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Nonlinear relaxation dynamics in decomposing alloys: One-dimensional Cahn-Hilliard model

A. A. Fraerman,* A. S. Mel’nikov, I. M. Nefedov, I. A. Shereshevskii, and A. V. Shpiro
Institute for Physics of Microstructures, Russian Academy of Sciences 603600, Nizhny Novgorod, GSP-105, Russia

~Received 8 July 1996!

The coarsening process in decomposing alloys is studied within the one-dimensional~1D! Cahn-Hilliard
model using both the analytical and numerical methods. We have developed the analytical approach based on
the solitonlike description of interacting phase boundaries and obtained the equations of their motion. For a
single 1D nucleus in the infinite medium the equation of the interface motion appears to be essentially nonlocal
in time. The peculiarities of the dynamic behavior of this system are studied for an arbitrary initial nucleus size
a0. Fora0,ac; ln(1/h) the characteristic time scale of the nucleus dissolution is found as a function ofa0 and
the supersaturationh in the system. In the limita0@ac we obtained the well-known square-root dependence of
the nucleus sizea;hAt. The late stage of the spinodal decomposition in multilayered structures has been
investigated. The specific features of the period doubling process are studied.@S0163-1829~97!00105-7#
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I. INTRODUCTION

A number of important physical aspects of relaxation
netics in decomposing alloys may be described within
phenomenological Cahn-Hilliard model~see, e.g., Refs. 1,2!.
The intensive study of these phenomena was stimulated
part, by various applications of a wide class of materi
consisting of the components with the limited solubility, i
cluding artificial layered compounds Fe/Cr,3 Co/Cu,4,5 and
Me~Fe,Ni,Pt, . . .!/C.6,7 In this paper we develop a solitonlik
description of the coarsening process in one-dimensio
~1D! decomposing alloys. The 1D case is most relevan
the artificial layered systems. The typical phase diagram
decomposing binary (AB) alloy is schematized in Fig. 1
The solid line is the equilibrium two-phase boundary, a
the dashed line is the spinodal curve. According to the Ca
Hilliard theory8 the states lying between these two curves
metastable, while the states lying below the spinodal cu
are unstable to weak long-wavelength fluctuations. T
growth of these fluctuations leads to formation of theA and
B phase domains. We use the notationsC(1) andC(2) for the

FIG. 1. The phase diagram of a decomposing binary alloy. S
line is the equilibrium two-phase boundary, the dashed line is
spinodal curve,Tc is the critical temperature,C

(1,2) are the equilib-
rium phase concentrations andc0 is the average alloy concentration
550163-1829/97/55~10!/6316~8!/$10.00
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equilibrium concentrations of these phases. When the in
mogeneity scales are much greater than a lattice spacing
may use a continuum approximation. In this case the fr
energy functional has the form:

F5E F12 g~¹C!22
1

2
a~C2 c̄ !21

1

4
b~C2 c̄ !4GdR, ~1!

wherea5ā(Tc2T) and positive coefficientsā, b, g de-
pend on the pressure, temperature, and crystal struc
These coefficients can be defined from the microsco
theory, as well as thec̄ value. In the case of a binary mixtur
there is an additional conservation condition for the atoms
each sort:

1

vE cdR5c0 ,

c5~C2 c̄ !Ab

a
~2!

wherev is the volume of the system,c0 is the average con
centration. As a consequence the dynamics of the order
rameter may be described using the continuity equa
which reads8

]C

]t
1DD

dF

dC
50, ~3!

whereD is the kinetic coefficient. Introducing the dimen
sionless variables c5(C2 c̄ )Ab/a, t[tADa2/(4g),
r5R/R0 (R05A2g/a), one obtains the Cahn-Hilliard equa
tion:

]c

]t
52D@Dc12~c2c3!#. ~4!

We have omitted here the random noise term which
presses the statistical fluctuations and contributes to
right-hand side of Eq.~4!.9 Equation ~4! takes account of
both the finite interface thicknessR0 and the diffusion type
of the dynamic behavior far away from the phase boundar
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55 6317NONLINEAR RELAXATION DYNAMICS IN . . .
We start our treatment of the 1D decomposition dynam
with three remarks that are perhaps obvious.

