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Fracton excitation and Lévy flight dynamics in alkali silicate glasses
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We have examined the relaxation behavior of alkali metal ions in lithium metasilicate glasses by means of
molecular dynamics simulation. We have observed a change of slope of the mean squared displacement at
;300 ps. In shorter time regions, localized motion of lithium ions within neighboring sites is observed, which
is caused by the small fracton dimension~fracton excitation!. On the other hand, an accelerated motion of
particles due to cooperative jumps is found, which characterizes the diffusion and conduction mechanisms of
the alkali metal ions in longer time regions. The dynamics of accelerated motion is discussed in relation to
Lévy flight dynamics.@S0163-1829~97!03510-8#
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I. INTRODUCTION

In a previous work, we investigated the relaxation beh
ior of atoms in lithium metasilicate glasses by means of m
lecular dynamics~MD! simulation.1 Now, attention is fo-
cused on the dynamics of lithium ions. We have found t
a relaxation process~in several tens to; 300 ps region! in
Li 2SiO3 glass can be represented by the stretc
exponential-type decayFs(k,t)5Aexp@2(t/t) b#, wheret is
proportional tok 2n. The valuen is known to be 2 in the
Debye-type decay. We have found thatn is less than 2 in a
glassy state. Theb values of Li for Fs(k,t) in the glassy
state is less than 1 as usually observed in glasses, w
means a slowing down of the dynamics. The low value
n suggests that there exists an accelerated diffusion pro
that explains the high conductivity of lithium containin
glass in spite of overall slowing down of the dynamics.

In the present work, we have performed a longer ti
simulation up to the 1 ns region, to clarify the dynamics
decreasingn value, since we can expect that such comp
nents with accelerated dynamics becomes more remark
at the longer time region. The role of cooperative motions
atoms forms a key feature to the understanding of the
namics of diffusion and conduction of alkali metal ions
the long time region.

On the other hand, in short time behavior, the localiz
motion of the ion is dominant. Fractal dimension analy
has been used to characterize these motions, which ar
stricted by the structure of the jump paths. The local a
global structures of the jump path are important to charac
ize the short and long time behavior, respectively.

II. MD SIMULATION

MD simulation has been performed in the same way a
previous studies:1–4 the numbers of the particles in the bas
cube being 144 for Li, 72 for Si, and 216 for O. The volum
was fixed at that derived by the NPT~constant pressure an
temperature! ensemble simulation. The glass transition te
perature is approximately 830 K. A Gilbert-Ida-type pair p
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tential function5 plus anr26 term was used. The paramete
of the potential used have previously been derived on
basis ofab initio MO ~molecular orbital! calculation,4 and
their validity has been checked in the liquid, glassy and cr
tal states under constant pressure conditions. The run up
ns ~250 000 steps! has been performed with the differen
initial configuration from the previously used one.

III. RESULT AND DISCUSSIONS

A. Mean square displacement
and density correlation function

In Fig. 1, the mean squared displacement~MSD! R2(t),
of lithium ions is plotted. The change of the slope at;300
ps is found.

The corresponding density correlation function~self part!
Fs(k,t) is shown in Fig. 2. The function is defined as

Fs~k,t !5K (
j51

Na8

exp$ ik•dr j
a8~ t !%L Y Na8, ~1!

FIG. 1. Log-log plot of the mean square displacement of lithiu
ions at 700 K.
6309 © 1997 The American Physical Society
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wherea8 denotes the species indices, and^•••& denotes an
initial time average. The function also shows the change
slopes at several hundred ps. In region after 200 ps, the
tainedFs(k,t) values for eachk are slightly different from
those obtained previously1 from different runs. The cause o
such differences will be discussed later.

We call hereafter the region before and after 300 psa1
anda2, respectively. In the previous work,1 thea relaxation
process was analyzed at; 300 ps region, and the fitte
parameters thus obtained were for the mixture of sev
components in these two regions.

To calculateR2(t) in the percolation system,7 we average
over all starting points of the walkers that are uniformly d
tributed over all sites. If we start in clusters of fixed sizes,
we can obtainR2s(t) of a random walker on ans-site clus-
ter. The mean radiusRs of all clusters ofs sites is related to
s by

s;Rs
df . ~2!

