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Motion of a screw dislocation in a two-dimensional Peierls potential
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~Received 1 April 1996!

Motion of a screw dislocation in a crystal lattice occurs by kink pair formation in a two-dimensional Peierls
potential. Employing the line-tension model of a dislocation, the saddle-point configuration of a nonplanar kink
pair in three-dimensional space and the associated activation energy are calculated. The method is applied to a
^111& screw dislocation in a bcc lattice assuming a threefold periodic sinusoidal Peierls potential in the~111!
plane. In this potential the dislocation can nucleate a kink pair from one stable straight configuration towards
any of the three adjacent ones. Depending on the direction of the applied stress the relative frequencies of the
three activation processes determine the temperature dependence of the critical flow stress and the direction of
total slip. The calculations reproduce well the plastic anisotropy of bcc transition metals.
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I. INTRODUCTION

A dislocation moving in a crystal lattice feels a resistan
due to lattice periodicity. The lattice resistance is usua
expressed in terms of a periodic function of the position o
straight dislocation~Peierls potential1–3!. At finite tempera-
ture and under an applied stress the mobility of the dislo
tion is given by the nucleation rate of kink pairs in th
straight segment lying in the potential valley, provided th
the migration rate of the nucleated kinks is sufficien
high.4–11 The kink pair formation rate has usually been c
culated for a certain assumed~for example, sinusoidal! shape
of the potential. In any existing theory the Peierls potentia
assumed to be a one-dimensional periodic functionVP(x) on
a specific slip planezx, wherez is the direction of the dis-
location line. The saddle-point configuration of a plan
bow-out x(z) in the slip plane and the associated ene
DH are calculated either in the line-tension model4,5,7or con-
sidering self-stresses in a bow-out configuration.10,11 Theo-
ries of this type have been widely applied to the analysis
the low-temperature plasticity of various crystals includi
bcc metals5,7,12–14and ionic crystals.15–17

bcc metals, in particular at low temperature, are pla
cally anisotropic: they show a strong temperature dep
dence and shear asymmetry of slip.13,18Sincein situelectron
microscopy observation revealed that the deformation is c
trolled by the motion of screw dislocations,19 these charac-
teristic features should be interpreted by the properties
screw dislocation in the bcc lattice. Of the two differe
models proposed for the slip behavior in bcc metals on
based on a threefold dissociation of the dislocation core,20,21

and the other one on a threefold symmetric Peie
potential.22 The results of atomistic calculations on the d
location core structure, Peierls stress, and also behavior
der stress13,23 have often been interpreted as a mixing
these two effects.23 Most of the simulations are concerne
550163-1829/97/55~10!/6180~8!/$10.00
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with absolute zero temperature. Takeuchi and Kuramo12

attempted to describe the plastic anisotropy at finite temp
tures by thermally activated kink pair formation on a scre
dislocation. They considered an effective Peierls poten
for the transition from one stable position to another throu
an intermediate metastable position, calculated the nu
ation rate of a kink pair along each possible path with
theory4–7 of one-dimensional Peierls potentials and then
perimposed the transition probabilities in three possible
rections to obtain the dislocation velocity and resulting s
plane at a given temperature. In the calculation the activa
path between two stable configurations was specified, tho
the path itself should be chosen so as to minimize the a
vation energy. Recently, Suzuki, Koizumi, and Kirchne14

investigated the temperature dependence of the flow st
and showed that some experimental curves are appare
described by a damlike Peierls potential with a flat ma
mum, but others can never be reproduced by such o
dimensional potentials. These investigations suggest tha
motion of screw dislocations must be treated without spe
fying its glide plane even on the atomistic scale. The Peie
potential of a screw dislocation must be defined as a tw
dimensional functionVP(x,y) in the plane (x,y) normal to
the dislocation linez. The bow out is not planar any more
but the dislocation line is now a space curve on a devel
able surface. The saddle-point configuration of a bow
@x(z),y(z)# must be found in the three-dimensional spa
(x,y,z) under applied stresst to obtain the activation en
ergy.

