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Gradient expansions in kinetic theory of phonons
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For simple models of the phonon transport in rigid insulators, it is demonstrated that the extended diffusional
mode transforms into a second-sound mode after its coupling to a nonhydrodynamic mode at some critical
value of the wave vector. This criticality shows up as a branching point of the extension of the diffusional
mode within the Chapman-Enskog method, found explicitly for these models. The solution is used to test
validity of several nonpolynomial approximate methods to capture this criticB8163-18207)02510-1

INTRODUCTION are intensively discussedsee Ref. 10 and references
therein.

Derivation of a hydrodynamic description from kinetic ~ To be specific, recall the simplest and typical model of the
theory usually leads to formal expansions of nonhydrodyhonon transport’ Let e(x,t) and p(x,t) be small devia-
namic variables in terms of spatial gradients of relevant hytions of the energy density and of the energy flux of the
drodynamic quantities_ Though the notions Of “hydrody_ phonon f|e|d from their equilibrium ValueS, respectively.
namic” and “nonhydrodynamic” variables should be Then
specified in each particular case, a typical situation arises: the

leading term of the gradient expansion is well established, de=—c*V-p, (1a
while a truncation at any further order leads to questionable 1 1
and sometimes even unphysical results. Classical examples op=—=Ve— —p. (1b)
provide the Chapman-Enskog expansi{@E) in the Boltz- 3 TR

mann kinetic theory,where the first term leads to ttevell-
establishefiNavier-Stokes hydrodynamics, while the further

Burn_lgtt a?dhsuperTIBurnﬁ]tzt tern;}s result inl the unphyfsical in'derived from the Boltzmann-Peierls kinetic equation, within
stabi .'tylg ft e equilibriunt. Further examples can be found, the relaxation time approximation, by a method similar to the
€g., in Ref. 3. Grad method? Equations(1) provide the simplest model of

_ _However, it sho_uld k_)e admitted that the diffi_culties o_f thea coupling between the hydrodynamic varialeleand the
finite-order approximationslo notsay that the information nonhydrodynamic variablp, allowing for a qualitative de-

contgmed in the gradient expansidnsa Wh.°|e's |rre!eva}nt scription of both the diffusion and the second sound. Follow-
or unimportant. The well-known example is the derivation of;

. ing the standard argumentatidhwe observe the two limit-
the CE expansion for Lorentz gAsnother recent example _ing cases(1) As rr—0, Eq.(Lb) yields the Fourier relation

of an exact and partial summation of the CE expansion in = — : ; e
linear and nonlinear case for Grad equatforen be found in Equat(igf)mve which closes Eq(1a) to give the diffusion

Ref. 6.
In this paper we address the gradient expansions arising in 1

the problem of phonon transport in rigid insulators at low e+ §cher= 0. (2

temperatures. Experiments on heat-pulse propagation

through crystalline medfaconfirmed the existence of a tem- (2) As 1r—, Eq.(1b) yields 9,p= — (1/3)Ve, and Eq.(1a

perature windowthe Guyer-Krumhansl windd with re-  ¢loses to give the wave equation:

spect to which the features of heat propagation are qualita-

tively different: At temperatures exceeding the high- ) )

temperature edge of the window, the heat propagates in a dre+ 3¢ Ae=0. ()

diffusionlike way. Below the low-temperature edge of the

window, the propagation goes in a ballistic way, with a con-Here A=V -V is the Laplacian. Equatiof2) describes the

stant speed of sound. Within the window, the propagatiorusual diffusive regime of the heat propagation, while €.

becomes wavelike. This latter regime is called second souni@ relevant to thgundampegi second-sound regime with the

(see Ref. 9 for a review velocity u,=c/+/3, and are both closed with respect to the
This problem has drawn some renewed attention in theariablee.

last years. Models relevant for a unified description of diffu- However, even within the simplest mod#), the problem

sion, second sound, and ballistic regimes of heat propagatioof closure remains unsolved in a systematic way wheis

