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An effective Hamiltonian for the ferroelectric transition in PbEi@ constructed fronab initio pseudopo-
tential local-density-functional total-energy and linear-response calculations through the use of a localized,
symmetrized basis set of “lattice Wannier functions.” Explicit parametrization of the polar lattice Wannier
functions is used for subspace projection, addressing the issues of LO-TO splitting and coupling to the
complementary subspace. In contrast with ferroelectric BgTa0d KNbO;, we find significant involvement
of the Pb atom in the lattice instability. Monte Carlo simulations for this Hamiltonian show a first-order
cubic-tetragonal transition at 660 K. The resulting temperature dependence of spontaneous polariaation,
ratio, and unit-cell volume near the transition are in good agreement with experiment. Comparison of Monte
Carlo results with mean-field theory analysis shows that both strain and fluctuations are necessary to produce
the first-order character of this transitidis0163-182807)02410-7

[. INTRODUCTION grees of freedom as the unstable phonons of the high-
symmetry reference structufa this case, the cubic perov-
Perovskite structure oxides exhibit a wide range of low-skite structurg which freeze in to produce the low-
temperature structural distortions associated with lattice intemperature distorted structure. Lattice anharmonicity of
stabilities of the prototype cubic structureshown in Fig. these modes, essential for crystal stability, produces a
1(a). This class of materials includes a large number of fer-double-well character for the associated energy surface, lead-
roelectrics, with uniform polar distortions and accompanyinging to a transition to the high-symmetry structure with in-
lattice relaxation(e.g., PbTiQ, BaTiOs;, KNbO3), while  creasing temperature. On the .othe_r hand, stable phonon
cation substitution can result in dramatic changes in groundoranches can, to a good approximation, be treated as purely
state distortion(e.g., antiferroelectric in PbZrg) antiferro- harmonic and thus do not contribute to the temperature de-
distortive in SrTiOy) and corresponding complexities in the Pendence of the structure. A simple effective Hamiltonian
mixed systemsge.qg., PbZg_, Ti O3, Ba;_,Sr,TiO3). How- acting in the subspaceT defined by the branches containing the
ever, in nearly all examples, the amplitudes and energies d¢fnstable phonons, with an explicit form determined from
the distortions are rather small, and cubic symmetry is r(_:‘ﬂrst-pnnmple's calculations, therefore is sufflplent to repro-
stored at temperatures above a critical temperaFutetypi- duc_e t_h_e f|n|te-temperature str_uctural transition behaylor of
cally a few hundred degrees Kelvin. an |nd|V|o_IuaI material. _Compan_so_n (_)f_ these mo_dels gives a
For a better understanding of structural phase transitiondyStématic understanding of similarities and differences in
in perovskite oxides, including chemical trends in the transithe microscopic structural energetics of d|ﬁ§rent materla!s.
tion temperatures, the first-order vs second-order character §fom the dependence of calculated properties on effective
transitions, the relationship between local distortions and avtlamiltonian parameters, one can also obtain a better under-
erage crystallographic structure, and the stability of intermeStanding of the role of various microscopic couplings in pro-
diate temperature phases, first-principles calculations offer
valuable access to microscopic information. With advances
in algorithms and computational capabilities, the challenge
of achieving the high accuracy necessary for studying these
distortions has been largely met, and ground-state distortions
well reproduced for a wide range of perovskite-structure ox-
ides using both all-electron linear augmented plane-fave
(LAPW) andab initio pseudopotenti&P methods. However,
for ab initio molecular dynamics or Monte Carlo, the system
sizes required for the study of finite-temperature structural
transitions are still completely impractical.
An alternative approach is to choose a restricted subset of F|G. 1. (a) Unit cell of the cubic perovskite compounds30.
the degrees of freedom and construct a simple effectiven) low-temperature crystal structure of PbTiDisplacements of
Hamiltonian in this subspace. Following the soft-modethe atoms indicated by arrows form the polar distortions of the
theory of structural transitiorfswe identify the relevant de- cubic unit cell.
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ducing the observed behavior. Microscopic effective Hamil-full lattice Hamiltonian(in the Born-Oppenheimer approxi-
tonians for structural transitions in perovskites were firstmation into a subspace of the full ionic displacement space,
constructed using the concept of local modes, with empiridefined by the phonon branches which contain the relevant
cally determined parametef$.First-principles total-energy unstable modes. The effective Hamiltonian subspace is
calculations were used in the determination of a local mod@panned by an orthonormal basis of “lattice Wannier func-
effective Hamiltonian for the structural transition in Gee, tions:” symmetrized localized atomic displacement patterns
and more recently for the structural transitions in PbJfO  taken with respect to a high-symmetry reference configura-
BaTiO3,'% and SrTiQ.*" A systematic approach which gen- tion. This basis defines a set of coordinates such that a given
eralizes and refines the local mode concept, allowing thget of values of the coordinates corresponds directly to a
efficient construction of an optimal effective Hamiltonian particular pattern of atomic displacements. As a result of the
from first-principles total-energy and linear-response techsymmetrized and localized nature of the basis, the Taylor
niques, has been developed based on the concept of lattiegpansion of the effective Hamiltonian around the high-
Wannier functions? This approach exploits symmetry prop- symmetry reference configuratiéwith all coordinate values
erties of the system and is generally applicable to complexqual to zerphas a simple form with relatively few param-
structural transitions involving several unstable modes ineters, which can be determined from first-principles calcula-
cluding ones at the zone boundary. Information from additions using the correspondence to patterns of atomic dis-
tional first-principles calculations allows for a systematic placements.
check on the validity of the truncation of the effective e briefly review the procedure; further details can be
Hamiltonian, and, when needed, the expansion of the sulfound in Ref. 12. Construction of the subspace begins with a
space and refinements of its form. The resulting effectiveraylor expansion of the full lattice Hamiltonian to quadratic
Hamiltonian is quantitatively realistic while retaining a order. A subset of the eigenvectors of the quadratic Hamil-
simple and physically transparent form. tonian is selected for inclusion in the subspace. This subset
In this paper, we present a detailed description of thenust include the unstable modes which freeze in to produce
first-principles investigation of PbTiQ"® which exhibits a  the low-temperature structure. In addition, to achieve a good
single first-order transition at 763 K from the cubic high- description of the branches which emanate from the unstable
temperature phase to the ferroelectric tetragonal ground statgodes, “end points” of these branches at high symmétry
shown in Fig. 1b). We construct an effective Hamiltonian points are included. The symmetry properties of the subspace
for this structural phase transition from first principles usingare established by identifying symmetries of localized func-
the lattice Wannier function method. In contrast with tions (Wyckoff position and site symmetry group irfep
BaTiO; (Ref. 10 and KNbGQ; (Ref. 14 for which the uni-  which can build up the selected subset of modes.
form polar distortions in the low-temperature phase consist We follow the prescription in Ref. 12 to obtain an ex-
of predominantlyB-atom displacements, those in PbEIO plicit, though approximate, form of a lattice Wannier basis
are dominated byA-atom (Pb) displacements, which will be vector. This involves finding the symmetric coordination
important in determining the effective Hamiltonian subspaceshells surrounding a representative Wyckoff site and identi-
The effective Hamiltonian also contains the coupling offying the independent displacement patterns of each shell
these local polar distortions to strain. In Ref. 2, the tetragonalhat transform according to the given irreducible representa-
phase in PbTiQ was found to be stabilized relative to the tion of the site symmetry group. The amplitudes of these
rhombohedral phase by the unit-cell relaxation. In additiondisplacement patterns completely specify an LWF. Because
we will find that strain plays a crucial role in producing the of the localized nature of LWF's, this infinite number of
correct finite-temperature transition behavior. parameters can, to a good approximation, be reduced to a
In Sec. Il A, we briefly review the method of lattice Wan- small finite number by neglecting the displacements of shells
nier functions. In Secs. IIB and Il C, the first-principles beyond a chosen range. At high symmetry points in the Bril-
methods and results obtained for the lattice constant, elastiguin zone(BZ), the modes built up with these parametrized
constants, phonon frequencies and the effective charges pfVF's are then fit to the corresponding normalized mode
PbTiO; are presented. In Secs. Ill A and Ill B, we describeeigenvectors obtained from first principles.
the construction of the effective Hamiltonian, with particular  These basis functions completely specify the effective
attention to the treatment of LO-TO splitting and crossing ofHamiltonian subspace. In the ideal case, this subspace is
branches through explicit parameterization of the latticecompletely decoupled at quadratic order from its comple-
Wannier functions. In Sec. Il C, we describe properties ofmentary subspace and to a good approximation at higher
the ground state of the effective Hamiltonian determinedorder as well. This happens when the subspace consists of
from first principles. In Sec. IV, we present results of finite- entire branches isolated in energy from the others and con-
temperature analysis dflz using mean field theory and tains all the unstable modes. In most real systems, branches
Monte Carlo simulations. These results are discussed in Seemanating from the unstable modes cross with branches in
V. the complementary subspace. This leads to some degree of
quadratic coupling which is unimportant if the crossing oc-
Il. METHOD curs far away from the unstable modes. If not, the subspace
should be expanded to include these branches. In addition, in

