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Moving breathers in a chain of magnetic pendulums
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We describe an experimental model consisting of an anharmonic chain of magnetic pendulums acting under
gravity. This is a simple paradigm for the studyrobving breatherén a discrete system. These highly mobile
and strongly localizeddlynamically stableoscillating states are observed experimentally and studied both
analytically and numerically{.S0163-182€07)03810-1

[. INTRODUCTION heavily studied in numerical simulations of nonlinear lattice
models, there is no way of observing them directly in atomic
Nonlinear localized excitations with internal oscillations, systems, so the evidence for their existence is indirect. This
called breathers, have been exhibited in a number of modgdaper contains a detailed account of the observation and ex-
nonlinear systems. Unlike the more studied topological soliperimental study of breathers; their existence in discrete sine-
tons, breathers need no activation energy for their creatioordon(SG) models has been known for some tifhe.
and this circumstance explains their importance for bridging Our motivation in this study is the possibility that moving
the gap between the highly nonlinear topological modesreathers are important for describing the transfer of energy
(very stable and the linear phonon modes easily excited byfrom atoms or ions moving at relatively high speed to atoms
thermal excitations. Generally, in nonintegrable systems it isn a solid or crystal with which they collide. This interest
known that localizedstationarybreather modes do not exist arose from the discovery of tracks in doped muscovite mica
in the continuum limit and the discreteness is an importangrystals that could be understood in terms of the breather
feature for explaining their existence and stabitifyHow-  modes® These tracks occurred under meta-stable conditions
ever few exact results are known fmovingbreathers which  jnquced by supercooling when perturbations of the lattice
form the main subject of this paper. ould trigger irreversible phase transitiofls Effectively
__There is sometimes some confusion between the Worgnica acts as a 300 million year old particle detector, in many
soliton” and “breather,” so a few words of explanation cases a more cost-effective system for study than more mod-

may be in order. Single solitons take the form of a smgleern detectors.

bell-shaped or tanh-shaped pulse in one of the field variables. The transfer of energy from highly energetic atoms or

Stationary breathers normally take the form of a bell-shaped : tal underli ft f industrial
pulse whose amplitude is a periodic function of time. Mov- lons 10 a crystal underlies many processes, often of inaustria

ing breathers are a nonlinear version of the well-known lin-mMPortance. Although usually occurring at a surface, as on
ear wave packet, with thenvelopeof the “carrier” wave blades in a gas turbine or on a space vehlcle shield, |.t can
having a bell shape. Thus a moving breather is often referre@!S0 occur within the bulk material, as with neutrons in a
to as an envelope soliton. In some studies such as the noRuUclear reactor. As a result, the atoms in a solid gain energy
linear Schidinger equation, the practice has been to drop th&vith consequent rise in the bulk temperature, which can be
“envelope” part of the name and refer to modulated pulsesinderstood in terms of phonons. However, there is a gap in
simply as “solitons” where “breathers” would be more cor- detailed understanding of the energy processes coupling the
rect. A strongly localized moving breath@uch as the ones energetic incident particles, with energies in the range 1 to
discussed in this papewill have only one or two wave- 100 eV or more, to phonons with energies of 0.01 eV or less.
lengths of the carrier wave within the half width of the en- This also spans the chemical binding energy range. Difficul-
velope. ties arise from the nonlinear nature of the particle interac-
Recent studies of nonlinear localized excitations intions. The initial interaction between an energetic atom or
homogeneouslattices (or with impuritie€) have attracted ion and the lattice is essentially a two-body collisional prob-
interest to these breather modes. In addition to the importarlem but the subsequent transient behavior of the lattice is a
discovery of the effect of discreteness, such excitations haveany body problem with its attendant difficulties of analysis.
become very important in the last few years because of Moreover, all the interactions involve nonlinear forces and
new mechanism of growth: it has been shown that in nonlinthis fact suggests that the equations for energy transport
ear lattices the collision of such localized excitations couldmight have solitonlike or breatherlike solutions.
give rise to localization of enerdy’ and therefore such In collisional processes the conservation of energy and
large-amplitude excitations could be found in real systemsnomentum suggests some type of solitons/breathers might
despite nonzero friction. be produced. However, until the mica study, there was no
We should stress that although breather modes have beélirect evidence for their existence between the point of their
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supposed creation and final demise. Detection in flight is
nontrivial as solitons/breathers are uncharged and propagate ®

