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Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO3

U. V. Waghmare* and K. M. Rabe
Department of Applied Physics, Yale University, P.O. Box 208284, New Haven, Connecticut 06520-8284

~Received 1 August 1996!

An effective Hamiltonian for the ferroelectric transition in PbTiO3 is constructed fromab initio pseudopo-
tential local-density-functional total-energy and linear-response calculations through the use of a localized,
symmetrized basis set of ‘‘lattice Wannier functions.’’ Explicit parametrization of the polar lattice Wannier
functions is used for subspace projection, addressing the issues of LO-TO splitting and coupling to the
complementary subspace. In contrast with ferroelectric BaTiO3 and KNbO3, we find significant involvement
of the Pb atom in the lattice instability. Monte Carlo simulations for this Hamiltonian show a first-order
cubic-tetragonal transition at 660 K. The resulting temperature dependence of spontaneous polarization,c/a
ratio, and unit-cell volume near the transition are in good agreement with experiment. Comparison of Monte
Carlo results with mean-field theory analysis shows that both strain and fluctuations are necessary to produce
the first-order character of this transition.@S0163-1829~97!02410-7#
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I. INTRODUCTION

Perovskite structure oxides exhibit a wide range of lo
temperature structural distortions associated with lattice
stabilities of the prototype cubic structure,1 shown in Fig.
1~a!. This class of materials includes a large number of f
roelectrics, with uniform polar distortions and accompany
lattice relaxation~e.g., PbTiO3, BaTiO3, KNbO3), while
cation substitution can result in dramatic changes in grou
state distortion~e.g., antiferroelectric in PbZrO3, antiferro-
distortive in SrTiO3) and corresponding complexities in th
mixed systems~e.g., PbZr12xTi xO3, Ba12xSrxTiO3). How-
ever, in nearly all examples, the amplitudes and energie
the distortions are rather small, and cubic symmetry is
stored at temperatures above a critical temperatureTc , typi-
cally a few hundred degrees Kelvin.

For a better understanding of structural phase transit
in perovskite oxides, including chemical trends in the tran
tion temperatures, the first-order vs second-order charact
transitions, the relationship between local distortions and
erage crystallographic structure, and the stability of interm
diate temperature phases, first-principles calculations o
valuable access to microscopic information. With advan
in algorithms and computational capabilities, the challen
of achieving the high accuracy necessary for studying th
distortions has been largely met, and ground-state distort
well reproduced for a wide range of perovskite-structure
ides using both all-electron linear augmented plane-wav2,3

~LAPW! andab initio pseudopotential4,5 methods. However
for ab initiomolecular dynamics or Monte Carlo, the syste
sizes required for the study of finite-temperature structu
transitions are still completely impractical.

An alternative approach is to choose a restricted subse
the degrees of freedom and construct a simple effec
Hamiltonian in this subspace. Following the soft-mo
theory of structural transitions,6 we identify the relevant de
550163-1829/97/55~10!/6161~13!/$10.00
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grees of freedom as the unstable phonons of the h
symmetry reference structure~in this case, the cubic perov
skite structure! which freeze in to produce the low
temperature distorted structure. Lattice anharmonicity
these modes, essential for crystal stability, produces
double-well character for the associated energy surface, l
ing to a transition to the high-symmetry structure with i
creasing temperature. On the other hand, stable pho
branches can, to a good approximation, be treated as pu
harmonic and thus do not contribute to the temperature
pendence of the structure. A simple effective Hamiltoni
acting in the subspace defined by the branches containing
unstable phonons, with an explicit form determined fro
first-principles calculations, therefore is sufficient to repr
duce the finite-temperature structural transition behavior
an individual material. Comparison of these models give
systematic understanding of similarities and differences
the microscopic structural energetics of different materia
From the dependence of calculated properties on effec
Hamiltonian parameters, one can also obtain a better un
standing of the role of various microscopic couplings in p

FIG. 1. ~a! Unit cell of the cubic perovskite compoundsABO3

~b! low-temperature crystal structure of PbTiO3. Displacements of
the atoms indicated by arrows form the polar distortions of
cubic unit cell.
6161 © 1997 The American Physical Society
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6162 55U. V. WAGHMARE AND K. M. RABE
ducing the observed behavior. Microscopic effective Ham
tonians for structural transitions in perovskites were fi
constructed using the concept of local modes, with emp
cally determined parameters.7,8 First-principles total-energy
calculations were used in the determination of a local m
effective Hamiltonian for the structural transition in GeTe9

and more recently for the structural transitions in PbTiO3,
5

BaTiO3,
10 and SrTiO3.

11 A systematic approach which gen
eralizes and refines the local mode concept, allowing
efficient construction of an optimal effective Hamiltonia
from first-principles total-energy and linear-response te
niques, has been developed based on the concept of la
Wannier functions.12 This approach exploits symmetry prop
erties of the system and is generally applicable to comp
structural transitions involving several unstable modes
cluding ones at the zone boundary. Information from ad
tional first-principles calculations allows for a systema
check on the validity of the truncation of the effectiv
Hamiltonian, and, when needed, the expansion of the s
space and refinements of its form. The resulting effect
Hamiltonian is quantitatively realistic while retaining
simple and physically transparent form.

In this paper, we present a detailed description of
first-principles investigation of PbTiO3,

13 which exhibits a
single first-order transition at 763 K from the cubic hig
temperature phase to the ferroelectric tetragonal ground s
shown in Fig. 1~b!. We construct an effective Hamiltonia
for this structural phase transition from first principles usi
the lattice Wannier function method. In contrast wi
BaTiO3 ~Ref. 10! and KNbO3 ~Ref. 14! for which the uni-
form polar distortions in the low-temperature phase con
of predominantlyB-atom displacements, those in PbTiO3
are dominated byA-atom~Pb! displacements, which will be
important in determining the effective Hamiltonian subspa
The effective Hamiltonian also contains the coupling
these local polar distortions to strain. In Ref. 2, the tetrago
phase in PbTiO3 was found to be stabilized relative to th
rhombohedral phase by the unit-cell relaxation. In additi
we will find that strain plays a crucial role in producing th
correct finite-temperature transition behavior.

