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Andreev-level tunneling in a ballistic double
superconductor–normal-metal–superconductor junction

Victor C. Y. Chang and C. S. Chu
Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China

~Received 19 August 1996!

The supercurrent in a mesoscopic, ballistic, and symmetrically stacked, double superconductor–normal-
metal–superconductor~SNS! junction is studied. Our focus is to establish the features in the supercurrent that
are associated with the Andreev-level tunneling between the two SNS junctions. Both the junction geometry
dependence and the gap function dependence are studied and are analyzed in terms of the quasiparticle
scattering processes. The quasiparticle scattering is worked out analytically by solving the Bogoliubov–de
Gennes equation within the Andreev approximation. The current is calculated, following Beenakker and van
Houten @Phys. Rev. Lett.66, 3056 ~1991!#, and the result is found to differ from that of the transmission
approach. Such discrepancy between the two approaches, however, is found to disappear for a single SNS
junction. In our result, the currents in the two normal regions are checked to be the same.
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I. INTRODUCTION

The transport properties of mesoscopic systems w
mixed normal~N! and superconducting~S! constituents have
attracted much attention in recent years.1 This is prompted
partly by the potential physical phenomena in such syste
and partly by the potential device applications using th
systems. A number of physical phenomena have rece
been predicted2–5 and observed.6,7 These include, in the dirty
regime, the mesoscopic fluctuations of the critical curren
a superconductor–normal-metal–superconductor~SNS! Jo-
sephson junction,2,3 and, in the ballistic regime, the quant
zation of the critical current in a superconducting quant
point contact~SQPC!.4,5 The mesoscopic fluctuation in th
critical current has physical origin closely associated w
that of the universal conductance fluctuations in mesosc
normal systems, which, essentially, is the manifestation
the phase coherence in the normal region. The quantiza
of the critical current, on the other hand, has physical ori
closely associated with that of the quantized conductanc
a normal quantum point contact, which is the quantization
the transverse energy in the SQPC. That the physical p
erties of a SQPC can be different from itsclassicalcounter-
part, theclassicalsuperconducting point contact~SPC!, of
which the transverse dimensionW@lF , is demonstrated by
the quantization of the critical current not in a SPC, but in
SQPC. The distinct physical properties of mesoscopic su
conducting nanostructures warrant further exploration ef
worthwhile.

A simple mesoscopic superconducting nanostructure
the SNS Josephson-junction configuration has been con
ered in recent studies.2–14 The SNS junction is a pair
potential well in which the quasiparticles are reflected,
cording to Andreev,15 at the NS interfaces. An electronlik
~holelike! excitation can be reflected at the NS interface a
becomes a holelike~electronlike! excitation, while simulta-
neously transmitting~extracting! a Cooper pair to~from! the
superconducting electrode. Repeated Andreev reflections
550163-1829/97/55~9!/6004~11!/$10.00
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tween the two NS interfaces thus contribute to the super
rent across the junction. Furthermore, for those quasiparti
with energies lower than the gap potential of the electrod
they are confined within the well and form Andreev leve
We note that these Andreev levels contribute to the sup
current, and are, by nature, different from the bound state
a quantum well.

Therefore, it is interesting to find ways to probe the
Andreev levels. A proposal is made recently to induce tr
sition between these levels by introducing a gate-indu
time-dependent potential in the normal region.16 We propose
instead, in this paper, to probe the tunneling between
dreev levels from quantum transport measurement. The
tem we study is a double SNS~SNSNS! junction and the
tunneling occurs between the levels in the two SNS ju
tions. Our focus is to establish the features in the super
rent that are associated with the Andreev-level tunneling

The transport characteristics of SNSNS junctions ha
also been considered recently.17,18Motivated by the possible
macroscopic quantum analog between the resonant tunn
of Schrödinger electrons and the transmission of Coop
pairs, Zapata and Sols17 consider twod-profile barriers in a
quasi-one-dimensional superconductor and argue that
d-profile barriers, under certain conditions, behave like n
mal regions. The critical current is calculated within th
Ginzburg-Landau~GL! regime, and the results show tha
near the critical temperatureTc , the temperature dependenc
of the critical current differs markedly from that of a SN
junction. Moreover, from their results that the critical curre
becomes independent of the distanced between the junctions
when d@j(T), Zapata and Sols conclude that the analo
with the resonant tunneling is, in their wording,17 at best
qualitative. Herej(T) is the coherence length of the supe
conductor at temperatureT.