First, the finite interfacial thickness leads to the expon
tially small interaction of the phase boundaries. This inter
tion accounts for the existence of specific 1D stationary
lutions of Eq. ~4! ~see Fig. 2 and Appendix!: ~i! periodic
structures consisting of domains of different phases;~ii ! the
unstable critical nucleus of the new phase. Each ph
boundary has the form of a kink~or antikink!. The critical
nucleus sizeac depends logarithmically on the supersatu
tion degreeh which is proportional to the energy differenc
per one atom in different phases. Theh value defines the
degree of metastability in the alloy. An arbitrary 1D conce
tration distribution at the late decomposition stage~and small
h) may be considered as a set of moving kinks and antikin
The 1D coarsening process is caused by their expone
interaction. Note that for 2D and 3D cases this process
be described without taking account of the finite interfa
thickness.10

Second, the solutions considered above appear to be
stable within the Cahn-Hilliard model. A single nucleus d
solves or grows depending on the ratioa/ac , wherea is the
initial nucleus size. A periodic concentration distribution
unstable with respect to the period doubling process.11

Third, far away from the interfaces the concentration d
turbance produced by the kink motion satisfies the ordin
diffusion equation~see also Sec. II!. This diffusion field is
responsible for a force acting on a phase boundary. For
1D system the characteristic time scale of the diffusion fi
relaxation is td;dm

2 , where dm is the maximum distance
between the neighboring kinks~for a single nucleus in the
infinite mediumdm→`). As a consequence, fort,td the
time dispersion in our system plays an essential role and
equation of kink motion should be nonlocal in time.

In Sec. II we develop the analytical method for descr
tion of the late nonlinear stage of the decomposition in
1D case. Contrary to the treatment in Refs. 11–13,
method is based on the solitonlike description of the mig
tion of interfaces. We employ the approach analogous to
one developed previously for the solution of a large num
of nonlinear nonstationary problems,14 including description

FIG. 2. The 1D stationary solutions of Eq.~4!. ~a! The stable
equilibrium state which corresponds to the decomposition.~b! Pe-
riodic structure.~c! The critical new phase nucleus.
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of the dynamics of new phase nuclei in 2D and 3
cases.15–17We obtain the system of equations which descr
the dynamics of the interfacial fronts in the 1D case. In S
III we study the dynamics of the 1D new phase nucleus a
show that the equation which describes the layer thickn
evolution is essentially nonlocal in time. The interaction
the phase boundaries is shown to result in the nucleus di
lution even for positive values of the supersaturation deg
In Sec. IV we investigate the late stage of the spinodal
composition in finite-size multilayer structures. We defi
the characteristic time scale of the period doubling and co
pare the analytical results with the ones obtained num
cally.

II. BASIC EQUATIONS

In this section we discuss the relaxation dynamics in s
tems where the initialc(z) distribution does not correspon
to the stationary one. At the early stage of decomposit
~when the concentration is far from equilibrium! Eq. ~4! may
be linearized inc and solved analytically.8 This solution pre-
dicts a limitless growth of concentration fluctuations. T
stage of formation of domains with concentrations close
the equilibrium ones cannot be described within the lin
theory. Hereafter we restrict ourselves to the late stage, w
the domains and interfacial layers have been already form
We also will not take into account a random noise ter
which, in principle, may be included in Eq.~4!.

Now we formulate a method of solution of the Cah
Hilliard equation, which enables us to describe analytica
the late stage of the dynamics of the 1D decomposing al
In the 1D case the Cahn-Hilliard equation~4! takes the form

]c

]t
52

]2

]z2 S ]2c

]z2
12~c2c3! D . ~5!