This paper calculates the saddle-point energy for a n
planar bow out of a dislocation in a two-dimensional Peie
potential. The method is applied to a screw dislocation in
bcc lattice and the plastic anisotropy is derived from a sim
potential which reflects merely the structural symmetry. T
line-tension model is employed for the expression of
elastic energy of the bow-out configuration.
6180 © 1997 The American Physical Society
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55 6181MOTION OF A SCREW DISLOCATION IN A TWO- . . .
II. SADDLE-POINT CONFIGURATION AND ENERGY
OF A KINK PAIR IN A TWO-DIMENSIONAL

PEIERLS POTENTIAL

Figure 1 presents a schematic illustration of the therm
activated motion of a dislocation in a two-dimension
Peierls potential under a certain applied stress. We consid
dislocation along thez direction moving from a stable equ
librium position ~line I! to another different stable equilib
rium position adjacent to it~line II!. When the effective
Peierls potential, which includes the work done by the
plied stress, is lower at position II than at position I, t
whole dislocation could make a transition from position I
position II via a thermally activated saddle-point configu
tion having a bow-out shape as illustrated in Fig. 1. T
thermal activation energy in this process is given by the
ergy increment in the saddle-point configuration with resp
to the initial equilibrium configuration I. The problem is t
determine the three-dimensional saddle-point configura
and to evaluate the associated energy in a given t
dimensional Peierls potential under an applied stress.

The line-tension model expresses the total-energy in
ment of the dislocation having the configuratio
r (z)5@x(z),y(z)# with respect to the initial equilibrium
configuration atr05(x0 ,y0) as

E@x~z!,y~z!#5E
2`

` F12GH S dxdzD 21S dydzD
2J

1F~x,y!2F~x0 ,y0!Gdz, ~1!

where G denotes the line-tension of the dislocation a
F(x,y) is the effective Peierls potential including the wo
done term, which will be given explicitly in Eq.~6!. For a
screw dislocation alonĝ111&, G is known to be independen
of the plane of the bow-out.24 The saddle-point configuratio
must satisfy the Euler-Lagrange equations of the functio
~1!,

G
d2x

dz2
5

]F~x,y!

]x
, G

d2y

dz2
5

]F~x,y!

]y
. ~2!

FIG. 1. Bow-out configuration@x(z),y(z)# of a dislocation
moving in the Peierls potentialVP(x,y) from the initial equilibrium
position I atr5r0 towards the adjacent equilibrium position II. Th
projection of the symmetric configuration onto thexy plane is the
curve r5r (x,y) from r0 to rm .
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which are just the equilibrium equations between the lin
tension force and the force by the potential. The saddle-p
configuration is the solution of the differential equations~2!
under the boundary conditionsx(2`)5x(1`)5x0 and
y(2`)5y(1`)5y0, which are the solutions o
]F/]x50 and]F/]y50, respectively.

An analogy should be pointed out between Eqs.~2! and
Newton’s equation of motion; by replacing the coordinatez
with the timet, Eqs.~2! transform into the equation of mo
tion of a single particle with massG in the potential field
U(x,y)52F(x,y). In this mechanical analog the path o
the particler (t)5@x(t),y(t)# represents the shape of the di
location r (z)5@x(z),y(z)#. The saddle-point configuration
of the dislocation corresponds to the following particle m
tion: ~a! A particle placed atr05(x0 ,y0), the top of the
potentialU(x,y), runs down the potential hill.~b! The par-
ticle subsequently climbs up a potential hill next to it
reach a pointrm5(xm ,ym) with the same potential value a
that at r05(x0 ,y0). ~c! The particle goes back through th
same path to reach the initial pointr05(x0 ,y0). It is note-
worthy that the particle never reaches the same poten
height as that atr0, unless the right starting directions a
chosen. However, once we find the path to reach the p
with such potential height, i.e.,rm , the particle motion~c! is
ensured by the reversal invariance of the equation of mot
After all, the problem is reduced to obtaining either the fo
ward path fromr0 to rm or the return path fromrm to r0.
Assuming that electron and phonon drags are neglig
throughout the above-described processes,~a!–~c!, the ‘‘me-
chanical energy’’ should be preserved, i.e.,

1

2
GH S dxdzD 21S dydzD

2J 5F~x,y!2F~x0 ,y0!. ~3!