The GL approach, though interesting, cannot establish
connection between the supercurrent characteristics and
microscopic Andreev levels in the structure, and, in additi
is not appropriate for much lower temperatures. Taking
6004 © 1997 The American Physical Society
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55 6005ANDREEV-LEVEL TUNNELING IN A BALLISTIC . . .
microscopic approach, Hurd and Wendin study the super
rent in the same structure using the Bogoliubov–de Gen
~BdG! equation.18 The discrete spectrum of the excitatio
are calculated numerically by a transfer-matrix method. T
supercurrent due to the scattering states is obtained fro
Landauer-type formula in which the current is expressed
terms of the quasiparticle transmission coefficients. T
transmission approach to the quantum transport has fo
great success in mesoscopic normal structures19 and has been
generalized to mesoscopic superconducting str
tures.4,8,18,20–25In the paper,18 the connection between th
current characteristics and the microscopic Andreev leve
not established. Furthermore, despite the intuitively app
ing feature, the transmission approach to mesoscopic su
conducting structures has not been formally verified, exc
for simple structures.22 The important issue that remains
whether the quantum transport approach, which works w
for Schrödinger particles in mesoscopic normal structur
can, in the present generalized form, work well also for q
siparticles in mesoscopic superconducting structures?
issue of analogy, or generalization, is, in spirit, similar to th
brought forth by Zapata and Sols.17 Since the SNSNS junc
tion is the simplest nontrivial structure that might help sh
light on this issue, we calculate, in this paper, the superc
rent in such structure using a microscopically derived curr
expression4 and compare with the results using the transm
sion approach.

From our results, the current-phase relation~CPR! of a
SNSNS junction, at zero temperature, has features of ab
current change which is associated with the occurrence
Andreev levels at the chemical potentialm. The phase is the
phase difference between the order parameters of the
superconductors at the ends of the structure. As the tunne
effects between the Andreev levels increase, either by
creasing the length or lowering the gap potential of
middle superconductor, we find that the phase separation
tween the two Andreev levels atm increases. Consequentl
the phase separation between the two abrupt-current-ch
features in the CPR increases, and the connection of the
with the Andreev-level tunneling is established. Encourag
by recent CPR measurement in superconducting w
links,26,27we expect the CPR characterization of mesosco
superconducting structures to be possible in the near fut
We also obtain the analytic expression for the supercur
due to the scattering states, using both our approach an
transmission approach. The two expressions are differ
Besides, from our numerical examples, the differences in
CPR and in the critical current are quite significant. Th
discrepancy between the two approaches, however, is fo
to disappear in a single SNS junction.

In Sec. II we present the formulation for the quasiparti
scattering and the supercurrent in a SNSNS junction. In S
III we present the analytic expressions for the quantizat
condition of the Andreev levels, and for the current due
the scattering states. Numerical examples for
supercurrent-phase relation, for the critical current and
the finite-temperature effects are presented. Finally, Sec
presents a conclusion.

II. THEORY

In this section, we outline the method for the calculati
of the quasiparticle scattering states and the Andreev lev
r-
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Both the current expressions used in our calculation and u
in the transmission approach are presented. Explicit res
for the SNSNS junctions are presented in the next sectio

The S1N1S2N2S3 junction, as shown in Fig. 1, is a one
dimensional channel, with the pair potential given by

D~x!55
D1e

if1, x,0

0, 0,x,L1

D2e
if2, L1,x,L11L2

0, L11L2,x,L11L21L3

D1e
if3, x.L11L21L3 .

~1!

The energy gap,D1, of the superconducting electrodes
the two ends of the structure is taken to be the same but
phases of their respective pair potentials are different. T
quasiparticles of the system are described by the BdG e
tion

F H~x! D~x!

D* ~x! 2H* ~x!
GFu~x!

v~x!
G5EFu~x!

v~x!
G , ~2!

whereH(x)5px
2/2m2m is the single-electron Hamiltonian

andm is the chemical potential, from which the quasipartic
energyE is defined, is assumed to be the same through
the structure. The energy spectrum of the quasiparticle
different regions of the structure is shown in Fig. 1. W
consider onlyE.0 because the quasiparticles are the ex
tations of the system.

In the normal regions Nj ( j 5 1,2!, the normalized eigen-
functions of Eq.~2! are

CNj ,e
6 5F10Gexp~6 i k̃ex!,

CNj ,h
6 5F01Gexp~6 i k̃hx!, ~3!

where k̃e5kFA11E/m , k̃h5kFA12E/m , and kF
5A2mm/\. The subscripte(h) indicates the electronlike

FIG. 1. ~a! Schematic representation of a S1N1S2N2S3 junction
with stepwise pair potentials and~b! the dispersion relations for the
excitations in respective regions. The case of an electronlike e
tation ~closed circle! incident from the left-hand side is shown. Th
open circles are the holelike excitations.
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6006 55VICTOR C. Y. CHANG AND C. S. CHU
~holelike! quasiparticle. The superscript6 gives the group
velocity direction of the electronlike quasiparticle but giv
the direction opposite to the group velocity of the holeli
quasiparticle. Similarly, in the superconductor regions Sj ( j
5 1,2,3!, the normalized eigenfunctions of Eq.~2! are

