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Gradient expansions in kinetic theory of phonons
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For simple models of the phonon transport in rigid insulators, it is demonstrated that the extended diffusional
mode transforms into a second-sound mode after its coupling to a nonhydrodynamic mode at some critical
value of the wave vector. This criticality shows up as a branching point of the extension of the diffusional
mode within the Chapman-Enskog method, found explicitly for these models. The solution is used to test
validity of several nonpolynomial approximate methods to capture this criticality.@S0163-1829~97!02510-1#
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INTRODUCTION

Derivation of a hydrodynamic description from kinet
theory usually leads to formal expansions of nonhydro
namic variables in terms of spatial gradients of relevant
drodynamic quantities. Though the notions of ‘‘hydrod
namic’’ and ‘‘nonhydrodynamic’’ variables should b
specified in each particular case, a typical situation arises
leading term of the gradient expansion is well establish
while a truncation at any further order leads to questiona
and sometimes even unphysical results. Classical exam
provide the Chapman-Enskog expansion~CE! in the Boltz-
mann kinetic theory,1 where the first term leads to the~well-
established! Navier-Stokes hydrodynamics, while the furthe
Burnett and super-Burnett terms result in the unphysical
stability of the equilibrium.2 Further examples can be foun
e.g., in Ref. 3.

However, it should be admitted that the difficulties of t
finite-order approximationsdo not say that the information
contained in the gradient expansionsin a wholeis irrelevant
or unimportant. The well-known example is the derivation
the CE expansion for Lorentz gas.4 Another recent example
of an exact and partial summation of the CE expansion
linear and nonlinear case for Grad equations5 can be found in
Ref. 6.

In this paper we address the gradient expansions arisin
the problem of phonon transport in rigid insulators at lo
temperatures. Experiments on heat-pulse propaga
through crystalline media7 confirmed the existence of a tem
perature window~the Guyer-Krumhansl window8! with re-
spect to which the features of heat propagation are qua
tively different: At temperatures exceeding the hig
temperature edge of the window, the heat propagates
diffusionlike way. Below the low-temperature edge of t
window, the propagation goes in a ballistic way, with a co
stant speed of sound. Within the window, the propagat
becomes wavelike. This latter regime is called second so
~see Ref. 9 for a review!.

This problem has drawn some renewed attention in
last years. Models relevant for a unified description of dif
sion, second sound, and ballistic regimes of heat propaga
550163-1829/97/55~10!/6324~6!/$10.00
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are intensively discussed~see Ref. 10 and reference
therein!.

To be specific, recall the simplest and typical model of t
phonon transport.10 Let e(x,t) and p(x,t) be small devia-
tions of the energy density and of the energy flux of t
phonon field from their equilibrium values, respective
Then

] te52c2¹•p, ~1a!

] tp52
1

3
¹e2

1

tR
p. ~1b!

Herec is the Debye velocity of phonons, andtR is the char-
acteristic time of resistive processes. Equations~1! can be
derived from the Boltzmann-Peierls kinetic equation, with
the relaxation time approximation, by a method similar to t
Grad method.10 Equations~1! provide the simplest model o
a coupling between the hydrodynamic variablee and the
nonhydrodynamic variablep, allowing for a qualitative de-
scription of both the diffusion and the second sound. Follo
ing the standard argumentation,10 we observe the two limit-
ing cases:~1! As tR→0, Eq.~1b! yields the Fourier relation
p52(1/3)tR¹e which closes Eq.~1a! to give the diffusion
equation:

] te1
1

3
tRc

2De50. ~2!

~2! As tR→`, Eq. ~1b! yields] tp52(1/3)¹e, and Eq.~1a!
closes to give the wave equation:

] t
2e1

1

3
c2De50. ~3!

HereD5¹•¹ is the Laplacian. Equation~2! describes the
usual diffusive regime of the heat propagation, while Eq.~3!
is relevant to the~undamped! second-sound regime with th
velocity u25c/A3, and are both closed with respect to t
variablee.