In Sec. II A, we briefly review the method of lattice Wan
nier functions. In Secs. II B and II C, the first-principle
methods and results obtained for the lattice constant, ela
constants, phonon frequencies and the effective charge
PbTiO3 are presented. In Secs. III A and III B, we descri
the construction of the effective Hamiltonian, with particul
attention to the treatment of LO-TO splitting and crossing
branches through explicit parameterization of the latt
Wannier functions. In Sec. III C, we describe properties
the ground state of the effective Hamiltonian determin
from first principles. In Sec. IV, we present results of finit
temperature analysis ofHeff using mean field theory an
Monte Carlo simulations. These results are discussed in
V.

II. METHOD

A. Lattice Wannier function method
for the construction of H eff

In the lattice Wannier function~LWF! method, the effec-
tive Hamiltonian is obtained as the result of projection of t
-
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full lattice Hamiltonian~in the Born-Oppenheimer approx
mation! into a subspace of the full ionic displacement spa
defined by the phonon branches which contain the relev
unstable modes. The effective Hamiltonian subspace
spanned by an orthonormal basis of ‘‘lattice Wannier fun
tions:’’ symmetrized localized atomic displacement patte
taken with respect to a high-symmetry reference configu
tion. This basis defines a set of coordinates such that a g
set of values of the coordinates corresponds directly t
particular pattern of atomic displacements. As a result of
symmetrized and localized nature of the basis, the Tay
expansion of the effective Hamiltonian around the hig
symmetry reference configuration~with all coordinate values
equal to zero! has a simple form with relatively few param
eters, which can be determined from first-principles calcu
tions using the correspondence to patterns of atomic
placements.

We briefly review the procedure; further details can
found in Ref. 12. Construction of the subspace begins wit
Taylor expansion of the full lattice Hamiltonian to quadra
order. A subset of the eigenvectors of the quadratic Ham
tonian is selected for inclusion in the subspace. This sub
must include the unstable modes which freeze in to prod
the low-temperature structure. In addition, to achieve a g
description of the branches which emanate from the unst
modes, ‘‘end points’’ of these branches at high symmetrk
points are included. The symmetry properties of the subsp
are established by identifying symmetries of localized fun
tions ~Wyckoff position and site symmetry group irrep!
which can build up the selected subset of modes.

We follow the prescription in Ref. 12 to obtain an e
plicit, though approximate, form of a lattice Wannier bas
vector. This involves finding the symmetric coordinatio
shells surrounding a representative Wyckoff site and ide
fying the independent displacement patterns of each s
that transform according to the given irreducible represen
tion of the site symmetry group. The amplitudes of the
displacement patterns completely specify an LWF. Beca
of the localized nature of LWF’s, this infinite number o
parameters can, to a good approximation, be reduced
small finite number by neglecting the displacements of sh
beyond a chosen range. At high symmetry points in the B
louin zone~BZ!, the modes built up with these parametriz
LWF’s are then fit to the corresponding normalized mo
eigenvectors obtained from first principles.

These basis functions completely specify the effect
Hamiltonian subspace. In the ideal case, this subspac
completely decoupled at quadratic order from its comp
mentary subspace and to a good approximation at hig
order as well. This happens when the subspace consis
entire branches isolated in energy from the others and c
tains all the unstable modes. In most real systems, bran
emanating from the unstable modes cross with branche
the complementary subspace. This leads to some degre
quadratic coupling which is unimportant if the crossing o
curs far away from the unstable modes. If not, the subsp
should be expanded to include these branches. In additio
polar crystals, the electric field atqW→0 can mix the LO
modes differently from the corresponding TO modes. In su
a case, the Wannier basis vector which reproduces a g
TO branch will not reproduce any LO mode exactly. How
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55 6163Ab initio STATISTICAL MECHANICS OF THE . . .
ever, since LO modes are typically high in energy, this
proximate description of the LO mode should be adequ
for the description of the structural transition.

The quadratic part of the lattice Hamiltonian has bo
kinetic and potential energy contributions. However, in t
classical statistical mechanical treatment, the kinetic ene
terms appear in Gaussian integrals in the partition funct
factoring out to give a trivial contribution to the free energ
In this case, the eigenmodes used in the construction ab
could be of either the force-constant matrix or the dynam
matrix. In PbTiO3, we have found that the difference in th
resulting effective Hamiltonian subspace is rather small
both choices should give comparable results. In the const
tion described in Sec. III, we have used the eigenmode
the force-constant matrix. Eigenmodes of the dynamical m
trix are strongly preferable only if the effective Hamiltonia
is also to be used in classical dynamics or quantu
mechanical simulations, since in that case the form of
kinetic energy is greatly simplified.

In the final step, the lattice Hamiltonian is projected in
this subspace to obtain the effective Hamiltonian. An expl
formHeff is obtained by identifying a small number of phys
cally important terms in a Taylor expansion in the latti
Wannier coordinates. The coefficients of these terms are
rameters to be determined from first principles by fitti
Heff to the results of selected total energy and linear-respo
calculations, using the explicit correspondence between
Wannier coordinates and the actual ionic displacements
check the validity of the truncated form of the effectiv
Hamiltonian, additional independent first-principles calcu
tions can be performed and compared withHeff .

B. First-principles total-energy calculations

The first-principles calculations for PbTiO3 were per-
formed using theab initio pseudopotential method in th
local-density approximation~LDA ! with the Perdew-Zunge
parametrization of the Ceperley-Alder density functiona15

For Pb, the scalar-relativistic pseudopotentials from Ref.
were used. The use of a plane-wave basis set dictates th
of optimized pseudopotentials17 for O and Ti to achieve rea
sonable energy convergence and transferability. For O,
reference configuration 2s22p4 was used with pseudopoten
tial core radii r c,s5r c,p51.5 a.u. Optimization was per
formed withqc,s57.0(Ry)1/2 andqc,p56.5(Ry)1/2 and four
and three Bessel functions fors andp orbitals, respectively.
For Ti, it is essential to treat the semicore 3s and 3p elec-
trons as valence electrons.4,18 The reference configuratio
3s23p63d2 was used with pseudopotential core ra
r c,s5r c,p51.45 a.u. andr c,d51.5 a.u. Optimization was
performed with qc,s57.2(Ry)1/2, qc,p57.0(Ry)1/2 and
qc,d57.74(Ry)1/2, and four Bessel functions. An energy cu
off of 850 eV ~corresponding to approximately 3600 pla
waves for a five-atom unit cell! was used to ensure conve
gence within 10 mRy/atom. The self-consistent total-ene
calculations were performed using the programCASTEP2.1,19

based on the stable and efficient preconditioned conjug
gradients method.20 For the Brillouin-zone integrations
k-point sampling was performed using the Monkhorst-Pa
construction21 with 64 k points in the full Brillouin zone.

