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Theoretical study of boron nitride modifications at hydrostatic pressures
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This paper presents a detailed study of boron nitride modifications at hydrostatic pressures. Cohesive prop-
erties of zinc blende~c-BN!, wurtzite~w-BN!, hexagonal~h-BN!, rhombohedral~r -BN!, and rocksalt structure
are calculated by systematic optimization of unit cell parameters and atomic positions using total-energy
density-functional methods. With focus on the very rarely discussed layered modifications thep-V equations
of states are derived. It is confirmed that the isothermal bulk modulus of thesp2-bonded phases is more than
10 times smaller in comparison to the dense phases. Additionally, the equilibrium line ofc-BN andh-BN in
phasep-T diagram is calculated. According to recent experimental reportsc-BN is predicted as a stable
modification at standard conditions.@S0163-1829~97!06409-6#
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I. INTRODUCTION

In recent years there have been a lot of experimental
theoretical activities in studying the physical and chemi
properties of boron nitride in detail. The extraordinary pro
erties of the zinc blende modification~c-BN!, such as ex-
treme hardness, chemical inertness, high melting temp
ture, wide band gap, and low dielectric constant, which
important for many commercial applications in modern m
croelectronic devices and protective coating materials,
the reason for that considerable interest. Starting with
work of Kleinmann and Phillips1 a lot of theoretical studies
of boron nitride have been presented in the last deca
Using different, more or less accurate, first principles me
ods these works are focused predominantly on the electr
properties of the different modifications~see Refs. 2–20 and
references therein!. But only a few authors have paid atte
tion to detailed investigations of structural ground state pr
erties. Wentzcovitchet al.8 discussed the transition pat
from rhombohedral to zinc blende structure and investiga
dense phases6 at high pressures. Knittleet al.9 derived the
equation of state forc-BN in experiment and theory with
high reliability. Finally, one of the most comprehensi
works was given by Furthmu¨ller et al.13

Regarding all these studies two things are remarka
First, the bulk modulus, which is of considerable importan
in understanding the relationship between a crystal’s st
ture, hardness, and stability, has been calculated for the c
phase with high consistency by all authors, but for t
sp2-bonded phases with surprisingly deviating values fr
77 GPa to 335 GPa.16,13,11 Second, it is a present dispu
which of all observable phases has the lowest total ener

These differences are evident and prevent a reliable
mation of the equilibrium phasep-T diagram, which is of
considerable interest in understanding, e.g., the gro
mechanism of boron nitride.

This paper presents a detailed study of several solid m
fications of boron nitride using well-established pseudo
tential density-functional~DF! methods within the local den
sity approximation. All atomic positions and cell paramete
are optimized independently using the Broyden-Fletcher
gorithm and a twofold Birch-Murnaghan fitting procedur
550163-1829/97/55~10!/6203~8!/$10.00
d
l
-

a-
e
-
re
e

s.
-
ic

-

d

e.
e
c-
bic
e

.
ti-

th

i-
-

s
l-
,

respectively, which is described in Sec. III B. The equatio
of states are deviated and in the case of thesp2-bonded
phases the calculations are compared with the recently a
able experimental data of Solozhenkoet al.21,22

Finally, the Gibbs free energy ofc-BN andh-BN is cal-
culated using the Debye-Gru¨neisen approximation25 and the
equilibrium line in the phasep-T diagram is predicted. Ac-
cording to Solozhenko23,24 it is found thatc-BN is the ther-
modynamically stable modification at standard conditio
~Sec. III C!.

II. METHOD OF CALCULATION

The calculations are based on density functional the
within the local density approximation~LDA ! using a plane-
wave expansion for the pseudopotentials and w
functions26,27 as well as the Ceperley-Alder exchang
correlation functional.28 Boron and nitrogen norm-
conserving pseudopotentials were generated following
Troullier-Martins pseudopotential generation scheme.29

The energy cutoff for the electronic wave functions h
been systematically optimized to reach full convergence
has been set atEcut51630 eV. A uniform mesh ofk points
was generated by the method of Monkhorst and Pack.30 For
the zinc blende and rocksalt structure ten specialk points
have been used. For the hexagonal, rhombohedral,
wurtzite structure sixk points were sufficient to achieve con
vergence better than 0.001 eV/f.u. The atom positions h
been relaxed inside the cell volume using the Broyd
Fletcher algorithm.31 Additionally, nonlocal corrections to
exchange and correlation functionals as given by Beck32

were calculated as final non-self-consistent correction.