By substituting Eq.~3! into Eq. ~1!, we obtain the saddle
point energyDH as

FIG. 2. Two-dimensional Peierls potentialVP(x,y) for a
^111& screw dislocation in the bcc lattice, Eq.~5!. The atomic rows
parallel to ^111& are located at the positions A. The potenti
minima are atB0, B1, B2, andB3, and maxima at C.x is the angle
between the plane of the maximum shear stresst and the~1̄01!
plane, i.e., the direction of the forcetb acting on the dislocation.
Ri is the transition vector fromB0 to Bi , i51, 2, and 3. The
broken line linkingB0 and Bi is the shape of an isolated kin
projected on the~111! plane; see Sec. IV.
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FIG. 3. Contour maps of the effective potentialF(x,y;t) defined by Eq.~6! for x50°. The Peierls stresstP(x50°) is 3.831023m. A
minimum position (x0 ,y0) under the stresst is indicated by a small circle. The broken line is the contour ofF(x,y)5F(x0 ,y0). The
calculated saddle-point configurations of the bow out towards three neighboring minimums are shown as the curved paths projec
xy plane.
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DH52A2GE
r0

rmAF~x,y!2F~x0 ,y0! dl, ~4!

where dl5Adx21dy2 denotes the line element along th
path.

III. APPLICATION TO A bcc LATTICE

We consider a screw dislocation with Burgers vec
b51/2̂ 111& in the bcc lattice. The atomic rows parallel
the ^111& axis form a triangular lattice with lattice paramet
a5(2A2/3)ubu in the ~111! plane. Hence, due to the symm
try of the lattice, low-energy positions should be aligned a
in the form of the same triangular lattice. As every simu
tion has shown,22,23,25we assume that the low-energy pos
tions are located at every other center of the triangles.
simulate this situation by assuming a sinusoidal Peierls
tential
r

r
-
o
-
-
e
o-

VP~x,y!5
8

3A3
V0 sin

2p

A3
y

a
sin

p

a S y

A3
1xD

3sin
p

a S y

A3
2xD , ~5!

where V0 corresponds to (VP
max2VP

min)/2. This two-
dimensional Peierls potential is depicted in Fig. 2. We e
press the mode of stressing by the anglex according to the
conventional notation, wherex5230°, 0° and130° cor-
respond to the shear stressing on the twinning (112) plane,
the ~1̄01! plane and the antitwinning~2̄11! plane, respec-
tively. The effective Peierls potential under the applied sh
stresst in the plane represented byx can be written as

F~x,y;t,x!5VP~x,y!2tb~x cosx1y sin x!. ~6!
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FIG. 4. Contour maps of the effective potentialF(x,y;t) for x5225° and the saddle-point configurations of the bow-out. The Pei
stresstP(x5225°) is 3.331023m.
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The anglex means now the direction of the forcetb acting
on the dislocation. For everyx between230° and130°,
the dislocation at a stable equilibrium positionB0 can make
a transition to one of the three of neighboring stable po
tionsB1, B2, andB3 in Fig. 2.

For x5630°, one of the three transitions is in a critic
situation, in which the effective Peierls potential value f
the initial position and that for the position after the tran
tion become exactly the same. The saddle-point config
tion for each transition is calculated as follows:~a! Contour
lines having the value ofF(x0 ,y0 ;t,x) are calculated for a
given t andx. ~b! A particle is placed at a certain point o
the contour lines and its time evolution is investigated by
equation of motion for the potential2F(x,y;t,x). ~c! By
changing the initial point on the contour lines step by st
the path to reach (x0 ,y0) is searched for, which gives th
saddle-point configuration of the dislocation, as explained
Sec. II. The activation energy associated with the sad
point configuration is calculated from Eq.~4!.

The frequency of the thermally activated motion of t
dislocation from one stable equilibrium position to anothe
i-

r
-
a-

e

,

n
e-

s

n5n0 exp S 2
DH

kT D , ~7!

wheren0 is the frequency factor,DH is the activation en-
ergy, andkT has the usual meaning. In the present case
which there are three types of translation, the velocity vec
of the dislocation is given by

v5(
i51

3

n iRi , ~8!

wheren i andRi ( i51, 2, and 3! denote the translation fre
quencies and the translation vectors for the three type
translation. The anglec between the integrated slip plan
and the~1̄01! plane is obtained as the angle betweenv and
x axis, i.e.,

c5sin21
vy
uvu

. ~9!

For the numerical calculations we takeb52.8
310210m, mb352.0310218 J, n051013 s21, G5mb2/2,
and V051.031023mb2, which were determined from the
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FIG. 5. The same as Figs. 3 and 4, but forx525°. tP(x525°)55.331023m.
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paper of Takeuchi and Kuramoto.12 The critical velocityvc
of the dislocation at which the crystal undergoes yield
was taken as 1026 m/s. With these numerical values w
calculate the temperatureT at which the dislocation velocity
reachesvc and the correspondingc at the temperature unde
a given stresst and anglex.

