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Motion of a screw dislocation in a two-dimensional Peierls potential
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Motion of a screw dislocation in a crystal lattice occurs by kink pair formation in a two-dimensional Peierls
potential. Employing the line-tension model of a dislocation, the saddle-point configuration of a nonplanar kink
pair in three-dimensional space and the associated activation energy are calculated. The method is applied to a
(111) screw dislocation in a bcc lattice assuming a threefold periodic sinusoidal Peierls potentia(iithe
plane. In this potential the dislocation can nucleate a kink pair from one stable straight configuration towards
any of the three adjacent ones. Depending on the direction of the applied stress the relative frequencies of the
three activation processes determine the temperature dependence of the critical flow stress and the direction of
total slip. The calculations reproduce well the plastic anisotropy of bcc transition metals.
[S0163-18207)02210-9

I. INTRODUCTION with absolute zero temperature. Takeuchi and Kurahioto

A dislocation moving in a crystal lattice feels a resistanceattempted to describe the plastic anisotropy at finite tempera-
. oving ystal . . tures by thermally activated kink pair formation on a screw
due to lattice periodicity. The lattice resistance is usuall

: o . ” Ydislocation. They considered an effective Peierls potential
expressed in terms of a periodic function of the position of

. X X , ) L %or the transition from one stable position to another through
straight dislocatior(Peierls potentidl™). At finite tempera- 5, intermediate metastable position, calculated the nucle-

ture and under an applied stress the mobility of the dislocayiion rate of a kink pair along each possible path with the
tion is given by the nucleation rate of kink pairs in the theonyt-7 of one-dimensional Peierls potentials and then su-
straight segment lying in the potential valley, provided thatyerimposed the transition probabilities in three possible di-
the migration rate of the nucleated kinks is sufficiently rections to obtain the dislocation velocity and resulting slip
high*~** The kink pair formation rate has usually been cal-plane at a given temperature. In the calculation the activation
culated for a certain assumédr example, sinusoidakhape  path between two stable configurations was specified, though
of the potential. In any existing theory the Peierls potential ighe path itself should be chosen so as to minimize the acti-
assumed to be a one-dimensional periodic functig(x) on  vation energy. Recently, Suzuki, Koizumi, and Kirchifer
a specific slip planex, wherez is the direction of the dis- investigated the temperature dependence of the flow stress
location line. The saddle-point configuration of a planarand showed that some experimental curves are apparently
bow-out x(z) in the slip plane and the associated energydescribed by a damlike Peierls potential with a flat maxi-
AH are calculated either in the line-tension mddelor con-  mum, but others can never be reproduced by such one-
sidering self-stresses in a bow-out configurafibh: Theo-  dimensional potentials. These investigations suggest that the
ries of this type have been widely applied to the analysis ofmotion of screw dislocations must be treated without speci-
the low-temperature plasticity of various crystals includingfying its glide plane even on the atomistic scale. The Peierls
bce metald12~and ionic crystal$®1’ potential of a screw dislocation must be defined as a two-
bcc metals, in particular at low temperature, are plasti-dimensional functiorVp(X,y) in the plane %,y) normal to
cally anisotropic: they show a strong temperature depenthe dislocation linez. The bow out is not planar any more,
dence and shear asymmetry of sfig® Sincein situelectron  but the dislocation line is now a space curve on a develop-
microscopy observation revealed that the deformation is corable surface. The saddle-point configuration of a bow out
trolled by the motion of screw dislocatioh$these charac- [x(z),y(z)] must be found in the three-dimensional space
teristic features should be interpreted by the properties of éx,y,z) under applied stress to obtain the activation en-
screw dislocation in the bcc lattice. Of the two different ergy.
models proposed for the slip behavior in bcc metals one is This paper calculates the saddle-point energy for a non-
based on a threefold dissociation of the dislocation é6f&, planar bow out of a dislocation in a two-dimensional Peierls
and the other one on a threefold symmetric Peierlotential. The method is applied to a screw dislocation in the
potential?? The results of atomistic calculations on the dis- bcc lattice and the plastic anisotropy is derived from a simple
location core structure, Peierls stress, and also behavior upotential which reflects merely the structural symmetry. The
der stres§? have often been interpreted as a mixing ofline-tension model is employed for the expression of the
these two effectd® Most of the simulations are concerned elastic energy of the bow-out configuration.
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FIG. 1. Bow-out configuratiorx(z),y(z)] of a dislocation
moving in the Peierls potentidp(X,y) from the initial equilibrium
position | atr =r towards the adjacent equilibrium position 1. The FIG. 2. Two-dimensional Peierls potentidlp(x,y) for a
projection of the symmetric configuration onto thg plane is the  (111) screw dislocation in the bcc lattice, E&). The atomic rows

