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Andreev-level tunneling in a ballistic double
superconductor—normal-metal—-superconductor junction
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The supercurrent in a mesoscopic, ballistic, and symmetrically stacked, double superconductor—normal-
metal—superconduct@¢BNS junction is studied. Our focus is to establish the features in the supercurrent that
are associated with the Andreev-level tunneling between the two SNS junctions. Both the junction geometry
dependence and the gap function dependence are studied and are analyzed in terms of the quasiparticle
scattering processes. The quasiparticle scattering is worked out analytically by solving the Bogoliubov—de
Gennes equation within the Andreev approximation. The current is calculated, following Beenakker and van
Houten[Phys. Rev. Lett66, 3056 (1991)], and the result is found to differ from that of the transmission
approach. Such discrepancy between the two approaches, however, is found to disappear for a single SNS
junction. In our result, the currents in the two normal regions are checked to be the same.
[S0163-182697)04309-9

I. INTRODUCTION tween the two NS interfaces thus contribute to the supercur-
rent across the junction. Furthermore, for those quasiparticles
The transport properties of mesoscopic systems wittwith energies lower than the gap potential of the electrodes,
mixed normal(N) and superconductin@) constituents have they are confined within the well and form Andreev levels.
attracted much attention in recent yehrEhis is prompted We note that these Andreev levels contribute to the super-
partly by the potential physical phenomena in such systemsurrent, and are, by nature, different from the bound states in
and partly by the potential device applications using thesa quantum well.
systems. A number of physical phenomena have recently Therefore, it is interesting to find ways to probe these
been predicted® and observel! These include, in the dirty Andreev levels. A proposal is made recently to induce tran-
regime, the mesoscopic fluctuations of the critical current irsition between these levels by introducing a gate-induced
a superconductor—normal-metal—supercondu¢BS Jo-  time-dependent potential in the normal regi6iwe propose
sephson junctio? and, in the ballistic regime, the quanti- instead, in this paper, to probe the tunneling between An-
zation of the critical current in a superconducting quantumdreev levels from quantum transport measurement. The sys-
point contact(SQPQ.*® The mesoscopic fluctuation in the tem we study is a double SN@®NSNS junction and the
critical current has physical origin closely associated withtunneling occurs between the levels in the two SNS junc-
that of the universal conductance fluctuations in mesoscopitons. Our focus is to establish the features in the supercur-
normal systems, which, essentially, is the manifestation ofent that are associated with the Andreev-level tunneling.
the phase coherence in the normal region. The quantization The transport characteristics of SNSNS junctions have
of the critical current, on the other hand, has physical origiralso been considered recently*® Motivated by the possible
closely associated with that of the quantized conductance imacroscopic quantum analog between the resonant tunneling
a normal quantum point contact, which is the quantization obf Schralinger electrons and the transmission of Cooper
the transverse energy in the SQPC. That the physical progairs, Zapata and Sdfsconsider twos-profile barriers in a
erties of a SQPC can be different from élgssicalcounter-  quasi-one-dimensional superconductor and argue that the
part, theclassical superconducting point conta¢BPQ, of  J-profile barriers, under certain conditions, behave like nor-
which the transverse dimensiad> \, is demonstrated by mal regions. The critical current is calculated within the
the quantization of the critical current not in a SPC, but in aGinzburg-LandauGL) regime, and the results show that,
SQPC. The distinct physical properties of mesoscopic supenrear the critical temperatuii,, the temperature dependence
conducting nanostructures warrant further exploration efforpf the critical current differs markedly from that of a SNS
worthwhile. junction. Moreover, from their results that the critical current
A simple mesoscopic superconducting nanostructure ifecomes independent of the distaddeetween the junctions
the SNS Josephson-junction configuration has been consigithen d>¢(T), Zapata and Sols conclude that the analogy
ered in recent studis’* The SNS junction is a pair- with the resonant tunneling is, in their wordihgat best
potential well in which the quasiparticles are reflected, acqualitative. Here£(T) is the coherence length of the super-
cording to Andreev? at the NS interfaces. An electronlike conductor at temperatufe.
(holelike) excitation can be reflected at the NS interface and The GL approach, though interesting, cannot establish the
becomes a holelikéelectronlike excitation, while simulta- connection between the supercurrent characteristics and the
neously transmittingextracting a Cooper pair tqfrom) the  microscopic Andreev levels in the structure, and, in addition,
superconducting electrode. Repeated Andreev reflections bies not appropriate for much lower temperatures. Taking a
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microscopic approach, Hurd and Wendin study the supercur- Aol
rent in the same structure using the Bogoliubov—de Gennes i L A, eltz
(BdG) equationt® The discrete spectrum of the excitations z
are calculated numerically by a transfer-matrix method. The
supercurrent due to the scattering states is obtained from a
Landauer-type formula in which the current is expressed in @ 0 —
terms of the quasiparticle transmission coefficients. This
transmission approach to the quantum transport has found
great success in mesoscopic normal structdeesd has been
generalized to mesoscopic superconducting struc- E
tures*81820-25|n the papef® the connection between the A/
current characteristics and the microscopic Andreev levels is il
not established. Furthermore, despite the intuitively appeal- by
ing feature, the transmission approach to mesoscopic super- Ky
conducting structures has not been formally verified, except
for simple structure&’ The important issue that remains is _ . I
whether the quantum transport approach, which works well /G- 1 (&) Schematic representation of a1, S,N,S; junction
for Schrainger particles in mesoscopic normal structuresVith Stepwise pair potentials arit) the dispersion relations for the
can, in the present generalized form, work well also for qua-ex.Cltatlons In respective regions. The case of an glectronhke exar-
siparticles in mesoscopic superconducting structures? Thfgtion (closed circl¢ incident from the left-hand side is shown. The
issue of analogy, or generalization, is, in spirit, similar to that?Pe" circles are the holelike excitations.
brought forth by Zapata and SdisSince the SNSNS junc- _ . .
tion is the simplest nontrivial structure that might help shegBOth the current expressions used in our calculation and used
light on this issue, we calculate, in this paper, the supercurll the transmission approach are presented. Explicit results
rent in such structure using a microscopically derived currento” the SNSNS junctions are presented in the next section.
expressiohiand compare with the results using the transmis-  1he SIN1S;N S5 junction, as shown in Fig. 1, is a one-
sion approach. dimensional channel, with the pair potential given by