As long as the distance travelled by the random walker
smaller thanRs , diffusion is anomalous andR2s(t) ;
t2/dw, wheredf and dw are fractal dimensions of the jum
path and of random walk, respectively. Then we can wri

R2s~ t !;t2/dw, ~3!

if t2/dw , Rs
2 , wheredw contains the effect of the contribu

tion of waiting time distribution.
For longer times, the random walker cannot escape ths

cluster, andR2s(t) is bounded byRs
2 :

R2s~ t !;Rs
2 ~4!

if t2/dw . Rs
2

The change of the slope found in Fig. 1~at ;18 Å2)
clearly corresponds to the squared value of the first minim
distance of the pair correlation function of the Li-Li pa
@gLi-Li (r )# ~4.2 Å).

We have divided the walkers into two components. T
walkers in componentA show squared displacement le

FIG. 2. Density correlation function~self-part! of Li at 700 K.
The curves from top to bottom are for wave numbe
k52p/n8(n8510,5,3,2,1.5,1, and 0.8) in the unit of Å21.
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thanRs
2 ~s52! during a 1-ns run. Namely, the component

located within neighboring sites. The other walkers in co
ponentB show squared displacement larger thanRs

2 during
the 1-ns run. Namely, they contribute to the diffusion of lo
time limit.

In Figs. 3~a! and 3~b!, both components are plotted o
linear and log-log scales, respectively. The mean squa
displacement of the componentA shows a maximum and
does not show large contribution to the long time diffusi
behavior. The mean squared displacement ina1 region is the
mean value of those for componentsA andB.

The difference of these two components can be explai
by the structure of the jump path and by the existence of b
single and cooperative jumps. The jump path of lithium h
been found to be low dimensional in localized regions, wh
the path forms three dimensional percolation clusters.3 We
have assumed the behavior in regiona1 is mainly caused by
single jump trapped by low-dimensional localized pa
while the behavior in regiona2 is mainly caused by coop
erative jump diffusion traveling three-dimensional conne
tions of these paths, because the characteristic length
these motions are different.

FIG. 3. ~a! Linear and~b! log-log plot of the mean square dis
placement of lithium ions in componentA ~thin line! andB ~thick
line! during 1 ns at 700 K.
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To confirm this assumption, we have examined the c
tributions of the single jumps and cooperative jumps to
squared displacement. Positions of lithium ions are chec
every 2 ps during arbitrarily chosen 16 ps. The motion w
displacement larger than half distance of the first pe
~2.77/2 Å) of thegLi-Li (r ) is defined as a jump. The jump
simultaneously occurring~or within 2 ps in some cases! at
neighboring sites are judged to be cooperative. Figur
shows an example of cooperative jumps, where three lith
ions jump to the next site at the same time. We have sho
that an activation energy of the second ion in coopera
jumps tends to become smaller than that in the single jum3

In Table I, the numbers of cooperative jumps and the con
bution of these motions to mean squared displacements
given. As seen from this Table, even in a short period,
contribution of cooperative motion to the mean squared
placement is quite large in spite of a small number of eve
of cooperative jumps. We have also confirmed that all io
traveling longer distances than first minimum of t
gLi-Li (r ) are concerned with the cooperative jumps, at le

FIG. 4. Trajectories of the lithium ions showing cooperati
jumps projected on thex-y plane during 16 ps at 700 K.
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in this time scale. Therefore, the ions causing coopera
motion must become the main component in long time
gion.

B. Fractal dimension analysis

The df for the local~0.7; 2.0 Å! region is found to be
less than 1~0.22, obtained from the plot of averaged po
tions of every 0.4 ps during 16 ps run! for this system at 700
K. The value less than 1 means the existence of long
component and the local path of low dimension. Howev
the structure of the jump path of Li in Li2SiO3 in longer
range is found to be three dimensional (dfc52.98, wherec
means for clustering region!. Therefore, localization is no
due to structure of the cluster but designates due to lo
structure of low dimension as discussed below.

The value ofdw is directly obtained from the trajectories3

during 1 ns to avoid the effect of waiting time distribution
the jump motions. The valuesdw for the componentA and
B are found to be 2.83 and 2.47, respectively. Both val
are greater than 2~the value for the free random walk!: A
higher value forA means that the ions in componentA tend
to be trapped more in the low-dimensional structure.