curver=r(x,y) fromrgtory,. parallel to (111) are located at the positions A. The potential
minima are aBy, B4, B,, andB;, and maxima at Cy is the angle
1I. SADDLE-POINT CONFIGURATION AND ENERGY between the plane of the maximum shear stresmd the(101)
OF A KINK PAIR IN A TWO-DIMENSIONAL plane, i.e., the direction of the foreeb acting on the dislocation.
PEIERLS POTENTIAL R; is the transition vector fronBy to B;, i=1, 2, and 3. The

broken line linking B, and B; is the shape of an isolated kink

Figure 1 presents a schematic illustration of the thermallyprojected on thg111) plane; see Sec. IV.
activated motion of a dislocation in a two-dimensional
Peierls potential under a certain applied stress. We considenghich are just the equilibrium equations between the line-
dislocation along the direction moving from a stable equi- tension force and the force by the potential. The saddle-point
librium position (line 1) to another different stable equilib- configuration is the solution of the differential equatid@s
rium position adjacent to itline II). When the effective under the boundary conditions(—)=x(+x)=x, and
Peierls potential, which includes the work done by the apy(—«)=y(+x)=y, which are the solutions of
plied stress, is lower at position Il than at position I, the 9d/9x=0 andgd/gy=0, respectively.
whole dislocation could make a transition from position I to  An analogy should be pointed out between E@.and
position Il via a thermally activated saddle-point configura-Newton’s equation of motion; by replacing the coordinate
tion having a bow-out shape as illustrated in Fig. 1. Thewith the timet, Egs.(2) transform into the equation of mo-
thermal activation energy in this process is given by the ention of a single particle with masE in the potential field
ergy increment in the saddle-point configuration with respecy(x,y)=—®d(x,y). In this mechanical analog the path of
to the initial equilibrium Conﬁguration I. The problem is to the part|c|er(t):[x(t),y(t)] represents the Shape of the dis-
determine the three—dimensipnal saddle-pqint cor!figuratioqbcation r(z)=[x(z),y(z)]. The saddle-point configuration
and to evaluate the associated energy in a given twopf the dislocation corresponds to the following particle mo-
dimensional Peierls potential under an applied stress. tion: (a) A particle placed atr,=(X,,Yy,), the top of the

The line-tension model expresses the total-energy increnotentialU(x,y), runs down the potential hil(b) The par-
ment of the dislocation having the configuration ticle subsequently climbs up a potential hill next to it to
r(2)=[x(2),y(2)] with respect to the initial equilibrium reach a point = (Xy,Ym) With the same potential value as

configuration at o= (Xo,Yo) as that atro=(Xo,Yo). (c) The particle goes back through the
same path to reach the initial poing=(Xg,Yy). It is note-
= [1 [(dx\? [dy\? worthy that the particle never reaches the same potential
Elx(2).y(2)]= f_w gz Tlaz height as that at,, unless the right starting directions are

chosen. However, once we find the path to reach the point
with such potential height, i.et,,, the particle motior(c) is
ensured by the reversal invariance of the equation of motion.
After all, the problem is reduced to obtaining either the for-
where I' denotes the line-tension of the dislocation andward path fromr, to r, or the return path fronr, to r.
d(x,y) is the effective Peierls potential including the work Assuming that electron and phonon drags are negligible
done term, which will be given explicitly in Eq6). For a  throughout the above-described procesé&gs(c), the “me-
screw dislocation along111), I is known to be independent chanical energy” should be preserved, i.e.,

of the plane of the bow-odf. The saddle-point configuration

must satisfy the Euler-Lagrange equations of the functional 1 dx\? [dy\?
(1), 20 gz Tlgy) (T2 —P(XY0). (3

+(I)(X!y)_q)(X01y0) dZv (1)

d* _ 90(x,y) d?y  aD(x,y) By substituting Eq.(3) into Eq. (1), we obtain the saddle-

