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Moving breathers in a chain of magnetic pendulums
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We describe an experimental model consisting of an anharmonic chain of magnetic pendulums acting under
gravity. This is a simple paradigm for the study ofmoving breathersin a discrete system. These highly mobile
and strongly localizeddynamically stableoscillating states are observed experimentally and studied both
analytically and numerically.@S0163-1829~97!03810-1#
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I. INTRODUCTION

Nonlinear localized excitations with internal oscillation
called breathers, have been exhibited in a number of mo
nonlinear systems. Unlike the more studied topological s
tons, breathers need no activation energy for their crea
and this circumstance explains their importance for bridg
the gap between the highly nonlinear topological mod
~very stable! and the linear phonon modes easily excited
thermal excitations. Generally, in nonintegrable systems
known that localizedstationarybreather modes do not exis
in the continuum limit and the discreteness is an import
feature for explaining their existence and stability.1,2 How-
ever few exact results are known formovingbreathers which
form the main subject of this paper.

There is sometimes some confusion between the w
‘‘soliton’’ and ‘‘breather,’’ so a few words of explanation
may be in order. Single solitons take the form of a sin
bell-shaped or tanh-shaped pulse in one of the field variab
Stationary breathers normally take the form of a bell-sha
pulse whose amplitude is a periodic function of time. Mo
ing breathers are a nonlinear version of the well-known
ear wave packet, with theenvelopeof the ‘‘carrier’’ wave
having a bell shape. Thus a moving breather is often refe
to as an envelope soliton. In some studies such as the
linear Schro¨dinger equation, the practice has been to drop
‘‘envelope’’ part of the name and refer to modulated puls
simply as ‘‘solitons’’ where ‘‘breathers’’ would be more co
rect. A strongly localized moving breather~such as the one
discussed in this paper! will have only one or two wave-
lengths of the carrier wave within the half width of the e
velope.

Recent studies of nonlinear localized excitations
homogeneous3 lattices ~or with impurities4! have attracted
interest to these breather modes. In addition to the impor
discovery of the effect of discreteness, such excitations h
become very important in the last few years because o
new mechanism of growth: it has been shown that in non
ear lattices the collision of such localized excitations co
give rise to localization of energy5–7 and therefore such
large-amplitude excitations could be found in real syste
despite nonzero friction.

We should stress that although breather modes have
550163-1829/97/55~10!/6304~5!/$10.00
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heavily studied in numerical simulations of nonlinear latti
models, there is no way of observing them directly in atom
systems, so the evidence for their existence is indirect. T
paper contains a detailed account of the observation and
perimental study of breathers; their existence in discrete s
Gordon~SG! models has been known for some time.8

Our motivation in this study is the possibility that movin
breathers are important for describing the transfer of ene
from atoms or ions moving at relatively high speed to ato
in a solid or crystal with which they collide. This intere
arose from the discovery of tracks in doped muscovite m
crystals that could be understood in terms of the brea
modes.9 These tracks occurred under meta-stable conditi
induced by supercooling when perturbations of the latt
could trigger irreversible phase transitions.10 Effectively
mica acts as a 300 million year old particle detector, in ma
cases a more cost-effective system for study than more m
ern detectors.

The transfer of energy from highly energetic atoms
ions to a crystal underlies many processes, often of indus
importance. Although usually occurring at a surface, as
blades in a gas turbine or on a space vehicle shield, it
also occur within the bulk material, as with neutrons in
nuclear reactor. As a result, the atoms in a solid gain ene
with consequent rise in the bulk temperature, which can
understood in terms of phonons. However, there is a ga
detailed understanding of the energy processes coupling
energetic incident particles, with energies in the range 1
100 eV or more, to phonons with energies of 0.01 eV or le
This also spans the chemical binding energy range. Diffic
ties arise from the nonlinear nature of the particle inter
tions. The initial interaction between an energetic atom
ion and the lattice is essentially a two-body collisional pro
lem but the subsequent transient behavior of the lattice
many body problem with its attendant difficulties of analys
Moreover, all the interactions involve nonlinear forces a
this fact suggests that the equations for energy trans
might have solitonlike or breatherlike solutions.