III. RESULTS

A. Structures

This paper deals with the structures which are experim
tally observed: The hexagonal structure~space groupD6h

4 ) is
the common form~h-BN!,33 which has anAaAa. . . stacking
sequence and is slightly different to hexagonal graph
~ABAB. . . stacking!. The rhombohedral modification~r -
BN! with ABCABC. . . stacking sequence is the other la
6203 © 1997 The American Physical Society
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6204 55KARSTEN ALBE
ered structure34 ~space groupC3v). Analogs to cubic and
hexagonal diamond are the dense modifications of boron
tride: the cubic phase~c-BN! with zinc blende structure
~space groupTd

2), which can be synthesized in the laborato
under pressure,34,35and the wurtzite structure~w-BN! ~space
groupC6v

4 ), which is the analog to stable AlN. Additionally
BN has been calculated in the rocksalt structure.

B. Cohesive properties

The equilibrium properties of a crystal can be deriv
from thermodynamic potentials, e.g., the Helmholtz free
ergyF(T,V)5F0(V)1Fvib(T,V), whereF0 is the static lat-
tice energy without vibrational contributions,Fvib . The
equation of state determining the pressure is

p52S ]F

]VD
T

, ~1!

and the isothermal bulk modulus of hydrostatic compress
is given by

B52VS ]p

]VD
T

. ~2!

There are several approximative theories25,36 describing
the isothermalp-V relation ~1!, but the most common an
simple form has been proposed by Murnaghan,37 who as-
sumed that the isothermal bulk modulus is a linear funct
of pressure. A slightly better description especially for hi
pressure delivers the Birch equation,38 which is an expansion
in the strain (f ):

p53B0f ~112 f !5/2$11a f1b f2%, ~3!

Here f is Eulerian strain parameter (@V/V0#
22/321)/2,

B0 the isothermal bulk modulus, anda andb constants. The
pressure derivative of the bulk modulusB08 is related to the
constanta by B0852a/314. This equation provides an ex
cellent description of the compression of most solids,39 while
inclusion of the termb f2 is almost negligible.

Using relations~1! and~3! it is possible to derive the bulk
modulus, its pressure derivative, and the minimum of ene
and volume from energy-volume data via

F0~V!5
9

16
B0V0S 62B081SV0

V D 2/3F ~B0824!SV0

V D 4/3
2~3B08214!SV0

V D 2/313B08216G D1F0~V0!.

~4!

For cubic symmetries the generation of energy-volu
data can be easily done by total energy calculations of
tropically compressed or expanded unit cells. In the cas
noncubic unit cells this method is not valid and yields m
leading results, especially if the structures are strongly an
tropic. So the energy-volume data of isotropic expanded
compressed graphitelike structures~h-BN, r -BN! yield erro-
neous results for the bulk modulus and its derivative,
i-

-

n

n

y

e
o-
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cause thec-axis length, which is determined by weak van d
Waals bonding, varies much more under hydrostatic pres
than thea axis length.

Therefore, the minimum energy has to be found for ea
volume by independent variation of the cell parameters. T
is in principle the scanning of the energy of compressive a
shear deformations for the minimum at a given volume.

In this study the energy-volume data forh-BN, r -BN, and
w-BN are determined with help of a twofold Birch fittin
procedure: At first, the total energies are calculated for a g
of a-c cell parameters. These data are projected onto
energy-volume plot. Then the Birch equation is fitted to c
responding values of several cell parameters assuming
the equation of state is valid for this case of anisotropic co
pression. For discrete volume steps all these Birch equat
are evaluated and an additional fit is done to the devia
data, resulting in the ideala-c combination for a fixed vol-
ume. So it is possible to deviate the energy-volume data
relations between volume and axis lengths.

The results are reported in Table I in comparison to ot
selected works. Figure 1 shows the calculated cohesive
ergies as a function of volume.

