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Fracton excitation and Levy flight dynamics in alkali silicate glasses
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We have examined the relaxation behavior of alkali metal ions in lithium metasilicate glasses by means of
molecular dynamics simulation. We have observed a change of slope of the mean squared displacement at
~300 ps. In shorter time regions, localized motion of lithium ions within neighboring sites is observed, which
is caused by the small fracton dimensi@firacton excitation On the other hand, an accelerated motion of
particles due to cooperative jumps is found, which characterizes the diffusion and conduction mechanisms of
the alkali metal ions in longer time regions. The dynamics of accelerated motion is discussed in relation to
Lévy flight dynamics[S0163-182697)03510-9

I. INTRODUCTION tential functior? plus anr ~® term was used. The parameters
of the potential used have previously been derived on the
In a previous work, we investigated the relaxation behavbasis ofab initio MO (molecular orbital calculation? and

ior of atoms in lithium metasilicate glasses by means of motheir validity has been checked in the liquid, glassy and crys-
lecular dynamics(MD) simulation® Now, attention is fo- tal states under constant pressure conditions. The run up to 1
cused on the dynamics of lithium ions. We have found thans (250 000 stepshas been performed with the different
«a relaxation proceséin several tens te- 300 ps regiopin  initial configuration from the previously used one.
Li ,SiO; glass can be represented by the stretched
exponential-type decalyy(k,t) = Aexg —(t/7) #], wherer is lll. RESULT AND DISCUSSIONS
proportional tok ~". The valuen is known to be 2 in the
Debye-type decay. We have found timats less than 2 in a
glassy state. Thgg values of Li for F4(k,t) in the glassy ) )
state is less than 1 as usually observed in glasses, which In Fig. 1, the mean squared displacem@viSD) R2(t),
means a slowing down of the dynamics. The low value ofof lithium ions is plotted. The change of the slope-a800

n suggests that there exists an accelerated diffusion proceB§ is found. _ _ _ _
that explains the high conductivity of lithium containing  The corresponding density correlation functiwelf pary

A. Mean square displacement
and density correlation function

glass in spite of overall slowing down of the dynamics. ~ Fs(k.t) is shown in Fig. 2. The function is defined as
In the present work, we have performed a longer time N,

simulatiqn up to the 1 ns region, to clarify the dynamics for Fo(k,t) = E exp[ik~drj”"(t)} N, (1)

decreasingn value, since we can expect that such compo- i=1

nents with accelerated dynamics becomes more remarkable
at the longer time region. The role of cooperative motions of
atoms forms a key feature to the understanding of the dy-
namics of diffusion and conduction of alkali metal ions in
the long time region. 10'F

T T

On the other hand, in short time behavior, the localized ;\':E
motion of the ion is dominant. Fractal dimension analysis ~
has been used to characterize these motions, which are re- B:“

stricted by the structure of the jump paths. The local and R
global structures of the jump path are important to character- oL _
N . . . 10 £ P 1
ize the short and long time behavior, respectively. .

II. MD SIMULATION

MD simulation has been performed in the same way as in I I
previous studie$™ the numbers of the particles in the basic 10 10°
cube being 144 for Li, 72 for Si, and 216 for O. The volume t(ps)
was fixed at that derived by the NR€onstant pressure and
temperatureensemble simulation. The glass transition tem-  FIG. 1. Log-log plot of the mean square displacement of lithium
perature is approximately 830 K. A Gilbert-lda-type pair po-ions at 700 K.
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FIG. 2. Density correlation functiofself-par} of Li at 700 K. ) A St
The curves from top to bottom are for wave numbers E
k=2m/n'(n"=10,5,3,2,1.5,1, and 0.8) in the unit of A

wherea’ denotes the species indices, and-) denotes an
initial time average. The function also shows the changes in o<
slopes at several hundred ps. In region after 200 ps, the ob-
tainedF4(k,t) values for eaclk are slightly different from
those obtained previousiyrom different runs. The cause of
such differences will be discussed later.