A combination of the largedw and smalldf values means
a localized motion~fracton excitation!. Fractal time distribu-
tion of jump motion1 also contributes to the time-depende
behavior. Namely, both components with long life and w
high back correlated motion contribute to the slowing do
of the decay ofFs(k,t). The combination of the tempora
and spatial mechanism is thoretically treated by Blum
et al.6 These two mechanisms are distinguishable in a mic
scopic point of view. Results of further analysis of the
mechanisms will be shown in a separate paper.

C. Fracton excitation

Low dimension of the jump path causes a localization
the single jump of the particles as follows. Alexander a
Orbach9 have argued the vibrational excitations related to
‘‘fracton dimension.’’

The linear size of the region of sites visited by the walk
afterN steps is
TABLE I. Contribution of cooperative jumps.~a! Number of single and cooperative jumps during arbitrarily chosen 16 ps.~b! Square
displacements of the alkali metal ions during the 16 ps.

~a!
System Type Number of event

Li 2SiO3 ~700 K! Li → Li → 6
Li → Li → Li → 2

5Li →a 1
Li → 17

~b!

Square displacements~Å 2) Ratio (%)
System total Cooperative cooperative to total

Li 2SiO3 ~700 K!

Li 211.3 166.2 79

aComplicated collective motion of 5 ions.
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^R2~N!&1/2;N1/dw. ~5!

The number of visited sitesV(N) becomes

V~N!;RDf;Nd̃ /2, ~6!

where the fracton dimensiond̃ is defined by

d̃5
2df
dw

. ~7!

The probability^P0(t)& of finding the particle at the ori-
gin at timet is given as follows, if the particle was located
the origin at timet50:

^P0~N!&;@V~N!#21. ~8!

Here we have usedN instead oft, to remove the effect of
waiting time distribution of jump motions. Thus the sing
jump cannot have a large contribution to the diffusion n
conduction due to the large back correlation probability.

D. Lévy flight dynamics

On the other hand, the mean squared displacement o
componentB increases sharply in the 50–300 ps region. T
slope in the log-log plot during this period is 1.77, whic
means thatR2(t) for this component increases faster thant
linear. That is, the componentB shows the accelerated dy
namics at least in this time region, which corresponds to
smalln value in the wave number dependence ofFs(k,t).

The accelerated dynamics observed cannot be expla
merely by the overlap of components with differents values.
Such behavior is explained by cooperative motion~jumps in
glassy state! of lithium ions,3 because the path of backwa
jump for an ion is intercepted by the simultaneous jump
an ion which follows.

The behavior of the cooperative jumps seems to be q
similar to that observed in the kicked rotor or in Josephs
junctions, where the accelerated dynamics has been fou8

The dynamics is named after Le´vy. Lévy flights are widely
applied in nonlinear, fractal, chaotic, and turbulent syste
Below is described the essence of the Le´vy flight dynamics.8

Brownian motion is essentially characterized by a Gau
ian probability distribution of the position of the rando
walker after a timet, with the variance proportional tot.
When we consider anN-step random walk in one dimension
the probability PN(X) for the sum of N steps
X5X11X21X31•••1XN has the same Gaussian distrib
tion p(x) as the individual steps, because a sum ofN Gaus-
sians is again a Gaussian. However, Cauchy found othe
lutions to theN-step addition of random variables. The for
for the probability when it is Fourier transformed from re
x space to reciprocalk space is given by

pN~k!5exp@2Nkb#. ~9!

In the Gaussian case,pN~k! is equal to exp@2Nk2#. These
random walks with steps with infinite second moments
known to be Le´vy flights. A special example of random wal
in one dimension can be written in the form
r
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p~x!5
l21

2l (
j50

`

l2 j~d~x,1bj !1d~x,2bj !!, ~10!

where d (x,y) means the Kroneckerd. Jumps of size 1,b,
b2, and so on can occur, but jumps of an order of magnitu
longer in baseb occur an order of magnitude less often
basel. Taking the Fourier transform ofp(x), we obtain the
Weierstrass function, namely,

p̃~k!5
l21

2l (
j50

`

l2 jcos~bjk!. ~11!

