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Monte Carlo simulations of the dynamical behavior of the Coulomb glass
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We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interac-
tions by means of damage-spreading simulations. In this type of Monte Carlo simulation one investigates the
time evolution of the damage, i.e., the difference of the occupation numbers of two systems, subjected to the
same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero
disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder we
find evidence for a dynamical phase transition well below the transition temperature of the pure system.
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I. INTRODUCTION

The combined influence of disorder and long-range in
actions on the properties of many-particle systems has be
subject of great interest for some time. In electronic syste
already disorder or interactions alone can drastically cha
the physical behavior. Disorder can lead, e.g., to a me
insulator transition due to Anderson localization. On t
other hand, a metal-insulator transition can also be indu
by correlations due to electron-electron interactions. If dis
der and interactions are both significant then complex ph
cal problems and phenomena arise, many of which are
completely understood.

The behavior of strongly localized correlated electrons
disordered insulators is especially complicated, both exp
mentally and theoretically. Thus progress has been s
since the first investigations.1,2 Many properties of such sys
tems are still poorly understood. In particular there are o
few and contradicting results on thermodynamics, phase
gram, phase transitions or critical behavior, and the exa
nation of the dynamical behavior is only at its beginnin3

Two of the central questions are whether or not the dis
dered interacting electron system shows glassy behavior
what is the nature of the glassy ‘‘state.’’ Two different view
can be found in the literature. In the earlier work the form
similarity between disordered localized electrons and s
glasses had lead to speculations about a possible equilib
phase transition to a spin-glass-like low-temperat
phase.4,5 More recent investigations show, however, growi
experimental and theoretical evidence of the transition be
of dynamical nature.6–9

In this paper we study the dynamical behavior of dis
dered localized electrons by means of the damage-sprea
method. In this type of Monte Carlo simulation the micr
scopic differences of the time evolution between two s
tems are investigated. In particular, we address the ques
550163-1829/97/55~10!/6272~6!/$10.00
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of a dynamical phase transition from a dynamically act
high-temperature phase to a frozen low-temperature ph
upon changing characteristic parameters like disorder or t
perature. Our paper is organized as follows. In Sec. II
introduce the Coulomb-glass model, the prototype mode
disordered localized electrons. In Sec. III we describe
damage-spreading technique, whereas in Sec. IV we pre
the results for the dynamical behavior of the model. Sect
V is dedicated to some discussions and conclusions.

II. MODEL

Our investigation is based on the Coulomb-glass mo
proposed by Efros and Shklovskii2 to describe compensate
doped semiconductors. Later it was also applied to simu
granular metals10 and conducting polymers.11,12 The model
consists of a square or cubic lattice of linear sizeL with
N5Ld sites ~in d dimensions! and lattice constanta. The
sites can be occupied byKN ~0,K,1! electrons. These
electrons are interacting via an unscreened Coulomb po
tial. To guarantee charge neutrality every site carries a c
pensating charge of1Ke ~2e is the charge of the electron!.
The disorder of this system is described by the random
tentialw i .The Hamiltonian of the Coulomb glass is given b

H5(
i

~w i2m!ni1
1

2(iÞ j
~ni2K !~nj2K !Ui j , Ui j5

e2

r i j
,

~1!

wherem is the chemical potential,ni ~with values 0 or 1! is
the occupation number of sitei and r i j denotes the distanc
between sitesi and j . In the rest of the paper we set th
interaction strength between nearest-neighbor sitese2/a51
which fixes the energy scale. The random potential ener
w i are independent from each other and are chosen accor
to some probability distributionW(w). We use the box dis-
6272 © 1997 The American Physical Society
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55 6273MONTE CARLO SIMULATIONS OF THE DYNAMICAL . . .
tribution with mean 0 and widthW0 . The parameterW0
measures the strength of the disorder. Specifically, we in
tigate a half-filled system~K5 1

2!. Then the Coulomb glas
model is particle-hole symmetric and the chemical poten
vanishes.~Note that the two quantitiesK andm are not in-
dependent of each other. We treatK as a free parameter an
calculatem from it.!