polar crystals, the electric field aiﬂo can mix the LO

modes differently from the corresponding TO modes. In such
In the lattice Wannier functiofLWF) method, the effec- a case, the Wannier basis vector which reproduces a given

tive Hamiltonian is obtained as the result of projection of theTO branch will not reproduce any LO mode exactly. How-

A. Lattice Wannier function method
for the construction of H
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ever, since LO modes are typically high in energy, this ap- TABLE I. Cubic perovskite lattice and elastic constants calcu-
proximate description of the LO mode should be adequat@ated from various first-principles calculations. Elastic constants are

for the description of the structural transition. given in eV/cell.
The quadratic part of the lattice Hamiltonian has both

kinetic and potential energy contributions. However, in the This work Ref. 2 Ref. 4
classical statis_tical mec_han_ical treatr_nent, the I_(i_netic energy  (a) 3.883 3.889 3.889
terms.appear in Gaus&_ap mtegra_tls in the partition functlonB (GP3 203 215 209
factoring out to give a trivial contribution to the free energy. 117 123
In this case, the eigenmodes used in the construction abovﬁ11 516 536
could be of either the force-constant matrix or the dynamicalZ* 13'7 1 4'8

matrix. In PbTiO;, we have found that the difference in the ~*
resulting effective Hamiltonian subspace is rather small and

both choices should give comparable results. In the construgayiice constant and elastic constants of PbJi®the cubic
tion described in Sec. lll, we have used the eigenmodes iy skite structure obtained from the total-energy calcula-

the force-constant matrix. Eigenmodes of the dynamical mag, s for a range of unit-cell volumes are in good agreement
trix are strongly preferable only if the effective Hamiltonian i, previous calculationd? In addition, in Fig. 4 of Ref. 5

is also to be used in classical dynamics or quantumMye showed the calculated energies as a function of experi-

mechanical simulations, since in that case the form of thenenial soft mode amplitude, which compare favorably with
kinetic energy is greatly simplified. previous LAPW calculation?.
In the final step, the lattice Hamiltonian is projected into

this subspace to obtain the effective Hamiltonian. An explicit
form H is obtained by identifying a small number of physi-
cally important terms in a Taylor expansion in the lattice The technique of density-functional theof®FT) linear
Wannier coordinates. The coefficients of these terms are paiesponse is used to calculate the second derivatives of the
rameters to be determined from first principles by fittingtotal energy with respect to perturbation parameters through
H ¢ to the results of selected total energy and linear-respongde self-consistent calculation of the first-order correction to
calculations, using the explicit correspondence between thie occupied Kohn-Sham wave functidig?® For example,
Wannier coordinates and the actual ionic displacements. TBorn effective charges, dielectric constant, and dynamical
check the validity of the truncated form of the effective matrices are the second derivatives of total energies and thus
Hamiltonian, additional independent first-principles calcula-can be obtained with this technique. In this framework, the
tions can be performed and compared witk. dielectric constant can be calculated avoiding cumbersome
sums over unoccupied bands. Another significant advantage

is thatﬁ #0 force constants can be computed with an effort
similar to that of a single unit-cell total-energy calculation.
The first-principles calculations for PbTiOwere per- Our implementation is a modification cASTEP2.1 based
formed using theab initio pseudopotential method in the on the variational formulation of DFT linear resporiSall
local-density approximatiofLDA) with the Perdew-Zunger the linear-response calculations reported here were done at
parametrization of the Ceperley-Alder density functioffal. the experimental lattice constahtof 3.968 83 A with 64
For Pb, the scalar-relativistic pseudopotentials from Ref. 1@8Monkhorst-Packk points in the full Brillouin zone. The
were used. The use of a plane-wave basis set dictates the ugesko-Wilk-Nusair parametrization of the Ceperly-Alder
of optimized pseudopotentialsfor O and Ti to achieve rea- density functional was used to permit the calculation of de-
sonable energy convergence and transferability. For O, thevatives of exchange-correlation terfis A 36X 36X 36
reference configurations32p* was used with pseudopoten- Fourier transform grid is used for integration over a unit cell
tial core radiir,=r.,=1.5 a.u. Optimization was per- in real space. This real-space grid breaks global translational
formed with g, ;= 7.0(Ry)"? and . ,=6.5(Ry)? and four  invariance’®** which manifests itself as small violations of
and three Bessel functions ferandp orbitals, respectively. the acoustic sum rulg¢the calculated frequencies of zone-
For Ti, it is essential to treat the semicore 8nd 3 elec-  center acoustic modes are not exactly zenad charge neu-
trons as valence electrofi® The reference configuration trality (the calculated change in polarization due to a rigid
3s?3p®3d? was used with pseudopotential core radii displacement of the crystal in any direction is not exactly
res=lep=145 au. andr,4=1.5 a.u. Optimization was zerd. The acoustic sum rule was imposed by adding small
performed with q.s=7.2(Ry}*2 d.,=7.0(Ry)*? and corrections to the diagonal elements of tge=0 force-
qcyd=7.74(Ry)1/2, and four Bessel functions. An energy cut- constant matrix. Charge neutrality was imposed by adding
off of 850 eV (corresponding to approximately 3600 plane the same small correction to the effective charges of all at-
waves for a five-atom unit cellwas used to ensure conver- oms.
gence within 10 mRy/atom. The self-consistent total-energy The Born effective charges are presented in Table Il in
calculations were performed using the progreasTer2.1°  very good agreement with previously calculated valftfes.
based on the stable and efficient preconditioned conjugat&he main features of interest are the anomalously large ef-
gradients metho® For the Brillouin-zone integrations, fective charges of Ti and O along the bond and the anisot-
k-point sampling was performed using the Monkhorst-Packopy of the oxygen charge. The calculated dielectric constant
constructiod! with 64 k points in the full Brillouin zone. is 8.24, which can be compared with the experimental value
As reported in Ref. 5 and summarized here in Table |, theof 8.64 quoted in Ref. 27. The data in Table Il combined