Iz x ' LazZ ay @ point energyAH as
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FIG. 3. Contour maps of the effective potentia(x,y;r) defined by Eq(6) for y=0°. The Peierls stresg(y=0°) is 3.8<10 3u. A
minimum position &q,Y,) under the stress is indicated by a small circle. The broken line is the contourbdk,y)=®(xq,y,). The
calculated saddle-point configurations of the bow out towards three neighboring minimums are shown as the curved paths projected on the
Xy plane.

fm 8 2
Aszﬁf JO(X,y) — D (Xo,Yo) dI, (4) Vo(xy) = —=Vg sin= L sinZ| 2 +x
fo 3\3 yza T aly3
where dI= \/dx?+dy? denotes the line element along the my
path. ><sing ﬁ—x , (5)

11l. APPLICATION TO A bcc LATTICE ) .
where V, corresponds to \(F¥-VE™/2. This two-

We consider a screw dislocation with Burgers vectordimensional Peierls potential is depicted in Fig. 2. We ex-
b=1/2<111> in the bcc lattice. The atomic rows parallel to press the mode of Stressing by the armlaccording to the
the(111) axis form a triangular lattice with lattice parameter conyentional notation, wherg=—30°, 0° and+30° cor-
a=(22/3)|b in the (111) plane. Hence, due to the symme- respond to the shear stressing on the twinnibg2) plane,
try of the lattice, low-energy positions should be aligned alsqpe (101) plane and the antitwinning211) plane, respec-
in the form of the same triangular lattice. As every simula-ijyely. The effective Peierls potential under the applied shear

tion has showrt?****we assume that the low-energy posi- syressr in the plane represented kycan be written as
tions are located at every other center of the triangles. We

simulate this situation by assuming a sinusoidal Peierls po-
tential O(X,y; 7, x)=Vp(X,y)—7h(X cosxy+y siny). (6)



55 MOTION OF A SCREW DISLOCATION IN ATWG.. .. 6183

FIG. 4. Contour maps of the effective potentil(x,y; ) for y=—25° and the saddle-point configurations of the bow-out. The Peierls
stressrp(y=—25°) is 3.3<10 3u.

The angley means now the direction of the fore® acting AH

on the dislocation. For every between—30° and -+ 30°, v=vgo exp| — ﬁ) (7)

the dislocation at a stable equilibrium positiBg can make

a transition to one of the three of neighboring stable posiwhere vy is the frequency factorAH is the activation en-

tions B4, B,, andB; in Fig. 2. ergy, andkT has the usual meaning. In the present case in
For xy=+30°, one of the three transitions is in a critical which there are three types of translation, the velocity vector

situation, in which the effective Peierls potential value forOf the dislocation is given by

the initial position and that for the position after the transi- 3

t@on become exact'ly th_e same. The saddle-point configura- VZE iRy, (8

tion for each transition is calculated as followa) Contour =1

lines having the value ob(Xq,Yq; 7, x) are calculated for a

wherev; andR; (i=1, 2, and 3 denote the translation fre-
guencies and the translation vectors for the three types of
&ranslation. The angley between the integrated slip plane

equation of motion for the potentiat ®(x,y;7,x). (€) BY a4 the(101) plane is obtained as the angle betweeand

changing the initial point on the contour lines step by step

the path to reachxg,yo) is searched for, which gives the X axis, 1.€., Uy

saddle-point configuration of the dislocation, as explained in Y=sin M 9
Sec. Il. The activation energy associated with the saddle-

point configuration is calculated from E¢). For the numerical calculations we také=2.8

The frequency of the thermally activated motion of the X10 %m, ub®=2.0x10"8 J, ;=10 s, T'=ub?2,
dislocation from one stable equilibrium position to another isand V,=1.0x10 3ub?, which were determined from the
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FIG. 5. The same as Figs. 3 and 4, but for 25°. 7p(x=25°)=5.3x 10 3u.

paper of Takeuchi and KuramotbThe critical velocityv,

the top position of the saddle-point configuration must be

of the dislocation at which the crystal undergoes yieldingfound on these lines. The saddle-point configurations were
was taken as IC® m/s. With these numerical values we obtained following the procedure described in Sec. Ill, and

calculate the temperatufieat which the dislocation velocity
reachew . and the corresponding at the temperature under
a given stress and angley.