Herec is the Debye velocity of phonons, ang is the char-
' acteristic time of resistive processes. Equati¢hiscan be
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finite. The natural way of doing so is provided by the CEwhere the real-valued and yet unknown coefficiessare
method! In the situation under consideration, the CE methoddue to the recurrence procedig, and(6). Indeed, the form
yields an extension of the diffusive transport to finite values(7) is true forn=0 [ay= — (1/3)7g]. Let us assume that Eq.
of the parametery, and leads to an expansion of the non-(7) is proven up to the orden—1. Then, computing the
hydrodynamic variable in terms of the hydrodynamic vari- nth order coefficienp™, we derive
ablee. With this, if we are able to make this extension of the
diffusive mode exactly, we could learn more about the tran- (m) (n—1-m)
sition between the diffusion and second soundthin the p= _TRmE:O gt @n-1-mA Ve
frames of the model Therefore, our goal here is not to in-
vestigate the properties of the systéf) as they are, but
rather to proceed along the lines of the CE method to per- =—7R>, Ap 1-mA" T MV(—c%a,V-VATe)
form the closure from the standpoint of kinetic theory. m=0

Let us briefly outline this paper. In the next section we n-1
will consider the gradient expansion for the simplest model = TRCZ[ > an_l_mam] A"Ve. (8
(2). As we will see, the underlying CE method leads to a m=0

nqnlmear reccurency procedure even here._ Neyertheless, it The last expression has the fofif). Thus, the CE proce-
will be possible to sum up the CE expansion in a closed

form, and to discuss accurately the features of the CE soluqure for the mode{1) is equivalent to the following nonlin-

tion for 7y finite. In particular, we will see that the CE ex- ear recurrence relation in terms of the coefficieays

tension of the diffusional mode is possible only up to a cer- n-1

tain wavelength(about the characteristic lengths of the a,=7rC2 Y, An_1-mm. (9
problem,c7g). This explicit demonstration for the simplest m=0

model (1) highlights a critical relation between the diffu- g pject to the initial conditiomy= — (1/3)rg. Further, it is
sional and the second-sound regimes of the phonon transpogynyenient to make the Fourier transform. Using

In Sec. Il, in view of the actual singularity of the exact CE p=pyexpiik-x} and e=e.explik-x}, wherek is the real-
solution, we also discuss the problem of nonpolynomial apyajyed  wave vector, we derive in Eq. (7):

proximation of the CE expansion, and will test several earlier, i _ 5 i1.(—k2)"e. = and
suggestiorst 12 with this solution. In Secs. Ill and IV we P =antk(— ke,

n—-1

n—1

discuss generalizations of the simplest mo(i_e)lwhen the _ pE=ikA(K?)ey, (10)
normal processes and anisotropy are taken into account. Fi-
nally, the results are discussed. where
. CRITICALITY OF THE CHAPMAN-ENSKOG A= a.(—Kk)". (11)
SOLUTION n=0

The CE method, as applied to the mo@b) results in the  Thus, the CE solutiori4) amounts to finding the function
following series representation: A(k?) represented by the power seri@g). If the function
A is known, the exact CE closure of the systéinamounts

- to the following dispersion relation of plane waves
CE_ .
p —Z p™, (4) ~explot+ik-x}:
n=0
.. CE
where the coefficientp(™ are due to the CE recurrence pro- oy = C?kPA(K). (12
cedure, Here o is a complex-valued function of the real-valued
n—1 vector k: Rew(F is the attenuation rate, kafF is the fre-
pW=—rg E agm>p(nflfm), (5) quency.
m=0 Now we will concentrate on a problem of a computation

of the functionA (11) in a closed form on the basis of the
recurrence relatiof®). Multiplying both the equations in Eq.
s Me=_c2y. p(m. 6) (9) with (—k?)", and performing a summation mfrom 1 to

t infinity, we get

while the CE operators{™ act one as follows:

Finally, the zero-order term readp‘®)= —(1/3)7xVe, and
leads to the Fourier approximation of the energy flux. Be-
cause of a somewhat involved structure of the recurrence
procedure(5), (6), the CE method is a nonlinear operation

o n
—a0=— e’k 2 X An_m(—k)" Man(—kH)"M.
n=0 m=0

even in the simplest modél). Now we notice that
To sum upthe serieg4) in a closed form, we will specify N n
the nonlinearity appearing in Eq&5) and (6). The coeffi-

