PHYSICAL REVIEW B VOLUME 55, NUMBER 10 1 MARCH 1997-II

Nonlinear relaxation dynamics in decomposing alloys: One-dimensional Cahn-Hilliard model
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The coarsening process in decomposing alloys is studied within the one-dimendibpalahn-Hilliard
model using both the analytical and numerical methods. We have developed the analytical approach based on
the solitonlike description of interacting phase boundaries and obtained the equations of their motion. For a
single 1D nucleus in the infinite medium the equation of the interface motion appears to be essentially nonlocal
in time. The peculiarities of the dynamic behavior of this system are studied for an arbitrary initial nucleus size
ao. Forag<<a.~In(1/h) the characteristic time scale of the nucleus dissolution is found as a functigraot
the supersaturatidmin the system. In the limiay,>a. we obtained the well-known square-root dependence of
the nucleus size~hyt. The late stage of the spinodal decomposition in multilayered structures has been
investigated. The specific features of the period doubling process are sti&d®3-1827)00105-1

I. INTRODUCTION equilibrium concentrations of these phases. When the inho-
mogeneity scales are much greater than a lattice spacing, one
A number of important physical aspects of relaxation ki-may use a continuum approximation. In this case the free-
netics in decomposing alloys may be described within theenergy functional has the form:
phenomenological Cahn-Hilliard modelee, e.g., Refs. 1)2
The intensive study of these phenomena was stimulated, in F:f
part, by various applications of a wide class of materials
consisting of the components with the limited solubility, in-
cluding artificial layered compounds Fe/&€o/Cu?® and
Me(Fe,Ni,Pt...)/C5" In this paper we develop a solitonlike

1 , 1 — 1 —
zy(VC) —za(C—C) +ZB(C_C) dr, (1)

where a=a(T,—T) and positive coefficientsr, 3, y de-
pend on the pressure, temperature, and crystal structure.

description of the coarsening process in one-dimensiona hese coefiicients can be defined from th_e MICroscopic
(1D) decomposing alloys. The 1D case is most relevant td eory, as well as the value. In the case .o.f a binary mixture
the artificial layered systems. The typical phase diagram of g1ere is ar] additional conservation condition for the atoms of
decomposing binaryAB) alloy is schematized in Fig. 1. each sort:

The solid line is the equilibrium two-phase boundary, and 1

the dashed line is the spinodal curve. According to the Cahn- —f cdR=c,,

Hilliard theony the states lying between these two curves are v

metastable, while the states lying below the spinodal curve

are unstable to weak long-wavelength fluctuations. The c=(C-¢) E ©
growth of these fluctuations leads to formation of thend

i iy (2)
B phase domains. We use the notati@® andC for the wherev is the volume of the systena, is the average con-

centration. As a consequence the dynamics of the order pa-
rameter may be described using the continuity equation
T which read8

aC
—+DA <=0, 3

where D is the kinetic coefficient. Introducing the dimen-

sionless variables c=(C—c){B/a, t=tyDa?(4y),

T """""""" I/ T A}
i / i \ ! r=R/Ry (Rg=+2vy/a), one obtains the Cahn-Hilliard equa-
i / E \ E tion:
i : ! Jc
: ; { —=—A[Ac+2(c—c¥)]. (4
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We have omitted here the random noise term which ex-

FIG. 1. The phase diagram of a decomposing binary alloy. SolidPresses the statistical fluctuations and contributes to the
line is the equilibrium two-phase boundary, the dashed line is thdight-hand side of Eq(4).° Equation (4) takes account of
spinodal curveT, is the critical temperatures(*? are the equilib-  both the finite interface thicknes®, and the diffusion type

rium phase concentrations aoglis the average alloy concentration. of the dynamic behavior far away from the phase boundaries.
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of the dynamics of new phase nuclei in 2D and 3D

U U U cases>"We obtain the system of equations which describe

\_z\/ \/\/ w the dynamics of the interfacial fronts in the 1D case. In Sec.