For later reference we briefly mention some properties
the Coulomb-glass model. One of the central quantities is
single-electron density of states

g~«,T!5
1

N(
i

^d~«2« i !& ~2!

at energy« and temperatureT, where^ . . . & denotes therma
and disorder averages.« i are the single-electron energie
given by

« i5w i2m1(
jÞ i

Ui j ~nj2K !. ~3!

The single-electron density of states of the Coulomb gl
shows a pronounced gap, called the Coulomb gap, clos
the Fermi energy«F ~see Fig. 1!. At zero temperature the
density of states actually vanishes at the Fermi energy,2 close
to the Fermi energy it can be described by a power law

g~«!}u«2«Fua, ~4!

wherea is approximately 1.2 for two-dimensional~2D! and
2.5 for 3D systems.13 At finite temperature the Coulomb ga
is filled gradually~for recent simulation results see, e.g., R
14!.

The Coulomb-glass model~1! describes a system withou
internal dynamics. In reality the electrons, though localiz
are coupled to additional~vibrational! degrees of freedom
which lead to transitions between the many-electron sta
Phenomenologically this can be simulated by a Monte Ca
method. In every Monte Carlo step we change the occu

FIG. 1. Single-electron density of states of the Coulomb glas
T50.008 for different strengths of disorder.«M indicates the Made-
lung energy,«F the Fermi energy.
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tion numbers of one or several sites with a certain proba
ity. Within the Metropolis algorithm this probability is given
by

P5H 1, DH,0

expF2
DH

kBT
G , DH.0,

~5!

where DH is the energy difference between the man
particle states before and after such a change, andkB is the
Boltzmann constant.N such Monte Carlo steps are called
Monte Carlo sweep which is the natural time scale of o
calculations.

To simulate the dynamics one can use different ‘‘mo
classes,’’ which determine how the occupation numbers
changed in every Monte Carlo step to get the new confi
ration. The simplest move class consists of exchangin
single electron with a reservoir~i.e., the conduction band in
the case of doped semiconductors!, other classes include
hopping of single electrons between the sites, or correla
hopping of several electrons. In this paper we present res
obtained by using only single-electron exchanges betw
the system and a reservoir, but we have also checked m
complicated move classes. As long as we do not inclu
distance-dependent ‘‘tunneling terms’’ into the transiti
probabilities~5!, applying different move classes yields da
which do not show a qualitatively different behavior. W
attribute this result to the fact that single- and multip
electron hops can be combined from the moves in our imp
mentation of single-electron exchanges with an external
ervoir. Thus all many-electron states withKN electrons are
available in our simulation. A more detailed investigation
this question including the effects of distance-depend
transition probabilities on the damage-spreading simulati
is in progress.

III. DAMAGE SPREADING

The damage-spreading technique15 is a modification of
the usual Monte Carlo method. The idea is to look not at
time evolution of a single system but to compare the ti
evolutions oftwo systems which are subjected to the sa
thermal noise~i.e., the same random numbers are us
within the Metropolis algorithm!. Usually, at the beginning
of the simulation the occupation numbers of both syste
differ only at a single site~or at a few sites, e.g., a singl
column in a 2D lattice system!.

Since both systems are thermodynamically identical,
erages of equilibrium quantities will be the same for bo
systems. Microscopically, however, the two systems m
evolve differently from each other. The central observable
damage-spreading simulations is the Hamming dista
D(t), which is the portion of sites for which the occupatio
numbers differ between the two systems.D(t), which mea-
sures the ‘‘damage,’’ is given by

D~ t !5
1

N(
i

uni
o~ t !2ni

c~ t !u, ~6!

whereni
o(t) andni

c(t) are the occupation numbers of sitei
of the original system and the copy at~Monte Carlo! time t.

at
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For D(t)50 the two systems are identical,D(t)5 1
2 de-

scribes completely uncorrelated configurations, and
D(t)51 the two systems are totally anticorrelated. In t
course of the time evolution the two systems evolve towa
a steady state, in whichD(t) fluctuates around an asymptot
average value

D5 lim
t→`

lim
t→`

1

tEt
t1t

dt8D~ t8!. ~7!