C. First-principles DFT linear response

B. First-principles total-energy calculations
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TABLE Il. Effective charges calculated from first principles lin- TABLE IV. LO-TO splitting: mode effective charges and cor-
ear response and compared with the results of the geometric phassation matrix.
approach(Ref. 27.

z* LO1 LO2 LO3
z* z* z* z*
PP i o1 o2 TO1 9.45 0.224 0.466 0.855
This work 3.87 7.07 =571 —2.51 TO2 256 0.974 0.116 0.192
Ref. 27 3.90 7.06 —-5.83 —2.56 TO3 1.53 0.010 0.876 0.481

with the calculated force constantscpt 0 give the frequen-  structure. In addition, to achieve a good description of
cies of IR-active phonons presented in Table IIl. Direct com-branches which emanate from this dominant unstable mode,
parison of these results with the previous calculafibissnot  the endpoints of these branchRg, M;, Mg, Xg are in-
possible because the calculations were performed at differestuded. As can be seen from Table | of Ref. 12, the lattice
lattice constants. This has an especially large impact on th&/annier functions which can build up this subset of modes
unstable mode frequency, as confirmed by our calculationtgansform like three-dimensional vectors centered at Pb sites.
of coupling between this mode and homogeneous strain, th should be noted that the lowest mode Ritis actually

be described below. As can be seen in Table 1V, the unstablB,s, which corresponds to an oxygen octahedron rotation
I';s mode has the largest mode effective charge, whichinstability seen in many perovskite oxid¥sSince crossing
should be associated with the largest LO-TO splitting. Sincedf the lowest branch alon@l11) with that emanating from
there are three polar zone-center modes with the same syrRos occurs far from the relevant mode;s and relatively
metry, mixing leads to LO-mode eigenvectors different fromhigher in energy, we do not include it in the subspace.
TO-mode eigenvectors. Effects of this mixing can be quan- To include coupling of the relevant polar distortions

tified using the correlation matik (I'15) to local distortions of the unit cellinhomogeneous
strain, we expand the subspace to include the acoustic
cij=(&°IM|£°), (2.)  modes by choosing an additional set of lattice Wannier func-

tions. Of the three possibilitiedisted in Table | of Ref. 1P
Ti-centered three-dimensional vectors are preferabl®,to
?one—dimensional vectorsand O, , (two-dimensional vec-

given in Table IV, whereM ,,=M ;6 IS the mass matrix
and¢; are the IR-active mode eigenvectors. As expected, th

unstablel’;s TO mode has the strongest correlation with thetors), since this choice corresponds to the smallest subspace

highest LO mode. expansion and highest site symmetry group. Furthermore,

In Tgble v, we repqrt s_elected PhOF‘O” frequenqes inlike O, «, the resulting &N dimensional subspace does
other high-symmetrk points in the Brillouin zone, focusing not include the highest energy modes

i_n particular on the lowest energy phon_ons. While we also Next, we obtain an explicit form for the Pb-centered
find unstable modes away from tHe point, the unstable  \ve " This involves finding the symmetric coordination

mode atl" is clearly the dominant lattice instability in our shells surrounding a Pb site and identifying the independent

calculations, consistent with the observed low-temperatur@iqy|acement patterns of each shell that transform according
structure. The eigenvectors of the lowest energy phonons and the vector representation of the site symmetry group

the corresponding force-constant matrices will be used in th% For a given shell there can be more than one pattern of

. . . . . . h
Qetermlna’[lon OT the parameters in the effective Ham'lton'arhisplacements with a given transformation property. To each
in the next section.

TABLE V. Selected phonon frequenci¢sm™1) at high sym-

IIl. CONSTRUCTION OF THE EFFECTIVE metry k points calculated using DFT linear response. Symmetry
HAMILTONIAN FOR PbTiO 4 labels follow the convention of Ref. 12.
A. Construction of the subspace k point Phonon Frequencies
The construction of the effective Hamiltonian subspaceX X! 306 1. 264
: . X . 4 61,
begins with consideration of the calculated force-constant ;
. . . X5 93.1, 647
matrix eigenvalues and eigenvectorsIgt R, M, and X.
The subspace has to include the unstable pblagrmode ™ M{ 35.1 1, 400, 201
which freezes in to produce the low-temperature tetragonal M} 16.4
TABLE Ill. IR-active optical phonon frequencigsm™?) atT Ras 1451
obtained using linear response at the experimental volume. They are Ris 15.5, 339
compared with the results of the frozen-phonon calculations perR Rjs 367
formed at the LDA volume with ultrasoft pseudopotentiéiRef. R, 370
21). R, 746
TO1 TO2 TO3 LO1 LO2 LO3 Aq 8.78, 249, 421, 696
A, 148

Present work 182 1 63 447 47 418 610 (11])%
Ref. 27 144 | 121 497 104 410 673 A3 58.2 1, 82.9, 230, 301, 430
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TABLE VI. Determination of LWF parameters. Linear combi-
nations of these parameters for the modes at high-symnietry
points and the corresponding components of the normalized eigen-
vectors of the force-constant matrix.