IV. RESULTS

Application of the forcerb tilts the effective potential
surfaced(x,y) in the direction ofy, as shown in Figs. 3-5
for y=—25°, 0°, and 25°, respectively. Whenexceeds
some critical value, the minima @b which are the stable

their projections on they plane are drawn on the energy
contour maps of Figs. 3-5 for respective X) values. At
7=0, all the minima aB; in Fig. 2 are of the same energy,
hence the saddle-point configuration links two neighboring
minimum points, as shown by broken lines. This configura-
tion corresponds to an isolated kink or a pair of kinks with
infinite separation. It should be noted that the saddle-point
configuration does not necessarily go through the saddle
point of the potentiatb (x,y; 7, x) itself. Also to be noted is
that the translation frorB, to B, or B; is possible only up to

positions of the dislocation vanish. This critical stress, thesome limiting value ofr, though towardsB, it is always

Peierls stressp, depends on the angle, as will be de-
scribed later (Fig. 8. The stable equilibrium position
ro=1(Xg,Yo) of the straight configuration for a givep and

7<7p is indicated in Figs. 3-5 by open circles. With in-

creasingr the stable position shifts frorBy nearly in the
direction of y. The contour lines®(x,y)=®(xq,Y,) are

shown by broken lines in Figs. 3—5. As explained in Sec. I,

possible. For example, the translation towaBisis impos-
sible at7>0.5 7p for any orientation. For close torp the
saddle-point configuration for the transition Bg also does
not exist, irrespective of, because the contour line satisfy-
ing ®(x,y; 7, x)=®(Xq,Yo; 7. x) becomes almost straight; it
allows only the transition t®;.

The stress dependence of the activation enetdy,(7),
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AH (1072 £b3)

AH (1072 ub?)

AH (1072 #b?)

T (1073u) ' 7 (1073 x)

FIG. 6. Activation energyAH;(7) for the six values of anglg. The branches=1,2, and 3 correspond to the possible transitions towards
B; identified in Fig. 2.

calculated by Eq(4) is shown in Fig. 6, where the branch y=—30° axis, the stress produces no difference between
i denotes the transition frof, to B; (i=1, 2, and 3indi-  the minimum energies ne&, andB,, and henceAH,(7)
cated in Fig. 2. The value addH,;(7=0) is independent of stays almost constant;AH,(7;y=—-30°)~2U,. For
bothi andy; it is equal to the energy of two isolated kinks, y>—30° the bottom ofb nearB, becomes deeper than that
2U,. Only AH4(7) of the three branches covers the full nearB,, and thusAH, reveals ar dependence which be-
stress range from=0 to 7p. The shape oAH,(7) varies = comes strong with increasing When y reachest+ 30°, the
slowly with the angley according to the dependence ff  potential ® becomes again symmetric with respect to the
on x. On the contraryAH,(7) and AH5(7) change drasti- x=30° axis, the transitions tB; and toB, become equiva-
cally with changingy. Wheny= —30°, the potential surface lent, and hencéH,(7) coincides withAH(7). The curve
d(x,y;7) is always symmetric with respect to the of AH,(7) for y=25° in Fig. 6 is almost in this situation.
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FIG. 7. Critical shear stress, against temperatur€ for given FIG. 9. Angley of integrated slip plane against temperatlire
for given y.
X-

The variation ofAH4(7) with y is in the opposite sense of by AH;. This means that the integrated slip plane is always

AH,(7), but not exactly so because of the asymmetry ofthe (101) plane, i.e.;y=0 irrespective of the angle of the
®(x,y) with respect to thex axis. Corresponding to the ab- applied stress, as indeed seen in Figs. 9 and 1040100 K.
sence of the transition paths fo=2 and 3 at |arge7-’ On the other hand, at h|gT|, where the Stl’eSSC should be
AH,(7) does not reachr=7p and AH,(7) ends with~ 10w, the transition toB, or B3 contributes remarkably to
smaller than 0.5 . and makes) deviate from 0° in the same sensexa®s seen

Figure 7 shows the relations between the temperafure in Figs. 9 and 10 fo>100 K. With T increasing further,
and the stress, determined so as to gije|=v,=10"°m/s  7c approaches zerdH, or AH; become close taH; (Fig.
for Eq. (8) using theAH;(7) curves in Fig. 6. They are 7). and the nucleation rate of kink pairs towarlls or Bs
equivalent to the temperature dependences of the criticahcreases. Therefore, at highthe integrated slip plane be-
shear stress observed by macroscopic deformation tests @mes almost parallel to the plane of maximum shear stress,
constant strain rate, provided that the mobile dislocation der-€., = x. The discontinuities of th¢:— T relations in Fig. 9
sity is constant. The maximum temperatlrg~280 K be-  arise from the disappearance of the activation patBiat
low which the Peierls mechanism operates corresponds t@rge 7, seen in Figs. 4 and 6.