I p-sse 'l - Ip \ L2 Il we study the dynamics of the 1D new phase nucleus and
C

¢ show that the equation which describes the layer thickness
evolution is essentially nonlocal in time. The interaction of
< E c . the phase boundaries is shown to result in the nucleus disso-
L

lution even for positive values of the supersaturation degree.
In Sec. IV we investigate the late stage of the spinodal de-
composition in finite-size multilayer structures. We define

the characteristic time scale of the period doubling and com-
pare the analytical results with the ones obtained numeri-
cally.

N
N
~

(). (b) (c).
Il. BASIC EQUATIONS

FIG. 2. The 1D stationary solutions of EG). (a) The stable In this section we discuss the relaxation dynamics in sys-
equilibrium state which corresponds to the decompositibhPe-  tems where the initiat(z) distribution does not correspond
riodic structure(c) The critical new phase nucleus. to the stationary one. At the early stage of decomposition

(when the concentration is far from equilibriyifaq. (4) may

We start our treatment of the 1D decomposition dynamice linearized irc and solved analyticall§ This solution pre-
with three remarks that are perhaps obvious. dicts a limitless growth of concentration fluctuations. The

First, the finite interfacial thickness leads to the exponenStage of formation of domains with concentrations close to
tially small interaction of the phase boundaries. This interacthe €quilibrium ones cannot be described within the linear
tion accounts for the existence of specific 1D stationary soth€ory. Hereafter we restrict ourselves to the late stage, when
lutions of Eq.(4) (see Fig. 2 and Appendix (i) periodic ~ the domains and interfacial layers have been already formed.
structures consisting of domains of different phagiésthe ~ We also will not take into account a random noise term,
unstable critical nucleus of the new phase. Each phas@hich, in principle, may be included in EG4).
boundary has the form of a kinfor antikink. The critical ~ Now we formulate a method of solution of the Cahn-
nucleus sizea, depends logarithmically on the supersatura-Hilliard equation, which enables us to describe analytically
tion degreeh which is proportional to the energy difference the late stage of the dynamics of the 1D decomposing alloy.
per one atom in different phases. Thevalue defines the N the 1D case the Cahn-Hilliard equatio# takes the form

degree of metastability in the alloy. An arbitrary 1D concen-

2 2
tration distribution at the late decomposition staged small ‘7_0 — J (‘9 ¢ +2(c—c3)) (5)
h) may be considered as a set of moving kinks and antikinks. at 922\ 922 '

The 1D coarsening process is caused by their exponential ]

interaction. Note that for 2D and 3D cases this process cahhis equation should be supplemented by the boundary con-
be described without taking account of the finite interfaceditions. The order-parameter conservation conditich
thicknesd® yields the first pair of boundary conditions:

Second, the solutions considered above appear to be un-
stable within the Cahn-Hilliard model. A single nucleus dis-
solves or grows depending on the ratita;, wherea is the
initial nucleus size. A periodic concentration distribution is
unstable with respect to the period doubling prodéss. whereL is the system size. The second pair of boundary

Third, far away from the interfaces the concentration dis-conditions is determined by the segregation efféaisd su-
turbance produced by the kink motion satisfies the ordinarpersaturation degresee Secs. Ill, V. Let us take the initial
diffusion equation(see also Sec. )ll This diffusion field is  concentration distribution
responsible for a force acting on a phase boundary. For the
1D system the characteristic time scale of the diffusion field N
relaxation istd~dﬁ1, whered,, is the maximum distance c(z,tzO)=CO+2 (=DManHz—-2z,(t=0)], ()
between the neighboring kink$or a single nucleus in the n=1
infinite mediumd,,—=). As a consequence, fdty the
time dispersion in our system plays an essential role and t
equation of kink motion should be nonlocal in time.

d%c

- (9 3
]—E —+2(C_C ))