However, even within the simplest model~1!, the problem
of closure remains unsolved in a systematic way whentR is
6324 © 1997 The American Physical Society
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55 6325GRADIENT EXPANSIONS IN KINETIC THEORY OF PHONONS
finite. The natural way of doing so is provided by the C
method.1 In the situation under consideration, the CE meth
yields an extension of the diffusive transport to finite valu
of the parametertR , and leads to an expansion of the no
hydrodynamic variablep in terms of the hydrodynamic vari
ablee. With this, if we are able to make this extension of t
diffusive mode exactly, we could learn more about the tr
sition between the diffusion and second sound~within the
frames of the model!. Therefore, our goal here is not to in
vestigate the properties of the system~1! as they are, but
rather to proceed along the lines of the CE method to p
form the closure from the standpoint of kinetic theory.

Let us briefly outline this paper. In the next section w
will consider the gradient expansion for the simplest mo
~1!. As we will see, the underlying CE method leads to
nonlinear reccurency procedure even here. Nevertheles
will be possible to sum up the CE expansion in a clos
form, and to discuss accurately the features of the CE s
tion for tR finite. In particular, we will see that the CE ex
tension of the diffusional mode is possible only up to a c
tain wavelength~about the characteristic lengths of th
problem,ctR). This explicit demonstration for the simple
model ~1! highlights a critical relation between the diffu
sional and the second-sound regimes of the phonon trans
In Sec. II, in view of the actual singularity of the exact C
solution, we also discuss the problem of nonpolynomial
proximation of the CE expansion, and will test several ear
suggestions3,11,12with this solution. In Secs. III and IV we
discuss generalizations of the simplest model~1! when the
normal processes and anisotropy are taken into account
nally, the results are discussed.

I. CRITICALITY OF THE CHAPMAN-ENSKOG
SOLUTION

The CE method, as applied to the model~1!, results in the
following series representation:

pCE5 (
n50

`

p~n!, ~4!

where the coefficientsp(n) are due to the CE recurrence pr
cedure,

p~n!52tR(
m50

n21

] t
~m!p~n212m!, ~5!

while the CE operators] t
(m) act one as follows:

] t
~m!e52c2¹•p~m!. ~6!

Finally, the zero-order term reads:p(0)52(1/3)tR¹e, and
leads to the Fourier approximation of the energy flux. B
cause of a somewhat involved structure of the recurre
procedure~5!, ~6!, the CE method is a nonlinear operatio
even in the simplest model~1!.

To sum upthe series~4! in a closed form, we will specify
the nonlinearity appearing in Eqs.~5! and ~6!. The coeffi-
cientsp(n) in Eqs. ~4! and ~5! have the following explicit
structure for arbitrary ordern>0:

p~n!5anD
n¹e, ~7!
d
s
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where the real-valued and yet unknown coefficientsan are
due to the recurrence procedure~5!, and~6!. Indeed, the form
~7! is true forn50 @a052(1/3)tR#. Let us assume that Eq
~7! is proven up to the ordern21. Then, computing the
nth order coefficientp(n), we derive

p~n!52tR(
m50

n21

] t
~m!an212mD~n212m!¹e

52tR(
m50

n21

an212mD~n212m!¹~2c2am¹•¹Dme!

5tRc
2H (

m50

n21

an212mamJ Dn¹e. ~8!

The last expression has the form~7!. Thus, the CE proce-
dure for the model~1! is equivalent to the following nonlin-
ear recurrence relation in terms of the coefficientsan :

an5tRc
2 (
m50

n21

an212mam , ~9!

subject to the initial conditiona052(1/3)tR . Further, it is
convenient to make the Fourier transform. Usi
p5pkexp$ik•x% and e5ekexp$ik•x%, where k is the real-
valued wave vector, we derive in Eq. ~7!:
pk
(n)5anik(2k2)nek , and

pk
CE5 ikA~k2!ek , ~10!

where

A~k2!5 (
n50

`

an~2k2!n. ~11!

Thus, the CE solution~4! amounts to finding the function
A(k2) represented by the power series~11!. If the function
A is known, the exact CE closure of the system~1! amounts
to the following dispersion relation of plane wave
;exp$vkt1 ik•x%:

vk
CE5c2k2A~k2!. ~12!

Here vk
CE is a complex-valued function of the real-value

vector k: Revk
CE is the attenuation rate, Imvk

CE is the fre-
quency.

Now we will concentrate on a problem of a computati
of the functionA ~11! in a closed form on the basis of th
recurrence relation~9!. Multiplying both the equations in Eq
~9! with (2k2)n, and performing a summation inn from 1 to
infinity, we get

A2a052tRc
2k2(

n50

`

(
m50

n

an2m~2k2!n2mam~2k2!m.