Combination of the Component of the
Mode parameters eigenvector
I's P1+4py+2ps+12p, 0.5560
8t, 0.5375
40, —0.3414
40, —0.4109
Ris P1—4p2—2ps+12p, 0.8981
403— 804 —0.3110
M3 P1—4p2+2ps—4p, 1.0000
Mg P1—2p3—4p, 0.9010
8t, 0.3024

[ﬁ@/—%
| [
,:v : {&/F assumption of LWF localization. Furthermore, by adding an
é:é-'(;/““%‘ P4 additional shell of Pb(one parametgrand oxygen atoms
(two parametens we can reproduce all the transverse-optical
modes in the subspace. The parameter values for this refined
FIG. 2. z component of the vectorlike Pb-centered lattice Wan-LWF are given in Table VII. The values of the parameters of
nier functions. Pb, Ti, and O atoms are represented by emptyhe innermost shells do not change very much, and the values
squares, solid squares, and circles, respectively. Parameters labeliafjthe new parameters are very small.
the displacement patterns correspond to the length of the displace- Another way of testing the approximate LWF is to see
ments(arrowsg of atoms for the unit value of the LWF coordinate. how well it reproduces other modes in the subspace. For
example, in Table VIII, we show the comparison of the first-
such pattern corresponds an independent amplitude paramrinciplesX; eigenvector with the mode constructed with the
eter. By neglecting the displacements of shells beyond firstapproximate LWF. The approximate mode has an overlap of
neighbor Ti and O shells and second-neighbor Pb shells, we2% with the relevant mode, and if the approximate mode
obtain a total of ten parameters. The first shell of Ti atomsyector is normalized, the overlap becomes 99.96%, showing
has two independent displacement patterns, parametrized layat the LWF describes the subspace very well.
t; andt,; there are one, two, and two parameters for the For the simplest treatment of inhomogeneous stttie
zeroth, first, and second shells of Pb atoms, respectively, argtoustic branchgsan explicit expression of the Ti-centered
three parameters for the first shell of oxygen atoms. These

displacement_ patterns are _shown in Fig. 2. TABLE VII. Values of the LWF parameters determined from
To determine the numerical values of these parameters fqfg¢ principles. The parameters of the approximate LWF described

PbTiOz;, we build up the transverse modeg, at high-  in the text are given in the second column. Parameters for the re-

symmetryk points in the Brillouin zone, namely/, X, M, fined LWF are obtained by fitting to all the TO modes at

andR, from the parametrized LWF using I, R, X, andM, with additional parameters associated with third-
neighbor shell of Pb atoms and second-neighbor shell of oxygen

. atoms.
€5.a= > expiq-R)W 4, (3.1
Ri Parameter Approx. LWF Refined LWF

whereR; is a direct lattice vector and; , is an LWF cen- P1 0.839 0.829

tered at the Pb site in thi¢h unit cell, @ being its Cartesian P2 —0.037 —0.049

component. This specifies atomic displacements in thesps —0.012 0.014

modes as linear functions of the parameters, to be fit to the, —0.009 —0.019

normalized eigenvectors of the force-constant matrix calcups 0.0 0.017

lated from first principles. With the parameters listed abovep, —0.085 —0.086

we can reproduce the normalized eigenvectors of the modes -0.102 —-0.103

I'15, Rys, and M exactly. The remaining free parameters, o, -0.077 —-0.087

associated with Pb and Ti displacements, were used to fit tg, 0 0.00045

a normalized mode with maximum overlap with the lowesto, 0 —0.0045

M¢ (see Table VJ. Numerical values of these parameters,t, 0.067 0.067

listed in Table VII, clearly show that the magnitude of the, 0.038 0.037

parameters decays rapidly with shell radius, confirming the
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TABLE VIIl. Comparison of X eigenvectors. Mode vector B. Determination of parameters inH
(first row) built up using the approximate LWF is compared with

the eigenvectofsecond row of the force-constant matrix a¢. Using the symmetry properties of the lattice Wannier ba-

sis for the effective Hamiltonian subspace, we write an ex-
Pb component O component  Plicit expression foH¢ as a Taylor expansion in the lattice
Wannier coordinates, invariant under the space group

Pm3m. {£} and{u;} denote the Pb-centered and Ti-centered
lattice  Wannier coordinates, respectively. Each of these
three-dimensional vector degrees of freedom transforms ac-
cording to thel 45 irrep of the point symmetry groufy,.

LWF is not needed, since the goal is only to reproduce th&elow, we organize the terms in the expansiorHgf; into
long-wavelength acoustic modes, whose dispersion is detethose acting exclusively in the Pb-centered subspace and the
mined from the elastic constants. For a more refined treaffi-centered subspace and those coupling the two.

ment, an LWF could be parametrized as above and deter- In the Pb-centered subspace, we consider quadratic inter-
mined by fitting to the first-principles eigenmodéss, actions up to third nearest neighbor with the most general
Ry, M3, M, X4, Xs. form allowed by the space-group symmetry:

Mode in the subspace 0.853 -0.341
Eigenvector from LR 0.937 —0.349

EA|§.|2+Z > {au(&-d)(&(d)-d) +ar[&-&(d)—(&-d)(&(d)-d)]}

d=nn1

+2, 2 [bu(& d)(&(d)-d)+bry(&-dy)(£(d)-dy)+bra(&-dy)(§(d) - dy)]

I d=nn2

+Z i > {el(& ) (E(d)-d)+oel & &(d)—(&-d)(E(d)- A}, (3.2

I d=nn3

where £, (d) denotes the LWF coordinate at a neighbor of o important simplifying approximation is that the on-site

site i in d direction. Beyond the third neighbor we use apotential, depending on the value f at a singlei, is the
dipole-dipole form parametrized by the mode effectivegnly set of terms including anharmonic interactions acting

chargeZz* and the electronic dielectric constas: exclusively in the Pb-centered subspace. For simplicity, an-
harmonic terms are included only in the on-site potential
(Z*)2 [&-&(d)—3(&-d)(&(d)-d)] with isotropic terms up to eighth order |g;| and full cubic
2 2 €. |d|3 - @33 anisotropy at fourth order:

TABLE IX. Determination of coefficients in the quadratic part léfs. Linear combinations of these
coefficients for the modes in thé; subspace at high-symmetkypoints are equated to the corresponding
eigenvalues of the projected force-constant matrix.

Value from LR

k point Mode eigenvalue & of the effective Hamiltonian (eVIA?)
z=7*?e, 12.18
I'is A+2(a_+2ar)+4 (b +bry+byy)+8(c +2c7)/3—0.964843/2 —1.908
X5 A—2a, +4ar—4(b, +bqy) +4br,—8(c, +2cq)/3+2.231399/2 6.467
X4 A+2a, —4by,—8(c, +2¢7)/3—1.115699/2 —0.266
Mg A—2a, —4bq,+8(c +2c1)/3+0.6165696/2 —0.360
M) A+2a, —4a;—4(b_+byy) +4by,+8(c, +2¢7)/3—1.23314/2 0.103
Ris A—2a, —4ar+4(b +byq) +4br,—8(c +2c1)/3 0.076
T A—[—-2(b_—by;)+0.41635523/2.0] —0.568
(111)5

(111) T A+2(a,+2a7) +2(b, + b+ by,) +0.942809¢, +2¢1)
4a

—[(—by+by;) —0.942809¢, — c) +0.7953677/2] ~1.750
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FIG. 3. Normal mode dispersion ¢f.;. Solid circles are the 0 0.04 0.08
first-principles mode eigenvalues used in the fitting. Open circles £ (a)

are the first-principles mode eigenvalues not used in fitting the

Hei, which test the validity of the truncated form of the effective  FIG. 4. Total energies for uniformly distorted configurations

Hamiltonian. (&= &) along directiong001), (110), and(111). Solid lines are the
fit obtained with the paramete®, C, D, andE in Hg;.