= =0, ®)

oL

wherez, are the coordinates of interfaces, is defined by

e average concentration of the alloy. Note, that each term
. . in the sum(7) is the stationary solution of E¢5). The fol-
In Sec. 1l we develop the analytical method for descrlp'Iowing treatment is based on the assumption that the form of

tion of the late nonlinear stage of the decomposition in the[he interfacial fronts is slightly changing during their migra-
1D case. Contrary to the treatment in Refs. 11-13, OUfion. We search for the scg)luti):)n in t?le?orm g g

method is based on the solitonlike description of the migra-

tion of interfaces. We employ the approach analogous to the N

one developed previously for the solution of a large number c(z,t)=u(z,t)+Co+ z (—1)"tanHz—z,(1)]. (8
of nonlinear nonstationary problertfsincluding description ’ ' n=1 "
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Assuming the velocitiesV,,=4dz,/dt and the correction
u(z,t) to be small, one has

du 3% [ d%u

—s —4u+6ug(z,t)+f(zt)],

E—V(Z,t)z—y 772 9

where

N

1
9(zt)=2

= costt(z—z,)’

n

N
Y(Z,t):nzl (— 1)nm,

N

f(z,t)=2|co+ 21 (—1)"tant[z—z,(1)]

N 3
Cot Zl (— 1)“tanr[z—zn(t)]) } .

The condition of the concentration conservation reads
L N

0
— | udz=2> (-1)"V,,
n=1

at)o (10
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‘92Xn L
Pn="7 Xn®¢mdz=0 whenn#m. (14
0

After multiplying Eq.(13) by y,, and integrating ovez from
O toL one has

db,
W: —Npbp—P(1),

L
f on(f+ %yl 922+ 6g)dz
0

L
f enxndz
0

D(t)=

(15

t

bn(t)ze’xntfoe”nfd)(r)dr. (16)

If the interaction between the interfacial fronts is abdgst,
they are isolated from each othethe eigenvalua =0 cor-
responds to the eigenfunctiops = cosh %(z—z,). If the dis-
tances between the fronts are large but finite, then the
N-fold generated eigenvalue=0 splits intoN close to zero
values. For\,<O one has a limitless growth df, when
t—oo. For small\ ,>0 [assumingDd(t) to change slowly in
time] one has,<1 whent<\ 1. That is why the condition

i.e., the concentration changes caused by the interfacialf the u value smallness makes us set=0 for each eigen-
fronts migration should be exactly compensated by thdunction ¢,,, which corresponds to the small eigenvalue

change of the integral value of the correctionlt also fol-

\p. Since the multipliel = f + 9%yl 9z°+ 69 is exponen-

lows from Eq.(9) that far from interfacial fronts the equation tially small, it is enough to require orthogonality of the quan-
for u takes the form of the ordinary diffusion equation. Thattity ¥ to each eigenfunction of the problem with isolated

is why it is convenient to search for the solution of E£9).in
the form

u(z,t)=oe(z,t)+ ¢(z,1), (11

interfacial fronts

Py
f+?+691ﬂ)d220. (17)

L1
Jom

where ¢ is the diffusion field produced by the interfacial Thege equations contain the diffusion figtdvhich is deter-
fronts migration,p is the correction to the stationary form of \ineq by the velocities of kinkisee Eq(12)] and boundary

the fronts. The functiong and ¢ satisfy the following equa-
tions:

Py

7t Y. (42
dp 92 (3’2(,0 0')2¢
E“P(F““”Gg“”?%g"” 13

Note, that layer thickness changes are caused by both the

conditions. In fact, Eq(17) defines the interfaces migration
velocities in the implicit form. The process of diffusion re-
laxation depends essentially on the distances between kinks.
Obviously, the characteristic time of establishment of the
guasistationary concentration distributiontiﬁvdzm, where

dp, is a maximum from the layer thicknesses. Below we dis-
cuss two cases(i) the dynamics of a single pair kink-
antikink in an infinite mediumd,,,— o, ty—®), (ii) the dy-
namics of kinks in a finite-size multilayer structure.

