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Electronic stopping power of electron gases for slow antiparticles
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~Received 12 September 1996!

The stopping power of slow antiparticles penetrating electron gases are evaluated within a scattering theory
approach to the energy-loss problem. The required effective scattering potential is obtained from a self-
consistent density-functional calculation. A relationship of the stopping powerS}uZub ~b is in the range of
0.7–0.9! at low velocities is found, in contrast to theZ2 dependence predicted by the linear-response theory.
The diffuse distribution of partial wave contributions of screening electrons in the case of antiparticles is quite
different from that for normal particles and is thought to be the main reason for the monotonic increment of the
stopping power as a function ofuZu. @S0163-1829~97!00210-5#
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I. INTRODUCTION

Recently, the advent of experiments about antiproton1,2

passing through condensed matter gives additional reg
for theoretical studies. On one hand, the dependence o
interaction between particles and solids on the sign of
projectile charge, such as Barkas effect,3 can be studied di-
rectly. On the other hand, the stopping characteristics of
tiparticles themselves need to be investigated. Antipartic
are difficult to find in the common environment, and up
now, people have known little on the structures of antip
ticles. It seems not quite meaningful to evaluate the stopp
power for an antiparticle, except for an antiproton which c
be considered as a point charge. This may be one reason
we have not, so far, found an article dealing with the st
ping problem for antiparticles heavier than the antipro
passing through condensed matter at low velocities. H
ever, if we consider a negative nuclear charge embedde
an electron gas, the stopping problem can still be treated
process of electron-hole pair excitation and the collect
response of electrons to the embedded charge.

In the field of energy loss of normal particles~with posi-
tive nuclear charges! at low velocities, the fact that stoppin
powers oscillate with the atomic number of the incident i
is well known.8 However, as to the antiparticles, only th
stopping quantities of antiproton have been stud
carefully,3–7 the problem of the stopping power as a functi
of negative nuclear charge in the low velocities’ region s
remains open. The interaction of antiparticles with elect
gases may give us a new view of physical phenomena
deserves study. In the present paper, this problem will
taken into account and a comparison with the case of nor
particles will be given.

II. THEORY AND METHOD

There are many methods to calculate the stopping po
for slow ions penetrating condensed matter. One appro
commonly used is based on linear-response theory as ap
to the model of a uniform electron gas,9 in which the stop-
ping power of a medium for a charged particle, with char
Z, is given by
550163-1829/97/55~10!/6192~4!/$10.00
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e~k,v!G , ~1!

where e~k,v! is the longitudinal dielectric function for the
stopping medium. Hartree atomic units, in whiche5\5m
51, were used throughout this paper. At low velociti
~v!vF , wherevF is the Fermi velocity of the medium!, an
expression was obtained by Ritchie,10 using the random-
phase approximation for the dielectric function valid f
small v and k<kF ~where kF is the Fermi momentum!,
which is equivalent to assuming that the potential around
ion is exponentially screened by density fluctuations in
electron gas. The result is

dW

dR
5Z2S 2v3p D F lnS 11

p

ar s
D2

1

11ar s /p
G , ~2!

wherea5~4/9p!1/3, r s5(3/4pn)1/3 is the ‘‘one-electron ra-
dius’’ ~the radius of a sphere containing, on average,
electron!, and n is the electron density. A parametrize
Thomas-Fermi-von Weizsa¨cker dielectric function, in which
the parameterl is set by the nuclear-cusp condition, wa
recently used to calculated the stopping quantities of an
tiproton passing in an electron gas at slow velocities.7 The
advantage of this approach is that analytic expressions
the effective potential and induced hole density can be
tained.

Another method for the energy loss of ions impacti
solids at low velocities is based on the scattering theory.
a massive projectile at low velocities the energy loss per u
path length can be written as11

dW

dR
5nvvFs tr~vF!, ~3!

wherestr is the usual transport cross section. In terms of
scattering cross sections, str is given by

s tr5E ds~12cosu! ~4!

5
4p

kF
(
l50

`

~ l11!sin2@d l~EF!2d l11~EF!#, ~5!
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TABLE I. Phase shifts of antiparticles, related Friedel sum, and cusp condition~r s52.0!.

Charge d0 d1 d2 d3 d4 FSR NCC

20.5 20.3989 20.0912 20.0152 20.0041 20.0010 20.5006 1.0013
21.0 20.7073 20.1941 20.0422 20.0081 20.0018 21.0015 1.9946
22.0 21.1814 20.4070 20.1097 20.0230 20.0048 22.0086 3.9977
23.0 21.5190 20.6084 20.1922 20.0455 20.0088 22.9940 6.0005
24.0 21.8295 20.7935 20.2825 20.0749 20.0148 23.9980 8.0064
25.0 22.0984 20.9638 20.3762 20.1102 20.0233 24.9987 9.9645
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whereu is the scattering angle in the projectile’s frame, a
d l(EF) is the phase shift of thel th partial wave for scattering
of electrons at the Fermi surface from the screened pote
of the projectile. The stopping power is rewritten as12

dW

dR
5

3v

kFr s
3 (
l50

`

~ l11!sin2@d l~EF!2d l11~EF!#. ~6!