As reported in Ref. 5 and summarized here in Table I,
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lattice constant and elastic constants of PbTiO3 in the cubic
perovskite structure obtained from the total-energy calcu
tions for a range of unit-cell volumes are in good agreem
with previous calculations.2,4 In addition, in Fig. 4 of Ref. 5
we showed the calculated energies as a function of exp
mental soft mode amplitude, which compare favorably w
previous LAPW calculations.2

C. First-principles DFT linear response

The technique of density-functional theory~DFT! linear
response is used to calculate the second derivatives of
total energy with respect to perturbation parameters thro
the self-consistent calculation of the first-order correction
the occupied Kohn-Sham wave functions.22,23 For example,
Born effective charges, dielectric constant, and dynam
matrices are the second derivatives of total energies and
can be obtained with this technique. In this framework,
dielectric constant can be calculated avoiding cumberso
sums over unoccupied bands. Another significant advan
is thatqW Þ0 force constants can be computed with an eff
similar to that of a single unit-cell total-energy calculation

Our implementation is a modification ofCASTEP2.1 based
on the variational formulation of DFT linear response.23 All
the linear-response calculations reported here were don
the experimental lattice constant24 of 3.968 83 Å with 64
Monkhorst-Packk points in the full Brillouin zone. The
Vosko-Wilk-Nusair parametrization of the Ceperly-Alde
density functional was used to permit the calculation of d
rivatives of exchange-correlation terms.25 A 36336336
Fourier transform grid is used for integration over a unit c
in real space. This real-space grid breaks global translatio
invariance,26,23 which manifests itself as small violations o
the acoustic sum rule~the calculated frequencies of zon
center acoustic modes are not exactly zero! and charge neu-
trality ~the calculated change in polarization due to a rig
displacement of the crystal in any direction is not exac
zero!. The acoustic sum rule was imposed by adding sm
corrections to the diagonal elements of theqW 50 force-
constant matrix. Charge neutrality was imposed by add
the same small correction to the effective charges of all
oms.

The Born effective charges are presented in Table II
very good agreement with previously calculated value27

The main features of interest are the anomalously large
fective charges of Ti and O along the bond and the anis
ropy of the oxygen charge. The calculated dielectric cons
is 8.24, which can be compared with the experimental va
of 8.64 quoted in Ref. 27. The data in Table II combin

TABLE I. Cubic perovskite lattice and elastic constants calc
lated from various first-principles calculations. Elastic constants
given in eV/cell.

This work Ref. 2 Ref. 4

a0 ~Å! 3.883 3.889 3.889
B ~GPa! 203 215 209
C11 117 123
C12 51.6 53.6
C44 137 148
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6164 55U. V. WAGHMARE AND K. M. RABE
with the calculated force constants atqW 50 give the frequen-
cies of IR-active phonons presented in Table III. Direct co
parison of these results with the previous calculations27 is not
possible because the calculations were performed at diffe
lattice constants. This has an especially large impact on
unstable mode frequency, as confirmed by our calculati
of coupling between this mode and homogeneous strain
be described below. As can be seen in Table IV, the unst
G15 mode has the largest mode effective charge, wh
should be associated with the largest LO-TO splitting. Sin
there are three polar zone-center modes with the same
metry, mixing leads to LO-mode eigenvectors different fro
TO-mode eigenvectors. Effects of this mixing can be qu
tified using the correlation matrix27

ci j5^j i
TOuM uj j

LO&, ~2.1!

given in Table IV, whereMmn5Mmdmn is the mass matrix
andj i are the IR-active mode eigenvectors. As expected,
unstableG15 TO mode has the strongest correlation with t
highest LO mode.

In Table V, we report selected phonon frequencies
other high-symmetryk points in the Brillouin zone, focusing
in particular on the lowest energy phonons. While we a
find unstable modes away from theG point, the unstable
mode atG is clearly the dominant lattice instability in ou
calculations, consistent with the observed low-tempera
structure. The eigenvectors of the lowest energy phonons
the corresponding force-constant matrices will be used in
determination of the parameters in the effective Hamilton
in the next section.

III. CONSTRUCTION OF THE EFFECTIVE
HAMILTONIAN FOR PbTiO 3

A. Construction of the subspace

The construction of the effective Hamiltonian subspa
begins with consideration of the calculated force-const
matrix eigenvalues and eigenvectors atG, R, M , and X.
The subspace has to include the unstable polarG15 mode
which freezes in to produce the low-temperature tetrago

TABLE III. IR-active optical phonon frequencies~cm21) at G
obtained using linear response at the experimental volume. The
compared with the results of the frozen-phonon calculations
formed at the LDA volume with ultrasoft pseudopotentials~Ref.
27!.

TO1 TO2 TO3 LO1 LO2 LO3

Present work 182 I 63 447 47 418 610
Ref. 27 144 I 121 497 104 410 673

TABLE II. Effective charges calculated from first principles lin
ear response and compared with the results of the geometric p
approach~Ref. 27!.

Zpb* Zti* Zo1* Zo2*

This work 3.87 7.07 25.71 22.51
Ref. 27 3.90 7.06 25.83 22.56
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structure. In addition, to achieve a good description
branches which emanate from this dominant unstable mo
the endpoints of these branchesR15, M28 , M58 , X58 are in-
cluded. As can be seen from Table I of Ref. 12, the latt
Wannier functions which can build up this subset of mod
transform like three-dimensional vectors centered at Pb s
It should be noted that the lowest mode atR is actually
R25, which corresponds to an oxygen octahedron rotat
instability seen in many perovskite oxides.11 Since crossing
of the lowest branch along~111! with that emanating from
R25 occurs far from the relevant modeG15 and relatively
higher in energy, we do not include it in the subspace.

To include coupling of the relevant polar distortion
(G15) to local distortions of the unit cell~inhomogeneous
strain!, we expand the subspace to include the acou
modes by choosing an additional set of lattice Wannier fu
tions. Of the three possibilities~listed in Table I of Ref. 12!,
Ti-centered three-dimensional vectors are preferable toOx,x
~one-dimensional vectors! and Ox,y ~two-dimensional vec-
tors!, since this choice corresponds to the smallest subsp
expansion and highest site symmetry group. Furtherm
unlike Ox,x , the resulting 63N dimensional subspace doe
not include the highest energy modes.