1. Zinc blende

The zinc blende structure has the lowest static lattice
ergy of all modifications. This result agrees with most calc
lations reported by others. The calculated bulk modulus
395 GPa for the static lattice. Respecting vibrational energ
by the empirical Debye-Gru¨neisen theory~as reported in Sec
III C ! the LDA result is in very good agreement with expe
mental data~see Table II!. Anharmonic effects raise the ce
length and lower the bulk modulus with increasing tempe
ture as plotted in Figs. 2 and 3, respectively. The vibratio
correction increases by compression, so that the equilibr
volume at 0 K is higher and the bulk modulus is smaller tha
for the static lattice.

Furthermore, calculations were done using Beckes32 non-
local corrections in comparison with the LDA. The resu
are given in Table II. The nonlocal approximation correc
the LDA overbinding and delivers, as expected, a hig
equilibrium distance, whereas the bulk modulus gets too l
Obviously, the agreement with experiment is not eviden
improved by these corrections.

The cohesive energy was determined as 12.94 eV
without zero point corrections using a linear combination
atomic orbitals~LCAO! method27 with the local spin density
approximation. All plane wave~PW! calculations are related
to this result, which is in good agreement with estimatio
from experimental data.10

2. Wurtzite

The lattice energy of the wurtzite structure is slight
higher than forc-BN. This structure is a metastable modifi
cation. The optimization of lattice parameters yields that
unit cell axes scale in the same manner with increasing
drostatic pressure. This is not surprising with respect to
sp3-bonded structure of this modification. The atomic po
tions vary slightly from ideal values. Boron position
are $ 1

3,
2
3,j%, $ 2

3,
1
3,

1
21j% and nitrogen positions$ 1

3,
2
3,

3
82j%,

$ 2
3,

1
3,

7
82j%, with j50.0005 at equilibrium volume.
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TABLE I. Calculated structural and cohesive properties of BN in various phases compared to other LDA calculations and exp
Volume per atomV, lattice constanta, cohesive energyE0 , ratio of interlayer distance to lattice constantc/a, energy difference to the
cohesive energy of the zinc blende structureDE, bulk modulusB, and pressure derivative of the bulk modulusB8.

Present Furthmu¨ller Wentzcovitch Xu and van Camp and Expt.
work et al.a and co-workersb Chingc van Dorend

Zinc blende
V ~Å 3) 5.797 5.718 5.860 5.905 5.954 5.930e

a ~Å! 3.593 3.576 3.606 3.615 3.625 3.615e

E0 ~eV/atom! 26.47 28.152 27.15 27.00 26.6 f

B ~GPA! 395 397 367 370 392 369–400g

B8 3.65 3.59 3.6 3.8 3.31 4.0e

DE ~eV/atom! 0 0 0 0 0
Wurtzite
V ~Å 3) 5.813 5.731 5.845 6.73 5.966h

a ~Å! 2.532 2.521 2.536 2.6883 2.553h

c/a 0.827 0.826 0.828 0.8 0.828h

DE ~eV/atom! 0.011 0.020 0.027 0.075
B ~GPa! 394 401 390 107
B8 3.68 3.59 6.3 4.24
Hexagonal
V ~Å 3) 8.747 8.613 8.970 10.02 9.04i

a ~Å! 2.496 2.468 2.494 2.592 2.504i

c/a 1.300 1.295 1.335 1.330 1.330i

DE ~eV/atom! 0.057 0.055 0.06 20.35
B ~GPa! 30.1 261j 335 j 77 36.7k, 29.9l

B8 10.1 3.66 3.76 4.41 5.6k, 9.3 l

Rhombohedral
V ~Å 3) 8.693 8.603 9.04m

a ~Å! 2.493 2.495 2.504m

c/a 1.296 1.294 1.996m

DE ~eV/atom! 0.057 0.052
B ~GPa! 32.3 262j 0.06 33.4m, 34.6n

B8 10.3 3.87 5.25m, 5.23n

Rocksalt
V ~Å 3) 5.244 5.168 5.327
a ~Å! 3.474 3.458 3.493
DE ~eV/atom! 1.758 1.723 1.70
B ~GPa! 410 416 425
B8 3.81 4.00

aReference 13.
bReferences 4, 6, 8, and 10.
cReference 11.
dReference 16.
eReference 9 and 49.
fReference 10.
gReferences 45 and 49.
hReference 49.
iReferences 22 and 50.
jCalculated by isotropical compression of the unit cell.
kReference 22.
lFit with Birch equation to values given by Solozhenko~Ref. 22!.
mReference 21.
nFit with Birch equation to values given by Solozhenko~Ref. 21!.
o
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-
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t