This equation should be supplemented by the boundary c
ditions. The order-parameter conservation condition~2!
yields the first pair of boundary conditions:

j5
]

]z S ]2c

]z2
12~c2c3! D U

0,L

50, ~6!

where L is the system size. The second pair of bound
conditions is determined by the segregation effects18 and su-
persaturation degree~see Secs. III, IV!. Let us take the initial
concentration distribution

c~z,t50!5c01 (
n51

N

~21!ntanh@z2zn~ t50!#, ~7!

wherezn are the coordinates of interfaces,c0 is defined by
the average concentration of the alloy. Note, that each t
in the sum~7! is the stationary solution of Eq.~5!. The fol-
lowing treatment is based on the assumption that the form
the interfacial fronts is slightly changing during their migr
tion. We search for the solution in the form

c~z,t !5u~z,t !1c01 (
n51

N

~21!ntanh@z2zn~ t !#. ~8!
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6318 55A. A. FRAERMAN et al.
Assuming the velocitiesVn5]zn /]t and the correction
u(z,t) to be small, one has

]u

]t
2y~z,t !52

]2

]z2 S ]2u

]z2
24u16ug~z,t !1 f ~z,t ! D , ~9!

where

g~z,t !5 (
n51

N
1

cosh2~z2zn!
,

y~z,t !5 (
n51

N

~21!n
Vn

cosh2~z2zn!
,

f ~z,t !52Fc01 (
n51

N

~21!ntanh3@z2zn~ t !#

2S c01 (
n51

N

~21!ntanh@z2zn~ t !# D 3G .
The condition of the concentration conservation reads

]

]tE0
L

udz52(
n51

N

~21!nVn , ~10!

i.e., the concentration changes caused by the interfa
fronts migration should be exactly compensated by
change of the integral value of the correctionu. It also fol-
lows from Eq.~9! that far from interfacial fronts the equatio
for u takes the form of the ordinary diffusion equation. Th
is why it is convenient to search for the solution of Eq.~9! in
the form

u~z,t !5w~z,t !1c~z,t !, ~11!

where c is the diffusion field produced by the interfaci
fronts migration,w is the correction to the stationary form o
the fronts. The functionsc andw satisfy the following equa-
tions:

]c

]t
54

]2c

]z2
1y~z,t !, ~12!

]w

]t
52

]2

]z2 S ]2w

]z2
24w16gw1 f1

]2c

]z2
16gc D . ~13!

Note, that layer thickness changes are caused by both
interfacial interaction and the diffusion field. Let us consid
the operator

L̂52
]2

]z2 S 2
]2

]z2
26g14D .

The expansion of the functionw in terms of the eigenfunc
tions of the operatorL̂ is

w5(
n

bnwn ,

where L̂wn5lnwn . Let us define a conjugate set of fun
tions:
ial
e

t

he
r

wn5
]2xn

]z2
, E

0

L

xnwmdz50 when nÞm. ~14!

After multiplying Eq.~13! by xn and integrating overz from
0 to L one has

]bn
]t

52lnbn2F~ t !,

F~ t !5

E
0

L

wn~ f1]2c/]z216gc!dz

E
0

L

wnxndz

. ~15!

bn~ t !5e2lntE
0

t

elntF~t!dt. ~16!

If the interaction between the interfacial fronts is absent~i.e.,
they are isolated from each other!, the eigenvaluel50 cor-
responds to the eigenfunctionsw̄n5cosh22(z2zn). If the dis-
tances between the fronts are large but finite, then
N-fold generated eigenvaluel50 splits intoN close to zero
values. Forln,0 one has a limitless growth ofbn when
t→`. For smallln.0 @assumingF(t) to change slowly in
time# one hasbn<1 whent<l21. That is why the condition
of theu value smallness makes us setF50 for each eigen-
function wn , which corresponds to the small eigenval
ln . Since the multiplierC5 f1]2c/]z216gc is exponen-
tially small, it is enough to require orthogonality of the qua
tity C to each eigenfunction of the problem with isolate
interfacial fronts

E
0

L 1

cosh2~z2zn!
S f1 ]2c

]z2
16gc Ddz50. ~17!