Next, we obtain an explicit form for the Pb-centere
LWF. This involves finding the symmetric coordinatio
shells surrounding a Pb site and identifying the independ
displacement patterns of each shell that transform accor
to the vector representation of the site symmetry gro
Oh . For a given shell there can be more than one patter
displacements with a given transformation property. To e

re
r-

TABLE IV. LO-TO splitting: mode effective charges and co
relation matrix.

Z̄* LO1 LO2 LO3

TO1 9.45 0.224 0.466 0.855
TO2 2.56 0.974 0.116 0.192
TO3 1.53 0.010 0.876 0.481

TABLE V. Selected phonon frequencies~cm21) at high sym-
metry k points calculated using DFT linear response. Symme
labels follow the convention of Ref. 12.

k point Phonon Frequencies

X X58 30.6 I, 264
X28 93.1, 647

M M58 35.1 I, 400, 201
M28 16.4

R25 145 I
R15 15.5, 339

R R258 367
R128 370
R28 746

L1 8.78, 249, 421, 696

~111!
p

2a
L2 148

L3 58.2 I, 82.9, 230, 301, 430

ase
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55 6165Ab initio STATISTICAL MECHANICS OF THE . . .
such pattern corresponds an independent amplitude pa
eter. By neglecting the displacements of shells beyond fi
neighbor Ti and O shells and second-neighbor Pb shells
obtain a total of ten parameters. The first shell of Ti ato
has two independent displacement patterns, parametrize
t1 and t2; there are one, two, and two parameters for
zeroth, first, and second shells of Pb atoms, respectively,
three parameters for the first shell of oxygen atoms. Th
displacement patterns are shown in Fig. 2.

To determine the numerical values of these parameters
PbTiO3, we build up the transverse modeseqW ,a at high-
symmetryk points in the Brillouin zone, namelyG, X, M ,
andR, from the parametrized LWF using

eqW ,a5(
RW i

exp~ iqW •RW i !wi ,a , ~3.1!

whereRW i is a direct lattice vector andwi ,a is an LWF cen-
tered at the Pb site in thei th unit cell,a being its Cartesian
component. This specifies atomic displacements in th
modes as linear functions of the parameters, to be fit to
normalized eigenvectors of the force-constant matrix ca
lated from first principles. With the parameters listed abo
we can reproduce the normalized eigenvectors of the mo
G15, R15, andM28 exactly. The remaining free paramete
associated with Pb and Ti displacements, were used to fi
a normalized mode with maximum overlap with the lowe
M58 ~see Table VI!. Numerical values of these paramete
listed in Table VII, clearly show that the magnitude of th
parameters decays rapidly with shell radius, confirming

FIG. 2. z component of the vectorlike Pb-centered lattice Wa
nier functions. Pb, Ti, and O atoms are represented by em
squares, solid squares, and circles, respectively. Parameters lab
the displacement patterns correspond to the length of the disp
ments~arrows! of atoms for the unit value of the LWF coordinat
m-
t-
e
s
by
e
nd
se

or

se
e
-
,
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,
to
t
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e

assumption of LWF localization. Furthermore, by adding
additional shell of Pb~one parameter! and oxygen atoms
~two parameters!, we can reproduce all the transverse-optic
modes in the subspace. The parameter values for this refi
LWF are given in Table VII. The values of the parameters
the innermost shells do not change very much, and the va
of the new parameters are very small.

Another way of testing the approximate LWF is to s
how well it reproduces other modes in the subspace.
example, in Table VIII, we show the comparison of the fir
principlesX58 eigenvector with the mode constructed with t
approximate LWF. The approximate mode has an overlap
92% with the relevant mode, and if the approximate mo
vector is normalized, the overlap becomes 99.96%, show
that the LWF describes the subspace very well.

For the simplest treatment of inhomogeneous strain~the
acoustic branches!, an explicit expression of the Ti-centere

-
ty
ling
e-

TABLE VI. Determination of LWF parameters. Linear comb
nations of these parameters for the modes at high-symmetk
points and the corresponding components of the normalized ei
vectors of the force-constant matrix.

Mode
Combination of the

parameters
Component of the

eigenvector

G15 p114p212p3112p4 0.5560
8t1 0.5375
4o1 20.3414
4o2 20.4109

R15 p124p222p3112p4 0.8981
4o328o6 20.3110

M28 p124p212p324p4 1.0000

M58 p122p324p4 0.9010
8t2 0.3024

TABLE VII. Values of the LWF parameters determined fro
first principles. The parameters of the approximate LWF descri
in the text are given in the second column. Parameters for the
fined LWF are obtained by fitting to all the TO modes
G, R, X, andM , with additional parameters associated with thir
neighbor shell of Pb atoms and second-neighbor shell of oxy
atoms.

Parameter Approx. LWF Refined LWF

p1 0.839 0.829
p2 20.037 20.049
p3 20.012 0.014
p4 20.009 20.019
p5 0.0 0.017
o1 20.085 20.086
o2 20.102 20.103
o3 20.077 20.087
o4 0 0.00045
o5 0 20.0045
t1 0.067 0.067
t2 0.038 0.037
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6166 55U. V. WAGHMARE AND K. M. RABE
LWF is not needed, since the goal is only to reproduce
long-wavelength acoustic modes, whose dispersion is de
mined from the elastic constants. For a more refined tr
ment, an LWF could be parametrized as above and de
mined by fitting to the first-principles eigenmodesG15,
R258 , M38 , M58 , X1, X5.

TABLE VIII. Comparison of X58 eigenvectors. Mode vecto
~first row! built up using the approximate LWF is compared wi
the eigenvector~second row! of the force-constant matrix atX.

Pb component O component

Mode in the subspace 0.853 20.341
Eigenvector from LR 0.937 20.349
o
a
ve
e
r-
t-
r-

B. Determination of parameters inH eff

Using the symmetry properties of the lattice Wannier b
sis for the effective Hamiltonian subspace, we write an
plicit expression forHeff as a Taylor expansion in the lattic
Wannier coordinates, invariant under the space gro
Pm3m. $jW i% and$uW i% denote the Pb-centered and Ti-center
lattice Wannier coordinates, respectively. Each of th
three-dimensional vector degrees of freedom transforms
cording to theG15 irrep of the point symmetry groupOh .
Below, we organize the terms in the expansion ofHeff into
those acting exclusively in the Pb-centered subspace and
Ti-centered subspace and those coupling the two.