with little or no loss of energy. 0 : . ; . s ; A : :
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IIl. COUPLED MAGNETIC PENDULUMS

. . . . FIG. 2. The experimental observation of the breather propaga-
To study the conditions leading to the tracks in mica,tion in the chain of magnetic pendulums with the initial excitation
molecular dynamics methods were used to determine intefg,(0)~0.1 and the spacing=4.0 cm.

particle forces as a function of position in the lattice. It was
found that the tracks were associated with particular crystal- . . .
line directions in the lattice. The mechanism for selecting®® rel,atlvely crud_dthe model was constru_cted n the first
these particular one-dimension&lD) motions in a two- 2uthor's garage without any technical or financial support
dimensional crystal has been studied in hard sphergor example, there is a fair bit of friction at the pivots, and
modelst! the need to go to a circular system to avoid boundary effects
In the preferred directions, the nonlinearity of potential ishas not been properly modeled in the numerical study. Nev-
expressed a¥ (r)=ar?+ Br3+ or*, wherea=0.8 eV/A2,  ertheless the reasonable overall agreement between theory
B=0.38 eV/A%, and5=0.14 eV/A* (see Refs. 9 and J2It  and experiment is encouraging, and we hope to produce a
is this one-dimensional motion we concentrate on in thanore accurate and detailed study when circumstances allow.
present paper. The general behavior of impulses in the model strongly
To study the dynamical behavior in these preferred direcsuggested resonant coupling between adjacent particles in
tions, an analogue model of magnetic pendulums was corthe lattice leading to nearly antiphase motions. Small im-
structed with similar nonlinearity of force as in the musco-pulses spread at a constant speed, the resulting oscillations
vite system. The model consists of eighteen short dipoldaving maximum amplitude near the impulse site. Large im-
magnets freely suspended by rigid struts from pivots spacegulses rapidly evolved into compact wave packets concen-
at equal intervals to form a linear chain. In this model thetrated over a small number of sites which propagated freely
struts provide a centralizing restraint analogous to the influover many lattice sites before becoming degragese Fig.
ence of the surrounding lattice which constrains atoms mov2). It is these objects that we term breathers. Since the
ing along the chain from one unit cell to the next. The gravi-breather traversed the ring several times between photo-
tational potential mimics the onsite potential in the micagraphs, in plotting Fig. 2 we represent the circular chain by
caused by layers above and below the 2D potassium sheeits linear analog, ignoring the complication that the low-
The dipole-dipole interactions between the magnetic penduamplitude “radiation” will propagate round the ring and in-
lums approximates in some way the atomic forces betweeterfere with the primary pulse. This effect eventually leads to
the K atoms. degradation of the primary pulse as shown in the figure at
Experiments with this model showed that large impulsedarger times. In order to emphasize the breather against the
rapidly evolved to breatherlike solitons but reflections fromlinear background modes we have plotted sloareof the
the ends rapidly degraded the signal. To overcome this prokiorizontal component of the displacemeqt=1siné, of each
lem, a second model was constructed also with eighteependulum in Fig. 2. Heré is the pendulum length and, is
magnets but arranged in a cirdleee Fig. 1, so that pertur- the angular deviation of each pendulum. The average veloc-
bations could propagate around the circular chain unimpedeity v=4.83 sites/sec is represented on the plot by a dotted
by ends. To initiate a disturbance, one magnet was held fixelihe.
and an impulse was given to the next magnet, the fixed mag- Despite many attempts it was found to be virtually impos-
net being released before the propagating disturbancgble to generate any other type of disturbance, in particular,
reached it. The response of the model to various starting Toda-like soliton. Further study showed that the internal
conditions was recorded by sequential flash photographstructure of breathers moves with a phase velocity much
(taken from above the circular chaifrom which instanta- greater than the group velocity.
neous displacement of the magnets from their equilibrium Experiments explored the evolution of breathers from si-
positions could be approximately determined. multaneous impulses to several adjacent particles in the
We stress that this model and the results we report herehain and from multiple impulses to the first particle. The
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dipole-dipole interaction of adjacent magnets, i.e.,
a U(6n,0h+1)=D(m,,mp,q,r,), Where