From our results, the current-phase relati@PR of a

SNSNS junction, at zero temperature, has features of abrupt
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current change which is associated with the occurrence of 0, 0O<x<L,

Andreev_levels at the chemical potentjal The phase is the A(x)={ Ae%2,  Li<x<L;+L, 1)
phase difference between the order parameters of the two

superconductors at the ends of the structure. As the tunneling 0, LitLlo<x<L;+Lp+tLs

effects between the Andreev levels increase, either by de- A3 x>L;+L,+Lj.

creasing the length or lowering the gap potential of the

middle superconductor, we find that the phase separation be- The energy gap);, of the superconducting electrodes at

tween the two Andreev levels at increases. Consequently, the two ends of the structure is taken to be the same but the

the phase separation between the two abrupt-current-changlases of their respective pair potentials are different. The

features in the CPR increases, and the connection of the CRRiasipatrticles of the system are described by the BdG equa-

with the Andreev-level tunneling is established. Encouragedion

by recent CPR measurement in superconducting weak

links, 282" we expect the CPR characterization of mesoscopic

superconducting structures to be possible in the near future.

We also obtain the analytic expression for the supercurrent

due to the scattering states, using both our approach and théhereH (x) = pz/2m— u is the single-electron Hamiltonian,

transmission approach. The two expressions are differenandu is the chemical potential, from which the quasiparticle

Besides, from our numerical examples, the differences in thenergyE is defined, is assumed to be the same throughout

CPR and in the critical current are quite significant. Thisthe structure. The energy spectrum of the quasiparticles in

discrepancy between the two approaches, however, is fourdifferent regions of the structure is shown in Fig. 1. We

to disappear in a single SNS junction. consider onlyE>0 because the quasiparticles are the exci-
In Sec. Il we present the formulation for the quasiparticletations of the system.

scattering and the supercurrent in a SNSNS junction. In Sec. In the normal regions N(j = 1,2), the normalized eigen-

[l we present the analytic expressions for the quantizatiorfunctions of Eq.(2) are

condition of the Andreev levels, and for the current due to

H(x) A(x)
A*(x) —H*(x)

u(x)
v(X)

u(x)
v(X)

, 2

the scattering states. Numerical examples for the . 1 ~
supercurrent-phase relation, for the critical current and for \PNj e~ | exp(£ikex),
the finite-temperature effects are presented. Finally, Sec. IV
presents a conclusion. 0 _
Ty h=| . lexpxikpx), 3)
Il. THEORY ol

In this section, we outline the method for the calculationwhere Eez Kev1+E/u, 'Izhsz V1—-E/un, and kg
of the quasiparticle scattering states and the Andreev levelss v2mu/f. The subscripte(h) indicates the electronlike
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(holelike) quasiparticle. The superscript gives the group —t —t
velocity direction of the electronlike quasiparticle but gives _ E"—Aj _ E*—Aj
A . ; ! kei=ke \/ 1+ —— k. =ke\/1———.
the direction opposite to the group velocity of the holelike ¢! w ] w
(6)

quasiparticle. Similarly, in the superconductor regiong S
= 1,2,3, the normalized eigenfunctions of E@®) are

u;expli ¢;)

Uj

The above expressions can be analytically continued to
include the cas&<A, by taking the branch/—|x[=i[x|
expl £ikejx), for the square root. These eigenfunctions are used to con-
struct the wave function of the entire structure. In the follow-
. C ing, we take thatA;=A; and A,<A;. The more general
viexpi o)) ] . - .
expl £ikp jX), (4) energy-gap configurations can be handled with the same
j method.
where In the scattering regime, wheB> A, the quasiparticles
are not confined. Thus the wave functions are the scattering
; ) states associated with quasiparticles incident from either side
, (5  ofthe structure. The wave function, for example, for an elec-
tronlike quasiparticle incident from the left-hand side of the
and S;N;1S,N,S; junction has the form

