henkel,Introduction to Conformal Invariance
and its Applications to Critical Phenomena~Springer, Berlin,
1993!.

8D. Bitko, T.F. Rosenbaum, and G. Aeppli, Phys. Rev. Lett.77,
940 ~1996!.

9H. Hinrichsen, Nucl. Phys. B336, 377 ~1990!.
10B. Berche and L. Turban, J. Phys. A24, 245 ~1991!.
11D.-G. Zhang, B.-Z. Li, and M.-G. Zhao, Phys. Rev. B53, 8161

~1996!.
12P. Pfeuty, Ann. Phys.57, 79 ~1970!.
13W. Hofstetter and M. Henkel, J. Phys. A29, 1359~1996!.
14E. Dagotto, Rev. Mod. Phys.66, 763 ~1994!.
15If a50 andC has a logarithmic singularity as happens for the

Ising model, a similar analysis shows thatC; lnj2.
16In the simple spin systems usually considered this distinctio

not necessary andj1 andj2 are proportional to each other.
17C.A. Ramos, D. Lederman, A.R. King, and V. Jaccarino, Ph

Rev. Lett.65, 2913~1990!.
18H.W. Diehl, inPhase Transitions and Critical Phenomena, edited

by C. Domb and J. Lebowitz~Academic, New York, 1986!, Vol.
10, Chap. 2.

19Since the model Eq.~1! is two dimensional, the layers cann
order for n finite and thus there is nosurfacetransition. This
would be different in a three-dimensional model, where surf
transitions may occur.18

20J.L. Cardy, inPhase Transitions and Critical Phenomena, edited
by C. Domb and J. Lebowitz~Academic, New York, 1987!, Vol.
11, Chap. 2.

21C. Itzykson and J.-M. Drouffe,Statistical Field Theory~Cam-
bridge University Press, Cambridge, 1989!, Vol. 2, Chap. 9.
s.

s-

ns.

.

D

is

s.

ce
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