CSj ,e
6 5Fujexp~ if j !

v j
Gexp~6 ike, j x!,

CSj ,h
6 5Fv jexp~ if j !

uj
Gexp~6 ikh, j x!, ~4!

where

uj
25

1

2
S 11

AE22D j
2

E
D , v j

25
1

2
S 12

AE22D j
2

E
D , ~5!

and
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ke, j5kFA11
AE22D j

2

m
, kh, j5kFA12

AE22D j
2

m
.

~6!

The above expressions can be analytically continued
include the caseE,D j by taking the branchA2uxu5 iAuxu
for the square root. These eigenfunctions are used to c
struct the wave function of the entire structure. In the follo
ing, we take thatD35D1 and D2<D1. The more genera
energy-gap configurations can be handled with the sa
method.

In the scattering regime, whenE.D1, the quasiparticles
are not confined. Thus the wave functions are the scatte
states associated with quasiparticles incident from either
of the structure. The wave function, for example, for an el
tronlike quasiparticle incident from the left-hand side of t
S1N1S2N2S3 junction has the form
C~x!55
CS1 ,e

1 1r eCS1 ,e
2 1r hCS1 ,h

1 in S1,

A1CN1 ,e
2 1A2CN1 ,h

2 1A3CN1 ,h
1 1A4CN1 ,e

1 in N1,

B1CS2 ,e
2 1B2CS2 ,h

2 1B3CS2 ,h
1 1B4CS2 ,e

1 in S2,

A5CN2 ,e
2 1A6CN2 ,h

2 1A7CN2 ,h
1 1A8CN2 ,e

1 in N2,

teCS3 ,e
1 1thCS3 ,h

2 in S3.

~7!
er
he
all

eter-
rent

is-
The normal process, in which the outgoing quasiparticle
still electronlike, is given by the coefficientsr e ,te . The An-
dreev process, in which the outgoing quasiparticle is chan
to holelike, is given by the coefficientsr h ,th . All the coef-
ficients are determined after matching the wave function
the NS boundaries. The matching is simplified by impos
the Andreev approximation in which all the wave vecto
k̃e ,k̃h ,ke, j ,kh, j are approximated bykF , except when they
appear in the exponent. As a result, all the coefficients a
ciated with eigenfunctions having superscript2 are dropped.
The te and the r h coefficients are found to satisf
uteu21ur hu251, and their respective expressions are given
Appendix A. The Andreev approximation is appropriate f
m@D1. Other scattering states can be obtained similarly.

In the other regime, whenE<D1, the quasiparticles are
confined in the structure and the energies are quantized.
thermore, whenE,D2, the quasiparticles are confine
within, but can tunnel between, the two normal regio
There are two kinds of bound states, according to the p
cesses that set up the bound states. The first, called tp
process,28 is constructed from eigenstates having supersc
1, which is associated with right-going electronlike qua
particles in the normal regions. The second, called then
process,28 is constructed from eigenstates having supersc
2, and is associated with right-going holelike quasipartic
in the normal regions. Thep-process wave function is give
by12
is
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C~x!55
aCS1 ,h

1 /Auu1u21uv1u2 in S1,

C1CN1 ,e
1 1D1CN1 ,h

1 in N1,

~cCS2 ,e
1 1dCS2 ,h

1 !/Auu2u21uv2u2 in S2,

C2CN2 ,e
1 1D2CN2 ,h

1 in N2,

bCS3 ,e
1 /Auu1u21uv1u2 in S3.

~8!

The n-process wave function can be obtained from Eq.~8!
by changing the superscript1 to 2 and the subscripts
(e,h) to (h,e). The quantization condition is obtained aft
matching the wave function at all NS interfaces. Finally, t
normalization of the wave function is used to determine
the coefficients.

With both the scattering states and the bound states d
mined, the supercurrent can be obtained using the cur
density expression

j ~x!5
e

m(
l

$ f ~El !ul* ~x! p̂xul~x!