Vi o=

,e

YRR

*
q}S h

( - .
‘1’§1,e+fe‘1’sl,e+fh‘1’§l,h ins,,

ATy, et AP nt AT n AT, e NN,

W(x)= Bl\szyeJrBz\IfgzyhnLB3\If§2'h+B4\If§2Ye insS,, @)
AsTy, et AP, ntA7P N, ntAsPN, e NNy,

te¥s, et th¥s,n NS

The normal process, in which the outgoing quasiparticle is ( a¥e uZ+[vq? inS,

still electronlike, is given by the coefficientg,t,. The An- -

dreev process, in which the outgoing quasiparticle is changed Clq’ﬁl,le Dl\l’ﬁl,h in Ny,

to holelike, is given by the coefficients, ,t,. All the coef- (Wt 4 dwE VLo, inS,
ficients are determined after matching the wave function at V(x)= Sp.€ Sp:h 2 v2 » (8)
the NS boundaries. The matching is simplified by imposing Cz‘l’ﬁz,ﬁ D2‘P§2,h inN,,

the Andreev approximation in which all the wave vectors )

Ke Kn ke, ,kn,; are approximated bi:, except when they | bWg, o Vlug|*+va® inS;.

appear in the exponent. As a result, all the coefficients ass

ciated with eigenfunctions having superscriptare dropped. Ol'he n-process wave function can be obtained from E).

o . by changing the superscript to — and the subscripts
Th% te %nd the ry <_:oeff|C|en'Fs are fou_nd to S"’?“Sfy. (e,h) to (h,e). The quantization condition is obtained after
tel +|rh| =1, and their respectlvg EXpressions are given Ir}natching the wave function at all NS interfaces. Finally, the
Appendix A. The Andreev approximation is appropriate for o malization of the wave function is used to determine all
u>A,. Other scattering states can be obtained similarly. ihe coefficients.

In the other regime, wheE<A,, the quasiparticles are  wjith both the scattering states and the bound states deter-
confined in the structure and the energles are quantlzed. FLﬁ’]ined1 the Supercurrent can be obtained using the current
thermore, whenE<A,, the quasiparticles are confined density expression
within, but can tunnel between, the two normal regions.

There are two kinds of bound states, according to the pro- . e .

cesses that set up the bound states. The first, calleg the 1) = EEI {FEDUF )P (%)

proces<? is constructed from eigenstates having superscript

+, which is associated with right-going electronlike quasi- +[1—f(E|)]u,(x)[3Xv,"(x)}+c.c., 9

particles in the normal regions. The second, called rihe S ) )
proces$? is constructed from eigenstates having superscripyvherel refers to the quasiparticle states, continuous or dis-
—, and is associated with right-going holelike quasiparticlesrete in energy spectrum, with;>0, and with the wave

in the normal regions. Thp-process wave function is given functions given by [u(x).v;(x)]". Here e=—|e|, and
by'? p= —ihd/dx— (e/c)A(x). The vector potentiah,(x)=0
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in our case. The functiorf(e)=[1+exp(ksT)] ! is the E E

Fermi function. In one dimension, the current density be-} 0§ —KgL — cos * A —Ccos

comes the current. It is important to note that this current !

expression is microscopically derived, and has been applied p(
Xe

+cos

R

JAS— EZkFLz E E
k,:L cos ! A
1

2u

(&l=2le p( .

to superconductors in previous works* A detail derivation

is presented in Appendix B. The current expression treats the
scattering states and the bound states on the same footing. In
our calculation, we evaluate the current in the normal re-
gions. This approach to the current is rigorous, though, in
practice, is not as convenient as the transmission approach. A
comparison between the results from the two approaches
should give a credible check on the latter approach. where the uppeflower) sign denotes the process  pro-

For completeness, we give, in the following, the currentces$. The phase dependengé¢) of the Andreev levels has
expression that is used for the transmission approach, a period of 4r, because the phase appears only in the cosine
functions, and asp/2. The exponential factors in E@13)
involve L, and represent the effects of tunneling on the
Andreev levels. In the limit of infinitd.,, Eq. (13) becomes
Ek:L/u — arccosE/A;) — arccosE/A,) ¥ ¢/2 = 2an,
which is the quantization conditions for an asymmetric SNS
junction? but with phase difference/2. In another limit,
whenE=0, the quantization conditions become

1 tam(

from which the values o are determined. Surprisingly, Eq.
(13) does not depend on both the energy gapof the su-
perconducting electrodes and the lengtlof the normal re-
gions. This means that tHe(¢) features neaE=0 remain
the same for junctions with either long, or short, normal
regions. It also implies that the phasg¢s at which the An-
dreev levelE=0, depend only on the middle superconduc-
tor. There are two suclp values in a 4r phase interval,
whenL, is finite. The phase separatidnp, between these
two phases decreases lag increases until the two phases
coincide at 2r, whenL, is infinite. The direct connection
betweenA ¢, and the Andreev-level tunneling is demon-
strated.