These equations contain the diffusion fieldc which is deter-
mined by the velocities of kinks@see Eq.~12!# and boundary
conditions. In fact, Eq.~17! defines the interfaces migratio
velocities in the implicit form. The process of diffusion re
laxation depends essentially on the distances between k
Obviously, the characteristic time of establishment of t
quasistationary concentration distribution istd;dm

2 , where
dm is a maximum from the layer thicknesses. Below we d
cuss two cases:~i! the dynamics of a single pair kink
antikink in an infinite medium (dm→`, td→`), ~ii ! the dy-
namics of kinks in a finite-size multilayer structure.

III. DYNAMICS OF A SINGLE 1D NUCLEUS

We now continue with the derivation of the dynam
equation describing the evolution of a single layer in t
infinite medium with the average concentrationc512h/4.
The initial concentration distribution is

c~z,t50!5tanh~z2a0!2tanh~z1a0!112
h

4
. ~18!

Boundary conditions forc andw take the form:

cu6`52
h

4
,
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55 6319NONLINEAR RELAXATION DYNAMICS IN . . .
wu6`50. ~19!

Solving the diffusion equation~12! with the boundary con-
ditions ~19! and taking into account only the linear in
terms one obtains the diffusion field values at the poi
z56a(t). On rearrangement, Eq.~17! can be written as fol-
lows:

E
0

t V~t!

At2t
dt5

Ap

4
@h216exp~24a!#. ~20!

We consider here the intervalt@a2, when the uniformc
distribution inside the layer has been formed. The diffus
field is essentially time dependent, which leads to a str
time dispersion in the equation of motion.

The interaction of the interfacial fronts results in the lay
dissolution even for positive values of the supersaturation
the case when the initial layer size is equal to the critical o
@a05ac5(1/4)ln(16/h)#, the velocity of the interfacial
fronts migration is equal to zero. The layer thickness gro
for a0.ac . Introducing new variables

j54@a~ t !2a0#,

u528exp~28a0!t/p,

H5
h

16
exp~4a0!, ~21!

we may rewrite Eq.~20! as

E
0

u j̇~s!

Au2s
ds5p@H2exp~2j!#, ~22!

wherej̇5]j/]s. The valueH51 corresponds to the critica
layer thickness. After multiplying Eq.~22! by (y2u)20.5 and
integrating it overu from 0 to y one has

j5E
0

y@H2exp~2j!#

Ay2u
du. ~23!

Thus, the layer thickness grows whenH.1 and thej value
can be estimated as follows:

2~H21!Ay,j~y!,2HAy. ~24!

When H@1, the size of functionj(y) follows the well-
known square-root dependence.19 The results of the numeri
cal analysis of Eq.~22! are shown in Fig. 3.

As follows from the formal solution of Eq.~23!,
j→2` at the finite timey* . Fory close toy* we search for
the solution of Eq.~23! in the form

exp~2j!5
1

~y*2y!v(
j50

`

cj~y*2y! j . ~25!

To obtain the logarithmic divergence of the integral in t
right-hand side of Eq.~23! ~when y→y* ) one should take
v50.5. Restricting ourselves to the first term in the sum~25!
we have

c05
1

2
, 2ln252HAy*2 lnAy* . ~26!
s

n
g

r
In
e

s

These arguments are proved by the results of the nume
solution of Eq.~22! for H,1. It is obvious that the solution
makes sense only forj.24a ~the j value j;24a corre-
sponds to the complete dissolution of the nucleus!. Neverthe-
less, it is possible to use the expression

T5
py*

28
exp~8a0! ~27!

to estimate the dissolution time fora@1. Thus, the dissolu-
tion time depends exponentially on the initial layer thickne
The dynamic behavior discussed above is peculiar to infi
systems. For a finite-size system the layer dynamics depe
essentially on the boundary conditions. For the particu
case of the flux absence at the sample edges the statio
distribution of the diffusion field establishes at a characte
tic time scalet;L2 and the layer size will stop changing.