In collisional processes the conservation of energy a
momentum suggests some type of solitons/breathers m
be produced. However, until the mica study, there was
direct evidence for their existence between the point of th
6304 © 1997 The American Physical Society
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55 6305MOVING BREATHERS IN A CHAIN OF MAGNETIC PENDULUMS
supposed creation and final demise. Detection in fligh
nontrivial as solitons/breathers are uncharged and propa
with little or no loss of energy.

II. COUPLED MAGNETIC PENDULUMS

To study the conditions leading to the tracks in mic
molecular dynamics methods were used to determine in
particle forces as a function of position in the lattice. It w
found that the tracks were associated with particular crys
line directions in the lattice. The mechanism for select
these particular one-dimensional~1D! motions in a two-
dimensional crystal has been studied in hard sph
models.11

In the preferred directions, the nonlinearity of potential
expressed asC(r )5ar 21br 31dr 4, wherea50.8 eV/Å2,
b50.38 eV/Å3, andd50.14 eV/Å4 ~see Refs. 9 and 12!. It
is this one-dimensional motion we concentrate on in
present paper.

To study the dynamical behavior in these preferred dir
tions, an analogue model of magnetic pendulums was c
structed with similar nonlinearity of force as in the musc
vite system. The model consists of eighteen short dip
magnets freely suspended by rigid struts from pivots spa
at equal intervals to form a linear chain. In this model t
struts provide a centralizing restraint analogous to the in
ence of the surrounding lattice which constrains atoms m
ing along the chain from one unit cell to the next. The gra
tational potential mimics the onsite potential in the mi
caused by layers above and below the 2D potassium sh
The dipole-dipole interactions between the magnetic pen
lums approximates in some way the atomic forces betw
the K atoms.

Experiments with this model showed that large impuls
rapidly evolved to breatherlike solitons but reflections fro
the ends rapidly degraded the signal. To overcome this p
lem, a second model was constructed also with eight
magnets but arranged in a circle~see Fig. 1!, so that pertur-
bations could propagate around the circular chain unimpe
by ends. To initiate a disturbance, one magnet was held fi
and an impulse was given to the next magnet, the fixed m
net being released before the propagating disturba
reached it. The response of the model to various star
conditions was recorded by sequential flash photogra
~taken from above the circular chain! from which instanta-
neous displacement of the magnets from their equilibri
positions could be approximately determined.

We stress that this model and the results we report h

FIG. 1. A circular chain of magnetic pendulums.
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are relatively crude~the model was constructed in the first
author’s garage without any technical or financial support!.
For example, there is a fair bit of friction at the pivots, and
the need to go to a circular system to avoid boundary effec
has not been properly modeled in the numerical study. Ne
ertheless the reasonable overall agreement between the
and experiment is encouraging, and we hope to produce
more accurate and detailed study when circumstances allo

The general behavior of impulses in the model strong
suggested resonant coupling between adjacent particles
the lattice leading to nearly antiphase motions. Small im
pulses spread at a constant speed, the resulting oscillati
having maximum amplitude near the impulse site. Large im
pulses rapidly evolved into compact wave packets conce
trated over a small number of sites which propagated free
over many lattice sites before becoming degraded~see Fig.
2!. It is these objects that we term breathers. Since th
breather traversed the ring several times between pho
graphs, in plotting Fig. 2 we represent the circular chain b
its linear analog, ignoring the complication that the low
amplitude ‘‘radiation’’ will propagate round the ring and in-
terfere with the primary pulse. This effect eventually leads t
degradation of the primary pulse as shown in the figure
larger times. In order to emphasize the breather against t
linear background modes we have plotted thesquareof the
horizontal component of the displacementdn5 lsinun of each
pendulum in Fig. 2. Herel is the pendulum length andun is
the angular deviation of each pendulum. The average velo
ity v54.83 sites/sec is represented on the plot by a dott
line.