We call hereafter the region before and after 300xfis [ ]
and a2, respectively. In the previous wotkhe o relaxation L , 4
process was analyzed at 300 ps region, and the fitted ; ]
parameters thus obtained were for the mixture of several

<% (

components in these two regions. 102 gyl

To calculateR2(t) in the percolation systerfwe average 10 10 10 10
over all starting points of the walkers that are uniformly dis- (b) t (ps)
tributed over all sites. If we start in clusters of fixed sige
we can obtairR2,(t) of a random walker on ag-site clus- FIG. 3. () Linear and(b) log-log plot of the mean square dis-
ter. The mean radiug; of all clusters ofs sites is related to  placement of lithium ions in compone#t (thin line) andB (thick
s by line) during 1 ns at 700 K.

s~RY ) than R§ (s=2) during a 1-ns run. Namely, the component is

: located within neighboring sites. The other walkers in com-

As long as the distance travelled by the random walkers igonentB show squared displacement larger tiRfnduring

smaller thanRs, diffusion is anomalous an@®2s(t) ~  the 1-ns run. Namely, they contribute to the diffusion of long
t?dw whered; andd,, are fractal dimensions of the jump time limit.

path and of random walk, respectively. Then we can write In Figs. 3a) and 3b), both components are plotted on
o linear and log-log scales, respectively. The mean squared
R24(t) ~ 1", 3 displacement of the componeAt shows a maximum and
if 20w < R2, whered,, contains the effect of the contribu- does not show large contribution to the long time diffusive
tion of waitisng time distribution. behavior. The mean squared displacementirregion is the

For longer times, the random walker cannot escapesthe Méan value of those for componertsand B.

; 2. The difference of these two components can be explained
cluster, ancR2,(t) is bounded byR; : by the structure of the jump path and by the existence of both
st(t)NRg (4) single and cooperative jumps. The jump path of lithium has
been found to be low dimensional in localized regions, while
if t20w > R2 the path forms three dimensional percolation clustenge

The change of the slope found in Fig. (4t ~18 A?) have assumed the behavior in regiwh is mainly caused by
clearly corresponds to the squared value of the first minimunsingle jump trapped by low-dimensional localized path,
distance of the pair correlation function of the Li-Li pair while the behavior in regiom2 is mainly caused by coop-
[gui(r)] 4.2 A). erative jump diffusion traveling three-dimensional connec-

We have divided the walkers into two components. Thetions of these paths, because the characteristic lengths of
walkers in componenfA show squared displacement lessthese motions are different.
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8 . : . . | : . in this time scale. Therefore, the ions causing cooperative
motion must become the main component in long time re-
- ) - gion.
’):\"*cj/
61 / .
| 4/ B. Fractal dimension analysis

o | M i The d; for the local(0.7 ~ 2.0 A) region is found to be
gt i less than 1(0.22, obtained from the plot of averaged posi-

tions of every 0.4 ps during 16 ps nufor this system at 700
- - K. The value less than 1 means the existence of long life
component and the local path of low dimension. However,
2r ” ] the structure of the jump path of Li in L&iO5 in longer
| e range is found to be three dimensiondl¢=2.98, wherec
év;}f%’ means for clustering regignTherefore, localization is not
ob— A due to structure of the cluster but designates due to local
-4 -2 o 0 2 structure of low dimension as discussed below.
X(A) The value ofd,, is directly obtained from the trajectories
during 1 ns to avoid the effect of waiting time distribution of
FIG. 4. Trajectories of the lithium ions showing cooperative the jump motions. The valued, for the componenA and
jumps projected on the-y plane during 16 ps at 700 K. B are found to be 2.83 and 2.47, respectively. Both values
are greater than Rthe value for the free random waikA
higher value forA means that the ions in componektend
To confirm this assumption, we have examined the conto be trapped more in the low-dimensional structure.
tributions of the single jumps and cooperative jumps to the A combination of the large,, and smalld; values means
squared displacement. Positions of lithium ions are checked localized motior(fracton excitation Fractal time distribu-
every 2 ps during arbitrarily chosen 16 ps. The motion withtion of jump motiort also contributes to the time-dependent
displacement larger than half distance of the first pealbehavior. Namely, both components with long life and with
(2.7712 A) of theg,;;(r) is defined as a jump. The jumps high back correlated motion contribute to the slowing down
simultaneously occurringor within 2 ps in some casgat of the decay ofF4(k,t). The combination of the temporal
neighboring sites are judged to be cooperative. Figure 4nd spatial mechanism is thoretically treated by Blumen
shows an example of cooperative jumps, where three lithiunet al® These two mechanisms are distinguishable in a micro-
ions jump to the next site at the same time. We have showacopic point of view. Results of further analysis of these
that an activation energy of the second ion in cooperativanechanisms will be shown in a separate paper.
jumps tends to become smaller than that in the single juimps.
In Table I, the numbers of cooperative jumps and the contri-
bution of these motions to mean squared displacements are
given. As seen from this Table, even in a short period, the Low dimension of the jump path causes a localization of
contribution of cooperative motion to the mean squared disthe single jump of the particles as follows. Alexander and
placement is quite large in spite of a small number of event©rbacH have argued the vibrational excitations related to the
of cooperative jumps. We have also confirmed that all ions‘fracton dimension.”
traveling longer distances than first minimum of the The linear size of the region of sites visited by the walker
g..Li(r) are concerned with the cooperative jumps, at leasafter N steps is