2 [Bl&[*+C(&x+ &+ +DIEICHEIE]. G4

+Nfz eaa+go 2 eaa)zi |§i|2
In the Pb-centered subspace, the parameters to be deter-

mined from first principles aré\,a, ,at,b, ,byi,brs,cCp, +912 (ewz Eﬁ,

cr,B,C,D,E,Z*. This determination relies on the explicit “ '

correspondence between the lattice Wannier coordiféaje

and the ionic displacementd;} obtained in Sec. Il A. This Where €,z is a component of the strain tensor,
correspondence allows us to relate the first-principles totaf11:C12,Cas are the elastic constants, and the parameters
energies and the derivatives of total energies to various termf¥p.91.92 give the strength of coupling of strain with the
in Hey. The parameters in the quadratic part t9f; are Iog:al polar dlstort_longia._All these parameters are deter-
linearly related to the force-constant matrices obtained fronfnined from the single unit-cell total-energy calculations for
density-functional linear response at high-symmétpoints ~ three independent types of unit-cell distortiofisotropic,

in the BZ. In Table IX are given specific relations for modes Uniaxial, and rhombohedral sheawith magnitudes of up to

at various k points in the BZ including 2 to 4 % of the experimental lattice constants. The total en-
T'15.X}, X4, ME, M), Rys and the A; modes at (11%y/ -ergies of these strained unit cells with no local polar distor-

(2a), (111)m/(4a). The parameteZ* is determined from tion, shown in Fig. 5, give the three_ elastic constants
the éigenvector of unstablE,s and the Born effective C1i*C12: @ndCas. For each of these unit-cell-strain types,
o ) 15 . we also compute the second derivative of energy with re-
charges. Obtaining., directly from DFT linear response and ) i o )
solving the system of linear equations yields values for alfPect to uniform local polar distortion=¢, as shown in
the parameters in the quadratic parttbf;, listed in Table Fig. 5. These results yield the coupling parameters shown in
IX. The resulting normal mode dispersiontéfs is shown in Table X. L )
Fig. 3. For the LO modes at (11&)(2a) and Now we turn to the determination of the terms kg
(111)m/(4a), the reasonable agreement between the Ca|CLP—’Ctmg, in the Ti-centered subspace. Because this subspace
lated force-constant matrix eigenvalue ag is an indica-  contains the zone-center acoustic modes, these terms must
tion of the validity of the truncation in the Taylor expansion. satisfy 9'°'F’a' tr_an_slatlonal and rotqtlonal invariance. This
The parameterB,C,D,E appearing in the on-site anhar- symmetry 1s b_“"ts'”.to th‘? systematic expansion pr(_)cedure
monic terms are determined from the total energies of unidiven by Keating® in which invariant terms are built up

formly distorted configurations&= £), as shown in Fig. 4.
The minimum energy configuration has rhombohedral sym-

+0 eaﬁZ Eiabip, (3.5

a<pf

TABLE X. Parameters in the effective Hamiltoni@mits of eV

. per unit cel).
metry[ ¢ along(111)]. The difference among the energies of
uniform distortions with different symmetrig¢$100), (110), A 18.43 a, 39.27 Cp 117.9
(111)] is a reflection of the cubic anisotropy, which is de-
scribed quite well by the fourth-order terms. The resultingB 2.629¢10°  ar  —1067 Cp, 5150
parameters are listed in Table X. _ _ c 4277 10° by 4.882 Cus 137.2
To account for the effects of changes in lattice parameters
at the structural phase transition, we include the lowest-orddp -1.658<10° by; —1.391 g, —-107.7

terms in the homogeneous strain and its coupling to the Pbé

centered subspace: 9.630<10° by, —0.1434 g,  —790.3

7*2e, 12.18 c. —3389 g, —357.09

N N N
E: 2 E 2 2

ECH eaa+ EClZ =, eaaeBB+ ZC44 =, eaﬁ Ct 0.7104 f 4.48
a a a
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FIG. 5. Energetics of the homogeneous stf&a isotropic,(b) uniaxial, and(c) sheat and its coupling to the uniform polar distortions.
Circles are the total energies for the strained unit-cell configurations with no polar distortions. Solid lines going through the circles are the
fits obtained with the elastic constai@g;, C;,, andC,,. Squares correspond to the second derivative of the total energies with respect to
uniform polar distortions for the strained unit cells. Solid lines going through the squares are the fits obtained with the coupling parameters
go, 091, andg,.

from dot products of differences of the's. If the expansion of the effective Hamiltonian in the Keating construéfien

truncated at quadratic order and three independent parameters, corresponding to the three elastic constants, the following term:
are obtained:

—2 Alu; |2+ —2 > {au(ui-d)(ui(d)- d)+arf ;- ui(d)— (u;- d) (u(d) - d)J}

i d=nn1

—E > [bu(G;-d)(Ui(d)- d)+byy (G- dy) (Ui(A) - dy)+ bra( Ui - d) (U;(d) - dp)]. (3.6)

i d=nn2

The relations of these parameters to the elastic constants are made by using the Keating expansion to evaluate the energy o
homogeneously strained configurations. With these relatiérsC;,+2Cyq4, @ =—3Cqy, ar=—3Ca4, b =—br=—3
Ci,+%Caqs, andbr,=0, these parameters can easily be obtained from first-principles calculations. Because there are no
unstable modes in this subspace, there is no need to include higher-order interactions. In any case, within the local anharmo-
nicity approximation, global translational invariance requires anharmonic terms to be zero at all orders. As mentioned in the
previous section, there is no need for an explicit form of the Ti-centered LWF in this minimal treatment. For refinement of
Hef In this subspace, one could construct an explicit form and determine additional parameters in a manner analogous to that
for the Pb-centered subspace.

Finally, the simplest coupling between local polar distortidPb-centered subspacand inhomogeneous straifi-
centered subspacthat satisfies the constraint of global translational invariance and does not vanish in tHe-lifits the

nearest-neighbor coupling linear inand quadratic irg, with both £ variables taken on the same site:

dpgp~ Qdg-

R— 2%+ 2% R+ 22+ 206 | —uy| R — 2%+ 2
—Uuy |—?y+? +a:t;(t9 u,| R+ 2Z+? — Uy R; ?Z'i‘? +cC.p
2 - 8o~ Qdp- - 0~ Ao~
+ Nzi (gixgly[ - Uy Ri+?y+ ?d ux( RI 2y+ ?d)
apa dga
+ 2 | Uy R+ 2x+—d —uy R 7x+—d +c.p.|. 3.7
=+y*z
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oms is 0.35 Alto be compared with the experimental value

—0.99 of 0.47 A (Ref. 24]. It should be noted that this is not the
true LDA ground state, since previous total-energy
= -1.02 calculations for the experimental distortions showed the lat-
L ter is slightly lower in energy. This means that there is a
% —1.05 higher-order coupling of the unstablg s mode to an addi-
\fs tional polarT’;5 mode not included in the effective Hamil-
u” —-1.08 tonian subspace. Considering that the atomic displacements

in PbTiO5 are relatively large, the presence of such anhar-

a1 o) N . .
—-1.11 F ©on monicity is not surprising. However, as discussed above, the

ground state of the model is very similar to the experimental
ground state and the small loss of accuracy is more than
£ (a) compensated for by the gain in simplicity.