For the random walk process, the final result in the fo

p̃~k!;exp@2Nka8#, ~12!

with a85ln l/ln b is obtained, wherêx2& becomes infinite
for a8,2. The form is the same as in Eq.~9!. The value
a8 represents the fractal dimension of a random walk pa

In random-work displacement in Brownian motion grow
only in proportion to the square root of time. However, t
displacement in Le´vy flights grows faster than Brownian mo
tion, as just observed for the componentB. The smaller
value ofdw of componentB thanA can also be explained b
the contribution of smalldw value of Lévy flight dynamics.

When the cooperative jumps occur, the path of ba
correlated jump for the first ion is intercepted by the seco
ion, which occupies the original site of the first ion. Thus t
component of cooperative jumps should have a larger
ward correlation probability than the single jumps. Thus t
acceleration of the dynamics is explained by the existenc
the cooperative jumps.

As seen in Table I, the cooperative jumps occur less
quently if a larger number of lithium ions are involved.
nearly linear line~with slope of21.8! is obtained from the
log-log plot of this relation. This result shows that the coo
erative jumps on longer scales occur in a fractal manne
the characteristic length ofn-correlated jumps isbn, the situ-
ation is just the same as discussed above for the specia
ample, whereb is the characteristic length for the sing
jump. Equation~13! is obtained by applying an inverse Fou
rier transform to Eq.~12!:

pn~x!;const3n/x11a8. ~13!

As pointed out by Shlesingeret al., the sums witha8 , 2
are dominated by their largest terms, hence by rare inter
tent events. This feature is important for an understanding
the mechanism of the reproducibility of dynamics in a lim
ited time simulation. The difference between the run I and
can be attributed to such characteristics of the coopera
jumps.

E. Relationship between fracton excitation
and Lévy flight dynamics

The typical behavior of Li ions in each componentA and
B is shown in Fig. 5. A comparison of groupsA and B
reveals that without such accelerated dynamics, the wa
cannot escape from the nearest-neighbor region, becaus
corresponding backward jump would follow with the hig
probability in the single jump mechanism. That is, a parti
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moving within a local network can switch from time to tim
to a motion along a global network by forward correlat
jumps caused by the cooperative motion. Three-dimensio
connection of the jump paths is efficient to cause the dif
sion and conduction when the particle can escape from
nearest-neighbor region. The particles of componentB es-
caping from the localized motion may be trapped in oth
sites in the hierarchic manner, since the definition of th
components depends on the choice oft0.

In Fig. 6, the observed displacement,r i of each lithium
ion after nth jumps from the position att50 is plotted
against the angle of jump (u) measured from the previou
jump vector. Trajectories are measured by the scale of
distance of the first peak~2.77/2 Å) of thegLi-Li (r ). Two
components are clearly found in the figure. Behavior
square displacement of each lithium ionr2 can be repre-
sented by the following equation using the mean angle of
jump u, if the jump lengths is a constant:

r2~n!5ns21(
i , j

sisj5ns2S 11~1/n!( cosu i j D . ~14!

The plot ofr i versusu for eachn distributes randomly~or in
chaotic manner! in a liquid state. Therefore, the mean val
of cosu becomes 0. In contrast, the similar plot at 700 K
shown in Fig. 6~a! clearly shows the two regions correspo
to two kinds of dynamics. The component at arou
u/2p50.2 tends to jump with forward correlation. On th
other hand, the component at aroundu/2p50.5 is for ions
located within the nearest-neighbor sites. Therefore the m
feature of dynamics in glassy state can be characterize
the strain of these angles and accelerated dynamics ca
partly characterized by the limited angles.

Since such motions are made at random by the ba
correlated motions, the second moment of^x2& is not infinite
in this case. Distribution of waiting time distribution, name
the fractal time, may also overcome the divergence in^x2&;
such a process is named Le´vy walks by Shlesingeret al.8

FIG. 5. Some examples of displacementr i of Li ions are plotted
against time during 1-ns run at 700 K. Upper two curves are for
particles which belong to componentB, and lower ones are fo
those which belong to componentA.
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Distribution of displacement of lithium ionr i during a 1
ns run is plotted in Fig. 7. The particle with larger i is con-
sidered to have repeated the accelerated jumps. The nu
of lithium ions having larger i is found to decrease in a
fractal manner. It is also found that the contribution
smaller number of events with largerr i to total displacement
tends to be larger in a larger i region. These features are als
expected for the Le´vy flight dynamics.