Despite many attempts it was found to be virtually impos
sible to generate any other type of disturbance, in particula
a Toda-like soliton. Further study showed that the intern
structure of breathers moves with a phase velocity muc
greater than the group velocity.

Experiments explored the evolution of breathers from s
multaneous impulses to several adjacent particles in t
chain and from multiple impulses to the first particle. The

FIG. 2. The experimental observation of the breather propag
tion in the chain of magnetic pendulums with the initial excitation
u2(0).0.1 and the spacinga54.0 cm.
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6306 55RUSSELL, ZOLOTARYUK, EILBECK, AND DAUXOIS
model also demonstrated the stability of breathers aga
small random defects or perturbations. Other experime
with this model demonstrated the creation of oppositely
rected pairs of breathers within the chain and the creatio
stationary breathers, the survival of oppositely direc
breathers after their mutual interactions, their reflection fr
boundaries and discontinuities. Much of this behavior
characteristic of integrable systems, but it is emphasized
that these breathers will almost certainly not satisfy ex
solitonic conditions in connection with their long-term stru
tural and lateral stability or in their collisional properties.

Such physical models are very instructive but they can
easily yield quantitative results. Hence, it is difficult to e
plore in detail the behavior for different impulse strengt
and for long propagation paths. To make further studies
breather behavior in this mechanical model, it is necessar
use analytical and numerical methods.

III. THEORETICAL MODEL

Now we develop the dynamical theory of this model. A
shown in Fig. 3~the magnets move in the plane, tangentia
the circular backbone!, the chain parameters are the spac
a, the pendulum lengthl , massM , and the magnetic momen
m5mm0rId l. Here m054p31027 H/m .1.25731026

H/m is the magnetic constant,m51 is the magnetic perme
ability of vacuum. The massesM are subjected to the grav
tational field with the constantg.9.8 N/kg. The size of the
magnet is assumed to be small compared to the lengthl . The
Hamiltonian of this system is~we neglect frictional effects
and the effect of the curvature of the chain!

H5(
n
En5(

n
F pn22M

1U~un ,un11!1V~un!G , ~1!

where En is the energy per thenth site, pn5Ml u̇n is the
conjugate momentum andun is the angle deviation from the
equilibrium position of thenth pendulum~see Fig. 3!, and
the dot denotes the differentiation with respect to timet.
Here the intersite potentialU is given in terms of the

FIG. 3. The schematic representation of the model of interac
magnetic pendulums.
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dipole-dipole interaction of adjacent magnets, i.
U(un ,un11)5D(mn ,mn11 ,r n), where

r n
25 l 2~cosun112cosun!

21@a1 l ~sinun112sinun!#
2

~2!

is the distance between thenth and (n11)th magnets. The
interaction between two magnetic dipolesm1 andm2 with a
separationr is defined by

D~m1 ,m2 ,r !5
1

4pm0
F ~m1•m2!23~m1•n!~m2•n!

r 3 G .
~3!

Here n5r /r is the unit vector along the radius-vectorr
which connects the magnets. The last term in the Ham
tonian~1! is the on-site potential for each pendulum resulti
from its interaction with the gravitational field, so tha
V(u)5Mgl(12cosu).