0 0.04 0.08

FIG. 6. Model energetics of the uniform polar distortions along
(100, (110, and(111). Dotted lines correspond to the polar distor- IV. FINITE-TEMPERATURE BEHAVIOR
tions with the unstrained cubic unit cell, and solid lines to the dis- . . ) )
tortions with unit cell allowed to relax with respect to homogeneous 1 N€ effective Hamiltonian is constructed to show the
strain. same finite-temperature critical behavior as the full lattice
Hamiltonian in a statistical mechanical analysis. While the
form of Hy; is somewhat too complicated for the application
of analytical methods beyond mean-field theory, it is quite
suitable for Monte Carlo simulations, since the changes in
. energy for changing system configurations can be readil
ent, and thus as the local strain tenésee also Ref. 10The evalggted. Montg ng]arloysimulrcltionsg are used in the detaile)é
terms inHe coupling inhomogeneous strain and polar dis-4naysis ofH .. to obtainT dependence of a variety of struc-
tortions are related in the long-wavelength limit to the cou-g 5 properteies near the transition, while our mean-field
pling between homogeneous strain and the pblarmode. Eeory analysis is limited to the estimation ®f and the

Thus the three independent coupling parameters can be Oyaitication of the order of the transition and symmetry of

tained from the corresponding homogeneous strain coupling,e phases. Comparison of the mean-field resuits with those

parametershy=(go+91)/4, h1=go/4, andh,=g,/8. of Monte Carlo simulations allows us to study the effects of
fluctuations.

§iza couples only to differences of thes's, which can be
recognized as finite difference approximations to the gradi

C. Examination of model energetics A. Mean-field theory

Having fully determinecH ¢, we now explore the low- Variational mean-field theory for the class of models with
energy surface of the model to c_onflrm that it gives a correctariable length vector degrees of freedom and strain cou-
ground state when compared with the real crystal. Since thgling was developed in Ref. 29. In this approach, the homo-

anharmonic terms occur only in the Pb subspace and argneous strain and uniform polarizatid®)(are identified as

local (the anharmonicity is wave vector independeiit is .
easy to determine the ground state from the quadratic ord Ee order parameters for the transﬂnﬁhts_ dlreptly related to
e average value of uniform local distortion through the

terms. The lowest energy mode is obtained by freezing in th _ " )

most unstable modd’;s. We consider changes in energy as Mode effective chargg™ and the unit-cell volumé),

this mode is frozen in with polarization along tti601),

(110, and(112) directions. In Fig. 4, it can be seen that the Lo

rhombohedral statg(111) distortior} has the lowest energy. P=Z*-(&)/Qeen- 4.9

If the unit cell is allowed to relax as the mode is frozen in, by

minimizing over the homogeneous strain, we find an overall

increase in distortion energy, with the lowest energy state In the high-temperaturécubic perovskitgphase, the uni-

being of tetragonal symmetry(001) distortion) as can be form polarization is zero and the strain tensor has full cubic

seen in Fig. 6. This is consistent both with previous first-symmetry.e,,=e,,=e,,. We used the variational formula-

principles calculatiorfsand experimental resulté. tion of mean-field theory, which involves constructing a trial
For the lowest-energy tetragonal configuration, we obtairdensity matrix as a product of single site density matrices

a value for the spontaneous polarization from the mode efand minimizing the resulting free-energy functional with re-

fective charge ofP,=0.87 C/n?, which is in the range of spect to the variational parameters in the trial density matrix.

values Ps=50 to 100 C/nf) reported from experiments. We minimized the trial free energy with respect to varia-

From the values of homogeneous strain in this ground staté¢ional parameters corresponding to cubic, tetragonal, and

we obtain ac/a ratio of 1.08, to be compared with the ex- rhombohedral symmetries to determine the stable phase at

perimental value of 1.06%" Using the explicit form for the various temperatures. The system is stable in the cubic phase

LWF, the atomic displacements in the model ground stat@bove the transition temperatufg=1100 K and in the te-

can be obtained. We find that the oxygen octahedra are atragonal phase below., but within the accuracy of our

most undistorted and the relative displacement of the Pb atalculation, the transition is second order. Switching off the
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FIG. 7_. Bounds_on the _tran5|t_|on temperatiigeas a function of 500 600 700 800
system size used in the simulations. T (K)

. . . FIG. 8. Averages of largest, smallest, and intermediate absolute
coupling to homogeneous strain resulted in a second-ordey,,

: o N ues of the Cartesian components of the order parameter
cubic-rhombohedral transition at a significantly lower tem'g—z.g./m as a function of temperature. obtained from Monte
perature of 900 K. = 26 p .

Carlo simulationg125 000 mcsof a 7X7X7 system.

B. Monte Carlo simulations

Classical Monte Carlo simulatioffswere performed us- walking algorithms® In our applications of these methods to
ing the Metropolis algorithm for finite-size systems of PbTiO;, we found that these approaches require very long
Lx LxL unit cells and periodic boundary conditions. A con- (10° mcs simulations, and therefore are rather impractical.
figuration of the system is specified by two sets of threeHowever in the present case, the uncertaintyl inobtained
dimensional vector§Z} and{u;} placed on interpenetrating from the range of hysteresis is small compared to the LDA
simple cubic lattices of size XL X L. We generated a trial @nd other errors in our analysis and therefore high accuracy
configuration by updating a single vector to a randomly chodetermination ofT is not necessary. The calculation of the
sen vector inside a cubic box centered at the current value ghysical properties of the high- and low-temperature phases
the vector. The size of this box is chosen to yield a reason@t temperatures inside the range of hysteresis is carried out
able acceptance ratio>0.1), and is roughly 0.2§ near with an appropriate choice of the initial configuration.