IV. RESULTS

Application of the forcetb tilts the effective potential
surfaceF(x,y) in the direction ofx, as shown in Figs. 3–5
for x5225°, 0°, and 25°, respectively. Whent exceeds
some critical value, the minima ofF which are the stable
positions of the dislocation vanish. This critical stress,
Peierls stresstP , depends on the anglex, as will be de-
scribed later ~Fig. 8!. The stable equilibrium position
r05(x0 ,y0) of the straight configuration for a givenx and
t,tP is indicated in Figs. 3–5 by open circles. With in
creasingt the stable position shifts fromB0 nearly in the
direction of x. The contour linesF(x,y)5F(x0 ,y0) are
shown by broken lines in Figs. 3–5. As explained in Sec.
e

,

the top position of the saddle-point configuration must
found on these lines. The saddle-point configurations w
obtained following the procedure described in Sec. III, a
their projections on thexy plane are drawn on the energ
contour maps of Figs. 3–5 for respective (t,x) values. At
t50, all the minima atBi in Fig. 2 are of the same energy
hence the saddle-point configuration links two neighbor
minimum points, as shown by broken lines. This configu
tion corresponds to an isolated kink or a pair of kinks w
infinite separation. It should be noted that the saddle-po
configuration does not necessarily go through the sad
point of the potentialF(x,y;t,x) itself. Also to be noted is
that the translation fromB0 toB2 orB3 is possible only up to
some limiting value oft, though towardsB1 it is always
possible. For example, the translation towardsB3 is impos-
sible att.0.5 tP for any orientation. Fort close totP the
saddle-point configuration for the transition toB2 also does
not exist, irrespective ofx, because the contour line satisfy
ing F(x,y;t,x)5F(x0 ,y0 ;t,x) becomes almost straight;
allows only the transition toB1.

The stress dependence of the activation energy,DHi(t),
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FIG. 6. Activation energyDHi(t) for the six values of anglex. The branchesi51,2, and 3 correspond to the possible transitions towa
Bi identified in Fig. 2.
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calculated by Eq.~4! is shown in Fig. 6, where the branc
i denotes the transition fromB0 to Bi ( i51, 2, and 3! indi-
cated in Fig. 2. The value ofDHi(t50) is independent of
both i andx; it is equal to the energy of two isolated kink
2Uk . Only DH1(t) of the three branches covers the fu
stress range fromt50 to tP . The shape ofDH1(t) varies
slowly with the anglex according to the dependence oftP
on x. On the contrary,DH2(t) andDH3(t) change drasti-
cally with changingx. Whenx5230°, the potential surface
F(x,y;t) is always symmetric with respect to th
x5230° axis, the stresst produces no difference betwee
the minimum energies nearB0 andB2, and henceDH2(t)
stays almost constant;DH2(t;x5230°)'2Uk . For
x.230° the bottom ofF nearB2 becomes deeper than th
nearB0, and thusDH2 reveals at dependence which be
comes strong with increasingx. Whenx reaches130°, the
potentialF becomes again symmetric with respect to t
x530° axis, the transitions toB1 and toB2 become equiva-
lent, and henceDH2(t) coincides withDH1(t). The curve
of DH2(t) for x525° in Fig. 6 is almost in this situation
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The variation ofDH3(t) with x is in the opposite sense o
DH2(t), but not exactly so because of the asymmetry
F(x,y) with respect to thex axis. Corresponding to the ab
sence of the transition paths fori52 and 3 at larget,
DH2(t) does not reacht5tP and DH3(t) ends with t
smaller than 0.5tP .

Figure 7 shows the relations between the temperaturT
and the stresstc determined so as to giveuvu5vc51026 m/s
for Eq. ~8! using theDHi(t) curves in Fig. 6. They are
equivalent to the temperature dependences of the cri
shear stress observed by macroscopic deformation tes
constant strain rate, provided that the mobile dislocation d
sity is constant. The maximum temperatureT0'280 K be-
low which the Peierls mechanism operates correspond
DHi(t50)52Uk , and is independent ofx. The shape of
tc(T) in Fig. 7 is dominated byDH1(t), but the contribution
of DH2(t) and/orDH3(t) is not small at lowt or high T,
particularly forx'630°. The variation oftc with anglex at
constantT is shown in Fig. 8. The value oftc at T50 K is
the Peierls stresstP .