3. Hexagonal

The theoretical static lattice energies and bulk moduli
h-BN given in the literature disagree evidently. A fe
authors11,19 report thath-BN has the lowest static lattice en
ergy, whereas most favor the dense phase. It is obvious
f

at

the reason for this is the uncertainties of some methods
this study the energy minimum forh-BN is determined 0.1
eV/f.u. above the minimum ofc-BN. Exactly the same resul
has been reported by Furthmu¨ller et al.13 and Wentzcovitch
and co-workers.4,10,6,8
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6206 55KARSTEN ALBE
Theoretical values for the bulk modulus range from 77
335 GPa. These remarkable deviations were the impulse
a systematical recalculation of the layered structures. Us
the twofold fitting procedure described above total energ
of h-BN have been calculated for optimized unit cells a
compared to experimental data, which are recen
available.22 Thec axis length which is determined by a wea
van der Waals interaction varies much more under hyd
static pressure than thea axis length, which is given by the
extremely short and strong ionic-covalentsp2 bondings. This
is found both experimentally and theoretically as shown
Fig. 4. Up to 12 GPa the relative compression of thea axis is
insignificant, while thec axis is compressed to about 85%
Indeed, the theoretical result is surprisingly good, taking i
account that a very low interplanar electron density gener
represents a problem for the LDA.

The theoretical bulk modulus is 30.1 GPa in comparis
to the experimental value of 29.9 GPa, which was obtai
by fitting the data of Solozhenkoet al.22 to the Birch equa-
tion again. This is more than 10 times smaller than the va
for c-BN. The pressure derivative is determined theoretica
and experimentally as 10.1 and 9.3, respectively. Figur
shows the good agreement of experiment and calculatio

4. Rhombohedral

The calculated energies forh-BN andr -BN are nearly the
same as shown in Fig. 1. This is due to the fact that the L

FIG. 1. Calculated cohesive energies of BN as a function of
volume in the zinc blende, wurtzite, hexagonal, and rhombohe
structure.

TABLE II. Cohesive properties of cubic BN calculated wit
local and nonlocal density approximation for a static lattice, aT
50 K andT5300 K, in comparison to experiment.

B ~GPa! B8 V0/atom ~Å 3)

LDA static 395 3.65 5.797
T50 K 387 5.884
T5300 K 385 3.66 5.888

GGA static 344 3.69 6.120
Expt.a T5300 K 369–400 4.0 5.905

aReferences 9 and 45.
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A

is inadequate to distinguish between different stackings
sp2-bonded planes. The small difference in curvature
tween both planar structures is revealed in a slightly hig
minimum energy and a higher bulk modulus forr -BN in
comparison toh-BN. Although Solozhenkoet al.22,21 re-
ported a higher bulk modulus forh-BN, a fit of their data to

ll
al

FIG. 2. Lattice constant ofc-BN as a function of temperature
calculated by Debye-Gru¨neisen theory.

FIG. 3. Bulk modulus ofc-BN as a function of temperature
calculated by Debye-Gru¨neisen theory.
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55 6207THEORETICAL STUDY OF BORON NITRIDE . . .
the Birch equation yields the opposite. The theoretical re
is shown in comparison to the experiment in Fig. 6.

C. Phase diagram

Thep-T phase diagram of boron nitride is controversia
discussed in the literature. There are two proposals wh
differ fundamentally. The generally accepted one was gi
two decades ago by Corrigan and Bundy,43 which predicts
h-BN as a thermodynamically stable modification at stand
conditions in analogy with the carbon phase diagram.
way of contrast Solozhenko23,24 presented a phase diagra
wherec-BN is thermodynamically stable at standard con
tions, while the equilibrium line intersects the temperatu
axis at 1600 K.