T.. With the change in a single vector, the change in energy !N Fig. 7, we show the bounds oR, for L=5-11, ob-
associated with short-range terrfipiadratic interactions up t@ined by monitoring the sensitivity of the average structural
to third neighbor, the on-site potential, coupling to strain,Parameters to the choice of initial stafe;. is the lowest

and third-order coupling between the two subsppizesasy temperature at which the system averages are characteristic
to calculate. Because of their long range, computation off the cubic state, starting with an inital ground-state tetrag-
dipolar intersite interactions is relatively costly, limiting the onal configuration, whileT is the highest temperature at
size of our simulations tb<12. The 3< 3 matrix of dipolar ~ Which a starting cubic configuration results in a tetragonal
intersite coupling for each pair of spins was calculated usingtate. A value off ;=660 K, obtained from averaging the
the Ewald summation technique for each value lof bounds at the largest system size, is in very good agreement
Changes in the quadratic intersite interaction due to change#ith the experimental transition temperature 763 K.

in strain are neglected in this model. One Monte Carlo sweep 10 detect the symmetry of the low-temperature phase, we
(mcs involves one update of th&’s (in typewriter modg calculated the averages of largest, smallest, and intermediate
followed by one update of they’s (in typewriter modg, and ~ @bsolute  values of the Cartesian components of
20 updates of the six components of the strain tensor. E=(1MN)Z;(&). These averages for the<77 X 7 system as a

Preliminary Monte Carlo simulations performed with function of temperature are shown in Fig. 8. N&ar, the
25 000 to 50 000 sweeps showed dependence on the initillrgest component jumps to a finite value, while the other
configuration of simulations at temperatures in the vicinity oftwo components remain close to zero, indicating tetragonal
the transition fol.>5. ForL=5, which is small enough for symmetry of the low-temperature phase. As shown in Fig. 9,
ergodic sampling in a run of this length, the energy histo-this uniform tetragonal polar distortion is accompanied by a
gram shows two clearly separated peaks. This behavior ietragonal strairt/a# 1. This quantity also shows a marked
typical of a first-order transitioft At larger system sizes, jump nearT,. Finally, from the average homogeneous strain
due to the exponentially increasing free-energy barrier bewe obtained the average volume of the system as a function
tween the regions of configuration space corresponding tof temperature, as shown in Fig. 10. The negative thermal
low- and high-temperature phases, only one of the two peakaxpansion in the simulations just beloWw, is also seen
in the energy histogram is sampled, depending on the choicexperimentally*>
of initial configuration. An accurate determination Bf re- The latent heat of a first-order transition is given by the
guires knowledge of the relative free energies of the highdifference in energies at which the two peaks appear in the
and low-temperature phases as a function of temperaturenergy histogram in the simulations®{. To determine this
Recently developed methods to extrakt for first-order  energy difference, we performed two simulationslier9 at
transitions include multicanonical algoriththsand jump-  the midpoint of the hysteresis range=675 K, one starting
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FIG. 9. Average tetragonal strain parametéa as a function of FIG. 10. Average unit cell volume as a function of temperature,
temperature, obtained from Monte Carlo simulati¢t5 000 mcs ~ obtained from Monte Carlo simulation§l25000 mck of a
of a 7X7X7 system. TXT7XT system.

with a tetragonal configuration and the other starting with 8ouple with oxygen displacements Bt X, R, andM lead-
cubic configuration. The difference in the positions of theing to the low energy of the modes at those points. While the

peaks in the energy histograms for these two simulationgame arqument apolies to Ti displacements atX. and
yields an estimate of latent heat of 3400 J/mol, in roughlvI theygdo not cgsple with any Fz)ther modeallat |,30int

agreement with the measured value of 4800 J/nible. T o
should be noted that these values are much larger than Zélaler'efore, the energy of the mOdEFaF‘S high and the Q'S
Jimol latent heat of the cubic tetragonal transition ofP€rsionalond”toRis large. The special role Pb plays in the
BaTiO5. instabilities of PbTiQ and PbzZrQ (Ref. 37 in contrast
Information about the local distortions in the high- With the A atoms in non-Pb perovskite compounds has its
temperature nonpolar phase just abde can be obtained ©rigin in the strong hybridization of Pb with oxygen

38
from the single spin distributio(@i). For allL, we find the atoms’ .
distribution to be very close to Gaussian. The rather broad 10 understand the consequences of the coupling of the
width (=0.04a,) shows that there are significant local dis- Polar subspace to the strain at finite temperature, we per-
tortions. formed Monte Carlo simulations fdf . with this coupling
For the system sizes used in the simulations, the couplin§®t 0 zero. This corresponds to a constant volume phase
to the inhomogeneous strain appears to be re|ative|y unin{ransition W|th the unit Ce” Constra|ned to be CUb|C. In thIS
portant. If the coupling is set to zero the changes in thecase, we find a second-order phase transition at 400 K di-
calculatedT, and other transition properties are negligible. rectly to the rhombohedral phase. Thus, the coupling of local
However, for larger scale simulations involving multiple do- polar distortions to strain is responsible for both the stability
mains the effects should be significant. of the tetragonal phase relative to the rhombohedral one and
the first-order character of the transition at finite temperature.
As discussed in the previous section, mean-field theory
V. DISCUSSION shows a second-order transition both with and without strain
coupling, implying that both fluctuations and strain coupling
The first-principles effective Hamiltonian constructed in are required for producing the first-order transition. Compar-
the previous section provides a quantitative microscopic deing the transition temperatures obtained in Monte Carlo and
scription of the structural energetics of PbEi@elevant to  mean-field theory with and without strain coupling, we find
the paraelectric-ferroelectric phase transition. This model cathat while fluctuations suppresk., the coupling to strain
be used to investigate the connection of specific features afnhances the stability of the ferroelectric phase.
the Hamiltonian to the observed behavior in the vicinity of  In comparison with related ferroelectric compounds, the
the transition. In addition, it is possible to connect these featransition in PbTiQ has a much stronger first-order charac-
tures to aspects of the chemistry of Pbgiénd related com- ter, reflected in its large latent heat. While the strain coupling
pounds. is responsible for the first-order charact&f! anharmonicity
One important feature of the Hamiltonian is that the TOin the lattice plays an important role in the magnitude of its
branches are unstable throughout most of theBg. 3). So,  discontinuity?® The minimum energy uniform polar distor-
althoughT';s is the dominant instability, finite-wavelength tions in PbTiO; are much larger than those in related com-
fluctuations have relatively low energy. This may account forpounds indicating a large contribution from anharmonicity in
the breadth of the single site distribution, and can be exthe low-energy surface. The relation of these features to the
pected also to be reflected in the short-range order. The urchemistry ofA or B atoms was discussed using ionic radii in
stable branch along the (111) direction in Pb%i@®@ quite  Ref. 29.
flat when compared with SrTiQ(Ref. 36 and KNbO,.1* In There are two main sources of error in the work presented
comparison with KNbQ and ferroelectric BaTi@, in which  in this paper. One of these is the LDA used in the exchange-
the polar unstable modes have a stréngomponent*'°the  correlation functional. Equilibrium lattice constants are typi-
instabilities in PbTiQ are dominated by large Pb displace- cally underestimated in the LDA calculations. This can
ments. From symmetry argumentfsthe Pb displacements strongly affect the study of structural phase transition, since
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the lattice instabilities are very sensitive to the lattice paramfirst principles. Monte Carlo simulations for this Hamiltonian
eters. In the present work these errors were partially elimiyield a first-order cubic-tetragonal transition at 660 K and a
nated by expanding the effective Hamiltonian around the exdescription of the system near the transition in good agree-
perimental lattice constant nedr. and dropping the term ment with experiment. The strong involvement of Pb atom in
linear in strain. The other source of error is the truncation ofthe lattice instability as well as anharmonicity and the cou-
the effective Hamiltonian subspace. In the LWF approachpling of polar distortions with homogeneous deformations of
this subspace is decoupled at quadratic order from it¢he lattice are found to be very important in producing the
complementary subspace to a good approximation. Howevetransition behavior characteristic of PbT{O

there can be anharmonic coupling between the two sub-
spaces. In the case of PbTjCthere is a small higher-order
coupling of I'y5 to modes not included in the subspace,
which affects the energies of large distortions. Since these
large distortions are mainly important at low temperatures,