IV. DECOMPOSITION IN MULTILAYER STRUCTURES

Let us discuss an evolution of the initial concentrati
distribution, which corresponds to a multilayered system:

c~z,t50!5
~21!N11

2
1 (

n51

N

~21!ntanh@z2zn~ t50!#,

N is the number of phase boundaries in a multilayer str
ture. Instead of Eq.~19! we take the second pair of bounda
conditions in the form:

]c

]zU
0,L

50, ~28!

which corresponds to the absence of the surface segreg
effect.18 To obtain the equations of motion we should fir
solve the diffusion equation~12!. At the staget@dm

2 we may
neglect the time derivative in the left-hand side of this eq
tion if the alternating functiony(z,t) averaged over the in
tervalDz;At vanishes. The solution of the resulting equ

FIG. 3. The results of numerical simulation of Eq.~22!. Time
dependence of the dimensionless layer thicknessj. The case
H51 corresponds to the critical nucleus.
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6320 55A. A. FRAERMAN et al.
tions for Vn given below @as well as the direct numerica
solution of Eq.~4!# shows that the latter condition is fulfille
for finite-size systems. The solution of the stationary eq
tion ~12! is

c52
1

4(n51

N

~21!nVnlncosh@z2zn~ t !#1Az1B, ~29!

A56
1

4(n51

N

~21!nVn50. ~30!

Note that the condition~30! corresponds to the conservatio
of the average concentration. From Eqs.~17! and ~29! one
has the system ofN11 equations forzm (m51–N) andB:

(
n51

N

~21!nVn

zm2zn
tanh~zm2zn!

1~21!m16@exp~22l m11!

2exp~22l m!#1B50,

m52,3 . . .N21,

(
n51

N

~21!nVn

z12zn
tanh~z12zn!

216@exp~22l 2!#1B50,

(
n51

N

~21!nVn

zN2zn
tanh~zN2zn!

2~21!N16

3@exp~22l N!#1B50,

(
n51

N

~21!nVn50, ~31!

where l m5zm2zm21 is the thickness of the layer with th
numberm. As follows from the system~31!, the fronts ve-
locities are small if the layer thickness is large compared
the interfacial thickness. The assumption ofu(z,t) smallness
is also valid under this condition. Deriving the system~31!
we ignored the terms of the order of exp@22(l m1 l m11)#.
Nevertheless, them front migration depends on the coord
nates of the (m22)th and the (m12)th fronts. This results
from the interfacial interaction through the diffusion field
the dissolved atoms. This type of interaction dominates
2D and 3D structures and can be described within the fra
work of the Lifshitz-Slyosov model.10 Note that the system
~31! differs essentially from the one obtained previous
within the Landau model with the nonconserved ord
parameter field~see Ref. 12 and references therein!.

Let us investigate the stability of a periodic multilayer
system with a period 2d. We will search for the solution o
the system~31! in the form

zn~ t !5nd1dn~ t !, udnu!1. ~32!

For dn one has

dd1
dt

5
8 exp~22d!

d
~122d312d2!,

dd2
dt

5
8 exp~22d!

d
~114d222d122d4!,
-

o

n
e-

-

ddn
dt

52
16 exp~22d!

d
~dn1222dn1dn22!,

ddN21

dt
5
8 exp~22d!

d
~2124dN2112dN12dN23!,

ddN
dt

5
8 exp~22d!

d
~2112dN2222dN21!. ~33!

As follows from Eq.~33!, an infinite multilayered system is
absolutely unstable to the fluctuations of the layer thickne
The wave-number dependence of the fluctuation increme

l~k!5
64 exp~22d!

d
sin2~kd!, 0<k<

p

d
~34!

has a maximum atk5p/2d, which results in the period dou
bling. The expression for the increment~34! coincides with
that obtained in Ref. 11.

The system~31! provides us with a useful tool for the
analysis of the interface dynamics in various multilayer s
tems for arbitrary initial layer thicknesses. We restrict ou
selves to the structures consisting of films of the identi
initial thicknessesd, which are of particular interest in th
context of applications to the study of thermostability of re
multilayers. In finite-size systems the layer thickne
changes may be caused by the boundary effects. We h
studied the influence of these effects on the doubling proc
in multilayer structures for variousd values and layer num
ber N using both equations~31! and the direct numerica
simulation of Eq.~5!.