For the case wheh,<E<A,, the quantization condi-
tions become

(13

I=1,+1,, (10)

where

| ZeZ tani(E, /2k T)dE' (12)
=——2 tan —,
' h TR de f+2 mN=7*+CcoS

> SN

2u

is associated with the discrete levél$:3132and

e e £

—=—=tan E/2kgT
JET—ar K gT)

X[TE_gr(E,¢) =T _r(E,$)], 12

is associated with the scattering stafeblere ¢ is the phase
difference between the pair potentials of 8nd S,. The
TE@R is the transmission coefficient for the right-going elec-
tronlike (holelike) quasiparticles.

lll. RESULTS
In this section, we present the Andreev levels, the bound E L EN | Ayl . \/EZ—AzszL2
state supercurrent, the scattering-state supercurrent, th&0g —kgL—cos A, ST E SN 2u
current-phase relation, and the critical current of a symmetri

SNSNS junction, of which the length of the two normal re-
gions are the same, with;=Lz;=L. The phases),, and
¢4 of the two end superconductors are chosen te-lg'2,
and ¢/2, respectively, while for the middle superconductor,
we choosep,=0. Thus¢ is the phase difference across the
junction. The supercurrent, given by HE), is found in this
section to be the same in both of the normal regions.

E E| ¢
. _ _ _1 _ -7
+3|r{MkFL cos (Al)ﬁuz}

y CO{ JEZ— AngLz) JVEZ2—A3

2u E Y

where, again, the uppélower) sign refers to thep process
(n process TakingL,=0, the conditions become that of a
symmetric SNS junction with a normal region of length
2L.8 Taking another limit,A,=0, the conditions become

The quantization conditions for the Andreev levels areihat of a symmetric SNS junction with a normal region of
obtained according to the method outlined after @). The  |ength 2+ L,. There are no tunneling features in this case
conditions can be reduced to more compact expressions if W@e to the obvious reason tHatA,. The quantization con-

(15

A. Andreev levels

keepk and kh up to the first order irE/u, andk; and
kKh; up to the first order inyE?— 2/,u For the case
E=<A,, the conditions are

ditions in the limitE=A, are presented in Appendix C.
In Fig. 2, we present numerical examples of thég)
relations for several lengths of the middle superconductor,
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FIG. 2. Andreev levels as a function of the phase differesice FIG. 3. Supercurrent versus phase differegicacross a SNSNS
for a SNSNS junction witla) L,=<°; (b) L,=4¢; (c) L,=2¢; (d) junction for fourL, values and af=0. The physical parameters
L,=¢. A;=A,=0.2 meV,u=10 meV, and.=0.1£. Andreev lev-  are the same as in Fig. 2. The total curréep———) consists of

els arise from both thp processe&————) and then processes the currently due to the discrete levels—— — ——) and the
(== === ). currentl due to the scattering statés — — — —).

with L, decreases from Fig.(@ to 2(d). The energy gaps "

A;=A,=0.2 meV, u=10 meV, temperaturel =0, and __¢&n

L=0.1¢, where the coherence lengf+ u/keA 4. The ratio la( )= ma;ﬂ EME<A1 aketanh(E/2kgT)

A, /u=0.02 is small enough for the Andreev approximation

to hold. The Andreev levels from theprocess are indicated X|a(Egy )%, (16)

by solid curves while that from the process are indicated
by dashed curves. The double degeneracy in Ri@), W¥hen  wherea=+1 (—1) refers to the process fi procesy and
L, is infinite, are removed wheln, decreases, from Fig()  3(E, ¢) is the coefficient in Eq(8). Thely(¢) is shown in
to 2(d). The phase separatiah¢g, increases whet, de-  Fig. 3 by the dash-dotted curves for the same physical pa-
creases. These features are consequences of the quasipartiglgieters used in Fig. 2. The CPR in Figa3 whereL, is
tunneling between the two normal regions. Near the phasggfinite, is the same as a single SNS junction except that the
¢ whenE=0, theE~0 Andreev level changes from one phase period is 4 instead of 2r. This is because of the
type of processf or n) to another type of process. This different meaninge represents. An abrupt current change
feature has importa.nt bearing on the low-temperature supegccurs at¢=2. From Fig. 3b) to 3(d), asL, decreases
current characteristics. from 4¢ to &, the abrupt-current-change feature splits into
two, and their phase separation increases. These current-
phase characteristics are not transparent from the current ex-
The supercurrent due to the Andreev levels is calculateghression in Eq(16). On the other hand, there is a current
from Eg.(9), when the summation indexincludes only the expression, Eq(11), which has been used to calculate the
bound levels. After some algebra, the bound-state current isound-state current in SNS junctiol?s*® We evaluate Eq.
found to be (11) and show numerically that it is equal kg, as given by