interfacial interaction and the diffusion field. Let us consider

the operator

The expansion of the functiog in terms of the eigenfunc-

tions of the operatot is

(P:; bhen,

whereﬁgon=)\ngon. Let us define a conjugate set of func-

tions:

IIl. DYNAMICS OF A SINGLE 1D NUCLEUS

We now continue with the derivation of the dynamic
equation describing the evolution of a single layer in the
infinite medium with the average concentratios 1—h/4.
The initial concentration distribution is

h
c(z,t=0)=tanhz—ay) —tanh(z+ay) +1— R

(18
Boundary conditions fory and ¢ take the form:

B h
¢|too__Z-
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¢|+=0. (19 ¢ —
Solving the diffusion equatioi12) with the boundary con-
ditions (19) and taking into account only the linear in V 4 H=3
terms one obtains the diffusion field values at the points
z=*a(t). On rearrangement, E¢L7) can be written as fol- 9 b
lows:
0 T
t . -
f ven) dr=£[h—16exp(—4a)]. (20 | A=t
ot— 17 4 2 r !
We consider here the interva$a?, when the uniformy H=1/3 }
distribution inside the layer has been formed. The diffusion -4r I
field is essentially time dependent, which leads to a strong !
time dispersion in the equation of motion. -6 F |
The interaction of the interfacial fronts results in the layer f
dissolution even for positive values of the supersaturation. In -8 - : . :
the case when the initial layer size is equal to the critical one 0 02, 04 0.6 0.8 4

[ag=a.=(1/4)In(16h)], the velocity of the interfacial
fronts migration is equal to zero. The layer thickness grows 1 3. The results of numerical simulation of EQ2). Time

for ap>a. Introducing new variables dependence of the dimensionless layer thicknéssThe case
H=1 corresponds to the critical nucleus.

_ o8 _ These arguments are proved by the results of the numerical
0=2"exp( ~8ag)t/m, solution of Eq.(22) for H< 1. It is obvious that the solution
h makes sense only faf>—4a (the ¢ value é~ —4a corre-
H= —exp4ay), (21)  sponds to the complete dissolution of the nucleNgverthe-

16 less, it is possible to use the expression
we may rewrite Eq(20) as y*
T
0 §(S) T= ?eXF(SaO) (27)
f ds=n[H—exp —£)], (22
0+0-s to estimate the dissolution time fae>1. Thus, the dissolu-

tion time depends exponentially on the initial layer thickness.
The dynamic behavior discussed above is peculiar to infinite
systems. For a finite-size system the layer dynamics depends
essentially on the boundary conditions. For the particular

whereézaglas. The valueH=1 corresponds to the critical
layer thickness. After multiplying Eq22) by (y— 6) ~%®and
integrating it overd from 0 toy one has

y[H—exp(—&)] case of the flux absence at the sample edges the stationary
= f - = 2" de. (23) distribution of the diffusion field establishes at a characteris-
0 Vy—6 tic time scalet~L? and the layer size will stop changing.
Thus, the layer thickness grows whE>1 and the¢ value
Let us discuss an evolution of the initial concentration
2(H _1)‘/3—/< s(y)<2H \/3—/ (4 distribution, which corresponds to a multilayered system:
When H>1, the size of functioné(y) follows the well- N
known square-root dependeniéeThe results of the numeri- (—1)N+1

cal analysis of Eq(22) are shown in Fig. 3. c(zt=0=—> +nzl (—1)"tanz—2z,(t=0)],

As follows from the formal solution of EQ.(23),
é— — at the finite timey* . Fory close toy* we search for N is the number of phase boundaries in a multilayer struc-

the solution of Eq(23) in the form ture. Instead of Eq.19) we take the second pair of boundary
conditions in the form:
eXp(—§)=;§ ci(y* —y)l. (25) ac
(y*=y)“= —| =0, (28)
0z oL