C. Fracton excitation

TABLE I. Contribution of cooperative jumpga) Number of single and cooperative jumps during arbitrarily chosen 1€p$Square
displacements of the alkali metal ions during the 16 ps.

(@

System Type Number of event
Li ,SiO; (700 K) Li — Li — 6
Li - Li — Li — 2
5Li —*@ 1
Li — 17
(b)
Square displacements ?) Ratio (%)
System total Cooperative cooperative to total

Li ,SiO5 (700 K)
Li 211.3 166.2 79

dComplicated collective motion of 5 ions.
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(R2(N)) 2~ NV, 5 Al

P(X)= 52 N (S st T Sx-b),  (10)

The number of visited siteg(N) becomes b
where 6, ) means the Kroneckeé. Jumps of size 1p,

V(N)~RPf~ NH/Z, (6) b2, and so on can occur, but jumps of an order of magnitude
_ longer in baseb occur an order of magnitude less often in
where the fracton dimensiat is defined by base\. Taking the Fourier transform gf(x), we obtain the

Weierstrass function, namely,

d= 2 ) A—1c
dw Pk)= ——> X icogblk). (12)

2\ =0
The probability(Py(t)) of finding the particle at the ori-

gin at timet is given as follows, if the particle was located at
the origin at timet=0:

For the random walk process, the final result in the form

P(k)~exd —Nk*'], (12)

(Po(N))~[V(N)] ™. (8)  with a’=In \In b is obtained, wheréx?) becomes infinite
) for @’<2. The form is the same as in E(). The value
Here we have usell instead oft, to remove the effect of ,/ ygpresents the fractal dimension of a random walk path.
waiting time distribution of jump motions. Thus the single |, random-work displacement in Brownian motion grows
jump cannot have a large contribution to the diffusion norgp)y in proportion to the square root of time. However, the
conduction due to the large back correlation probability. displacement in Ley flights grows faster than Brownian mo-
tion, as just observed for the componddt The smaller
D. Lévy flight dynamics value ofd,, of componenB thanA can also be explained by

On the other hand, the mean squared displacement of tﬁge contribution of sma]dw yalue of Levy flight dynamics.
componenB increases sharply in the 50—300 ps region. The When the cooperatlye Jumps -ocedr, the path of back-
slope in the log-log plot during this period is 1.77, which _Correlat_ed Jump f_or the f|r§t lon 1s mtercept_ed by the second
means thaR2(t) for this component increases faster than ion, which occupies the _orlg_mal site of the first ion. Thus the
linear. That is, the componel® shows the accelerated dy- component of cooperative jumps should have a larger for-

namics at least in this time region, which corresponds to th(¥"ard corr.elation probabilit_y than the §ingle jumps. Thus the
smalln value in the wave number,dependenceFQQK t) acceleration of the dynamics is explained by the existence of

The accelerated dynamics observed cannot be explainetHe cooperative jumps. L
As seen in Table |, the cooperative jumps occur less fre-

merely by the overlap of components with differentalues. : o . )