Regarding these differences, it seems likely to draw so
conclusions from total-energy calculations, particularly sin
knowledge of the phase diagram is of fundamental intere

The phase transition between the cubic and hexag
polymorphs of boron nitride is a reconstruction phase tra
tion, which is always a phase transition of the first orde40

Therefore, the transition line in thep-T phase diagram can
be derived from the thermodynamic potentials of the co
isting phases. The static part of the Helmholtz free ene
F0(V) is given by theab initio calculations shown before

FIG. 4. Relative length ofa and c axes of hexagonal BN vs
pressure as given by Solozhenko~Ref. 22!. The solid line is the
theoretical result.

FIG. 5. V/V0 vs pressure forh-BN. Solid circles (d) represent
data of Solozhenko~Ref. 22! while the dotted line is the fit to the
Birch equation. Open squares (h) are measured by Coleburn an
Forbes~Ref. 48!. The solid line is the theoretical result.
lt
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~Fig. 1!, which predict thatc-BN is energetically favored in
comparison toh-BN by about 0.114 eV/f.u. This is suffi
ciently more than the accuracy of the calculatio
(DE50.001 eV/f.u.!. Furthermore, vibrational contribution
must be discussed.

There are no experimental phonon spectra for the de
phases as well for the graphitelike modifications availab
but recently several theoretical phonon spectra have b
published by Karchet al.41 and Nozaki and Itoh,42 as well as
Widany et al.19 ~Fig. 7!. These data were used in order
derive the zero point energies, which are half of the fi
moments of the normalized densities. The evaluation of
data of Karchet al.41 yields 0.32 eV/f.u. for the zero poin
vibrational energy ofc-BN. For h-BN an energy of 0.35
eV/f.u. can be derived using the data of Nozaki and Itoh42

The data of Widanyet al.19 are quite different but yield simi-
lar zero point vibrational energies, which are 0.27 eV/f.u.
c-BN and 0.32 eV/f.u. forh-BN. The energy differences a
zero temperature are DFvib5Fvib(hexagonal)
2Fvib(cubic)50.05 eV/f.u. using the data of Widanyet al.
or DFvib50.03 eV/f.u. using the other results. This confirm
the assumption of Lamet al.,10 who have discussed thi
question in detail and concluded that the zero point vib
tional energy ofc-BN andh-BN should not differ more than
a few hundredths of eV.

Since the difference of the static lattice energ
(DFstat50.114 eV/f.u.! is significantly larger, it can be defi
nitely concluded that thec-BN ↔ h-BN equilibrium line in
thep-T phase diagram does not intersect the pressure ax
zero temperature as proposed by Corrigan and Bundy,43 be-
cause a Gibbs construction on the energy-volume data is
possible, even if zero point contributions are regarded.

These purely qualitative predications make a more
tailed calculation highly desirable. Thermodynamic pote
tials can be calculated by molecular dynamics or Mo
Carlo ~MC! methods. But these are costly, because the ph
space must be sampled calculating the potential energy
eral times, which is hardly possible by full self-consisten
field DF calculations.

Therefore the empirical Debye-Gru¨neisen approximation
was used in order to calculate the Helmholtz free energie
h-BN and c-BN in a sufficiently accurate but more simp
way.

The vibrational contribution to the Helmholtz free ener
is given in harmonic approximation by25

Fvib5233NkBTE 2sinhS \v

2kBT
Dg~v!dv. ~5!

The phonon density of statesg(v) can be approximated fo
cubic systems using the three-dimensional~3D! Debye
model:

gD
~3D!~v!5H 3v2

vD
3 , v<vD ,

0, v.vD ,

~6!

where the cutoff frequencyvD is related with the Debye
temperature bykBuD5\vD .

Gielisseet al.44 proposed a Debye temperature of 1700
for c-BN. This yields a zero point vibrational energy o
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6208 55KARSTEN ALBE
9
4kBQD50.33 eV/f.u. and a temperature dependence, wh
agrees very well with the result calculated by the theoreti
spectra of Karchet al.41 ~Fig. 8!. For graphitelike phases a
two-dimensional Debye approximation is more suitable d
to the weak interplanar binding. The phonon density of sta
is then

gD
~2D!~v!5H 2 v

vD
2 , v<vD ,

0, v.vD .

~7!