Figures 9 and 10 show the anglec between the integrate
slip plane and the ( 1̄01) plane, which is given by Eq.~9!.
Referring toDHi(t) of Fig. 6, the behavior ofc(T,z) is
interpreted as follows. At lowT, where the stresstc should
be high, the velocityv of Eq. ~8! is determined exclusively

FIG. 7. Critical shear stresstc against temperatureT for given
x.

FIG. 8. tc2x relations at various temperatures.
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by DH1. This means that the integrated slip plane is alwa
the ( 1̄01) plane, i.e.,c50 irrespective of the anglex of the
applied stress, as indeed seen in Figs. 9 and 10 forT,100 K.
On the other hand, at highT, where the stresstc should be
low, the transition toB2 or B3 contributes remarkably tov
and makesc deviate from 0° in the same sense asx, as seen
in Figs. 9 and 10 forT.100 K. With T increasing further,
tc approaches zero,DH2 or DH3 become close toDH1 ~Fig.
7!, and the nucleation rate of kink pairs towardsB2 or B3
increases. Therefore, at highT the integrated slip plane be
comes almost parallel to the plane of maximum shear str
i.e.,c5x. The discontinuities of thec2T relations in Fig. 9
arise from the disappearance of the activation path toB3 at
larget, seen in Figs. 4 and 6.

V. DISCUSSION

The present treatment for the kink pair formation proce
is based on the line-tension model of a dislocation; it
sumes smooth kinks and a constant line-tension irrespec
of the shape and orientation of the dislocation segment
bow-out configuration. The line-tension model cannot be
plied to the case of high Peierls potentials giving narrow
abrupt kinks, as in semiconductors. The Peierls stress
screw dislocations in bcc metals are of the order
1023 m. This gives a kink width of about 10b, which is

FIG. 9. Anglec of integrated slip plane against temperatureT
for givenx.

FIG. 10. c2x relations at various temperatures.
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55 6187MOTION OF A SCREW DISLOCATION IN A TWO- . . .
wide enough to apply the line-tension model. The lin
tensionG of a screw dislocation in the bcc lattice is indepe
dent of the bow-out direction because of the threefold sy
metry of the elastic field of the^111& dislocation.24

Therefore, for the smooth bow-out of the dislocation into t
shape of Fig. 1, the present treatment with a constantG is
reasonable, as long as the applied stresst is not too low.
Whent is close to zero, the separation of two opposite kin
at the saddle point becomes large, so that the line-ten
model loses applicability and the long-range elastic inter
tion ~self-stress! in the bow-out should explicitly be consid
ered to determine the saddle-point energy.8 Recently, Koi-
zumi, Kirchner, and Suzuki10,11 and Suzuki, Koizumi, and
Kirchner14 investigated the kink pair formation process co
sidering the self-stresses in the full range of applied str
t, and showed that the line-tension model describes well
saddle-point shape of the kink pair and the stress depend
of the activation energy, except fort,0.1tP .

The present model is simple and primitive in that the
sumed Peierls potential function only reflects the threef
symmetry of the screw dislocation in the bcc lattice witho
taking into any account the details of the bonding charac
istics. In this respect, the present model is similar to
threefold symmetric dissociation model~e.g., Kroupa and
Vitek26!, which also considers only the symmetry but not t
periodicity of the lattice. In spite of the simplicity of th
v.
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present model, the obtained relations oftc2T, tc2x, and
c2x describe well the overall trends of the experiments
W,27 Mo,28,29 Ta,30 Nb,31 anda-Fe.32 This implies that the
plastic anisotropy essentially stems from the geometry or
symmetry of the screw dislocation in the bcc lattice, irresp
tive of the details of the core structure and also the shap
the potential. However, there are some disagreements
tween the present result and the experiments ofa-Fe ~Ref.
32! and Mo~Ref. 29! for x,0° and at low temperatures. I
order to reproduce every detail of the particular experimen
data, the potentialVP(x,y) must be chosen more adequate
The calculation by use of the refinedVP(x,y) is in progress
and will be reported in a separate paper.

The present model assumes the energy of the disloca
to be uniquely given as a function of the position und
stress. However, if it is widely spread, the energy of t
dislocation may not be uniquely defined as a function of
dislocation position because the energy depends on the
of the spread. Thus, the present treatment can be app
only to a narrow core. Although the present model rep
duces the experimentally well established asymmetry
tween forward and backward slip, it cannot explain t
asymmetry between tension and compression when the
drostatic component matters. That can only be studied
computer simulation which takes fully into account th
three-dimensional relaxation of the lattice.33
,
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