Now we notice that

lim
N→`

(
n50

N

(
m50

n

an2m~2k2!n2mam~2k2!m5A2.

Taking into accounta052(1/3)tR , we come to a quadratic
equation for the functionA:
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tRc
2k2A21A1

1

3
tR50. ~13!

Further, a selection procedure is required to choose the
evant root of Eq.~13!. Firstly, recall that all the coefficient
an ~7! are real-valued by the sense of the CE method~5! and
~6!, hence the functionA ~11! is real valued. The conjectur
is that only the real-valued roots of Eq.~13! are relevant to
the CE solution. The first observation is that Eq.~13! has no
real-valued solutions as soon ask is bigger than the critica
valuekc , where

kc5
A3
2tRc

. ~14!

Secondly, there are two real-valued solutions to Eq.~13! at
k,kc . However, only one of them satisfies the CE asym
totic limk→0A(k

2)52(1/3)tR .
With the two remarks just given, we finally derive th

following exact CE dispersion relation~12!:

vk
CE5H 2~2tR!21@12A12~k2!/~kc

2!# k,kc

none, k.kc .
~15!

The CE dispersion relation corresponds to the exten
diffusional transport, and it comes back to the standard F
rier approximation in the limit of long wavesk/kc!1.

More interesting, however, is that the CE solutiondoes
not existas soon ask/kc.1. The reason why this occurs ca
be found upon a closer investigation of the spectrum of
underlying system~1!. In the original system, there exis
three nonhydrodynamic modes which are irrelevant to
CE solution. All these nonhydrodynamic modes are char
terized with a property that corresponding dispersion re
tions vk do not go to zero ask→0. In the pointkc , the
extended diffusion branch crosses one of the nonhydro
namic branches of Eq.~1!. For clear reasons, we will term
this nonhydrodynamic mode the critical. For largerk, the
extended diffusion mode and the critical mode produce a
of complex conjugated solutions with the real part equa
21/2tR . The imaginary part of this extension afterkc has
the asymptotics6 iu2k, ask→`, and whereu25c/A3 is the
~undamped! second sound velocity in the model~1! @see Eq.
~3!#. Though the spectrum of the original equation~1! con-
tinues indeed afterkc , the CE method does not recogniz
this extension as a part of the hydrodynamic branch,while
the second-sound regime is born from the extended diffu
after the coupling to the critical nonhydrodynamic mod.
Figure 1 illustrates the behavior of the extended diffusio
mode.

II. OTHER METHODS

Because the opportunity to sum up the CE expansion
actly vanishes rapidly with the complexity of models, let
examine here the alternative opportunities due to appr
mate methods because the exact CE solution found ab
allows for a relevant and direct test.

First, let us come back to the CE expansion which
terms of the functionA reads
el-
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tR
21ACE52

1

3 H 11
1

4
y21

1

8
y41•••J , ~16!

wherey5k/kc . Clearly,any truncation of the CE expansion
at a certain order will give a polynomial approximatio
which is unable to reproduce the singularity in the exa
solution. The demand onnonpolynomial approximations be-
comes important because of this singularity.

The next possibility is to use the Rosenau ration
approximation.3 This approximation refers itself to the two
terms in the CE expansion~16! ~the Navier-Stokes and the
Burnett level of description, respectively!, and results in the
following:

tR
21AR52

1

3@12~1/4!y2#
. ~17!

The functionAR reproduces the CE expansion~16! up to the
Burnett term, and has a pole atyR52. This singularityis
relevant, and gives an approximation to the actual branch
point yc51. However, a procedure of improving the ration
approximation~17! was not discussed in Ref. 3.

Further, the result~17! coincides with the first-order par-
tial summing of the CE expansion,11 which amounts to the
following linear approximation to the nonlinear recurrenc
relation ~9!:

an5tRc
2a0an21 . ~18!