Such behavior is explained by cooperative motipmps in quentlyllf a Ia_rger pumber of I|th|um_ lons are involved. A

glassy stateof lithium ions? because the path of backward nearly linear I'nef(w'th s]ope Of._1'8) is obtained from the

jump for an ion is intercepted by the simultaneous jump Oflog—l.og plot of this relation. This result .ShOWS that the coop-
erative jumps on longer scales occur in a fractal manner. If

an ion which follows. téhe characteristic length aof-correlated jumps i®", the situ-

The behavior of the cooperative jumps seems to be qui tion is just the same as discussed above for the special ex-
similar to that observed in the kicked rotor or in Josephsorﬁ"l J . S pe
mple, whereb is the characteristic length for the single

junctions, where the accelerated dynamics has been found . ) X . .
The dynamics is named after we Lévy flights are widely J4MP- Equation(13) is obtained by applying an inverse Fou-

applied in nonlinear, fractal, chaotic, and turbulent systemsr.Ier transform to Eq(12):

Below is described the essence of thery dlight dynamics
Brownian motion is essentially characterized by a Gauss-

ian probability distribution of the position of the random

walker after a timet, with the variance proportional to

p(X)~constx n/xt+ e’ (13)

As pointed out by Shlesinget al, the sums withn' < 2
) - y X are dominated by their largest terms, hence by rare intermit-
When we consider aN-step random walk in one dimension, (et events. This feature is important for an understanding of
the probability Py(X) for the sum of N steps he mechanism of the reproducibility of dynamics in a lim-
X=X1+Xz+Xg+ - - + Xy has the same Gaussian distribu- jteq time simulation. The difference between the run | and II

tion p(x) as the individual steps, because a sunNdBaus-  ¢an pe attributed to such characteristics of the cooperative
sians is again a Gaussian. However, Cauchy found other SQimps.

lutions to theN-step addition of random variables. The form
for the probability when it is Fourier transformed from real

- L E. Relationship between fracton excitation
X space to reciprocd space is given by

and Lévy flight dynamics

pn(K) = ex — NKA]. (9) The typical behavior of Li ions in each componénand
B is shown in Fig. 5. A comparison of groups and B
In the Gaussian cas@y(k) is equal to exp—Nk?]. These reveals that without such accelerated dynamics, the walker
random walks with steps with infinite second moments arecannot escape from the nearest-neighbor region, because the
known to be Ley flights. A special example of random walk corresponding backward jump would follow with the high
in one dimension can be written in the form probability in the single jump mechanism. That is, a particle
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FIG. 5. Some examples of displacementf Li ions are plotted
against time during 1-ns run at 700 K. Upper two curves are for the
particles which belong to componeBt and lower ones are for
those which belong to componeAt

moving within a local network can switch from time to time
to a motion along a global network by forward correlated
jumps caused by the cooperative motion. Three-dimensional
connection of the jump paths is efficient to cause the diffu-
sion and conduction when the particle can escape from the
nearest-neighbor region. The particles of comporires-
caping from the localized motion may be trapped in other
sites in the hierarchic manner, since the definition of these
components depends on the choice pf

In Fig. 6, the observed displacement,of each lithium
ion after nth jumps from the position at=0 is plotted (b) e/2n
against the angle of jumpéj measured from the previous
jump vector. Trajectories are measured by the scale of half FIG. 6. The displacement; is plotted againstd, where the
distance of the first peak2.77/2 A) of theg,i;(r). Two trajectories are checked by using the scale leigii is chosen as
components are clearly found in the figure. Behavior ofof the half length of the first maximum af;;.;(r).] (2 at 700 K
square displacement of each lithium io@ can be repre- during the 1-ns run(b) at 2000 K during 16 ps run.

sented by the following equation using the mean angle ofthe ) o )
jump 6, if the jump lengths is a constant: Distribution of displacement of lithium ion; during a 1

ns run is plotted in Fig. 7. The particle with largeis con-
sidered to have repeated the accelerated jumps. The number
r2(n)=n52+2 sisj:ns2 1+(1/n)2 cost;j|. (14) of lithium ions having larger; is found to decrease in a
' fractal manner. It is also found that the contribution of
smaller number of events with largerto total displacement
tends to be larger in a large region. These features are also
expected for the Dey flight dynamics.