B. Bound-state supercurrent
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Eq. (16). Sincel; in Eq. (11) has the nice feature that it contributions tol 4 from thep process and the process are
involves only the Andreev levels, it provides us a direct cor-opposite in sign. The phase derivative is very small when
relation between the Andreev-level-phase characteristics arifl<A; and its magnitude is the largest n&# 0. Hence the
the current-phase characteristics. changing of one type of process to another type of process
Before we turn our attention to the current-phase characaearE~0 results in the large abrupt changd in The phase
teristics, a few more comments abdyts in order here. This separation between the abrupt-current-change featuggisn
I expression was obtained by Beenakker and van Houten axactly the phase separation between the B#c0 Andreev
one of the three terms that together give the total equilibriumevels. The same argument can be applied to understand the
currentl in a superconducting point contaétThe other two  kinks, near, for exampleg~0.57 and 3.57 in Fig. 3b).
terms are an integral over the continuous spectrum and @he kinks are due to Andreev levels appearing near
spatial integral. To obtain this result, they start from a rela-E~A ;. From the above results, we have established the con-
tion | =(2e/4)dF/d¢,*? instead of starting from Eq(9). nection of thel 4 current-phase features with the microscopic
Here F is the free energy an@ is the phase difference Andreev levels.
between the two superconducting end electrodes. The deri-
vation can be extended to the case of a superconducting:. Scattering-state supercurrent and current-phase relations
junction of more general configurations by allowing the BCS
interaction constany to have spatial variation consistent
with the junction configuration. The total equilibrium current
| still consists of three terms—a sum over the discrete spe , , <
trum, given also by 5, an integral over the continuous spec- supercurrents_ln the normal r_eglomdl, the coefficients such
trum and a spatial integral. However, the spatial integraPSAs @nd A4 in Eq. (7) are involved. However, when we
might not be small in a superconducting junction, evencalculatel s in th_e normal regiom,, other coefficients such
though it is negligible in a point contact with< ¢33 where @S A7 and Ag in Eq. (7) are involved. But, after some
L is the length of the point contact. Thus it is not clear that'®Ngthly algebra, the expressions in both of the normal
the discrete surh, should equal to the discrete sugin Eq. ~ '€dions are found to be the same, as they should. e
(9), even though it seems probably so. Our numerical checRVen by
establishes unequivocally that the two discrete sums are
equal. With the establishment thigt=1,, we choose to use | =— §fV“2+AidE E tanH E/2kgT)
the I, expression to explain, in the following, the current- s h Ja, VE?—AZ B
phase characteristics.
The bound-state current, in units ef\;/# and at zero FuE,92)  F(E, =) |, 5,
temperature, is given by the expressien(2/A;)=,dE,/ |D(E,0/2)|? |D(E,— ¢/2)|? (U—vd)%
d¢, except for the case whdfy=0. This expression relates

The supercurrent due to the scattering states is calculated
from Eq.(9), where the discrete sum includes only quasipar-
dicles with E;>A;. When we calculate the scattering state

the current 4 directly with the Andreev levelg(¢) through (17
the phase derivative dE/d ¢. It is clear from Fig. 2 that the where
|
D(E, 0) = exyli (2kpL + K oL, + 6) JuluZ— exf i (2KeL +Ke oL, — 6) Jo U2+ 2{ex] i (KoL + KoL +Ke oL )]
—expfi (KnL + KoL+ Kp oL ) THUUo0 10— X i (2KnL + Ke oL o+ 6) Ju20 3+ exd i (2KeL + Ky oL, — 6) o203,
(18)

and
fl(E, 9) = Ug‘l‘ l)g_ 2 [ - COS{ 0+’EhL _E9L+ kh,2L2_ keysz)Ulvlugvz_ COS{ 0+~k’hL _EeL - kh,2L2+ ke‘sz)Ulv]_Ung

+€08 0+ KnL — KoL )10 1Up0 5+ COS K oL o — Ke oL 5) UZ02]. (19

In Fig. 3, the dependence of the current-phase charactefeatures in the total supercurrent are the abrupt-current-
istics onL, is presented. Both the bound-state supercurrenthange features, which are due solelyl §o Hence, the un-
| 4 and the scattering-state supercurrigrftave kink features, derstanding we establish in the previous subsection, about
which occur at the samé’s and, as discussed in the previ- the abrupt-current-change featured jn can be carried over
ous subsection, are associated with Andreev levels appearitig understand the same features in the total supercurrent. The
nearE<A;. Remarkably, these kink features ig andlg;  direct connection between the features in the CPR, at zero
cancel each other exactly so that these features disappe@mperature, and the Andreev levels, nEax0, shows the
from the total supercurrent. Similar exact cancellation wasmportance of the CPR to the microscopic characterization of
found also in SNS junctiorfsbut it is shown here in SNSNS  the mesoscopic superconducting junctions.
junctions. Besides this nice cancellation, the other important In Fig. 4, the difference in the CPR, between our results
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FIG. 4. Supercurrent versus _phase differericeThe physical FIG. 5. Supercurrent versus phase differenge for four
paramgters are the same as in F@)ZThe results accord_lng to the A, /A, ratios, and aT=0. A;=0.2 meV,L,=5¢, andL=0.1¢ .
transmission approad® — — — —) is shown for comparison.

tures, in which the phase separatip, between the fea-
and the results from the transmission approach, is presentelires is the same. It is because the bound-state current
The physical parameters are the same as that in K@. 3 [4=1,.
Our results, denoted by the solid curve, are the total super- The dependence of the CPR on the energy-gap configura-
currentl4+14. The results from the transmission approach,tion is presented in Fig. 5. The physical parameters are
given by the dashed curve, are+1,. The currentl,, ac- A;=0.2 meV,L=0.1£, T=0, andL,=5¢. As the ratio
cording to Eq.(12), is found to have the same form hsin A,/A; decreases from 1.00 to 0.0, the phase separation