In the Pb-centered subspace, we consider quadratic in
actions up to third nearest neighbor with the most gene
form allowed by the space-group symmetry:
(
i
AujW i u21(

i
(

d̂5nn1
$aL~jW i•d̂!„jW i~ d̂!•d̂…1aT@jW i•jW i~ d̂!2~jW i•d̂!„jW i~ d̂!•d̂…#%

1(
i

(
d̂5nn2

@bL~jW i•d̂!„jW i~ d̂!•d̂…1bT1~jW i•d̂1!„jW i~ d̂!•d̂1…1bT2~jW i•d̂2!„jW i~ d̂!•d̂2…#

1(
i

(
d̂5nn3

$cL~jW i•d̂!„jW i~ d̂!•d̂…1cT@jW i•jW i~ d̂!2~jW i•d̂!„jW i~ d̂!•d̂…#%, ~3.2!
te

ing
an-
tial
where jW i(d̂) denotes the LWF coordinate at a neighbor
site i in d̂ direction. Beyond the third neighbor we use
dipole-dipole form parametrized by the mode effecti
chargeZ̄* and the electronic dielectric constante` :

(
i

(
dW

~ Z̄* !2

e`

@jW i•jW i~ d̂!23~jW i•d̂!„jW i~ d̂!•d̂…#

udW u3
. ~3.3!
fAn important simplifying approximation is that the on-si
potential, depending on the value ofj i at a singlei , is the
only set of terms including anharmonic interactions act
exclusively in the Pb-centered subspace. For simplicity,
harmonic terms are included only in the on-site poten

with isotropic terms up to eighth order inujW i u and full cubic
anisotropy at fourth order:
ng

TABLE IX. Determination of coefficients in the quadratic part ofHeff . Linear combinations of these

coefficients for the modes in theHeff subspace at high-symmetryk points are equated to the correspondi
eigenvalues of the projected force-constant matrix.

k point Mode eigenvalue atk of the effective Hamiltonian
Value from LR

~eV/Å2)

z5Z̄* 2/e` 12.18

G15 A12(aL12aT)14(bL1bT11bT2)18(cL12cT)/320.964843z/2 21.908
X28 A22aL14aT24(bL1bT1)14bT228(cL12cT)/312.231399z/2 6.467
X58 A12aL24bT228(cL12cT)/321.115699z/2 20.266
M58 A22aL24bT218(cL12cT)/310.6165696z/2 20.360
M28 A12aL24aT24(bL1bT1)14bT218(cL12cT)/321.23314z/2 0.103
R15 A22aL24aT14(bL1bT1)14bT228(cL12cT)/3 0.076

(111)
p

2a
A2@22(bL2bT1)10.41635523z/2.0# 20.568

(111)
p

4a
A1A2(aL12aT)12(bL1bT11bT2)10.942809(cL12cT)

2@(2bL1bT1)20.942809(cL2cT)10.7953677z/2# 21.750
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(
i

@BujW i u41C~j ix
4 1j iy

4 1j iz
4 !1DujW i u61EujW i u8#. ~3.4!

In the Pb-centered subspace, the parameters to be d
mined from first principles areA,aL ,aT ,bL ,bT1 ,bT2 ,cL ,
cT ,B,C,D,E,Z̄* . This determination relies on the explic
correspondence between the lattice Wannier coordinate$jW i%
and the ionic displacements$dW i% obtained in Sec. III A. This
correspondence allows us to relate the first-principles t
energies and the derivatives of total energies to various te
in Heff . The parameters in the quadratic part ofHeff are
linearly related to the force-constant matrices obtained fr
density-functional linear response at high-symmetryk points
in the BZ. In Table IX are given specific relations for mod
at various k points in the BZ including
G15,X28 ,X58 ,M58 ,M28 ,R15 and the L3 modes at (111)p/
(2a), (111)p/(4a). The parameterZ̄* is determined from
the eigenvector of unstableG15 and the Born effective
charges. Obtaininge` directly from DFT linear response an
solving the system of linear equations yields values for
the parameters in the quadratic part ofHeff , listed in Table
IX. The resulting normal mode dispersion ofHeff is shown in
Fig. 3. For the LO modes at (111)p/(2a) and
(111)p/(4a), the reasonable agreement between the ca
lated force-constant matrix eigenvalue andHeff is an indica-
tion of the validity of the truncation in the Taylor expansio

The parametersB,C,D,E appearing in the on-site anha
monic terms are determined from the total energies of u
formly distorted configurations (jW i5jW ), as shown in Fig. 4.
The minimum energy configuration has rhombohedral sy
metry @jW along~111!#. The difference among the energies
uniform distortions with different symmetries@~100!, ~110!,
~111!# is a reflection of the cubic anisotropy, which is d
scribed quite well by the fourth-order terms. The resulti
parameters are listed in Table X.

To account for the effects of changes in lattice parame
at the structural phase transition, we include the lowest-o
terms in the homogeneous strain and its coupling to the
centered subspace:

N

2
C11(

a
eaa
2 1

N

2
C12(

aÞb
eaaebb1

N

4
C44(

aÞb
eab
2

FIG. 3. Normal mode dispersion ofHeff . Solid circles are the
first-principles mode eigenvalues used in the fitting. Open circ
are the first-principles mode eigenvalues not used in fitting
Heff , which test the validity of the truncated form of the effectiv
Hamiltonian.
ter-

al
s

ll

u-

i-

-

rs
er
b-

1Nf(
a

eaa1g0S (
a

eaaD(
i

ujW i u2

1g1(
a

S eaa(
i

j ia
2 D 1g2 (

a,b
eab(

i
j iaj ib , ~3.5!

where eab is a component of the strain tenso
C11,C12,C44 are the elastic constants, and the parame
g0 ,g1 ,g2 give the strength of coupling of strain with th
local polar distortionsj ia . All these parameters are dete
mined from the single unit-cell total-energy calculations f
three independent types of unit-cell distortions~isotropic,
uniaxial, and rhombohedral shear!, with magnitudes of up to
2 to 4 % of the experimental lattice constants. The total
-ergies of these strained unit cells with no local polar dist
tion, shown in Fig. 5, give the three elastic consta
C11,C12, andC44. For each of these unit-cell-strain type
we also compute the second derivative of energy with
spect to uniform local polar distortionsjW i5jW , as shown in
Fig. 5. These results yield the coupling parameters show
Table X.