The problem of the low-velocity stopping is then reduced
the determination of the effective scattering potential. In
present paper we have used the density-functional form
tion of Hohenberg and Kohn,13 and Kohn and Sham14 to
calculate the self-consistent potential due to a static cha
submerged in an electron gas. In the density-functio
theory ~DFT! the one-electron Schro¨dinger equation can be
written as

F2
¹2

2
1V~r !1vxc~r !GC i~r !5EiC i , ~7!

and the electron density is

n~r !5(
i

uC i~r !u2. ~8!

The potentialV is that seen by an electron as a result of
screening of the ion by the electron gas. It is found that a
negatively charged trailing ion can bind electrons in
wake-riding states.15 Wake effects are not significant at lo
velocities and the potential caused by an antiparticle w
negative charges is repulsive to electrons, no bound st
exist and the screening charge is only composed of the s
tering states of the electron gas. The exchange and cor
tion potentialvxc is a local potential depending on the tot
densityr(r ). We have only dealt with spin-compensated s
tems in our calculations, although the results could be ea
extended in a straightforward manner to magnetic syste
The local-density approximation for exchange and corre
tion has been used with the parametric formulation given
Gunnarsson and Lundqvist.16 Equations ~7! and ~8! are
solved self-consistently to get the phase shifts for the c
duction band as a function of the energy, and then obtain
charge density. This kind of method has also been applie
Nagy,4 who obtained the effective screened potential not
a self-consistent calculation, but by taking a one-parame
trial form of strictly finite range, and found that the effectiv
potential around an antiproton is more extended than tha
a proton at metallic densities. Nagyet al.5 have also calcu-
lated the antiproton stopping power with DFT and found t
the screening charge density of antiprotons is more diff
than that of protons. In the present paper we extend the
ial
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culation from the case of antiproton to higher charge antip
ticles aiming at finding some overall laws governing the d
namical screening of electron gases to antiparticles.

III. RESULTS AND DISCUSSION

The validity of our calculation is tested by two condition
The first one is the Friedel sum rule~FSR!, which relates the
scattering phase shifts to the total impurity chargeZ by the
formula

Z5
2

p (
l50

`

~2l11!d l~EF!. ~9!

The second is the nuclear-cusp condition~NCC! nonpertur-
bative constraint, which for the total electron densityn(r ) at
the position of an impurity with chargeZ reads17

n8~r !

n~r !
U
r50

522Zm, ~10!

wherem denotes the reduced mass of the electron-impac
nucleus~two-body! system andn8(r ) is the derivative of
n(r ) with respect tor . Considering the mass of a nucleus
much heavier than an electron,m approximately equals 1.

In Table I the calculated phase shifts for scattering
electrons at the Fermi surface for antiparticles fromZ520.5
to 25.0 ~r s52.0!, the Friedel sum and the nuclear-cusp co
dition are listed. From this table it is evident that our resu
conform to these two conditions very well. Besides, t
phase shifts ofZ521.0 are in good agreement with those
Nagyet al.6 It ensures that the induced electron density,
effective potential, and the stopping power of antipartic
can be confidently given.

Figure 1 shows a comparison of our result of the redu
stopping powerQ5(dW/dR)(vZ2)21 with that of Nagy
et al.,7 a parametric calculation. The solid line correspon
to our results, and the dashed and dotted lines are from
7 with parameterl54.304 andl51.0, respectively. The
density parameter isr s52.0. From this figure one finds tha
at least in the range ofuZu<1.0, the present self-consiste
result has a same trend of theuZu dependence of the stoppin
power as that obtained by the parametric calculation.

In Fig. 2 the stopping powers of different electron gas
with density parameterr s from 1.5 to 4.0 for antiparticles
with Z521 to210 are given. It can be clearly seen that t
stopping power of different electron gases as a function
the charge of antiparticles is nearly linear. The relations
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between2(dW/dR)/v and 2Z can be approximated a
2(dW/dR)/v}(2Z)b. After fitting our results we obtain
that the parameterb is about 0.7–0.9 whenr s is in the range
of 1.5–4.0, which is greatly different from theZ2 depen-
dence predicted by Eq.~2!, the result of the linear-respons
theory. The linear-response theory assumes that the ind
electric field is linear to the external charge. This linearity
reasonable only in the limit in which the external sour
gives rise to a small perturbation of the initial charge dis
bution in the material. In order to find to what extent t
linear-response theory could give a reasonably quantita
description of slow antiparticles, we have done calculatio
for uZu<1022 and r s52.0. The results are shown in Fig.
The solid line is the results based on the density-functio
theory and the dotted line is from Eq.~2!. From this figure
we can see that the results from these two different theo
are in reasonably good agreement with each other. Onl
this range,uZu<1022, we may say that the projectile can b
represented as a small perturbation, and the linear-resp
theory will be valid when projectiles of low velocities ar
considered.