Eq. (17), except thatF; (E, 6) is replaced byF,(E), with A ¢, between the abrupt-current-change features increases.
This is due to the enhancement in the Andreev-level tunnel-
FH(E)=us+vi—2ud2. (200  ing as the pair-potential barrier of the middle superconductor

lowers. There is no kink other than the abrupt-current-change

It is straightforward to show thaf,(E, 6) = F,(E) for the f.eature.s. TheA,/A;=0 curve correspo.nds to a SNS junc-
cases,=0 andA,=0. This means that our results are the tion, with the length of the normal regionL2-L,, and the
same as that of the transmission approach in the SNS limit? Period reduces to 2. The critical current is the lowest in
However, in generalF;(E, §) is not equal taF,(E), and our this case because the Cooper pairs have to traverse the long-
results for the SNSNS junctions are not the same as that &St effective distance through the normal region. Thus, as the
the transmission approach. To demonstrate this more explid2 increases, the effective length of the normal region for
itly, we obtain the smalky expansion ofAl =1.—I, for the the Cooper pairs to traverse decreases, and the critical cur-
Spécia| case whe,=A,, and when the ni)rmal regions ent increases. This trend is confirmed by the curves in Fig.

haveL=0. TheAl expression, given b : . .
P g y We have other data for differehts, and we find that the

A¢y's for the abrupt-current-change features remain the
Al:_@ \/u2+A§dE E tanh(E/2ksT) same as in Fig. 5. This shows that, within our model, tr_\e
h Ja, m B abrupt-current-change features depend only on the physical
properties of the middle superconductor. That the abrupt-
2 sinke Lo — kh,2L2)u§v§ current-change features are independent @@an be under-
(Ui—vi)z , (21) stood in terms of the Andreev reflection. From E§), the
p-process wave function in the normal region has spatial

is clearly not zero for generdl andL,. As shown in Fig. 4, dependence involving both exk{) and expik.x), which

in which L=0.1&, the differences are quite significant in represent the nght—gomg eIgctronhke qu§15|part|cles and the
that, besides the abrupt-current-change features, there is H§t-9oing holelike quasiparticles, respectively. As the quasi-
kink in our results, but there are kinks in the results of theParticles complete a close path in the normal region, their
transmission approach. Moreover, the critical currents ar@h@ses change, and the change in phase involves a
different, and the critical current according to the transmis-L-dependent term, given byk{—ky)L. At energyE=0, the

sion approach is, in this case, smaller. On the other handyave vectork.=k;,=kg . Hence the phase change becomes
there are similar features—the abrupt-current-change fed- independent, and so is th&¢, for the abrupt-current-
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turgslc'lé.. Z'liuApze:r%Lfg?teyflr_siz_ﬁg?;i:ll_ﬁze:rzz@r five tempera- FIG. 7. Critical current versus, for two SNSNS junctions and
atT=0.A;=A,=0.2 meV. For the cask=0, our resultdcurve

change features. We note that thisindependent feature A), and the transmission resulisurve B) are shown for compa_ri-
cannot be obtained from normal reflection processes. son. For the case=0.1£, our resulis(curve C) and the transmis-

In Fig. 6, the finite-temperature effects on the CPR are>°n "esultsicurve D) are shown for comparison.
presented. Within the low-temperature regime, in which the
kg T=0.2A,, we can assume that the energy gaps retain thefiects of L, do not give rise to oscillations on the scale of
zero-temperature values. The temperature effects thus conffeL>~ . We present in curveC the critical current for
merely from the hyperbolic tangent factors in E¢s5) and L =0.1¢ and show that the critical current is smaller, due to
(17). The results show that the abrupt-current-change feathe effectively longer normal region distance the Cooper
tures remain recognizable up tkgT=<0.025\;. At pairs have to traverse. The critical currentat=0 is that of
kgT~0.2A,, the features disappear, while the CPR begins t& SNS junction with normal region length @.2n the large
exhibit more sinusoidal-like behavior, though with¢ape- L limit, the critical current approaches that of two indepen-
riod of 47. By then, the connection of the CPR with the dent SNS junctions, each with normal region length£0.1
microscopic Andreev levels is destroyed. which is 0.91eA, /%. The curveC shows that at ,=5¢, the