ACKNOWLEDGMENTS

We are grateful for useful discussions with R. E. Cohen,

we expect this coupling to have a small effectTin

VI. CONCLUSION

E. Cockayne, B. A. Elliott, Ph. Ghosez, and Serdar Ogut.
We thank M. C. Payne and V. Milman for the use of and
valuable assistance with CASTEP 2.1. This work was sup-
ported by ONR Grant No. N00014-91-J-1247. Part of the

In conclusion, we have applied the method of lattice Wan-calculations were performed at the Cornell Theory Center. In
nier functions to construct an effective Hamiltonian for the addition, K.M.R. acknowledges the support of the Clare

ferroelectric phase transition in PbTiOcompletely from

Boothe Luce Fund and the Alfred P. Sloan Foundation.

“Current address: Dept. of Physics, Harvard University, Cam-

bridge, MA 02138.

IM. E. Lines and A. M. GlassPrinciples and Applications of
Ferroelectrics and Related Material©xford University Press,
Oxford, 1977, Chap. 8.

2R. E. Cohen and H. Krakauer, Ferroelectrd@s, 65(1992; R. E.
Cohen, NaturélL.ondon 358 136(1992.

3R. E. Cohen and H. Krakauer, Phys. Rev4B 6416(1990; D.
J. Singh and L. L. Boyer, Ferroelectrids36, 95 (1992; Iris
Inbar and R. E. Cohenbid. 164, 45 (1995.

4R. D. King-Smith and D. Vanderbilt, Phys. Rev. £9, 5828
(1999.

5K. M. Rabe and U. V. Waghmare, Ferroelectrké, 15 (1995.

5W. Cochran, Adv. Phy®, 387(1960; P. W. Anderson, irFizika
Dielectrikoy, edited by G. SkanaviAkademii Nauk USSR,
Moscow, 1960.

"E. Pytte, Phys. Rev. B, 3758 (1972; E. Pytte and J. Feder,
Phys. Rev187, 1077(1969; J. Feder and E. Pytte, Phys. Rev. B
1, 4803(1970.

8M. E. Lines, Phys. Rev177, 797 (1969.

9K. M. Rabe and J. D. Joannopoulos, Phys. Rev. L&%.570
(1987; Phys. Rev. B36, 6631 (1987; in Electronic Phase
Transitions edited by W. Hanke and Y. V. Kopae{North-
Holland, Amsterdam, 1992Chap. 3.

0w, Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. L&8,
1861(19949; Phys. Rev. B52, 6301(1995.

1w. Zhong and D. Vanderbilt, Phys. Rev. Letd, 2587(1995.

2K, M. Rabe and U. V. Waghmare, Phys. Rev.3, 13236
(1995.

13K. M. Rabe and U. V. Waghmare, J. Phys. Chem. SdigsN10,
1397(1996.

YR. Yu and H. Krakauer, Phys. Rev. 49, 4467(1994.

15D, M. Ceperley, Phys. Rev. B8, 3126(1978; D. M. Ceperley
and B. J. Alder, Phys. Rev. Le#t5, 566(1980; J. Perdew and
A. Zunger, Phys. Rev. 23, 5048(1981).

16G, B. Bachelet, D. R. Hamann, and M. Schiuter, Phys. Rex6B
4199(1982.

Phys. Rev. B44, 1227 (1990; M. P. Teter, ibid. 48, 5031

(1993.

18pn, Ghosez, X. Gonze, and J.-P. Michenaud, FerroeledtB8s
19 (1994.

M. C. Payne, X. Weng, B. Hammer, G. Francis, I. Stich, U.
Bertram, A. de Vita, J. S. Lin, A. Qteish, and V. Milman, Cav-
endish Laboratory, University of Cambridge, Cambridge, United
Kingdom, 1991.

20\M. C. Payne, D. C. Allan, T. A. Arias, M. P. Teter, and J. D.
Joannopoulos, Rev. Mod. Phy84, 1045(1992.

2'H. J. Monkhorst and J. D. Pack, Phys. Revli® 5188(1976.

223, Baroni, P. Giannozzi, and A. Testa, Phys. Rev. 158t.1861
(1987.

23X. Gonze, D. C. Allan, and M. P. Teter, Phys. Rev. L68, 3603
(1992.

24G. shirane, R. Pepinsky, and B. C. Frazer, Acta Crystallegr.
131 (1956.

253, H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys8, 1200
(1980.

26p_ Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys.
Rev. B43, 7231(1991).

27W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett.
72, 3618(1994).

28p_N. Keating, Phys. ReL.45 637 (1966.

29K. M. Rabe and U. V. Waghmare, Philos. Trans. R. Soc. London
Ser. A(to be publisheg

30M. P. Allen and D. J. TildesleyComputer Simulation of Liquids
(Oxford University Press, Oxford, 1987Chap. 4.

31B. A. Berg and T. Neuhaus, Phys. Rev. L8, 9 (1992; C.
Borgs and W. Jankehid. 68, 1738 (1992; W. Janke, Phys.
Rev. B47, 14 757(1992.

32C. J. Tsai and K. D. Jordan, J. Chem. Ph§8. 6957(1993.

33M. Adachiet al, in Numerical data and functional relationships

in science and technologyandolt-Banstein Vol. 11l/16a, ed-

ited by K. H. Hellwege and A. M. Hellwegé&Springer, Berlin,

1981), p. 45.

A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos2*G. Shirane and E. Sawaguchi, Phys. Rei;. 458 (1951).



55 Ab initio STATISTICAL MECHANICS OF THE ... 6173

35G. Shirane and A. Takeda, J. Phys. Soc. Jpri (1952.

36C. LaSota, C.-Z. Wang, Rici Yu, and H. Krakauenpublishel

37U. V. Waghmare and K. M. Rabe, Ferroelectrige be pub-
lished.

38D. Singh, Phys. Rev. B2 12 559(1995.

39K. M. Rabe and U. V. Waghmar@inpublisheil

403, Marais, V. Heine, C. Nex, and E. Salje, Phys. Rev. L&#ft.
2480(199)).

413, padlewski, A. K. Evans, C. Ayling, and V. Heine, J. Phys.
Condens. Matte#, 4895(1992.



	I. INTRODUCTION
	II. METHOD
	III. CONSTRUCTION OF THE EFFECTIVE
	IV. FINITE-TEMPERATURE BEHAVIOR
	V. DISCUSSION
	VI. CONCLUSION
	ACKNOWLEDGMENTS