AH;(7=0)=2U,, and is independent gf. The shape of
7(T) in Fig. 7 is dominated byAH(7), but the contribution
of AH,(7) and/orAHjz(7) is not small at lowr or high T,
particularly fory=~ =30°. The variation ofr. with angley at
constantT is shown in Fig. 8. The value af, at T=0 K is
the Peierls stressp .

Figures 9 and 10 show the anglebetween the integrated
slip plane and the (@1) plane, which is given by Eq9).
Referring toAH;(7) of Fig. 6, the behavior of)(T,z) is
interpreted as follows. At lowl, where the stress. should
be high, the velocityw of Eq. (8) is determined exclusively

V. DISCUSSION

The present treatment for the kink pair formation process
is based on the line-tension model of a dislocation; it as-
sumes smooth kinks and a constant line-tension irrespective
of the shape and orientation of the dislocation segment in a
bow-out configuration. The line-tension model cannot be ap-
plied to the case of high Peierls potentials giving narrow or
abrupt kinks, as in semiconductors. The Peierls stress of
screw dislocations in bcc metals are of the order of
103 w. This gives a kink width of about 10 which is

6 T T T T 30 T T
0K
5'_ =1 20_
fe=Tp 24K
__af . 10 F
. S 0K~100K
2 3:—/ 70K §
o 2 120k
s >
2——_//"& -1of g
- 180K /180K
1k —20+// / .
240K 220K
| ] ] 1 ”
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FIG. 8. 7.— x relations at various temperatures.

X (degree)

X (degree)

FIG. 10. ¢s— x relations at various temperatures.
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wide enough to apply the line-tension model. The line-present model, the obtained relationstT, 7.— x, and
tensionI” of a screw dislocation in the bcc lattice is indepen- ¢y— y describe well the overall trends of the experiments on
dent of the bow-out direction because of the threefold symw,?’ Mo,22° Ta3® Nb 3! and a-Fe3? This implies that the
metry of the elastic field of the(111) dislocation?*  plastic anisotropy essentially stems from the geometry or the
Therefore, for the smooth bow-out of the dislocation into thesymmetry of the screw dislocation in the bcc lattice, irrespec-
shape of Fig. 1, the present treatment with a consfaig  tive of the details of the core structure and also the shape of
reasonable, as long as the applied stress not too low. the potential. However, there are some disagreements be-
When is close to zero, the separation of two opposite kinkstween the present result and the experimentsa-&fe (Ref.
at the saddle point becomes large, so that the line-tensioB2) and Mo (Ref. 29 for y<0° and at low temperatures. In
model loses applicability and the long-range elastic interacerder to reproduce every detail of the particular experimental
tion (self-stressin the bow-out should explicitly be consid- data, the potentia¥p(x,y) must be chosen more adequately.
ered to determine the saddle-point endtdgecently, Koi-  The calculation by use of the refin&b(x,y) is in progress
zumi, Kirchner, and SuzuKi'! and Suzuki, Koizumi, and and will be reported in a separate paper.
Kirchner® investigated the kink pair formation process con- The present model assumes the energy of the dislocation
sidering the self-stresses in the full range of applied stres® be uniquely given as a function of the position under
7, and showed that the line-tension model describes well thetress. However, if it is widely spread, the energy of the
saddle-point shape of the kink pair and the stress dependendeslocation may not be uniquely defined as a function of the
of the activation energy, except fer<0.17p. dislocation position because the energy depends on the way
The present model is simple and primitive in that the as-of the spread. Thus, the present treatment can be applied
sumed Peierls potential function only reflects the threefoldbnly to a narrow core. Although the present model repro-
symmetry of the screw dislocation in the bcc lattice withoutduces the experimentally well established asymmetry be-
taking into any account the details of the bonding charactertween forward and backward slip, it cannot explain the
istics. In this respect, the present model is similar to theasymmetry between tension and compression when the hy-
threefold symmetric dissociation modét.g., Kroupa and drostatic component matters. That can only be studied by
Vitek?®), which also considers only the symmetry but not thecomputer simulation which takes fully into account the
periodicity of the lattice. In spite of the simplicity of the three-dimensional relaxation of the lattite.