Lastly, consider the opportunities provided by the meth
of invariant manifold.12 First, the so-called invariance equa
tion can be easily obtained in a closed form here. Consi
again the expression for the heat flux in terms of the ene
density ~10!, pk5 ikA(k2)ek , where now the functionA is
not thought of as the CE series~11!. The invariance
equation12 is a constrainton the functionA, expressing the
form invariance of the heat flux~10! under both the dynamic
equations~1a! and ~1b!. Indeed, computing the time deriva
tive of the function~10! due to Eq.~1a!, we obtain

FIG. 1. Dispersion relationY5tRv versusy5k/kc . Lower
case~real part!: the solid line is the CE extension of the diffusio
mode~15!, the dashed line is the critical nonhydrodynamic mode
the phonon model (1). Upper case~imaginary part!: the dashed line
is the second-sound mode.
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] tpk5 ikA~k2!] tek5c2k2A2ikek . ~19!

On the other hand, computing the time derivative of the sam
function due to Eq.~1b!, we have

] tpk52
1

3
ikek2

1

tR
Aikek . ~20!

Equating expressions~19! and ~20!, we come to the desired
invariance equation for function A. This equation, as on
expects,coincides with Eq.~13!, which was already derived
above upon the exact summation of the CE expansion.

As the second step suggested by the method of invari
manifold, let us apply the Newton method to the invarianc
equation~13!, taking the Euler approximation (A0

N[0) for
the initial condition. Rewriting Eq.~13! in the form
F(A,k2)50, we come to the following Newton iterations:

dF~A,k2!

dA U
A5A

n
N
~An11

N 2An
N!1F~An

N,k2!50. ~21!

The first two iterations give

tR
21A1

N52
1

3
, ~22a!

tR
21A2

N52
12~1/4!y2

3@12~1/2!y2#
. ~22b!

The first Newton iteration~22a! coincides with the first term
of the CE expansion~16!. The second Newton iteration~22b!
is a rational function with the Taylor expansion coincidin
with Eq. ~16! up to the super-Burnett term, and has a pole
y2
N5A2. The further Newton iterations are also rationa
functions with the relevant poles in the pointsyn

N , and the
sequence of this points tends very rapidly to the location
the actual singularityyc51 (y3

N'1.17,y4
N'1.01, etc.!. The

comparison of the extended diffusion mode due to the a
proximations~16!, ~17!, and~22b! is presented in Fig. 2.

FIG. 2. Extension of the diffusion mode. The solid line is th
exact CE solution~15!, the dashed line is the second Newton itera
tion ~22b!, circles are the Rosenau approximation~17!, dots are the
super Burnett truncation of the CE expansion~16!.
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The test performed leads to the conclusion that the ra
nal approximations provided by the methods3,12 are much
more suited to the problem of extending the diffusion
transport than the polynomial approximations of the C
method in the sense that the former are able to reproduce
actual singularities of the full solution. In particular, the i
variance principle leads to the result equivalent to the ex
summation of the CE expansion. This fact will be explor
below for other models.

III. ACCOUNT FOR NORMAL PROCESSES

The account for normal processes in frames of the se
hydrodynamical models10 leads to the following generaliza
tion of the Eq.~1! ~written in Fourier variables, in the one
dimensional case!:

] tek52 ikc2pk , ~23a!

] tpk52
1

3
ikek2 ikNk2

1

tR
pk , ~23b!

] tNk52
4

15
ikc2pk2

1

t
Nk . ~23c!

Heret5tNtR /(tN1tR), tN is the characteristic time of nor
mal processes, andNk is the additional field variable. Fol
lowing the principle of invariance as explained in the pr
ceeding section, we write the closure relation for t
nonhydrodynamic variablespk andNk as

pk5 ikAkek , Nk5Bkek , ~24!

whereAk and Bk are two unknown functions of the wav
vector k. Further, following the principle of invariance a
explained in the preceeding section, each of the relati
~24! should be invariant under the dynamics due to E
~23a!, and due to Eqs.~23b! and ~23c!. This results in two
equations for the functionsAk andBk :

k2c2Ak
252

1

tR
Ak2Bk2

1

3
,

k2c2AkBk52
1

t
Bk1

4

15
k2c2Ak . ~25!

When the energy balance equation~23a! is closed with the
relation ~24!, this amounts to a dispersion relation for th
extended diffusion mode,vk

CE5k2c2Ak , whereAk is the so-
lution to the invariance equations~25!, subject to the condi-
tion Ak→0 ask→0. Resolving equations~25! with respect
to Ak , and introducingĀk5k2c2Ak , we arrive at the follow-
ing:

F~Āk!5
5Āk~11tĀk!~tRĀk11!