/ r2=12(costy,,,—co,)2+[a+1(sind,, ,—sinb,)]?
% o 2
is the distance between tmth and (i+1)th magnets. The

interaction between two magnetic dipol®g andm, with a
separatiorr is defined by

1 | (my-my)—3(my-n)(my-n)

D(ml’mz'r):4w,uo r3
- . (€)
> g Here n=r/r is the unit vector along the radius-vector
a, Be which connects the magnets. The last term in the Hamil-

tonian(l) is the on-site potential for each pendulum resulting
from its interaction with the gravitational field, so that
Y(6)=Mgl(1-coss).

Next, the dipole-dipole interaction can be rewritten in

terms of the angle®, as follows:
model also demonstrated the stability of breathers against g

FIG. 3. The schematic representation of the model of interactin
magnetic pendulums.

small random defects or perturbations. Other experiments Doa3[cog b, 1— 0,,) — 3C0S¥,COB, ]
with this model demonstrated the creation of oppositely di- U(6,,60,.1)= 3 ,
rected pairs of breathers within the chain and the creation of Mo

stationary breathers, the survival of oppositely directed (4)

breathers after their mutual interactions, their reflection fromyhere the constant D, is defined by
boundaries and discontinuities. Much of this behavior isp =D(m;,m,,a)|s —o4.—o=M4mmea®, m=|m|. The
characteristic of integrable systems, but it is emphasized her, o2
that these breathers will almost certainly not satisfy exac
solitonic conditions in connection with their long-term struc-

glesa,, and B, are given in terms ob,, and 6,,, ; as

tural and lateral stability or in their collisional properties. comnz(m“ n) =Sm0” 7L cosfn 0“)],
Such physical models are very instructive but they cannot m rn/a

easily yield quantitative results. Hence, it is difficult to ex-

plore in detail the behavior for different impulse strengths (Mn11-N) _SiNGhyy+ 7[1—COK 11— 6n)]

and for long propagation paths. To make further studies of copBn= m r./a

breather behavior in this mechanical model, it is necessary to (5)

use analytical and numerical methods.
wherep=1/a.

The soliton dynamics was observed experimentally in the
ll. THEORETICAL MODEL circular chain consisting of 18 magnetic pendulums with

Now we develop the dynamical theory of this model. Asl =0.118 m. The magnitude of the dipole magnetic moment

shown in Fig. 3the magnets move in the plane, tangential to,[n &annotrbihmef?surecrj] d'refCtl?/n' ‘Qilo trme ma()j/ to deihertrimrr:e 'tf IS
the circular backbonethe chain parameters are the spacing0 easure the frequency of small-amplitude osciiations of a
pendulum when its nearest neighbors are fixed. To this end,

3, the pendulum length massMl, and the magnetic moment we consider the linearized version of equations of motion.