To obtain the logarithmic divergence of the integral in the
right-hand side of Eq(23) (wheny—y*) one should take Which corresponds to the absence of the surface segregation
w=0.5. Restricting ourselves to the first term in the 2% effect!® To obtain the equations of motion we should first
we have solve the diffusion equatiofl2). At the stage > d2m we may
neglect the time derivative in the left-hand side of this equa-
tion if the alternating functiory(z,t) averaged over the in-

1
Co=%, 2In2=2H.y*—Iny*. (26) . ; :
2 terval Az~ \t vanishes. The solution of the resulting equa-
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tions for V,, given below[as well as the direct numerical dé, 16 exyg — 2d)

solution of Eq.(4)] shows that the latter condition is fulfilled Gt g Onr2m 26+ On-2)s
for finite-size systems. The solution of the stationary equa-

tion (12) is

dén_1 8 exp —2d)

1 N dt d
b= —21 (—1)"V,Incostiz—z,(t)]+Az+B, (29

(—1—48y_1+28\+25y_3),

déy 8exp—2d)
1 N WIT(—1+25N,2—25N,1). (33)
A== (—1)"V,=0. (30 . . .
45> As follows from Eq.(33), an infinite multilayered system is
absolutely unstable to the fluctuations of the layer thickness.

Note that the conditiot30) corresponds to the conservation The wave-number dependence of the fluctuation increment

of the average concentration. From E¢E7) and (29) one
has the system dfi+ 1 equations for,, (m=1-N) andB:

64 exg—2d) . T
N A(K)= T5|n2(kd), O<ks= 3 (34)
Zn—2Z
> (-1 o (—1)™eexp —2l 1)
n=1 "tanh(z,—z,) mrt has a maximum &= =/2d, which results in the period dou-

bling. The expression for the increme®4) coincides with
that obtained in Ref. 11.
The system(31) provides us with a useful tool for the

—exp(—21,,)]+B=0,

m=2,3...N—-1, . ) U . :
analysis of the interface dynamics in various multilayer sys-
N 7 7 tems for arbitrary initial layer thicknesses. We restrict our-
> (—1)" nA—IG[eXp(—ZIZ)]ﬂLB:O, selves to the structures consisting of films of the identical
n=1 tanh(z, - z,) initial thicknessedd, which are of particular interest in the
N context of applications to the study of thermostability of real
N ZN—Z, N multilayers. In finite-size systems the layer thickness
nzl (1) Vnm_(_l) 16 changes may be caused by the boundary effects. We have
studied the influence of these effects on the doubling process
X[exp—2ly)]+B=0, in multilayer structures for varioud values and layer num-
\ ber N using both equation$31) and the direct numerical
. simulation of Eq.(5).
nzl (=1)"V,=0, (31 To solve Eq.(5) numerically let us write the discrete ana-
log of the equation on the gridz=(i+1/2),
wherel,=z,—2,_; is the thickness of the layer with the i=0,1,...,n—1;l=L/n for the vector function c(t)
numberm. As follows from the systen(31), the fronts ve- Z{Ci(t)}?;olyci(t)ZC(Zi t):

locities are small if the layer thickness is large compared to

the interfacial thickness. The assumptioru¢f,t) smallness Jac ~ A

is also valid under this condition. Deriving the systé®d) —i = —Pe+Q(o). (35
we ignored the terms of the order of éxp2(I+1ms1)]-

Nevertheless, then front migration depends on the coordi- Here P andQ denote the following difference operators:
nates of the ifn—2)th and the fn+2)th fronts. This results

from the interfacial interaction through the diffusion field of P=D2+2D,
the dissolved atoms. This type of interaction dominates in

2D and 3D structures and can be described within the frame- -

— 2 P —
work of the Lifshitz-Slyosov modéef Note that the system (Do)ji=(Ci-1=2¢i+ci /% 1=01,...n—1,
(31) differs essentially from the one obtained previously ~ 3 3 3 5
within the Landau model with the nonconserved order- (Q(e)i=2(ciy—2¢7+c /17,
parameter fieldsee Ref. 12 and references thejein
Let us investigate the stability of a periodic multilayered i=0,1,...n—1.
system with a period @ We will search for the solution of .
the system31) in the form The valug_s:_z,c_l,cn ,Ch11 are determined by the bound-
ary conditions(6),(28):
Z,(H)=nd+8,(1), |6n<1. (32