The dependence of the critical current on the lerigtof ~ critical current is already close to its asymptotic value. How-
the middle superconductor is shown in Fig. 7. The physicaPVer, for the transmission results, given by cubyethe criti-
parameters ard;=A,=0.2 meV andT=0. Our results for cal current approaches its asymptotic value in a much longer
L=0 are given by curvé, and the results for the transmis- L.
sion approach are given by cure The difference between  Finally, in Fig. 8, we present the temperature dependence
the results from the two approaches is the largest nea¥f the critical current. The physical parameters are
L,~0.5¢, where the difference is more than 12%. This dif- A1=A,=0.2 meV andL,=0.4. The solid curves are our
ference is much greater than the Andreev accuracy, given bigsults and the dashed curves are the results from the trans-
A/, which is 2% in our case. The critical current from the mission approach. CurvésandB are for the case =0 and
transmission approach can be greater or smaller than o&urvesC, andD are for the cas& =0.1¢. The critical cur-
results, depending on the valueslof The critical current at  rent drops monotonically with the increasing of the tempera-
L,=0 iseA, /%, which is the critical current of a SNS junc- ture. All the four curves show a similar trend, though they
tion with zero normal region length. In the largg limit, the  differ in magnitude.
critical current approache=A ; /A again, which is the result
for two independent SNS junctions. We note that both curves
do not exhibit oscillations on the scalelgfL,~ 7. This can
be understood also in terms of the Andreev reflection. First We have studied the supercurrent characteristics in a sym-
of all, the critical current is essentially the current when themetric SNSNS junction and have established the connection
abrupt-current-change occurs, and is therefore closely asspbetween the current-phase relation and the microscopic
ciated with the Andreev levels &=0. For a right-going Andreev-level tunneling in such systems. As a consequence
electronlike quasiparticle, and Bt=0, completing a closed of Andreev reflection, the low-temperature supercurrent
path in the middle superconductor, thg-dependent phase characteristics are shown to depend more on the physical
change is given byke,—k; 2)L,. But, from Eq.(6), when  properties of the middle superconductor and less on the nor-
Keo=Ke(1+iAy/2u), andky, ,.=ke(1—iA,/2u), the phase mal regions as well as on the two superconducting elec-
change becomes purely imaginary. This means that the efrodes. The importance of the current-phase relation to the

IV. CONCLUSION
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12 : . . . . . - junction. Theu* (x)pu(x) and thev(x)pw*(X) expres-

~ sions due to a lefttright-) going quasiparticle, when evalu-
ated in the normal region of a SNS junction, are found to
equal to the respective expressions, when evaluated in the
left (right) superconducting electrode. These results guaran-
tee thatl, andlg are equal in varying temperatures because

the u*p,u and thevp,w* expressions have different tem-
perature dependence, given b¢E), and 1-f(E), respec-
tively. For convenience, we choose to evalugten the nor-
mal region.

In the case of a SNSNS junction, there are two normal

regions. According to the above result, th&ép,u and the

vp* expressions due to leftright) going quasiparticles,
when evaluated in the leftright) superconducting end-
electrode, are equal to the respective expressions, when
evaluated in the leffright) normal region. It is then clear that

E : . ; . : R if 15 were to equal td,, theu* p,u and thevp,v* expres-
0.00 0.05 0.10 0.15 02 sions should equal their counterparts in both of the normal
T (units of 4,/ kg ) regions. This, however, is not true because the middle super-
FIG. 8. Critical current versus temperatufefor twvo SNSNS  conductor gives rise to an additional Andreev reflection
junctions. A;=A,=0.2 meV, L,=0.4¢. For the casd.=0, our  Which results in converting electronlike quasiparticles into
results(curve A) and the transmission resulffsurve B) are shown holelike quasiparticles, or vice versa, by reflection. Since the
for comparison. For the cade=0.1¢£, curveC is our results and extent of the conversion depends on the energies of the qua-
curveD is the transmission results. siparticles as well as the parameters describing the junction,

the u* p,u expression cannot maintain the same value in the

two normal regions. Similarly, the p,w* expressions are

“different in the two normal regions. Thus is not equal to
.|, in a SNSNS junction.

We have also demonstrated that the total current obtained® This discrepancy in current shows that the transport cur-

from the transmission approach differs from our result in . -
: ) . : rent cannot be expressed merely by transmission coefficients
SNSNS junctions. Since the discrete sum of the two ap: b y Oy

h th the diff | the total tm SNSNS junctions, in particular, and, more generally, in
proaches are tné same, the difference In the total Current |8, ions \where the additional Andreev reflection occurs

from the difference between the continuous spectrum int Within the region between the two superconducting end elec-

?ralls 'r_'rﬁquggf and in Eq.(_lﬁ), Wfr1icft1harels andflz, resplec-SN rodes. On the other hand, for the case when only normal
tvely. 1he difierence vanisnes for the case ot a single . cattering, such as those caused by an impurity, occurs
junction. Before we present a physical reason for the differ-

; : -"within the region between the two superconducting end elec-
ence, we want to point out again that the current expressiol yas the same argument leads to the conclusion|that
in | ¢ is microscopically derived, while that given Ibyis not. equals'I In any case, Eq(9) gives the correct current ex-
The latter expression expresdgsin terms of the transmis- pressior21' '
sion coefficients. This amounts to evaluate, in the right su- '
perconducting electrode, the contribution to the current from
the right-going quasiparticles, and, in the left superconduct-
ing electrode, the contribution from the left-going quasipar-  This work was supported in part by the National Science
ticles. In fact, imposing this view point into the evaluation of Council of the Republic of China through Contract No.
Eq. (9) does lead td,.>® However, a correct evaluation of NSC85-2112-M-009-015.