= 7 - _
m ,u',uogildl Here po=4wx10°7 Him =1257<10°° Expanding all the terms in the Hamiltonidd) up to the
H/m is the magnetic constant,=1 is the magnetic perme- .
second order, we find

ability of vacuum. The masseéd are subjected to the gravi-
tational field with the constarg=9.8 N/kg. The size of the .
magnet is assumed to be small compared to the ldndthe On==(ao+9/l)n—a1(fn-1+ On+a), ©6)
Hamiltonian of this system iswe neglect frictional effects \ypere a9=2(1272—1)Dy/MI2 and a;=—2(1

and the effect of the curvature of the chiain +675%)Do/MI2. Then the linear dispersion law of small-
amplitude waved),(t) = pexdi(ng—wt)] is given by

p
szn: En= E 2,\;' +U(0h,0h40)+V(0) |, (D) w?’=wi—2a;(1-coq)), wi=(Mgl—6Dgy)/MI? -

where &, is the energy per thath site, p,=MI8§, is the whereq is the wave numbetg|< .

conjugate momentum arg}, is the angle deviation from the Consider now the oscillations of theh pendulum in Eq.
equilibrium position of thenth pendulum(see Fig. 3, and  (6) when the 6—1)th and 6+ 1)th neighbors are fixed, i.e.,
the dot denotes the differentiation with respect to time 6,_1;=#6,.,=0. Then the frequency of these oscillations can
Here the intersite potential is given in terms of the easily be calculated and, as a result, we obtain
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E(n,9

FIG. 4. The time evolution of the breather energy density
E(n,7) in the chain when only the second pendulum is disturbed:
6,(0)=0.1, »=2.95 (@=4.0 cn). (Inset: amplitude of breather at
7=20)

FIG. 5. The time evolution of the breather energy density

1912— 2 E(n,7) in the chain when only the second pen.dulum is disturbed:
w2:9+ m2. (8) 0,(0)=0.25, »=1.87 @=6.31 cn). (Inset: amplitude of breather
| 2mpoMIZa® at 7=20)
The magnitude of the dipole momemtwas calculated from  tjes along the chain, the neglect of friction, and the approxi-
Eq. (8) by measuring the frequeney. Thus, for the distance mation of dipole-dipole interactions when the separation
a=6.0 cm the period of oscillations 5=0.587+0.001 sec  |engths are comparable with the size of the magnets. With a
and therefore we founth=3.77x10"" HA m. larger initial deflection in the numerical simulation, we ob-
tained a cleaner breather profile, as shown in Fig. 5.

IV. NUMERICAL SIMULATIONS

. . . . . V. A CONNECTION WITH AN INTEGRABLE DISCRETE
We carried out numerical studies of the time evolution of MODEL

the localized excitation in the chain of pendulums by using
the standard fourth-order Runge-Kutta method to integrate Now we consider some analytical approximations which
the dynamical equations resulting from the Hamiltoni@h  enable us to make contact with an integrable discrete model,
In order to exhibit the breather uncluttered with radiation, wethe Ablowitz-Ladik modef® To study large-amplitude
worked with a long chain with fixed boundary conditions. waves we need to keep nonlinear terms in the Hamiltonian
The numerical simulations of the formation and propagation(1). First, we can expand all the expressions in the Hamil-
of breather excitations have been carried out at the sam@nian (1) up to the fourth order. As a result, after lengthy
initial conditions as in the experiments during the time of thebut straightforward calculations we obtain a truncated ver-
order of 200 periods of breather oscillations. Initially the sion of the Hamiltoniar(1) and derive the following equa-
conditions were a deflection of the second pendulw),( tions of motion:

and we observed the propagation of a narrow pulse with.

relatively permanent shape and velodige Fig. 4 The plot  Oh+(2o+9/1) 6+ a1(0, 1+ 0n4 1) T D[ 04(0n 21— 01 1)
shows the time dependence of the dimensionless total energy 2 5 3 2
E(n,7)=&,(t)/D, per thenth site against dimensionless + (01— 05-1)12]+ (Co—g/6l) 65+ C1[ O7( 641

time 7= \/Do/MI?%t. We varied the spacing and calculated FOn1)+ (03 + 63, )I3]+Co0,(02_ 1+ 62, ,)=0,
the breather velocity. The results of these simulations are
presented in Table I. The experimental and computational ©)

values of the velocity are in reasonable agreement, consid-wherea, anda, have been defined above while the remain-
ering the variability of the magnetic and mechanical propering coefficients are b;=127(1+5%7%)Dy/MI%, ¢,
=(1/3—97%?+1207*)Do/MI2, c¢;=(1—127%—1807%%