For 5, one has €C_2=0C1,€-1=C(,C,=Cn-1,Cn+1=Cp_2. (36)

ds, 8exp—2d) As we will see below, one needs to solve the problems
_1:—(1_253+ 25,), (35), (36) for a long-time interval. From this point of view
dt d the applied numerical method has to be stable. The known
explicit Euler scheme is stable only for a very small time
step, and application of the stable implicit schemes are ham-
pered due to high order of the spatial derivatives in 3§).

ds, 8exg—2d)

Tt T (1+45,-26,-26,),
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So we employ the following scheme. First, we use a split-

step methotf separating linear and nonlinear parts of the 2 T
equation: 20 v
c(t+At)=exp(— AtP)[c(t) + AtQ(c) ]+ O(At?). (37) :
This scheme includes the explicit Euler step for the nonlinear 15 !
operatorQ. However, it may be shown that a stability do- .
main of schem&37) is wider than the stability domain of the
explicit Euler method for equatio(85).
To calculate expf AtP) in Eq. (37) we express the opera- 10
tor P as a sum of two operatofs:
ﬁ:ﬁo‘f'é, é:ﬁ_ﬁo, 5 E
where the operatd%o is similar toP but corresponds to the f
periodic boundary conditions, and the opera®rhas the |
form: 0 . "
. 0 2800 5600 8400 t
TCq—C1+Ch_o—7Ch_q, =0
—Cp+Ch_qg, i=1 FIG. 4. Time dependence of the coordinates of the phase bound-
~ . i =3,d=5).
(Go)={ 0i=23,..., n-3 , aries )

Co=Cn-1, 1=N=2 We have carried out the analogous -calculations for

—7TC+C1—Chpt7Cho1, 1=N—1 N=5-15 andd=3—6. For the particular casd=15 and
wherer=2(2—12)/1* d=4 the time dependence of the interface coordinates is
Using the Trotter-Kato formula for the exponential func- shown in Fig. 6. The doubling process consists of two stages.

tion of the sum of two noncommutative operafdrs Eq. At the first one (<T) the dissolution of the 3rd and 14th
(37) we obtain films occurs. At the end of the second stage-2T) we

obtain the structure with film thicknesse<2d. The duration

c(t+At) = exp( — AtPg)exp — AtG)[ c(t) + AtQ(c)] T of the first stage appears to depend exponentiallgi ¢see
) Fig. 7). We have also obtained the dependend) (Fig. 8
+O(At9). which proves the essential influence of boundaries on the

doubling scenario discussed above. The quantitative agree-
ment between the analytical and numerical results confirms

discrete  Fourier transformation, while the operatory - validity of the solitonlike description developed in this
exp(—AtG) may be calculated analytically. This scheme a"paper.

lows us to obtain a solution with a good accuracy for a long-
time interval of interest.

The exponential function exp(AtIs) is easy to find by the

Let us start with the simple cas$é=3, when the system InT

(31 can be solved analytically. It follows from the symmetry 12 -
arguments that N=3

V2=V1+V3= O, (38) 107
and the systeni31) reduces to the equation g 4

—i(21-1)=16e"?, (39
. 6
wherel =z;—z,=2,—2z,. The time dependence of the front
coordinates in this case is shown in Fig. 4. The thicknesses
of the outer layers are growing, while the thicknesses of the 4
inner layers are decreasing. From now on we introduce the
notationT for the characteristic dissolution tinieee Fig. 4 2 *
determined by the conditioi{T)=0. TheT(d) dependence ;!
takes the form 0 . ‘ . . . .
2 4 6 8 10 12 14
d-1 2d

FIG. 5. Dependence of the dissolution tiffieon the initial film
This analytical dependence agrees well with the one obtaineghickness: solid line indicates the calculation based on (&q),
from the numerical solution of Ed5) (see Fig. 5. @ indicates the results of the numerical simulation of E).
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200 400 600 ' FIG. 8. Dependence of the dissolution tiffieon the total num-
berN of interfaces in the structure.