H _ L2yn—m _le2ym_ A2
cientsp™ in Egs. (4) and (5) have the following explicit h',[nw ngo mZ:o 8n—m( — k)T (=K =A%

structure for arbitrary ordem=0:
Taking into accounty,= — (1/3)7g, we come to a quadratic
pW=a,A"Ve, (7)  equation for the functiom\:
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TRC2k2A2+A+ § TR= 0. (13) 0.81
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Further, a selection procedure is required to choose the rel—o.6

evant root of Eq(13). Firstly, recall that all the coefficients 0431
a, (7) are real-valued by the sense of the CE mett®dnd o2t .
(6), hence the functio (11) is real valued. The conjecture /

is that only the real-valued roots of E(L3) are relevant to 0 v
the CE solution. The first observation is that Et8) has no i
real-valued solutions as soon kasgs bigger than the critical

valuek., where 041
a 06t /
3 .
Ke= I’ (14 or

Secondly, there are two real-valued solutions to @43) at
k<k.. However, only one of them satisfies the CE asymp- F|G. 1. Dispersion relationt = rgew versusy=k/k.. Lower

totic !imk—>0A(k2) =—(13)1=. _ . case(real park: the solid line is the CE extension of the diffusion
With the two remarks just given, we finally derive the mode(15), the dashed line is the critical nonhydrodynamic mode of
following exact CE dispersion relatio12): the phonon model (L Upper caséimaginary parx the dashed line
is the second-sound mode.
LCEL —(27R) "H1-V1—-(K)I/(K3)] k<k¢ 5
kK = 1 1 1
none, k>Kk.. —1pCE_ 2 4
, =— {1+ —y2Hoyitee
c TR A 3 1 4y 8y , (16

The CE dispersion relation corresponds to the extende _ : :
diffusional transport, and it comes back to the standard Fou%herey Kk, . Clearly, anytruncation of the CE expansion

. L L at a certain order will give a polynomial approximation
r'eiﬂiegr?rﬁgzggg 'nhtg\?vg\rg: ?Ll?r?a% \;Vhae\/dgécj)hi G06s which is unable to reproduce the singularity in the exact

. 9, ' . solution. The demand omorpolynomial approximations be-
not existas soon ak/k.>1. The reason why this occurs can

: . comes important because of this singularity.
be found upon a closer investigation of the spectrum of th b g Y

derlvi tem(1). In th iqinal ; " 'te The next possibility is to use the Rosenau rational
underlying syste - I the ongnal system, Iere exis approximatior® This approximation refers itself to the two
three nonhydrodynamic modes which are irrelevant to th

. . Rerms in the CE expansiofi6) (the Navier-Stokes and the
CE SOIUU(.)”' All these nonhydrodynamlc. modgs are CharacBurnett level of description, respectivglyand results in the
terized with a property that corresponding dispersion remfollowing'

tions wy, do not go to zero ak—0. In the pointk., the
extended diffusion branch crosses one of the nonhydrody- 1

namic branches of Ed1). For clear reasons, we will term TR AR=— —————
this nonhydrodynamic mode the critical. For larderthe Sl1-(1/49y7]

extended diffusion mode and the critical mode produce a paifhe functionAR reproduces the CE expansiis) up to the

of complex conjugated solutions with the real part equal togyrnett term, and has a pole wg=2. This singularityis
—1/27z. The imaginary part of this extension aftef has  relevant, and gives an approximation to the actual branching
the asymptoticst iu,k, ask— o, and wherai,=c/\3 isthe  pointy.=1. However, a procedure of improving the rational
(undampegisecond sound velocity in the mod@) [see Eq.  approximation(17) was not discussed in Ref. 3.

(3)]. Though the spectrum of the original equatidn con- Further, the resulf17) coincides with the first-order par-
tinues indeed aftek., the CE method does not recognize tial summing of the CE expansidhwhich amounts to the
this extension as a part of the hydrodynamic branchile  following linear approximation to the nonlinear recurrence
the second-sound regime is born from the extended diffusiofelation (9):

after the coupling to the critical nonhydrodynamic mode

Figure 1 illustrates the behavior of the extended diffusional a,= TrC%apan_1 - (19
mode.