Depending on the values of the external parameters t
perature and disorder different regimes can be observe
principle, if the initial damageD~0! is small: The damage
may heal out during the time evolution~D50!, the systems
may stay partially correlated for infinite time (D, 1

2 ), or the
systems may become completely uncorrelated so thaD

5 1
2 . In contrast to the thermodynamics the detailed beh

ior of D(t) depends on the choice of the dynamical alg
rithm. Whereas Metropolis, Glauber, and heat-bath dynam
give the same results for equilibrium quantities of a sin
system, the damage-spreading results differ. For the
tropolis dynamics which we use~as well as for the Glaube
dynamics! the damage tends to heal at low temperatures
tends to spread at high temperatures.15 In contrast the heat
bath dynamics yields healing at high temperature and fro
configurations at low temperatures.16 ~Note that sinceD is
not a thermodynamic quantity but measures the microsco
differences between two systems, there is no reason to ex
that different dynamical algorithms give the same results!

We apply the damage-spreading technique to the

Coulomb-glass model at half fillingK5 1
2 and linear system

sizesL520, . . . ,80. The simulation proceeds as follow
~i! We create the initial system by choosing random poten
values according to the probability distributionW(w) and
occupy the sites at random withKN electrons.~ii ! We equili-
brate this system at temperatureT by performing several~at
least 300! Monte Carlo sweeps according to the Metropo
algorithm.~iii ! A copy of the system is created and modifi
at a single site~or several sites!. This difference in the occu
pation numbers constitutes the initial damage.~iv! We study
the time evolution of the original and the copy using t
same random numbers in the Metropolis algorithm for b
systems. The damageD(t) is recorded and its asymptoti
valueD is determined.

Note that there is a modification of the damage-spread
method that can be used to determineequilibriumquantities
instead of purely dynamic ones.19,20 In that kind of simula-
tion the occupation number of a single site in one of
systems is fixed whereas it is allowed to fluctuate in the ot
system. Consequently, the two systems are thermodyn
cally differentand the damage can be related to equilibriu
correlation functions. Since in this paper we are intereste
the properties of the dynamics rather than in equilibriu
quantities our data is gained by means of the origi
damage-spreading method, where the occupation numbe
both systems are allowed to fluctuate.
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IV. RESULTS

A. Time evolution

In this subsection we present data on the time evolution
the damageD(t) starting with an initial damage consistin
of a single site. In analogy to the well studied 2D Isin
model15,17,18we find that for temperatures below a certa
temperatureTs , called the spreading temperature, the da
ageD(t) remains small and eventually heals, giving an a
ymptotic value ofD50. For temperatures larger thanTs the
damage increases with time until a steady state is reac
whereD(t) fluctuates around a finite value. Consequen
the asymptotic damageD is finite in this regime. In Fig. 2
the time evolution ofD(t) is shown for the Coulomb glas
with zero disorderW050. The three curves presented corr
spond to the three regimes discussed in the last section
T50.5 the damage increases quickly and then fluctua
aroundD5 1

2 . This means the two systems become co
pletely uncorrelated very fast. Consequently we are ab
the spreading temperatureTs . At T50.1 the evolution of
D(t) is much slower and the asymptotic damage is sma
than 1

2. This behavior occurs because the system is in
vicinity of the spreading transition atTs . It corresponds to
the critical slowing down in ordinary critical phenomena. A
T50.06 the damage remains small and eventually heals,
the system is below the spreading temperatureTs . In the
case of finite disorderW0 the time evolution of the damage i
similar ~see Fig. 3!. The asymptotic damageD is, however,
different from 0 or12 even far away from the spreading tra
sition. The dependence of the damage on the external pa
eters temperature and disorder is investigated in more d
in Sec. IV C.

B. Influence of the long-range interaction

The character of the interaction has a large influence
the time evolution of the damage. In systems with neare
neighbor interactions, e.g., the Ising model, the damage
only spread within a single Monte Carlo step from one site
the system to its neighbor. Therefore the clouds of dama
sites can grow only slowly in space and tend to be m

FIG. 2. Time dependence of the Hamming distance of the
Coulomb glass for different temperatures andW050.
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55 6275MONTE CARLO SIMULATIONS OF THE DYNAMICAL . . .
compact~but not necessarily connected!. In contrast, in sys-
tems with long-range interactions the occupation numbe
any site effectsall other sites. The damage can spread fr
one site of the system to any other site within a single Mo
Carlo step. Therefore the damage spreads much faster
systems with short-range interaction and the damage clo
are usually not compact. A comparison of the two case
presented in Fig. 4.