Now we turn to the determination of the terms inHeff
acting in the Ti-centered subspace. Because this subs
contains the zone-center acoustic modes, these terms
satisfy global translational and rotational invariance. T
symmetry is built into the systematic expansion proced
given by Keating,28 in which invariant terms are built up

s
e

FIG. 4. Total energies for uniformly distorted configuratio

(jW i5jW ) along directions~001!, ~110!, and~111!. Solid lines are the
fit obtained with the parametersB, C, D, andE in Heff .

TABLE X. Parameters in the effective Hamiltonian~units of eV
per unit cell!.

A 18.43 aL 39.27 C11 117.9

B 2.6293103 aT 210.67 C12 51.50

C 4.2773103 bL 4.882 C44 137.2

D 21.6583105 bT1 21.391 g0 2107.7

E 9.6303106 bT2 20.1434 g1 2790.3

Z̄* 2/e` 12.18 cL 23.389 g2 2357.09

cT 0.7104 f 4.48
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from dot products of differences of theuW i ’s. If the expansion of the effective Hamiltonian in the Keating construction28 is
truncated at quadratic order and three independent parameters, corresponding to the three elastic constants, the follo
are obtained:

1

N(
i
ÃuuW i u21

1

N(
i

(
d̂5nn1

$ãL~uW i•d̂!„uW i~ d̂!•d̂…1ãT@uW i•uW i~ d̂!2~uW i•d̂!„uW i~ d̂!•d̂…#%

3
1

N(
i

(
d̂5nn2

@ b̃L~uW i•d̂!„uW i~ d̂!•d̂…1b̃T1~uW i•d̂1!„uW i~ d̂!•d̂1…1b̃T2~uW i•d̂2!„uW i~ d̂!•d̂2…#. ~3.6!

The relations of these parameters to the elastic constants are made by using the Keating expansion to evaluate the
homogeneously strained configurations. With these relations,Ã5C1112C44, ãL52 1

2C11, ãT52 1
2C44, b̃L52b̃T152 1

8

C121
1
24C44, and b̃T250, these parameters can easily be obtained from first-principles calculations. Because there

unstable modes in this subspace, there is no need to include higher-order interactions. In any case, within the local
nicity approximation, global translational invariance requires anharmonic terms to be zero at all orders. As mentione
previous section, there is no need for an explicit form of the Ti-centered LWF in this minimal treatment. For refinem
Heff in this subspace, one could construct an explicit form and determine additional parameters in a manner analogo
for the Pb-centered subspace.

Finally, the simplest coupling between local polar distortions~Pb-centered subspace! and inhomogeneous strain~Ti-
centered subspace! that satisfies the constraint of global translational invariance and does not vanish in the limitkW→0 is the
nearest-neighbor coupling linear inuW and quadratic injW , with both jW variables taken on the same site:

h̃0
N(

i H j ix
2 (
dW 56 ŷ6 ẑ

FuxSRW i1
a0
2
x̂1

a0
2
dW D 2uxSRW i2

a0
2
x̂1

a0
2
dW D G1c.p.J 1

h̃1
N(

i
S j ix

2 H (
dW 56 x̂6 ẑ

FuySRW i1
a0
2
ŷ1

a0
2
dW D

2uySRW i2
a0
2
ŷ1

a0
2
dW D G1 (

dW 56 x̂6 ŷ
FuzSRW i1

a0
2
ẑ1

a0
2
dW D 2uzSRW i2

a0
2
ẑ1

a0
2
dW D G J 1c.p.D

1
h̃2
N(

i
S j ixj iyH (

dW 56 x̂6 ẑ
FuxSRW i1

a0
2
ŷ1

a0
2
dW D 2uxSRW i2

a0
2
ŷ1

a0
2
dW D G

1 (
dW 56 ŷ6 ẑ

FuySRW i1
a0
2
x̂1

a0
2
dW D 2uySRW i2

a0
2
x̂1

a0
2
dW D G J 1c.p.D . ~3.7!

FIG. 5. Energetics of the homogeneous strain@~a! isotropic,~b! uniaxial, and~c! shear# and its coupling to the uniform polar distortions
Circles are the total energies for the strained unit-cell configurations with no polar distortions. Solid lines going through the circles
fits obtained with the elastic constantsC11, C12, andC44. Squares correspond to the second derivative of the total energies with resp
uniform polar distortions for the strained unit cells. Solid lines going through the squares are the fits obtained with the coupling pa
g0 , g1, andg2.
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j ia
2 couples only to differences of theub’s, which can be
recognized as finite difference approximations to the gra
ent, and thus as the local strain tensor~see also Ref. 10!. The
terms inHeff coupling inhomogeneous strain and polar d
tortions are related in the long-wavelength limit to the co
pling between homogeneous strain and the polarG15 mode.
Thus the three independent coupling parameters can be
tained from the corresponding homogeneous strain coup
parameters:h̃05(g01g1)/4, h̃15g0/4, andh̃25g2/8.

C. Examination of model energetics

Having fully determinedHeff , we now explore the low-
energy surface of the model to confirm that it gives a corr
ground state when compared with the real crystal. Since
anharmonic terms occur only in the Pb subspace and
local ~the anharmonicity is wave vector independent!, it is
easy to determine the ground state from the quadratic o
terms. The lowest energy mode is obtained by freezing in
most unstable mode:G15. We consider changes in energy
this mode is frozen in with polarization along the~001!,
~110!, and~111! directions. In Fig. 4, it can be seen that th
rhombohedral state@(111) distortion# has the lowest energy
If the unit cell is allowed to relax as the mode is frozen in,
minimizing over the homogeneous strain, we find an ove
increase in distortion energy, with the lowest energy st
being of tetragonal symmetry@(001) distortion# as can be
seen in Fig. 6. This is consistent both with previous fir
principles calculations2 and experimental results.24

For the lowest-energy tetragonal configuration, we obt
a value for the spontaneous polarization from the mode
fective charge ofPs50.87 C/m2, which is in the range of
values (Ps550 to 100 C/m2) reported from experiments.1

From the values of homogeneous strain in this ground st
we obtain ac/a ratio of 1.08, to be compared with the e
perimental value of 1.061.24 Using the explicit form for the
LWF, the atomic displacements in the model ground st
can be obtained. We find that the oxygen octahedra are
most undistorted and the relative displacement of the Pb

FIG. 6. Model energetics of the uniform polar distortions alo
~100!, ~110!, and~111!. Dotted lines correspond to the polar disto
tions with the unstrained cubic unit cell, and solid lines to the d
tortions with unit cell allowed to relax with respect to homogeneo
strain.
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oms is 0.35 Å@to be compared with the experimental valu
of 0.47 Å ~Ref. 24!#. It should be noted that this is not th
true LDA ground state, since previous total-ener
calculations5 for the experimental distortions showed the la
ter is slightly lower in energy. This means that there is
higher-order coupling of the unstableG15 mode to an addi-
tional polarG15 mode not included in the effective Hami
tonian subspace. Considering that the atomic displacem
in PbTiO3 are relatively large, the presence of such anh
monicity is not surprising. However, as discussed above,
ground state of the model is very similar to the experimen
ground state and the small loss of accuracy is more t
compensated for by the gain in simplicity.