(17)

Lastly, consider the opportunities provided by the method
of invariant manifold? First, the so-called invariance equa-
tion can be easily obtained in a closed form here. Consider

Because the opportunity to sum up the CE expansion exagain the expression for the heat flux in terms of the energy
actly vanishes rapidly with the complexity of models, let usdensity (10), p,=ikA(k?)e,, where now the functiom is
examine here the alternative opportunities due to approxinot thought of as the CE seriefll). The invariance
mate methods because the exact CE solution found abowgjuationt? is a constrainton the functionA, expressing the
allows for a relevant and direct test. form invariance of the heat flu{d.0) under both the dynamic

First, let us come back to the CE expansion which inequations(1a and(1b). Indeed, computing the time deriva-
terms of the functiorA reads tive of the function(10) due to Eq.(1a), we obtain

IIl. OTHER METHODS



55 GRADIENT EXPANSIONS IN KINETIC THEORY OF PHONONS 6327

o o2 o4 o6 o0& 1 12 14 1e The test performed leads to the conclusion that the ratio-

0 nal approximations provided by the methddsare much
- more suited to the problem of extending the diffusional
osl \ee, transport than the polynomial approximations of the CE

0 method in the sense that the former are able to reproduce the
AN actual singularities of the full solution. In particular, the in-
- A\ . variance principle leads to the result equivalent to the exact
Y s summation of the CE expansion. This fact will be explored

. below for other models.

' o . Ill. ACCOUNT FOR NORMAL PROCESSES

o The account for normal processes in frames of the semi-
. hydrodynamical modet§ leads to the following generaliza-
25l ° tion of the Eq.(1) (written in Fourier variables, in the one-

° dimensional cage

FIG. 2. Extension of the diffusion mode. The solid line is the de=—ikc?py, (239
exact CE solutior{15), the dashed line is the second Newton itera-
tion (22b), circles are the Rosenau approximatidd), dots are the

1 1
super Burnett truncation of the CE expansids). dpP=— §ikek— ikN— T—pk, (23b)
R
Jp=1KA(K?) ;8= c?k?AZikey . (19 4 1
. . o N = — —=ikc?p— —N,. 23¢
On the other hand, computing the time derivative of the same T (239

function due to Eq(1b), we have Herer= rytr/(7y+ 7R), Tv IS the characteristic time of nor-
1 1 mal processes, anl, is the additional field variable. Fol-
hp=— §ikek— —Aikey. (20 lowing the principle of invariance as explained in the pre-
R ceeding section, we write the closure relation for the
Equating expressiond9) and (20), we come to the desired nonhydrodynamic variables, andNy as
invariance equation for function A. This equation, as one )
expectscoincides with Eq(13), which was already derived P=1kA@  Ni=B&, (24)
above upon the exact summation of the CE expansi.on. . where A, and B, are two unknown functions of the wave
A.S the second step suggested by the method .Of 'm.’a”ar\‘}ector k. Further, following the principle of invariance as
manifold, let us apply the Newton method to the 'nva“anceexplained in the preceeding section, each of the relations

equation(13), taking the Euler approximationAg=0) for (24) should be invariant under the dynamics due to Eq.

the initial condition. Rewriting Eq.(13) in the form (239, and due to Eqs(23b and (23¢. This results in two
F(A,k?)=0, we come to the following Newton iterations: equations for the function&, andB,:

dF(Ak?) 1 1

— (AY, . —AN)+F(AN k¥)=0. (21 K2C2A2= — — A, B, =

dA A=A§ n n n k TR k k 3’
The first two iterations give 1 4

k?c®?AB,= — =B+ —=k?c?A,. (25)
1 T 15
TR A== (229 i : :
R ™1 3’ When the energy balance equati®8g is closed with the

relation (24), this amounts to a dispersion relation for the

1—(1/4)y? extended diffusion modeyF=k?c?A,, whereA, is the so-
RA2E T I (127 ution to the invariance equatior{&5), subject to the condi