This tendency is also observed in Figiby for liquid,
where a low value ofi has been observed while no restricted
0/27=0.2 tends to jump with forward correlation. On the anglg iS. observed. Thgrc_afore, the cause of acce_lergteq dy-

namics is not only the limited angles but also the distribution

other hand, the component at aroufi®==0.5 is for ions f characteristic length. As shown in these figures, the large
located within the nearest-neighbor sites. Therefore the maif}, °. e gth. . 9 ' 9
motion of lithium can be characterized by the component

feature of dynamics in glassy state can be characterized b ina Lav flight d .
the strain of these angles and accelerated dynamics can gowing Ley Tlight dyhamics.
partly characterized by the limited angles.

Since such motions are made at random by the back-

The plot ofr; versus# for eachn distributes randomlyor in

chaotic mannerin a liquid state. Therefore, the mean value
of cos¥ becomes 0. In contrast, the similar plot at 700 K as
shown in Fig. §a) clearly shows the two regions correspond
to two kinds of dynamics. The component at around

F. Universal dynamic response in glass

correlated motions, the second momen{:d) is not infinite In general, the frequency dependence of ionic conductiv-
in this case. Distribution of waiting time distribution, namely ity o of glass can be represented by the sum of a frequency-
the fractal time, may also overcome the divergencéxmy; independent or dc region and a frequency-dependent power-

such a process is namedvyewalks by Shlesingeet al® law region.
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30 e ag Odag_ak’r3 has also argued the power-law behavior in sto-
chastic transport in the trapping diffusion model with a dis-
tribution of the jump rate.

Both features are quite similar to those just observed for
the A component mainly due to single jump motion. Namely,
120 both waiting time distribution and strong back-correlation
< o —> due to fracton excitation contribute to the power-law behav-
- ior in the high-frequency 1) region.

The other approach argued by EllfStis based on a series
conduction process, in which constrained relaxation occurs;
a given site can only relax when a certain event occurs at
. . ] another site with which it is coupled. The component of co-

o ° operative motions of like ions also contributes in this time
region as already discussed, although the microscopic
00 10 0 mechanism suggested by him is not consistent with our re-
(a) ’](’Z\) sults.

On the other hand, in the&2 region, the cooperative
jumps become a main component, which determine the long
time behavior of the mean squared displacement. This com-
r | ponent is considered to contribute to main dc conductance in
a longer time region.

Two stage relaxation processeal( and a2) exist in
many systems. In his review, Funke referred to experimental
evidence of a superposition of two procesé&athough it is
not easy to detegfound in some ion conducting glasses.

Thus the universal dynamic response in glass is explained
by the combination of the contributions of single and coop-
erative jumps. Cooperative motions of atoms have been ob-
served even in the MD simulation for soft core glas¥es,
which have no rigid framework structures. Furthermore, the
universal dynamic response is widely observed in glasses,
semiconductors, and so on. Therefore, the accelerated dy-
namics and the fracton excitation observed in the present
system is not just a special example. The underlying general

FIG. 7. Distribution of displacemenmt of Li (a) at 700 K during  mechanism for the present system can explain various be-
1 ns, (b) at 2000 K during 16 ps. Contribution of to the total  havior in other systems.
displacement is also shown {@). The fitted curves in the form
n~r°, are showr{(a): b=-2.62(b): b=—1.52.
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. IV. CONCLUSION
o=0y4+A0®, (15

where A and s’ are empirical constants. Such behavior is, This is a report on ewder_mce.of the \be_fhght dynamics

called “universal dynamic response” or “universal dielec- ' & 9lass system. Cooperative jump motion causes enhance-

tric response” as far as the permittivity and the conductivityMent of forward correlated jumps leading to accelerated dy-

are concerned. Maass al1° have pointed out that the power namics. On the other hand, single jump in local low-

law in the dynamic response is related to strong backwar@imensional network structure tends to be localized and

correlation among subsequent hops of ions. Fihkas re- shoyvs the “frgcton ex0|t.at|on.” A combination of these. two

viewed the recent development of studies related to the jumpotions explains the universal response of the dynamics ob-

relaxation in solid electrolytes. The dispersive hopping conServed widely in glasses and semiconductors.

ductivity is interpreted in terms of “unsuccessful” forward-

backward hopping sequences. The stretched exponential

function is often regarded as the signature of the “universal ACKNOWLEDGMENTS
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