From the results given above it is evident that even
antiproton, when passing solid material at low velociti

FIG. 1. Reduced stopping powerQ5(dW/dR)(vZ2)21 of an
electron gas~r s52.0! as a function of the chargeuZu. The solid line
are the results from DFT, and the dashed and dotted lines are
from Ref. 7, with parametersl54.304 andl51.0, respectively.

FIG. 2. The electronic stopping power of electron gases w
density parameterr s51.5 to 4.0 for antiparticles with2Z51 to 10
at low velocities.
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cannot be considered as a small perturbation to the elect
density distribution in the medium. The existence of an a
tiparticle greatly changes the electron-density distribution
the medium. Due to the repulsive potential generated by
antiparticle a screening hole is created, which is opposite
the case of a normal particle, where a pile up of electron
formed. It is helpful to make a comparison of the stoppi
power of an electron gas for antiparticles with that for no
mal particles. In Fig. 4 the stopping powers of an electr
gas with r s52.0 for antiparticles and normal particles as
function of uZu are plotted. The solid line refers to the an
particles and the dotted line is for normal particles who
data are from Ref. 8~also based on a self-consistent DF
calculation!. It can be seen that the stopping power of ele
tron gases for antiparticles and normal particles have rem
ably different uZu dependence behaviors. This differen
stems from the different distribution of phase shifts. In ord
to investigate the distribution of phase shifts, we decomp
the screening charge~hole! to a different l component ac-
cording to the definition

Zl5
2

p
~2l11!d l~EF!, ~11!

and define the percentage of contribution of thel th partial
wave as

se

h

FIG. 3. The electronic stopping power of an electron g
~r s52.0! for antiparticlesuZu<0.01. The solid and dotted lines ar
the results from DFT and linear-response theory, respectively.

FIG. 4. The electronic stopping power of an electron g
~r s52.0! for antiparticles and normal particles fromuZu51 to 10.
The solid and dotted lines are the results for antiparticles~present
work! and normal particles~Ref. 8!, respectively.
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Pl5UZlZU5 2

p
~2l11!Ud l~EF!

Z U3100%. ~12!

In Fig. 5P0, P1, Pl.1 for antiparticles and normal particles
with uZu from 1 to 10 are plotted withr s52.0. The solid lines
refer toP0, the dashed lines toP1, and the dotted lines to
Pl.1. The symbols of full circles represent the antiparticle
and empty circles represent the normal particles. Althou
thePl is obtained from the phase shift at the Fermi surfac
it actually reflects the total profiles of the phase shifts with
the whole energy range at a certain partial wavel , e.g.,Pl
reflects the properties of the total screening electrons of p
tial wave l . It can be seen from Fig. 5 that in the case o
uZu51, the screen contribution from the partial wavel50 is
dominant and theP0 of antiparticles fromuZu51 to 10 is
lower nearly one half than that of normal particles. This ex
plains the reason why the stopping power of electron gas
for an antiproton is lower than that for a proton. It is als

FIG. 5. The percentage of screening contribution of parti
wavesPl as a function ofuZu from uZu51 to 10. Solid lines:P0,
dashed lines:P1, dotted lines:Pl.1. Full circles: antiparticles,
empty circles: normal particles.
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evident that in the case of normal particles, theP1 is quite
larger than other partial waves’ contributions fromuZu56–
10, and in the case of antiparticles, there is no a significa
dominant partial wave’s contribution in the total range fro
Z521 to 210. FromZ522 on, the contribution from par-
tial wave l50 is smaller than that froml51, and from
Z525 on, the contribution from partial wavesl51 is
smaller than that froml.1. The concentration of screenin
electrons on partial wavel51 is the main reason of the stop
ping power oscillation for normal particles, and the mo
diffuse distribution of the screening contribution on part
waves causes the monotonic increment of the stopp
power for antiparticles. This conclusion is based on the f
lowing. Since the contribution of partial wavel51 to screen-
ing is dominant for the normal particles whenZ is greater
than 6,d1 will increase withZ and become larger thanp/2.
According to Eq.~6!, it is easy to understand that the co
centrated contribution froml51 partial wave can cause a
oscillation ofdW/dR asZ is changed. However, the contr
bution from all the partial waves are more diffusely distri
uted among different partial waves for antiparticles. T
phase shiftdl is usually less thanp/2, when the largest par
of screening electrons are contributed by this partial wavl .
As a result, the stopping power for antiparticles will chan
monotonously withuZu. Additionally, this diffusive distribu-
tion of partial wave contributions of screening electro
gives rise to the more diffuse screening potentials and e
tron densities for the case of antiparticles embedded in e
tron gases than those for normal particles, which explains
findings of Refs. 4 and 5.

In summary, we have analyzed the stopping power
electron gases for antiparticles at low velocities within t
density-functional theory and found the nearly linear re
tionship between the stopping power and the chargesuZu.
The linear-response theory is valid whenuZu!1 in the range
of low velocities. The diffuse distribution of partial wav
contributions of screening electrons in the case of antip
ticles is quite different from that of normal particles and
thought to be the main reason for the monotonic increm
of the stopping power as a function ofuZu.
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