FIG. 6. Time dependence of the coordinates of the phase bound-
aries N=15,d=4). phase layer growth. In the limi,>a. our results are in
good agreement with the ones obtained in Ref. 19. The dis-
solution time grows exponentially with an increase in the

To summarize, we have investigated the nonlinear relaxinitial layer thickness. We have obtained the equations for
ation dynamics of layered decomposing alloys. The resultinterface velocitieg31), which describe the decomposition
obtained above are valid for systems with layer thicknesseprocess in a wide class of multilayers and provide a starting
much greater than the interfacial thickness. The approximatgoint for the analysis of thermostability of artificial layered
solution of the Cahn-Hilliard equation is based on the asstructures. The diffusion relaxation in these systems occurs
sumption about a slight change of the form of moving inter-via the period doubling. The concrete scenario of this pro-
faces. We have studied the features in the dynamic behaviogess depends essentially on total number of the layers in the
peculiar for 1D systems. The equation of the interface mosystem. The velocity of the analyzed processes decreases ex-
tion, which describes the growth or dissolution of a singleponentially with a growing layer thickness. Nevertheless,
layer has been obtained. This equation appears to be essdhis velocity is noticeable for ultrathin~1 nm) layers,
tially nonlocal in time. Within this approach we estimated which may provide a possibility of the experimental obser-
the layer dissolution time and obtained the velocity of a newvation of the discussed effects.

V. CONCLUSIONS
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5 ] APPENDIX
Let us briefly discuss the 1D stationary solutions of Eq.
4 A (4). Taking into account conditiof2) one obtains
[ ]
3 d%c 5
—+2(c—c’)=h. (A1)
0z
2 T T T 1 L 1
5 6 7 8 9 10 11 94 The interfacial thicknesgthe width of the transition layer

between the phasgss of the order of unity in dimensionless

FIG. 7. Dependence of the dissolution tiMieon the initial film variables. The first integral of EqAL) is

thickness: solid line represents the results of the solution of the 1 2
system(31), @ shows the results of the numerical simulation of Eq. (’90) +U(c)

(5). 219z
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! X=2z+(Cog—C1)(Co—C>),
U(c)=c?— Ec“—hc, h>0, (A2) V(co—C1)(Co—Cp)
The form of the stationary solutions depends on Itlggian- cost2a) = 2co—(cy+cCy) A3)
tity. In the caseh=0 there exists an equilibrium state c1—C,p '

(I=1,) which corresponds to the decompositidfsee Fig. _ _
2(@)]. The concentration distribution like this is usually Where co>c,>c, are the solutions of the equation
called a “kink” (“antikink” ). For h#0 there is a solution U(c)=U(co). Whenh<1 (i.e., the supersaturation degree is

with 1=1*, which corresponds to a critical new-phasesmal) one has

nucleus[see Fig. Zc)]. This solution may be considered as

two interacting kinks with the asymptotic behavior h 1 16
c(z)—co whenz— *o. The casd =1, corresponds to the c=1-,+tanlz-a)—tanhz+a), a= In,

periodic concentration distribution, i.e., to the set of kinks
and antikinks[see Fig. &)]. Let us find the size of the
critical new-phase nucleus. Equatigh2) with | =U(cg) re-

h
co=1——,ci,=—1*++h. A4
sults in the following expression: 0 12 vh A4

4

X—2a

Thus we obtained the logarithmic dependence of the nucleus

1 [
C=Cot 5\/(00_01)(00_02){%1”*‘(

2 size on the supersaturation degree. Note that in 2D and 3D
cases such a dependence is inversely proportighealcriti-
—tan x+2a cal nucleus exists due to different dependences of the surface
2 and bulk energy on the nucleus si2&.
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