519tĀk

52
1

3
tRk

2c2. ~26!

The invariance equation~26! is completely analogous to th
Eq. ~13!. Written in the form ~26!, it allows for a direct
investigation of the critical points. For this purpose, we fi
zeroes of the derivative,dF(Āk)/dĀk50. When the roots of

-
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the latter equation,Āk
c , are found, the critical values of th

wave vector are given as2(1/3)kc
2c25F(Āk

c). The condi-
tion dF(Āk)/dĀk50 reads

18t2tRĀk
313t~3t18tR!Āk

2110~t1tR!Āk1550.
~27!

Let us consider the particularly interesting cas
e5tN /tR!1 ~the normal events are less frequent than re
tive!. Then the real-valued root of Eq.~27!, Āk(e), corre-
sponds to the coupling of the extended diffusion mode to
critical nonhydrodynamic mode. The corresponding mod
cation of the critical wave vectorkc ~14! due to the normal
processes amounts to a shifts towards shorter waves, an
derive

@kc~e!#25kc
21

3e

10tR
2c2

. ~28!

IV. ACCOUNT FOR ANISOTROPY

The above examples concerned the isotropic De
model. Let us consider the simplest anisotropic model o
cubic media with a longitudinal (L) and two degenerate
transverse (T) phonon modes, taking into account resisti
processes only. Introduce the Fourier variables,ek , ek

T, pk
T,

andpk
L, whereek5ek

L12ek
T is the Fourier transform of the

total energy of the three phonon modes~the only conserving
quantity!, while the rest of variables are specific quantitie
The isotropic model~1! generalizes to give10

] tek52 icL
2k•pk

L22icT
2k•pk

T , ~29a!

] tek
T52 icT

2k•pk
T1

1

l
@cL

3~ek22ek
T!2cT

3ek
T#, ~29b!

] tpk
L52

1

3
ik~ek22ek

T!2
1

tR
L pk

L , ~29c!

] tpk
T52

1

3
ikek

T2
1

tR
T pk

T , ~29d!

where l5tR
TcT

312tR
LcL

3 . The term containing the facto
l21 corresponds to the energy exchange between theL and
T phonon modes. The invariance constraint for the clos
relations,

pk
L5 ikAkek , pk

T5 ikBkek , ek
T5Xkek , ~30!

result in the following invariance equations for th
k-dependent functionsAk , Bk , andXk :

k2cL
2Ak

212k2cT
2AkBk52

1

tR
L Ak2

1

3
~122Xk!, ~31a!

2k2cT
2Bk

21k2cLBkAk52
1

tR
T Bk2

1

3
Xk , ~31b!
,
-

e
-

we

e
a

.

re

Xk~k
2cL

2Ak12k2cT
2Bk!5cT

2k2Bk1
1

l
@cL

32Xk~2cL
31cT

3!#.

~31c!

When the energy balance equation~29a! is closed with the
relations ~30!, this leads to the dispersion relation for th
extended diffusion mode,vk

CE5Āk12B̄k , where the func-
tions Āk5k2cL

2Ak , and B̄k5k2cT
2Bk , satisfy the condition:

Āk→0, andB̄k→0, ask→0. The resulting dispersion rela
tion is rather complicated in the general case of the f
parameters of the problem,cL , cT , tR

L , andtR
T . Therefore,

introducing a functionȲk5Āk12B̄k , let us consider the fol-
lowing specific situations of closed equations for theȲk on
the basis of the invariance equations~31!:

~i! cL5cT5c, tR
L5tR

T5tR ~complete degeneration of th
parameters of theL and T subsystems!: The system~31!
results in two decoupled equations:

Ȳk~tRȲk11!1
1

3
k2c2tR50, ~32a!

~tRȲk11!21
1

3
k2c2tR

250. ~32b!

Equation~32a! coincides with Eq.~13! for the isotropic case,
and its solution defines the coupling of the extended dif
sion to a nonhydrodynamic mode. Equation~32b! does not
have a solution with the required asymptoticȲk→0 as
k→0, and is therefore irrelevant to the features of the dif
sion mode in this completely degenerated case. It descr
the two further propagating and damped nonhydrodyna
modes of Eqs.~29!. The nature of these modes, as well of t
mode which couples to the diffusional mode will be se
below.