Note, that since the damage can spread from one sit
any other site in the case of long-range interactions, som
the methods developed to analyze the damage-sprea
simulations15,17 cannot be used for systems with long-ran
interactions. This applies to all methods that measure
spatial extension of the damage and its evolution, beca
the spatial extent of the damage cloud is not a well defi
quantity for systems with long-range interactions.

C. Temperature and disorder dependence
of the asymptotic damage

We now turn to the main results of this paper. Figure
shows an overview of the temperature and disorder dep
dence of the asymptotic Hamming distanceD. For disorder
strengthW050 there is a pronounced transition at a spre

FIG. 3. Time dependence of the Hamming distance of the
Coulomb glass for different temperatures andW050.5.

FIG. 4. Snapshot of the damage for 2D systems with short-ra
interactions~left! and long-range interactions~right! for T50.5 and
W050.5 at a time of 5 Monte-Carlo sweeps after the introduct
of a single damaged site. A filled circle indicates a damaged
where the occupation numbers of the two systems differ, an em
circle indicates that the occupation numbers of that site are iden
in both systems.
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ing temperature of approximatelyTs50.1 between a low-
temperature regime withD50 and a high-temperature re

gime with D5 1
2 . Within our numerical accuracy the

spreading temperatureTs coincides with the equilibrium
critical point Tc of the model without disorder which we
determined from the peak in the specific heatCv of the
Coulomb-glass model as a function of temperature~see Fig.
6!. For very high temperaturesT→` the spreading of the
damage is drastically slowed down due to the fact that
probabilityP in the Metropolis algorithm, Eq.~5!, becomes
independent of the actual configuration of the two syste
~original and copy! and reachesP51. This means that in
both systems nearly every exchange of electrons is
formed and differences in the occupation numbers oc
only rarely. Our investigations of the spreading behavior
very high temperatures show that the Hamming distanceD
still reaches a plateau if plotted versus time as in Figs. 2
3, but the relaxation time diverges as is predicted in a rec
mean-field theory.21 The damage-spreading transition in th

D

e

te
ty
al

FIG. 5. Overview of the temperature dependence of the Ha
ming distance for various strength of disorder of a 2D system w
N5202 sites.

FIG. 6. Specific heat of the 2D Coulomb glass atW050 calcu-
lated via the derivative of the internal energy of the system.
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Coulomb-glass model without disorder occurs thus in co
plete analogy to that in the Ising model.15

For finite disorder strengthW0 , however, this behavio
changes in several aspects. First, the values of the asymp
Hamming distances in the high-temperature regime

smaller thanD5 1
2 . This means the two systems rema

partially correlated even for high temperatures. The rea
for that is easy to understand: In the presence of a ran
potential the electrons are trapped~repulsed! at sites with
small ~high! potential valuesw i . These sites are identical i
the original system and its copy. Therefore the presence
random potential tends to reduce the damage. With incr
ing strength of disorder this trapping effect becomes larg
so that the maximum value of the damage is more and m
reduced. On the other hand, increasing temperature mak
easier to overcome the potential differences so that the
scribed reduction of the damage becomes less effective.

The second effect of the disorder concerns the behavio
D at low temperatures and close to the spreading point. T
region is shown in more detail in Fig. 7. In the case of fin
disorder the asymptotic damage remains finite even at t
peratures below the spreading temperature of the m
without disorder. This somewhat counterintuitive result, v
an acceleration of the dynamics by disorder, can be un
stood by looking at the single-electron density of states
the Coulomb-glass model~see Fig. 1!. ForW050 the single-
electron density of states at low temperatures has a hard
around the Fermi energy«F 50 and two peaks at the Made
lung energies6«M . Therefore there are only exponential
few sites that can be excited at low temperatures and thus
Hamming distance vanishes. In contrast, for finite disor
W0 , the gap in the density of states is not exponential but
power-law Coulomb gap~4!. Therefore more sites can b
excited at low temperature and the dynamics does not fre
completely, i.e., the Hamming distance remains finite.