To solve Eq.~5! numerically let us write the discrete ana
log of the equation on the grid zi5( i11/2)l ,
i50,1, . . . ,n21;l5L/n for the vector function c(t)
5$ci(t)% i50

n21 ,ci(t)5c(zi ,t):

]c

]t
52 P̂c1Q̂~c!. ~35!

Here P̂ andQ̂ denote the following difference operators:

P̂5D̂212D̂,

~D̂c! i5~ci2122ci1ci11!/ l
2, i50,1, . . . ,n21,

„Q̂~c!…i52~ci21
3 22ci

31ci11
3 !/ l 2,

i50,1, . . . ,n21.

The valuesc22 ,c21 ,cn ,cn11 are determined by the bound
ary conditions~6!,~28!:

c225c1 ,c215c0 ,cn5cn21 ,cn115cn22 . ~36!

As we will see below, one needs to solve the proble
~35!, ~36! for a long-time interval. From this point of view
the applied numerical method has to be stable. The kno
explicit Euler scheme is stable only for a very small tim
step, and application of the stable implicit schemes are h
pered due to high order of the spatial derivatives in Eq.~35!.
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55 6321NONLINEAR RELAXATION DYNAMICS IN . . .
So we employ the following scheme. First, we use a sp
step method20 separating linear and nonlinear parts of t
equation:

c~ t1Dt !5exp~2Dt P̂!@c~ t !1DtQ̂~c!#1O~Dt2!. ~37!

This scheme includes the explicit Euler step for the nonlin
operatorQ̂. However, it may be shown that a stability d
main of scheme~37! is wider than the stability domain of th
explicit Euler method for equation~35!.

To calculate exp(2DtP̂) in Eq. ~37! we express the opera
tor P̂ as a sum of two operators:21

P̂5 P̂01Ĝ, Ĝ5 P̂2 P̂0 ,

where the operatorP̂0 is similar to P̂ but corresponds to the
periodic boundary conditions, and the operatorĜ has the
form:

~Ĝc! i55
tc02c11cn222tcn21 , i50

2c01cn21 , i51

0,i52,3, . . . , n23

c02cn21 , i5n22

2tc01c12cn221tcn21 , i5n21

,

wheret52(22 l 2)/ l 4.
Using the Trotter-Kato formula for the exponential fun

tion of the sum of two noncommutative operators22 in Eq.
~37! we obtain

c~ t1Dt !5exp~2Dt P̂0!exp~2DtĜ!@c~ t !1DtQ̂~c!#

1O~Dt2!.

The exponential function exp(2DtP̂) is easy to find by the
discrete Fourier transformation, while the opera
exp(2DtĜ) may be calculated analytically. This scheme
lows us to obtain a solution with a good accuracy for a lon
time interval of interest.

Let us start with the simple caseN53, when the system
~31! can be solved analytically. It follows from the symmet
arguments that

V25V11V350, ~38!

and the system~31! reduces to the equation

2 l̇ ~2l21!516e22l , ~39!

wherel5z32z25z22z1. The time dependence of the fron
coordinates in this case is shown in Fig. 4. The thicknes
of the outer layers are growing, while the thicknesses of
inner layers are decreasing. From now on we introduce
notationT for the characteristic dissolution time~see Fig. 4!
determined by the conditionl (T)50. TheT(d) dependence
takes the form

T5
d21

16
exp~2d!. ~40!

This analytical dependence agrees well with the one obta
from the numerical solution of Eq.~5! ~see Fig. 5!.
-

r

r
-
-

es
e
e

ed

We have carried out the analogous calculations
N55215 andd5326. For the particular caseN515 and
d54 the time dependence of the interface coordinates
shown in Fig. 6. The doubling process consists of two stag
At the first one (t,T) the dissolution of the 3rd and 14t
films occurs. At the end of the second stage (t;2T) we
obtain the structure with film thicknesses;2d. The duration
T of the first stage appears to depend exponentially ond ~see
Fig. 7!. We have also obtained the dependenceT(N) ~Fig. 8!
which proves the essential influence of boundaries on
doubling scenario discussed above. The quantitative ag
ment between the analytical and numerical results confi
the validity of the solitonlike description developed in th
paper.