tion A,—0 ask—0. Resolving equation&5) with respect
The first Newton iteratiori22a coincides with the first term  to A, and introducing,=k2c?A,, we arrive at the follow-
of the CE expansiofil6). The second Newton iteratig@2b) ing:
is a rational function with the Taylor expansion coinciding L o
with Eq. (16) up to the super-Burnett term, and has a pole at —  SB5A(1+7A)(TRAT 1) 1 .,
yY=\2. The further Newton iterations are also rational (A= 5+97A :_§TRk . (26)
functions with the relevant poles in the poir;tg, and the “
sequence of this points tends very rapidly to the location offhe invariance equatio(26) is completely analogous to the
the actual singularity.=1 (ygm 1.17,)/?* 1.01, etc. The Eq. (13). Written in the form(26), it allows for a direct
comparison of the extended diffusion mode due to the apinvestigation of the critical points. For this purpose, we find
proximations(16), (17), and(22b) is presented in Fig. 2. zeroes of the derivativel® (A,)/dA=0. When the roots of
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the latter equationﬁ, are found, the critical values of the 5 2 > 20\ 202 1, 3 3
wave vector are given as (1/3)k2c2=®(Af). The condi- X(K"CL At 2k°CTBy) = CTk By + X[C'—_XK(ZC'—+CT)]'

tion d®(A,)/dA=0 reads (310

When the energy balance equati9a is closed with the
27 relations (30), this leads to the dispersion relation for the

extended diffusion modeygF=A,+2B,, where the func-

Let us consider the particularly interesting casetions A,=k?c?A,, andBy=k?ciBy, satisfy the condition:
e=7y/7r<<1 (the normal events are less frequent than resisA,—0, andB,— 0, ask—0. The resulting dispersion rela-
tive). Then the real-valued root of Eq27), A.(€), corre- tion is rather complicated in the general case of the four
sponds to the coupling of the extended diffusion mode to the@arameters of the problen, , ¢y, g, and 7. Therefore,
critical nonhydrodynamic mode. The corresponding modifi-introducing a functior, = A+ 2B, , let us consider the fol-
cation of the critical wave VeCtd(c (14) due to the normal |owing specific situations of closed equations for N“gon
processes amounts to a shifts towards shorter waves, and W basis of the invariance equatiof4):
derive (i) c_.=cr=c, 75= 7= 7R (complete degeneration of the

parameters of th&e and T subsystems The system(31)
28) results in two decoupled equations:

1872 7gA+ 37(37+ 87R) A2+ 10( 7+ 7R) A+ 5=0.

2_ 12
[ke(e)] kc+ 107%(:2'

— — 1
Yi(mRYk+ 1)+ = k*c?mr=0, (329
IV. ACCOUNT FOR ANISOTROPY 3
The above examples concerned the isotropic Debye
. . . . — 1
model. Let us consider the simplest anisotropic model of a (7Y +1)%+ =k3c?72=0 (32b
. . . . . R Tk 3 R .
cubic media with a longitudinallL() and two degenerated
transverse T) phonon modes, taking into account resistive
processes only. Introduce the Fourier variabigs, e, py,
and pg, wheree, =eg+2ey is the Fourier transform of the
total energy of the three phonon mod#se only conserving
quantity), while the rest of variables are specific quantities.
The isotropic mode(1) generalizes to giv@

Equation(32a coincides with Eq(13) for the isotropic case,
and its solution defines the coupling of the extended diffu-
sion to a nonhydrodynamic mode. Equati®2b does not
have a solution with the required asymptotiG—0 as
k—0, and is therefore irrelevant to the features of the diffu-
sion mode in this completely degenerated case. It describes
(299 the two further propagating and damped nonhydrodynamic
modes of Eqs(29). The nature of these modes, as well of the

mode which couples to the diffusional mode will be seen
below.

(i) c_=cr=c, 75# 7 (nondegenerate characteristic time
of resistive processes in thheand theT subsystems

de=—icZk-pg—2ic3k-py,

. 1
areg=—ictk-py+-[el(e—2e0) —cre], (29D

L 1 o1
dipie=~ gik(e—2€) = T Py, (299 - 1
"R Yi(TRY+ 1)+ SkPcP R
1 1
T_ _ —; T_ = AT —_ J— 1