Next, the dipole-dipole interaction can be rewritten
terms of the anglesun as follows:

U~un ,un11!5
D0a

3@cos~un112un!23cosancosbn#

r n
3 ,

~4!

where the constant D0 is defined by
D05D(m1 ,m2 ,a)uu150,u2505m2/4pm0a

3, m5umu. The

anglesan andbn are given in terms ofun andun11 as

cosan5
~mn•n!

m
5
sinun2h@12cos~un112un!#

r n /a
,

cosbn5
~mn11•n!

m
5
sinun111h@12cos~un112un!#

r n /a
,

~5!

whereh5 l /a.
The soliton dynamics was observed experimentally in

circular chain consisting of 18 magnetic pendulums w
l50.118 m. The magnitude of the dipole magnetic mom
m cannot be measured directly, so the way to determine
to measure the frequency of small-amplitude oscillations o
pendulum when its nearest neighbors are fixed. To this e
we consider the linearized version of equations of moti
Expanding all the terms in the Hamiltonian~1! up to the
second order, we find

ün52~a01g/ l !un2a1~un211un11!, ~6!

where a052(12h221)D0 /Ml 2 and a1522(1
16h2)D0 /Ml 2. Then the linear dispersion law of smal
amplitude wavesun(t)5u0exp@i(nq2vt)# is given by

v25v0
222a1~12cosq!, v0

25~Mgl26D0!/Ml 2,
~7!

whereq is the wave number,uqu<p.
Consider now the oscillations of thenth pendulum in Eq.

~6! when the (n21)th and (n11)th neighbors are fixed, i.e.
un215un1150. Then the frequency of these oscillations c
easily be calculated and, as a result, we obtain

g
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v25
g

l
1

12l 22a2

2pm0Ml 2a5
m2. ~8!

The magnitude of the dipole momentm was calculated from
Eq. ~8! by measuring the frequencyv. Thus, for the distance
a56.0 cm the period of oscillations isT50.58760.001 sec
and therefore we foundm53.7731027 HA m.

IV. NUMERICAL SIMULATIONS

We carried out numerical studies of the time evolution
the localized excitation in the chain of pendulums by us
the standard fourth-order Runge-Kutta method to integ
the dynamical equations resulting from the Hamiltonian~1!.
In order to exhibit the breather uncluttered with radiation,
worked with a long chain with fixed boundary condition
The numerical simulations of the formation and propagat
of breather excitations have been carried out at the s
initial conditions as in the experiments during the time of t
order of 200 periods of breather oscillations. Initially th
conditions were a deflection of the second pendulum (u2),
and we observed the propagation of a narrow pulse w
relatively permanent shape and velocity~see Fig. 4!. The plot
shows the time dependence of the dimensionless total en
E(n,t)5En(t)/D0 per the nth site against dimensionles
time t5AD0 /Ml 2t. We varied the spacinga and calculated
the breather velocityv. The results of these simulations a
presented in Table I. The experimental and computatio
values of the velocityv are in reasonable agreement, cons
ering the variability of the magnetic and mechanical prop

FIG. 4. The time evolution of the breather energy dens
E(n,t) in the chain when only the second pendulum is disturb
u2(0)50.1, h52.95 (a54.0 cm!. ~Inset: amplitude of breather a
t520.!

TABLE I. The soliton velocities for different values ofh.

u2(0) h5 l /a g5Mgl/D0 v, sites/sec
Experimental Numerical

0.1 1.18 1100 1.75 2.01
1.87 276 2.51 4.23
2.95 71 4.83 5.20
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ties along the chain, the neglect of friction, and the appro
mation of dipole-dipole interactions when the separat
lengths are comparable with the size of the magnets. Wi
larger initial deflection in the numerical simulation, we o
tained a cleaner breather profile, as shown in Fig. 5.

V. A CONNECTION WITH AN INTEGRABLE DISCRETE
MODEL

Now we consider some analytical approximations wh
enable us to make contact with an integrable discrete mo
the Ablowitz-Ladik model.13 To study large-amplitude
waves we need to keep nonlinear terms in the Hamilton
~1!. First, we can expand all the expressions in the Ham
tonian ~1! up to the fourth order. As a result, after length
but straightforward calculations we obtain a truncated v
sion of the Hamiltonian~1! and derive the following equa
tions of motion:

ün1~a01g/ l !un1a1~un211un11!1b1@un~un212un11!