IR. E. Peierls, Proc. Phys. Sd82, 34 (1940. 19H. Saka, K. Noda, and T. Imura, Cryst. Lattice Defedts45

2F. R. N. Nabarro, Proc. Phys. Sd&9, 256 (1947). (1973.
3F. R. N. NabarroTheory of Crystal Dislocation§Oxford Uni- 20T, E. Mitchell, R. A. Foxall, and P. B. Hirsch, Philos. Ma8,
versity Press, Oxford, 196,7p. 139. 1895(1963.

4V. Celli, M. Kabler, T. Ninomiya, and R. Thomson, Phys. Rev. 2T E. Mitchell, Philos. Mag17, 1169(1968.

: 131, 58 (1963. _ 22H. Suzuki, inDislocation Dynamicsedited by A. R. Rosenfield,
J. E. Dorn and S. Rajnak, Trans. AIMESQ, 1052(1964. G. T. Hahn, A. L. Bement, and R. |. Jaffé¢klcGraw-Hill, New
6A. Seeger and P. SchillePhysical Acoustics, Principles and York, 1968, p. 679.

Methods edited by W. P. MasofAcademic, New York, 1966 23y vitek Cryst. Lattice Defects, 1 (1974,

; Vol. 1llA, p. 361. o 24H. O. K. Kirchner, inDislocations in Solidsedited by H. Suzuki,
8P. Guyot and J. E. Dorn, Can. J. Ph¥s, 983(1967). T. Ninomiya, K. Sumino, and S. Takeuctiiniversity of Tokyo
A. Seeger, Z. Metallkd72, 369(1981). p Tokvo. 19 29
°J. P. Hirth and J. LotheTheory of Dislocations(Wiley- ress, Tokyo, 1985p. 29, . .
Interscience New York 19’82p 532 253, Takeuchi, ininteratomic Potentials and Crystalline Defects
104, Koizumi, H. O. K. Kirchner, and T. Suzuki, Acta Metall. igggd byzlé.lLee(MetaIIurglcal Society of AIME, New York,
Mater. 41, 3483(1993. 26 PO
H. Koizumi, H. O. K. Kirchner, and T. Suzuki, Philos. Mag. A 27':' Kroupa and V. Vitek, Can. J. Phy&5, 945(1967.
A. S. Argon and S. R. Maloof, Acta Metall4, 1449(1966.

69, 805(1994.
28 i
123, Takeuchi and E. Kuramoto, J. Phys. Soc. 8480 (1975. S. S. Lau and J. E. Dorn, Phys. Status Solid2,825(1970.

135, Takeuchi, see Sec. 5 in T. Suzuki, S. Takeuchi, and H. Yoshi- K. Kitajima, Y. Aono, and E. Kuramoto, Scr. Metalls, 919

naga, Dislocation Dynamics and PlasticitySpringer, Berlin, (1981).
1991, p. 77. 303, Takeuchi, E. Kuramoto, and T. Suzuki, Acta Metal, 909
14T Suzuki, H. Koizumi, and H. O. K. Kirchner, Acta Metall. (1972.

Mater. 43, 2177(1995. 31y, Aono, E. Kuramoto, and K. Kitajima, itStrength of Metals

157, Suzuki and H. Kim, J. Phys. Soc. Ji88, 1566(1975.

16T Suzuki and H. Kim, J. Phys. Soc. Jpt0, 1703(1976.

YT, Suzuki, W. Skrotzki, and P. Haasen, Phys. Status Solith®
763 (1981).

183 Ww. Christian, inProceedings of the 2nd International Confer-

ence on Strength of Metals and Alloggmerican Society for
Metals, Metals Park, Ohio, 19Y0Vol. 1, p. 31.

and Alloys edited by R. C. GifkingPergamon, Oxford, 1982
p. 9.

32K, Kitajima, Y. Aono, H. Abe, and E. Kuramoto, iStrength of
Metals and Alloysedited by P. Haasen, V. Gerold, and G. Ko-
storz (Pergamon, Oxford, 1979p. 965.

33M. S. Duesbery, inDislocations in Solidsedited by F. R. N.
Nabarro(North-Holland, Amsterdam, 1989Vol. 8, p. 67.