IV. FINITE-TEMPERATURE BEHAVIOR

The effective Hamiltonian is constructed to show t
same finite-temperature critical behavior as the full latt
Hamiltonian in a statistical mechanical analysis. While t
form of Heff is somewhat too complicated for the applicatio
of analytical methods beyond mean-field theory, it is qu
suitable for Monte Carlo simulations, since the changes
energy for changing system configurations can be rea
evaluated. Monte Carlo simulations are used in the deta
analysis ofHeff to obtainT dependence of a variety of struc
tural properties near the transition, while our mean-fie
theory analysis is limited to the estimation ofTc and the
identification of the order of the transition and symmetry
the phases. Comparison of the mean-field results with th
of Monte Carlo simulations allows us to study the effects
fluctuations.

A. Mean-field theory

Variational mean-field theory for the class of models w
variable length vector degrees of freedom and strain c
pling was developed in Ref. 29. In this approach, the hom
geneous strain and uniform polarization (PW ) are identified as
the order parameters for the transition.PW is directly related to
the average value of uniform local distortion through t
mode effective chargeZ̄* and the unit-cell volumeVcell ,

PW 5Z̄* •^jW &/Vcell . ~4.1!

In the high-temperature~cubic perovskite! phase, the uni-
form polarization is zero and the strain tensor has full cu
symmetry:exx5eyy5ezz. We used the variational formula
tion of mean-field theory, which involves constructing a tr
density matrix as a product of single site density matric
and minimizing the resulting free-energy functional with r
spect to the variational parameters in the trial density mat
We minimized the trial free energy with respect to var
tional parameters corresponding to cubic, tetragonal,
rhombohedral symmetries to determine the stable phas
various temperatures. The system is stable in the cubic p
above the transition temperatureTc51100 K and in the te-
tragonal phase belowTc , but within the accuracy of our
calculation, the transition is second order. Switching off t

-
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coupling to homogeneous strain resulted in a second-o
cubic-rhombohedral transition at a significantly lower te
perature of 900 K.

B. Monte Carlo simulations

Classical Monte Carlo simulations30 were performed us-
ing the Metropolis algorithm for finite-size systems
L3L3L unit cells and periodic boundary conditions. A co
figuration of the system is specified by two sets of thr
dimensional vectors$jW i% and$uW i% placed on interpenetratin
simple cubic lattices of sizeL3L3L. We generated a tria
configuration by updating a single vector to a randomly c
sen vector inside a cubic box centered at the current valu
the vector. The size of this box is chosen to yield a reas
able acceptance ratio (.0.1), and is roughly 0.25a0 near
Tc . With the change in a single vector, the change in ene
associated with short-range terms~quadratic interactions up
to third neighbor, the on-site potential, coupling to stra
and third-order coupling between the two subspaces! is easy
to calculate. Because of their long range, computation
dipolar intersite interactions is relatively costly, limiting th
size of our simulations toL<12. The 333 matrix of dipolar
intersite coupling for each pair of spins was calculated us
the Ewald summation technique for each value ofL.
Changes in the quadratic intersite interaction due to chan
in strain are neglected in this model. One Monte Carlo sw
~mcs! involves one update of thej i ’s ~in typewriter mode!
followed by one update of theui ’s ~in typewriter mode!, and
20 updates of the six components of the strain tensor.

Preliminary Monte Carlo simulations performed wi
25 000 to 50 000 sweeps showed dependence on the in
configuration of simulations at temperatures in the vicinity
the transition forL.5. ForL55, which is small enough for
ergodic sampling in a run of this length, the energy his
gram shows two clearly separated peaks. This behavio
typical of a first-order transition.31 At larger system sizes
due to the exponentially increasing free-energy barrier
tween the regions of configuration space corresponding
low- and high-temperature phases, only one of the two pe
in the energy histogram is sampled, depending on the ch
of initial configuration. An accurate determination ofTc re-
quires knowledge of the relative free energies of the hi
and low-temperature phases as a function of tempera
Recently developed methods to extractTc for first-order
transitions include multicanonical algorithms31 and jump-

FIG. 7. Bounds on the transition temperatureTc as a function of
system size used in the simulations.
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walking algorithms.32 In our applications of these methods
PbTiO3, we found that these approaches require very lo
(106 mcs! simulations, and therefore are rather impractic
However in the present case, the uncertainty inTc obtained
from the range of hysteresis is small compared to the L
and other errors in our analysis and therefore high accur
determination ofTc is not necessary. The calculation of th
physical properties of the high- and low-temperature pha
at temperatures inside the range of hysteresis is carried
with an appropriate choice of the initial configuration.

In Fig. 7, we show the bounds onTc for L55–11, ob-
tained by monitoring the sensitivity of the average structu
parameters to the choice of initial state:T. is the lowest
temperature at which the system averages are characte
of the cubic state, starting with an inital ground-state tetr
onal configuration, whileT, is the highest temperature a
which a starting cubic configuration results in a tetrago
state. A value ofTc5660 K, obtained from averaging th
bounds at the largest system size, is in very good agreem
with the experimental transition temperature 763 K.