~ii ! cL5cT5c, tR
LÞtR

T ~nondegenerate characteristic tim
of resistive processes in theL and theT subsystems!:

F Ȳk~tR
LȲk11!1

1

3
k2c2tR

L G
3F ~tR8 Ȳk13!~tR

TȲk11!1
1

3
k2c2tR

TtR8 G
52

2

3
k2c2~tR

T2tR
L !, ~33!

wheretR852tR
L1tR

T . As tR
T2tR

L→0, Eq. ~33! tends to the
degenerated case~32!. At k50, tR

LÞtR
L , there are four solu-

tions to Eq.~33!. The Ȳ050 is the hydrodynamic solution
indicating the beginning of the diffusion mode. The two no
hydrodynamic solutions,Ȳ0521/tR

L , and Ȳ0521/tR
T ,

Ȳ0523/tR8 , are associated with the longitudinal and t
transverse phonons, respectively. The difference in re
ational times makes the latter transverse root nondegene
instead there appears a third nonhydrodynamic mo
Ȳ0523/tR8

~iii ! cLÞcT , tR
L5tR

T5tR ~nondegenerate speed of theL
and theT sound!:
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F Ȳk~tRȲk11!1
1

3
k2cL

2tRGF ~tRȲk11!21
1

3
k2cT

2tR
2 G

52
2

3
k2tR

cL
3~cT

22cL
2!

2cL
31cT

3 ~tRȲk11!. ~34!

As cT2cL→0, Eq. ~34! tends to the degenerated case~32!.
However, this time the nonhydrodynamic mode associa
with the transverse phonons is degenerated atk50.

Thus, we are able to identify the modes in equations~32a!
and~32b!. The nonhydrodynamic mode which couples to t
extended diffusion mode is associated with the longitudi
phonons, and is the case of Eq.~32a!. Equation~32b! is due
to the transverse phonons. In the nondegenerate cases
~33! and~34!, both pairs of modes become propagating af
certain critical values ofk, and the behavior of the extende
diffusion mode is influenced by all three nonhydrodynam
modes just mentioned. It should be stressed, however,
the second-sound mode, which is the continuation of the
fusion mode,7 is due to Eq.~32a!.

DISCUSSION

The results of the above analysis lead to the follow
discussion:

~i! The examples considered above indicate an interes
mechanism of akinetic formation of the second-sound re
gime from the extended diffusion with the participation
the nonhydrodynamic mode. The onset of the propaga
mode shows up as the critical point of the extension of
hydrodynamic solution into the domain of finitek, which
was found within the Chapman-Enskog and equivalent
proaches. These results concern the situation at the h
temperature edge of the Guyer-Krumhansl window, and
complementary to the coupling between the transversal
listic mode and second sound at the low-temperature edg13

~ii ! The crossover from the diffusionlike to the wavelik
propagation was previously found in Ref. 14 in frames of
-
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g
e
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exact CE solution to the Boltzmann equation for the Lore
gas model,4 and for similar models of phonon scattering
anisotropic disordered media.15 The characteristic common
feature of the models studied in Refs. 4, 14, 15 and
models10 is the existence of a gap between the hydrodyna
~diffusive! and the nonhydrodynamic components of t
spectrum. Therefore, one can expect that the destructio
the extended diffusion is solely due to theexistenceof this
gap. In applications to the phonon kinetic theory th
amounts to the introduction of the relaxation time appro
mation. In other words, we may expect that the mechan
of crossover from diffusion to second sound in the sim
models10 is identical to what could be found from th
phonon-Boltzmann kinetic equation within the relaxati
time approximation. However, a remark is in order since
original ~i.e., without the relaxation time approximation!
phonon kinetic equations aregapless~cf., e.g., Ref. 9!. On
the other hand, most of the work on heat propagation
solidsdoexplore the idea of the gap, since it is only possib
to speak of the diffusion if such a gap exists. To conclu
this point, the following general hypothesis can be e
pressed:the existence of the diffusion (and hence of the g
in the relaxational spectrum) leads to its destruction throu
the coupling to a nonhydrodynamic mode.

~iii ! In addition to the methods compared in Sec. II,
should be mentioned that the continuous-fraction meth
~see elsewhere, e.g., Ref. 16! provides a very good tool o
approximation techniques for the gradient expansions in
Lorentz gas model.14,15
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