Eq. (9), as we have done so in obtainihg, requires us to

calculate all contributions at the same location. Even though ~ APPENDIX A: TRANSMISSION COEFFICIENTS

the view point that leads tb, is found to give the correct _ L

transport current in mesoscopic normal structdfeand in For an eIectrqnhkg quasiparticle incident from. t.he left-

SN junctions, our result for SNSNS junctions demonstrate§and side of the junction, thg, , and ther, coefficients

the case when the current can no longer be expressed merdfyEd- (7) are obtained, given by

by transmission coefficients. L _ G(E,¢/2) _ Ki(E, ¢/2)
To understand why and |, are different in a SNSNS fe=th=0, " ED(E, 612) te= D(E,pl2) ’

junction, we first discuss how they are the same in a SNSvhere

I, (units of eA, / # )

microscopic characterization of the junction is pointed ou
and is shown to hold at the finite but low-temperature re
gime.
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and
For the cases when the quasiparticles are incident from
- - the right-hand side of the junction, the results are the same,
KC1(E, 0)=exp{i[2(kp+ Ke— ke )L+ (Kh ot ke o)L except that the signs of the phases are reversed. These rela-

tions are
—KeLo— O1H(ui—vD)(Us—v3). (A3)

TR (E,0)=T"R(E,— 0), A12
The transmission and the reflection coefficients are defined r-L(E 6)=TLoR( ) (A12)

in terms of thetey,y and ther o, coefficients, given by
and

¢ R(E,0=]t? A4
L_r(E,0)=|td (A4) RAM (E,0) =R (E, - 6). (AL13)

R _R(E,0)=]ry|2. (A5)  We note that our results are for general normal-region length
L. Our transmission coefficients reduce to that obtained by

We have checked that® o+Rl' r=1, which is expected Hurd and Wendiff when taking the. =0 limit.

because the BdG equation is Hermitian.

. TN APPENDIX B: MICROSCOPIC DERIVATION OF EQ. (9
For a holelike quasiparticle incident from the left-hand Qe O

side of the junction, thé.,) and ther, coefficients are The electron field operatord(r,o) are related to the
quasiparticle operatorg, ,, andy, , *
rh=te=0, r _HE. - 42 t _Ro(E, 7 912) e - L B
e e DE,—¢f2)’ " DE,—¢2)’ ‘I'(r,a)=2 [n.oun(r)—oy v ()], (Bl
A6
("0 wherel refers to the quasiparticle states in Eg), ando is
Where the spin index, witho=+1 (—1) corresponding to spin up

(down) electrons. The electric current density operator
. s jop(r, o) in the second quantized form is given by
ICo(E, 0) =exp{i[Kn (2L +L5) + 0]} (uf—v1)(Uuz—0v3).
(A7)

. e [ -ai- e\ Lo
Jop(rvo'):ﬁf dre¥i(re, o) D_E o(r—re)

Again, the transmission and the reflection coefficients are

i S R TN
defined as +5(r—re)<p—EA) T (re,0). (B2)
TL_R(E,0)=]ts|?, (A8) . . ,
Here, thep andA are both functions of,. After performing
the integration, the current density operator
RS R(E,0)=|rg|? (A9)
e _ I e | ~, - N - S
where we have checked ;[D)A‘IEHR+ RLHe?h) 1. From the Jop(r,cr)=—[‘lﬁ(f o)(p—— )‘P(r,cr)
above expressions for thHE'"; and theR{"; we find the 2m c
relations e
— p+ A |¥H(r, o)W (o), (B3
T!_R(E.0)=T¢_o(E,~0), (A10) 5+ A ")} ro)). 89
and R R )
where p and A become functions of. The electron field
h . operators in Eq(B3) can be expressed in terms of the qua-
Rl _r(E,0)=R{_r(E,~0). (All)  siparticle operators, using E¢B1), and are given by

> - e ~ - A - [ - €5} 4 - ~ -
Jol70) = 502 [YIUUT(r)—U%,—avu(r)](IO—EA)[%r,guw(r)—cwrr,_gvﬁ(r)]

e
2m,’|,

.oe.) . . R ) . .. .
p+ EA [7’|T,0U|*(r)_0'7|,(rU|(r)]}[YV,UUV(T)_O'%T:,gvrr(r)]- (B4)
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The summation

E,,E|/>O The thermal averaged current

mal average properties of the quasiparticle operétors
N orir ) =F(ENS 11,

Mo )=[1=F(EN1& . (B5)

The thermal averaged current density) is then given by
.. e P B VR R .
l(f)=52| FEDUF (N p= A Ju(r)+[1=F(EDJvi(r)

+c.c. (B6)

- el L.
X\ p— EA i (r)
Equation(B6) becomes Eq9) in the text when the system is
one dimensional and the vector potenfia+ 0. A more gen-

VICTOR C. Y. CHANG AND C. S. CHU

involves quasiparticles with energies¢’s when Andreev levels appear Bt=A;. The conditions
density for finding theseg’s are given by

j(r= Eg<j0p(l’ o)), which can be evaluated using the ther-

¢ Ay _, 1

§+27Tn—i 7kFL+tan B—sin ~vy/,
A

§+27-rn=i(71kFL+tan1B+Sinl?"”)v (€D

wheren is an integer, and the uppéower) sign represents
the condition for thep process i process Here,

r(WikF/ 2

eral form for the equilibrium average of a single-electronand

operator can be found in Ref. 31.

APPENDIX C: QUANTIZATION CONDITION (E=A,)

Both the bound-state supercurrdgtand the scattering-

state supercurrert, have kink features which occur at the

— (C2

(Ap/A)SIM(VAZ— A3KeL,)/2 1]
V1—{(A,/8,)008 (VAZ—AZKeLp)/2u ]2 o
C3
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