For low temperatures a Debye temperature of 598 K
the specific heat quite well.46,47For higher temperatures this
fit is unadaptable and the zero point energy is much too l
~0.10 eV/f.u.!. Therefore 1900 K was chosen as the Deb
temperature forh-BN. This yields a vibrational free energy
that corresponds nearly ideal to the result received by

FIG. 7. Phonon density of states forc-BN: The thick solid line
represents the data of Karch~Ref. 41!, the thin solid line the data of
Widany et al. ~Ref. 19!. Phonon density of states forh-BN: the
thick dots represent the data of Nozakiet al. ~Ref. 42!, the thin dots
the data of Widanyet al. ~Ref. 19!. Phonon density of states in
Debye’s approximation: The thick dashed line corresponds to
three-dimensional model; the thin dashed line corresponds to
two-dimensional model.

FIG. 6. V/V0 vs pressure forr -BN. Solid circles (d) represent
data of Solozhenko~Ref. 21!. The dotted line is the fit to the Birch
equation. The solid line is the theoretical results.
h
l

e
s

s

w
e

e

e
he

FIG. 8. Vibrational free energy of BN calculated with differe
phonon densities of states.h-BN: dashed line calculated using da
of Widany et al. ~Ref. 19!, circles (s) calculated using data o
Nozaki et al. ~Ref. 42!, triangles (,) represent the result in two
dimensional Debye approximation (uD51900 K!. c-BN: solid line
calculated using data of Widanyet al. ~Ref. 19!, diamonds (L)
calculated using data of Karchet al. ~Ref. 41!, squares (h) repre-
sent the result in three-dimensional Debye approximat
(uD51700 K!.

FIG. 9. p-T phase diagram of boron nitride. The dashed line
Corrigan and Bundy’s diagram~Ref. 43!, the thick solid line Soloz-
henko’s proposal~Ref. 23!. The line with solid squares represen
the equilibrium line calculated in the present work.
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55 6209THEORETICAL STUDY OF BORON NITRIDE . . .
data of Nozaki and Itoh42 ~see Fig. 8! with a small mismatch
at low temperatures (, 600 K!.

Anharmonic effects are respected in the Debye-Gru¨neisen
theory by a volume-dependent Debye temperature, wh
is determined by the global Gru¨neisen parameter25

g52(dlnuD /dlnV). The integration yields (uD /uD
0 )

5(V/V0)2g for constantg.
The Grüneisen parameter can be derived for cubic s

tems from the bulk modulus’ pressure derivative
2g'B821. So g51.3 was chosen forc-BN. This agrees
well with results referred by Kimet al.,20 whereg is 1.2–
1.5. The Gru¨neisen parameter forh-BN was set quite arbi-
trarily to g51. But it should be stated that this choice do
not affect the achieved result in principle.

Finally, the free enthalpyG(T,P)5F01Fvib1PV can be
derived by Legendre transformation from the Helmholtz fr
energy and thec-BN ↔ h-BN transition line is determined
by the equilibrium conditionGcubic(T,P)5Ghexagonal(T,P).

The result is shown in Fig. 9. The equilibrium line corr
sponds strongly to Solozhenko’s proposal and has quite
same shape. The intersection point with the temperature
is somewhat lower at 1400–1500 K, which depends on
choice of g for h-BN. Therefore, the thermodynamicall
stable phase at standard conditions isc-BN. This is consis-
tent with general chemical trends. If a material is able
form strong covalent bonds, a low coordination is favor
B

a

ie

n,

.

. B
h

-

s

e

he
xis
e

o
d

due to the Pauli exclusion and electrostatic repulsion
tween bond charges. So carbon is stable in layered struct
while silicon is not. Boron nitride has an ionic-covale
bonding with a higher ionicity inh-BN. Therefore, it is con-
ceivable that the zinc blende structure is favored.

IV. SUMMARY

This paper presentsab initio calculations of all known
structures of boron nitride. In contrast to other studies it
focused exclusively on the pressure dependence of struc
properties. The results for the tetragonal coordinated st
tures achieve full agreement with the most accurate calc
tions published so far, which are based on different com
tational techniques. In the case of layered structures
extended fitting procedure is introduced, which determin
the dependence of volume and axis lengths on pressur
excellent agreement with experimental measurements.
achieved energy-volume data allow a reliable estimation
the phase diagram features. This prediction is suitable
settle an existing dispute on the shape of this diagram.
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