0Py = 3|kek TEpk’ (290 X[ (TRY+3) (TRY + 1) + §k2027';7'§
where A= r5c3+27kcd. The term containing the factor —
A1 corresponds to the energy exchange betweer.thad = - zk%c(7r=7R), (33
T phonon modes. The invariance constraint for the closure
relations, where 75=275+ 75. As h— 75— 0, Eq.(33) tends to the

degenerated ca$82). At k=0, rk# &, there are four solu-
tions to EQ.(33). The Y,=0 is the hydrodynamic solution
result in the following invariance equations for the indicating th? beginning of the diffusLion mode. The ton nhon-
k-dependent function, , By, andX,: hydrodynamic solutions,Yy=—1/7;, and Yq=—1/7g,
Yo=—3/7g, are associated with the longitudinal and the
1 transverse phonons, respectively. The difference in relax-
k2Ci AR+ 2K2CTAB = — T Ay~ 3(1=2X0), (318  ational times makes the latter transverse root nondegenerate,
"R instead there appears a third nonhydrodynamic mode,
Y0: - 3/7’&
2k2c2B2+ k2c, By A= — iTBk_ EXk, (31 (i) ¢ #cCr, TR=TR=Tr (NONdegenerate speed of the
R 3 and theT sound:

pk=ikAcer, Pr=ikByer, er=Xi&, (30
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_ 1 exact CE solution to the Boltzmann equation for the Lorentz
(TRYk+1)%+ §sz$7§ gas modef, and for similar models of phonon scattering in
anisotropic disordered media.The characteristic common
2, cl(ci-c}) — feature of the models studied in Refs. 4, 14, 15 and the
3K RS (RYktD). (349 modeld®is the existence of a gap between the hydrodynamic
Lo (diffusive) and the nonhydrodynamic components of the
As ct—c¢_—0, Eq.(34) tends to the degenerated c488).  spectrum. Therefore, one can expect that the destruction of
However, this time the nonhydrodynamic mode associatethe extended diffusion is solely due to tkgistenceof this
with the transverse phonons is degenerateki=ad. gap. In applications to the phonon kinetic theory this
Thus, we are able to identify the modes in equati@®3  amounts to the introduction of the relaxation time approxi-
and(32b). The nonhydrodynamic mode which couples to themation. In other words, we may expect that the mechanism
extended diffusion mode is associated with the longitudinabf crossover from diffusion to second sound in the simple
phonons, and is the case of E§2a. Equation(32b) is due  modeld? is identical to what could be found from the
to the transverse phonons. In the nondegenerate cases, Egbonon-Boltzmann kinetic equation within the relaxation
(33) and(34), both pairs of modes become propagating aftettime approximation. However, a remark is in order since the
certain critical values ok, and the behavior of the extended original (i.e., without the relaxation time approximatjon
diffusion mode is influenced by all three nonhydrodynamicphonon kinetic equations agapless(cf., e.g., Ref. & On
modes just mentioned. It should be stressed, however, th#te other hand, most of the work on heat propagation in
the second-sound mode, which is the continuation of the difsolidsdo explore the idea of the gap, since it is only possible

Y (V. 12
Yk(TRYk+1)+ §k CLTR

fusion modé/ is due to Eq.(32a. to speak of the diffusion if such a gap exists. To conclude
this point, the following general hypothesis can be ex-
DISCUSSION pressedthe existence of the diffusion (and hence of the gap

) _in the relaxational spectrum) leads to its destruction through
The results of the above analysis lead to the followingthe coupling to a nonhydrodynamic mode.
discussion: _ o . ~ (iii) In addition to the methods compared in Sec. Il it
(i) The examples considered above indicate an interestinghould be mentioned that the continuous-fraction method
mechanism of &inetic formation of the second-sound re- (See elsewhere, e.g., Ref_)]@’ovides a very good tool of

gime from the extended diffusion with the participation of approximation techniques for the gradient expansions in the
the nonhydrodynamic mode. The onset of the propagatingorentz gas modet*®

mode shows up as the critical point of the extension of the
hydrodynamic solution into the domain of finite which
was found within the Chapman-Enskog and equivalent ap-
proaches. These results concern the situation at the high- 1.V.K. is indebted to A. N. Gorban and V. Yudson for the
temperature edge of the Guyer-Krumhansl window, and areritical discussion of the results, and to J. CasageMaz and
complementary to the coupling between the transversal baP. Jou for drawing our attention to the problem, and ac-
listic mode and second sound at the low-temperature Etlge knowledges the support of the Alexander von Humboldt

(ii) The crossover from the diffusionlike to the wavelike Foundation and of the Russian Foundation of Basic Research
propagation was previously found in Ref. 14 in frames of the(Grant No. 95-02-038363a
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