As can be seen in Fig. 7, even for finite disorder stren
W0 there is, however, a spreading temperatureTs(W0), be-
low which the asymptotic damage vanishes.Ts(W0) de-
creases with increasingW0 , but seems to tend to a finit
limiting value for largeW0 which we approximately deter
mined toTs(`)'0.03. Note that the existence of a sprea

FIG. 7. Hamming distance versus temperature for vari
strengths of disorder of a 2D system withN5202 sites.
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ing transition in the case of finite disorder is a purely d
namical phenomenon, since the system does not underg
equilibrium phase transition.

In order to determine more detailed properties of t
spreading transition a careful analysis of finite-size effect
necessary. In Fig. 8 we show the dependence of the H
ming distanceD on the system size. As expected from t
analogy with usual critical phenomena, the spreading tra
tion becomes sharper with increasing system size. Figu
also shows that a system size ofL520 already gives reason
able results for the determination of the spreading temp
ture of the Coulomb-glass model, provided the disord
strength is comparatively small.

V. CONCLUSIONS AND OUTLOOK

We have used the damage-spreading technique to ex
ine the low-temperature dynamics of disordered electro
systems with localized states based on the Coulomb-g
model. We have found that the dynamics of the syst
freezes below a spreading temperatureTs . For zero disorder
this damage spreading transition coincides with the equi
rium phase transition within our accuracy. At finite disord
strength, when there is no equilibrium phase transition,
spreading pointTs is shifted to lower temperatures. How
ever, Ts remains finite even for larger disorder strength
Consequently, there is a low-temperature ‘‘phase’’ of t
Coulomb glass with frozen dynamics and a high-tempera
phase where the damage spreads through the system. I
case of finite disorderW0 the spreading transition is a pure
dynamical transition which does not possess an equilibr
counterpart. A more detailed investigation of this transiti
is in progress. It is, however, hampered by finite-size effe
since the long-range interaction severely restricts the p
sible system sizes in our simulations. These limited sys
sizes are also the reason why the spreading pointTs for high
values of disorder could not yet be determined exactly.

For small disorder strengths the spreading pointTs is still
close to the~second-order! equilibrium phase transition tem
peratureTc of the system without disorder. If both transition
coincide for zero disorder we expect the Hamming dista
D to obey the homogeneity relation~since physical quanti-

s FIG. 8. Hamming distance versus temperature for various s
tem sizes atW050.
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55 6277MONTE CARLO SIMULATIONS OF THE DYNAMICAL . . .
ties in the vicinity of a critical point can usually be describ
by scaling laws!

D~W0 ,T!5tb f SW0

tw D , t5uT2Tcu ~8!

with the critical exponentsw andb. However, the damage
spreading transition in models with Glauber or Metropo
dynamics does not generically coincide with the equilibriu
transition.21,22Therefore the confirmation of this scaling la
and the determination of the exponents remain a task for
future.

In order to compare our results to experiments on gla
behavior in disordered insulators a direct relation betw
the Hamming distance and measurable quantities would
desirable. To this end a relation between the Hamming
tance and characteristics~probably more complex! of a
single system should be found. Similar relations are kno
in the theory of chaos where characteristics of chaotic beh
ior show up in a single system as well as in the time evo
e

y
n
be
s-

n
v-
-

tion of the phase space distance between two copies. H
ever, such relations have not been found for dam
spreading in cooperative systems up to now.

One might also ask, how the results change if more
phisticated dynamical algorithms are used, which repres
the physical processes in disordered insulators better than
simple Metropolis algorithm with single-particle exchan
with a reservoir. The question is of particular importanc
since the properties of damage spreading depend on the
of dynamics used in the simulation more strongly than
thermodynamic quantities. We have begun to study
Coulomb-glass model with distance-dependent tunne
probabilities between the sites. Results of this numerica
much more involved investigation will be published els
where.
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