This tendency is also observed in Fig. 7~b! for liquid,
where a low value ofn has been observed while no restrict
angle is observed. Therefore, the cause of accelerated
namics is not only the limited angles but also the distribut
of characteristic length. As shown in these figures, the la
motion of lithium can be characterized by the compon
showing Lévy flight dynamics.

F. Universal dynamic response in glass

In general, the frequency dependence of ionic conduc
ity s of glass can be represented by the sum of a frequen
independent or dc region and a frequency-dependent po
law region.

e

FIG. 6. The displacementr i is plotted againstu, where the
trajectories are checked by using the scale lengthl. @l is chosen as
of the half length of the first maximum ofgLi-Li (r ).# ~a! at 700 K
during the 1-ns run,~b! at 2000 K during 16 ps run.
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s5sdc1Avs8, ~15!

whereA and s8 are empirical constants. Such behavior
called ‘‘universal dynamic response’’ or ‘‘universal diele
tric response’’ as far as the permittivity and the conductiv
are concerned. Maasset al.10 have pointed out that the powe
law in the dynamic response is related to strong backw
correlation among subsequent hops of ions. Funke11 has re-
viewed the recent development of studies related to the ju
relaxation in solid electrolytes. The dispersive hopping c
ductivity is interpreted in terms of ‘‘unsuccessful’’ forward
backward hopping sequences. The stretched expone
function is often regarded as the signature of the ‘‘univer
dynamic response.’’ The relationship between the pow
laws and the stretched exponential behavior for the sim
jump relaxation model is also discussed by Funke.11

Elliott12 has argued that there are two general mechani
that can lead to an ac conductivity exhibiting power-law f
quency dependence. The first is a parallel conduction p
cess, in which the ionic hopping events causing relaxa
are independent and have a distribution of relaxation tim

FIG. 7. Distribution of displacementr i of Li ~a! at 700 K during
1 ns, ~b! at 2000 K during 16 ps. Contribution ofr i to the total
displacement is also shown in~a!. The fitted curves in the form
n;r i

b , are shown@~a!: b522.62 ~b!: b521.52#.
rd
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tial
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Odagaki13 has also argued the power-law behavior in s
chastic transport in the trapping diffusion model with a d
tribution of the jump rate.

Both features are quite similar to those just observed
theA component mainly due to single jump motion. Name
both waiting time distribution and strong back-correlati
due to fracton excitation contribute to the power-law beh
ior in the high-frequency (a1) region.

The other approach argued by Elliott12 is based on a serie
conduction process, in which constrained relaxation occ
a given site can only relax when a certain event occurs
another site with which it is coupled. The component of c
operative motions of like ions also contributes in this tim
region as already discussed, although the microsco
mechanism suggested by him is not consistent with our
sults.

On the other hand, in thea2 region, the cooperative
jumps become a main component, which determine the l
time behavior of the mean squared displacement. This c
ponent is considered to contribute to main dc conductanc
a longer time region.

Two stage relaxation processes (a1 and a2) exist in
many systems. In his review, Funke referred to experime
evidence of a superposition of two processes~although it is
not easy to detect! found in some ion conducting glasses.

Thus the universal dynamic response in glass is explai
by the combination of the contributions of single and coo
erative jumps. Cooperative motions of atoms have been
served even in the MD simulation for soft core glasses14

which have no rigid framework structures. Furthermore,
universal dynamic response is widely observed in glas
semiconductors, and so on. Therefore, the accelerated
namics and the fracton excitation observed in the pres
system is not just a special example. The underlying gen
mechanism for the present system can explain various
havior in other systems.

IV. CONCLUSION

This is a report on evidence of the Le´vy flight dynamics
in a glass system. Cooperative jump motion causes enha
ment of forward correlated jumps leading to accelerated
namics. On the other hand, single jump in local lo
dimensional network structure tends to be localized a
shows the ‘‘fracton excitation.’’ A combination of these tw
motions explains the universal response of the dynamics
served widely in glasses and semiconductors.
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