1~un11
2 2un21

2 !/2#1~c02g/6l !un
31c1@un

2~un21

1un11!1~un21
3 1un11

3 !/3#1c2un~un21
2 1un11

2 !.0,

~9!

wherea0 anda1 have been defined above while the rema
ing coefficients are b1512h(115h2)D0 /Ml 2, c0
5(1/3297h21120h4)D0 /Ml 2, c15(1212h22180h4)
3D0 /Ml 2, and c25(1/21129h2/21180h4)D0 /Ml 2. We
use the rotating wave approximation14 and look for solutions
to Eq.~9! in the formun(t)5fn(t)exp(2iv0t) 1 c.c., where
fn(t) is the complex amplitude of large-amplitude pendulu
oscillations. Applying this approximation, i.e., keeping
Eq. ~9! only terms with exp(2iv0t), and assuming tha
uḟn(t)u!v0ufnu, Eq. ~9! can be reduced to a perturbed ve
sion of the Ablowitz-Ladik equation. The coefficients of th

:

FIG. 5. The time evolution of the breather energy dens
E(n,t) in the chain when only the second pendulum is disturb
u2(0)50.25,h51.87 (a56.31 cm!. ~Inset: amplitude of breathe
at t520.!
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equation depend on the perturbative terms we choose. W
them in such a way that the perturbative terms are negligi
Thus, if the amplitudesfn(t)’s vary smoothly from site to
site in the chain, then omitting the perturbative terms,
Ablowitz-Ladik equation takes the following approxima
form:

i ḟn1s~fn1122fn1fn21!1
l

2
ufnu2~fn211fn11!50,

~10!

with the coefficientss52a1/2v0 and l5(Mgl224D0)/
8Ml 2v0. These explicit values were the main goal of t
analytical calculations. Having them, one can easily write
resulting approximate breather solution of Eq.~9! for large-
amplitude pendulum oscillations

un~ t !.u0sechS n2vt
L D cos~nq2vt !. ~11!

Note, that the amplitudeu0 and wave numberq are arbitrary
parameters. Hereu0 and the breather widthL are related by

1

L
5 lnFu0A2l

s
1A2u0

2l

s
11G . ~12!

The group~breather! velocity v and the carrier frequenc
v are given by

v52sLsinh~1/L !sinq,

v5v012s@12cosh~1/L !cosq#. ~13!

At least, in the continuum limit (L@a) the approximate so
lution of Eq. ~9! given by Eqs.~11!–~13! is valid. However,
we have also checked this approximation numerically in
case of narrower solutions whenL/a is small. To this end,
we used Eqs.~11!–~13! as initial condition for simulations o
the equations of motion. As a result, we obtained sta
breathers propagating with constant shape and velocity,
again there was a good correspondence with the experim
In this approximation we obtained a clear breather solut
which separates itself from the parasitic oscillations, as
can see from the plot of the energy distributionE(n,t) in
Fig. 6.

VI. CONCLUSION

In this paper we have presented a nonlinear model wh
seems to be the first experimental example which visu
e
ev
fit
e.

e

e

e
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nd
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ly

demonstrates stable moving breathers~envelope solitons! in
anharmonic lattices with in-line on-site potentials. This typ
of nonlinear excitations is different from the well-known su
personic Toda-like solitons which describe the propagatio
of a lattice deformation of a constant profile. Finally, we
wish to point out that the mechanism of moving breathe
should be important in various physical15 and industrial pro-
cesses since it allows the transport of vibrational energy ov
long distances by nondiffusional mechanisms. The mod
has interest in its own right as a pedagogical tool in the stu
of nonlinear lattices.
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FIG. 6. The time evolution of the breather energy densit
E(n,t) in the chain with the Ablowitz-Ladik initial conditions
~11!–~13!: u050.1,h51.87 (a56.31 cm!, q51.5.
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