FIG. 4. Time dependence of the coordinates of the phase bo
aries (N53, d55).

FIG. 5. Dependence of the dissolution timeT on the initial film
thickness: solid line indicates the calculation based on Eq.~40!,
d indicates the results of the numerical simulation of Eq.~5!.
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V. CONCLUSIONS

To summarize, we have investigated the nonlinear re
ation dynamics of layered decomposing alloys. The res
obtained above are valid for systems with layer thicknes
much greater than the interfacial thickness. The approxim
solution of the Cahn-Hilliard equation is based on the
sumption about a slight change of the form of moving int
faces. We have studied the features in the dynamic beha
peculiar for 1D systems. The equation of the interface m
tion, which describes the growth or dissolution of a sing
layer has been obtained. This equation appears to be e
tially nonlocal in time. Within this approach we estimate
the layer dissolution time and obtained the velocity of a n

FIG. 6. Time dependence of the coordinates of the phase bo
aries (N515, d54).

FIG. 7. Dependence of the dissolution timeT on the initial film
thickness: solid line represents the results of the solution of
system~31!, d shows the results of the numerical simulation of E
~5!.
x-
ts
s
te
-
-
or,
-

en-

phase layer growth. In the limita0@ac our results are in
good agreement with the ones obtained in Ref. 19. The
solution time grows exponentially with an increase in t
initial layer thickness. We have obtained the equations
interface velocities~31!, which describe the decompositio
process in a wide class of multilayers and provide a star
point for the analysis of thermostability of artificial layere
structures. The diffusion relaxation in these systems occ
via the period doubling. The concrete scenario of this p
cess depends essentially on total number of the layers in
system. The velocity of the analyzed processes decrease
ponentially with a growing layer thickness. Neverthele
this velocity is noticeable for ultrathin (;1 nm! layers,
which may provide a possibility of the experimental obs
vation of the discussed effects.
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APPENDIX

Let us briefly discuss the 1D stationary solutions of E
~4!. Taking into account condition~2! one obtains

]2c

]z2
12~c2c3!5h. ~A1!

The interfacial thickness~the width of the transition layer
between the phases! is of the order of unity in dimensionles
variables. The first integral of Eq.~A1! is

1

2 S ]c

]zD
2

1U~c!5I ,

d-

e
.

FIG. 8. Dependence of the dissolution timeT on the total num-
berN of interfaces in the structure.
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U~c!5c22
1

2
c42hc, h.0, ~A2!

The form of the stationary solutions depends on theI quan-
tity. In the caseh50 there exists an equilibrium stat
(I5I 1) which corresponds to the decomposition23 @see Fig.
2~a!#. The concentration distribution like this is usual
called a ‘‘kink’’ ~‘‘antikink’’ !. For hÞ0 there is a solution
with I5I * , which corresponds to a critical new-phas
nucleus@see Fig. 2~c!#. This solution may be considered a
two interacting kinks with the asymptotic behavio
c(z)→c0 whenz→6`. The caseI5I 2 corresponds to the
periodic concentration distribution, i.e., to the set of kin
and antikinks@see Fig. 2~b!#. Let us find the size of the
critical new-phase nucleus. Equation~A2! with I5U(c0) re-
sults in the following expression:

c5c01
1

2
A~c02c1!~c02c2!F tanhS x22a

2 D
2tanhS x12a

2 D G ,
o

x5zA~c02c1!~c02c2!,

cosh~2a!5
2c02~c11c2!

c12c2
, ~A3!

where c0.c1.c2 are the solutions of the equatio
U(c)5U(c0). Whenh!1 ~i.e., the supersaturation degree
small! one has

c512
h

4
1tanh~z2a!2tanh~z1a!, a5

1

4
ln
16

h
,

c0512
h

4
,c1,25216Ah. ~A4!

Thus we obtained the logarithmic dependence of the nuc
size on the supersaturation degree. Note that in 2D and
cases such a dependence is inversely proportional~the criti-
cal nucleus exists due to different dependences of the sur
and bulk energy on the nucleus size24,25!.
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