TABLE I. The soliton velocities for different values of. X DO/MIZ, and c,= (1/2+ 1297]2/2+ 1807]4)D0/MI2. We
- use the rotating wave approximatiérand look for solutions
0(0)  n=la  y=MgliDo v, sitesisec to Eq.(9) in the form6,(t) = ¢, (t)exp(—iwgt) + c.c., where
Experimental  Numerical 4 (1) js the complex amplitude of large-amplitude pendulum
0.1 1.18 1100 1.75 201 oscillations. Applying _this appr_oximation, ie., k_eeping in
1.87 276 251 4.23 Eq. (9) only terms with exptiwt), and assuming that
2.95 71 4.83 5.20 |pn(t)| << wo|bnl, EQ.(9) can be reduced to a perturbed ver-

sion of the Ablowitz-Ladik equation. The coefficients of this
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equation depend on the perturbative terms we choose. We fit E(Mm)
them in such a way that the perturbative terms are negligible.
Thus, if the amplitudesp,(t)’s vary smoothly from site to
site in the chain, then omitting the perturbative terms, the
Ablowitz-Ladik equation takes the following approximate
form:

. A
ipnto(Pni1—2¢hnt+ dn_1)+ §|¢n|2(¢nfl+ ¢ni1)=0,
(10

with the coefficientso= —a;/2wy and A=(Mgl—24Dg)/
8MI2%w,. These explicit values were the main goal of the
analytical calculations. Having them, one can easily write the
resulting approximate breather solution of Eg). for large-
amplitude pendulum oscillations

=5

=
g} 2

‘0&
i

/ Z/é-
/Z/‘/‘/f‘ == ‘Lt'

n—ut

0,(1)= HosecVG L

cogng— wt). (11

Note, that the amplitudé, and wave numbeq are arbitrary
parameters. Heré, and the breather width are related by
: (120 E(n,7) in the chain with the Ablowitz-Ladik initial conditions

2\ 265\
0o\ —+ +1
(o (o
(1)—(13): 6,=0.1, »=1.87 (@=6.31 cn), q=1.5.

The group(breathey velocity v and the carrier frequency
w are given by

FIG. 6. The time evolution of the breather energy density

1—|
E—n

v=_2cLsinh(1/L)sinq,
demonstrates stable moving breath@nsvelope solitonsin

w=wo+20[1—cosh1/lL)coq]. (13 anharmonic lattices with in-line on-site potentials. This type
At least, in the continuum limitl{(>a) the approximate so- of nonlinear exc'itations. is differgnt from t'he well-known Su-
lution of Eq. (9) given by Egs(11)—(13) is valid. However, Personic Toda-like solitons which describe the propagation
we have also checked this approximation numerically in thef @ lattice deformation of a constant profile. Finally, we
case of narrower solutions whéra is small. To this end, Wish to point out that the mechanism of moving breathers
we used Eqs(11)—(13) as initial condition for simulations of Should be important in various physi€aind industrial pro-
the equations of motion. As a result, we obtained stabl&€SSes since it allows the transport of vibrational energy over
breathers propagating with constant shape and velocity, ad@nd_distances by nondiffusional mechanisms. The model
again there was a good correspondence with the experiment3@s interestin its own right as a pedagogical tool in the study
In this approximation we obtained a clear breather solutiorPf nonlinear lattices.
which separates itself from the parasitic oscillations, as one
can see from the plot of the energy distributiBgn, ) in ACKNOWLEDGMENTS
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