To detect the symmetry of the low-temperature phase,
calculated the averages of largest, smallest, and interme
absolute values of the Cartesian components
jW5(1/N)( i(jW i). These averages for the 73737 system as a
function of temperature are shown in Fig. 8. NearTc , the
largest component jumps to a finite value, while the oth
two components remain close to zero, indicating tetrago
symmetry of the low-temperature phase. As shown in Fig
this uniform tetragonal polar distortion is accompanied b
tetragonal strainc/aÞ1. This quantity also shows a marke
jump nearTc . Finally, from the average homogeneous stra
we obtained the average volume of the system as a func
of temperature, as shown in Fig. 10. The negative ther
expansion in the simulations just belowTc is also seen
experimentally.33

The latent heat of a first-order transition is given by t
difference in energies at which the two peaks appear in
energy histogram in the simulations atTc . To determine this
energy difference, we performed two simulations forL59 at
the midpoint of the hysteresis rangeTc5675 K, one starting

FIG. 8. Averages of largest, smallest, and intermediate abso
values of the Cartesian components of the order param

jW5( ijW i /N as a function of temperature, obtained from Mon
Carlo simulations~125 000 mcs! of a 73737 system.
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55 6171Ab initio STATISTICAL MECHANICS OF THE . . .
with a tetragonal configuration and the other starting wit
cubic configuration. The difference in the positions of t
peaks in the energy histograms for these two simulati
yields an estimate of latent heat of 3400 J/mol, in rou
agreement with the measured value of 4800 J/mole.34 It
should be noted that these values are much larger than
J/mol latent heat of the cubic tetragonal transition
BaTiO3.

35

Information about the local distortions in the hig
temperature nonpolar phase just aboveTc , can be obtained
from the single spin distribution̂jW i&. For all L, we find the
distribution to be very close to Gaussian. The rather br
width ('0.04a0) shows that there are significant local di
tortions.

For the system sizes used in the simulations, the coup
to the inhomogeneous strain appears to be relatively un
portant. If the coupling is set to zero the changes in
calculatedTc and other transition properties are negligib
However, for larger scale simulations involving multiple d
mains the effects should be significant.

V. DISCUSSION

The first-principles effective Hamiltonian constructed
the previous section provides a quantitative microscopic
scription of the structural energetics of PbTiO3 relevant to
the paraelectric-ferroelectric phase transition. This model
be used to investigate the connection of specific feature
the Hamiltonian to the observed behavior in the vicinity
the transition. In addition, it is possible to connect these f
tures to aspects of the chemistry of PbTiO3 and related com-
pounds.

One important feature of the Hamiltonian is that the T
branches are unstable throughout most of the BZ~Fig. 3!. So,
althoughG15 is the dominant instability, finite-wavelengt
fluctuations have relatively low energy. This may account
the breadth of the single site distribution, and can be
pected also to be reflected in the short-range order. The
stable branch along the (111) direction in PbTiO3 is quite
flat when compared with SrTiO3 ~Ref. 36! and KNbO3.

14 In
comparison with KNbO3 and ferroelectric BaTiO3, in which
the polar unstable modes have a strongB component,14,10the
instabilities in PbTiO3 are dominated by large Pb displac
ments. From symmetry arguments,12 the Pb displacement

FIG. 9. Average tetragonal strain parameterc/a as a function of
temperature, obtained from Monte Carlo simulations~125 000 mcs!
of a 73737 system.
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couple with oxygen displacements atG, X, R, andM lead-
ing to the low energy of the modes at those points. While
same argument applies to Ti displacements atG, X, and
M , they do not couple with any other mode atR point.
Therefore, the energy of the mode atR is high and the dis-
persion alongG toR is large. The special role Pb plays in th
instabilities of PbTiO3 and PbZrO3 ~Ref. 37! in contrast
with the A atoms in non-Pb perovskite compounds has
origin in the strong hybridization of Pb with oxyge
atoms.2,38

To understand the consequences of the coupling of
polar subspace to the strain at finite temperature, we
formed Monte Carlo simulations forHeff with this coupling
set to zero. This corresponds to a constant volume ph
transition with the unit cell constrained to be cubic. In th
case, we find a second-order phase transition at 400 K
rectly to the rhombohedral phase. Thus, the coupling of lo
polar distortions to strain is responsible for both the stabi
of the tetragonal phase relative to the rhombohedral one
the first-order character of the transition at finite temperatu
As discussed in the previous section, mean-field the
shows a second-order transition both with and without str
coupling, implying that both fluctuations and strain coupli
are required for producing the first-order transition. Comp
ing the transition temperatures obtained in Monte Carlo a
mean-field theory with and without strain coupling, we fin
that while fluctuations suppressTc , the coupling to strain
enhances the stability of the ferroelectric phase.

In comparison with related ferroelectric compounds, t
transition in PbTiO3 has a much stronger first-order chara
ter, reflected in its large latent heat. While the strain coupl
is responsible for the first-order character,39-41anharmonicity
in the lattice plays an important role in the magnitude of
discontinuity.29 The minimum energy uniform polar distor
tions in PbTiO3 are much larger than those in related co
pounds indicating a large contribution from anharmonicity
the low-energy surface. The relation of these features to
chemistry ofA or B atoms was discussed using ionic radii
Ref. 29.

There are two main sources of error in the work presen
in this paper. One of these is the LDA used in the exchan
correlation functional. Equilibrium lattice constants are typ
cally underestimated in the LDA calculations. This c
strongly affect the study of structural phase transition, sin

FIG. 10. Average unit cell volume as a function of temperatu
obtained from Monte Carlo simulations~125 000 mcs! of a
73737 system.
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the lattice instabilities are very sensitive to the lattice para
eters. In the present work these errors were partially eli
nated by expanding the effective Hamiltonian around the
perimental lattice constant nearTc and dropping the term
linear in strain. The other source of error is the truncation
the effective Hamiltonian subspace. In the LWF approa
this subspace is decoupled at quadratic order from
complementary subspace to a good approximation. Howe
there can be anharmonic coupling between the two s
spaces. In the case of PbTiO3, there is a small higher-orde
coupling of G15 to modes not included in the subspac
which affects the energies of large distortions. Since th
large distortions are mainly important at low temperatur
we expect this coupling to have a small effect onTc .

VI. CONCLUSION

In conclusion, we have applied the method of lattice Wa
nier functions to construct an effective Hamiltonian for t
ferroelectric phase transition in PbTiO3 completely from
m

,
B

los
-
i-
-

f
,
ts
er,
b-

,
e
,

-

first principles. Monte Carlo simulations for this Hamiltonia
yield a first-order cubic-tetragonal transition at 660 K and
description of the system near the transition in good agr
ment with experiment. The strong involvement of Pb atom
the lattice instability as well as anharmonicity and the co
pling of polar distortions with homogeneous deformations
the lattice are found to be very important in producing t
transition behavior characteristic of PbTiO3.
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