1@12 f ~El !#v l~x! p̂xv l* ~x!%1c.c., ~9!

where l refers to the quasiparticle states, continuous or d
crete in energy spectrum, withEl.0, and with the wave
functions given by @ul(x),v l(x)#

T. Here e52ueu, and
p̂x52 i\d/dx2(e/c)Ax(x). The vector potentialAx(x)50
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55 6007ANDREEV-LEVEL TUNNELING IN A BALLISTIC . . .
in our case. The functionf (e)5@11exp(e/kBT)#
21 is the

Fermi function. In one dimension, the current density b
comes the current. It is important to note that this curr
expression is microscopically derived, and has been app
to superconductors in previous works.29,4 A detail derivation
is presented in Appendix B. The current expression treats
scattering states and the bound states on the same footin
our calculation, we evaluate the current in the normal
gions. This approach to the current is rigorous, though
practice, is not as convenient as the transmission approac
comparison between the results from the two approac
should give a credible check on the latter approach.

For completeness, we give, in the following, the curre
expression that is used for the transmission approach,

I5I 11I 2 , ~10!

where

I 152
2e

\ (
l
tanh~El /2kBT!

dEl
df

, ~11!

is associated with the discrete levels,4,18,31,32and

I 252
2e

h ED1

Am21D1
2

dE
E

AE22D1
2
tanh~E/2kBT!

3@TL→R
e ~E,f!2TL→R

h ~E,f!#, ~12!

is associated with the scattering states.18 Heref is the phase
difference between the pair potentials of S3 and S1. The
TL→R
e(h) is the transmission coefficient for the right-going ele

tronlike ~holelike! quasiparticles.

III. RESULTS

In this section, we present the Andreev levels, the bou
state supercurrent, the scattering-state supercurrent,
current-phase relation, and the critical current of a symme
SNSNS junction, of which the length of the two normal r
gions are the same, withL15L35L. The phasesf1 , and
f3 of the two end superconductors are chosen to be2f/2,
andf/2, respectively, while for the middle superconduct
we choosef250. Thusf is the phase difference across t
junction. The supercurrent, given by Eq.~9!, is found in this
section to be the same in both of the normal regions.

A. Andreev levels

The quantization conditions for the Andreev levels a
obtained according to the method outlined after Eq.~8!. The
conditions can be reduced to more compact expressions i
keep k̃e and k̃h up to the first order inE/m, and ke, j and
kh, j up to the first order inAE22D j

2/m. For the case
E<D2, the conditions are
-
t
ed

he
. In
-
n
. A
es

t

-

-
the
ic

,

e

H cosFEm kFL2cos21S E
D1

D 2cos21S E
D2

D 7
f

2 G21J
3expSAD2

22E2kFL2
2m

D 2H cosFEm kFL2cos21S E
D1

D
1cos21S E

D2
D 7

f

2 G21J expS 2
AD2

22E2kFL2
2m

D 50,

~13!

where the upper~lower! sign denotes thep process (n pro-
cess!. The phase dependenceE(f) of the Andreev levels has
a period of 4p, because the phase appears only in the cos
functions, and asf/2. The exponential factors in Eq.~13!
involve L2 and represent the effects of tunneling on t
Andreev levels. In the limit of infiniteL2, Eq. ~13! becomes
EkFL/m 2 arccos(E/D1) 2 arccos(E/D2) 7 f/2 5 2pn,
which is the quantization conditions for an asymmetric S
junction,12 but with phase differencef/2. In another limit,
whenE50, the quantization conditions become

f

2
12pn5p6cos21F tanhS D2kFL2

2m D G , ~14!

from which the values off are determined. Surprisingly, Eq
~13! does not depend on both the energy gapD1 of the su-
perconducting electrodes and the lengthL of the normal re-
gions. This means that theE(f) features nearE50 remain
the same for junctions with either long, or short, norm
regions. It also implies that the phasesf, at which the An-
dreev levelE50, depend only on the middle supercondu
tor. There are two suchf values in a 4p phase interval,
whenL2 is finite. The phase separationDf0 between these
two phases decreases asL2 increases until the two phase
coincide at 2p, whenL2 is infinite. The direct connection
betweenDf0 and the Andreev-level tunneling is demo
strated.

For the case whenD2,E,D1, the quantization condi-
tions become

H cosFEm kFL2cos21S E
D1

D 7
f

2 G2
D2

E J sinSAE22D2
2kFL2

2m
D

1sinFE
m
kFL2cos21S E

D1
D 7

f

2 G
3cosSAE22D2

2kFL2
2m

D AE22D2
2

E
50, ~15!

where, again, the upper~lower! sign refers to thep process
(n process!. TakingL250, the conditions become that of
symmetric SNS junction with a normal region of leng
2L.8 Taking another limit,D250, the conditions become
that of a symmetric SNS junction with a normal region
length 2L1L2. There are no tunneling features in this ca
due to the obvious reason thatE.D2. The quantization con-
ditions in the limitE5D1 are presented in Appendix C.

In Fig. 2, we present numerical examples of theE(f)
relations for several lengths of the middle superconduc
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6008 55VICTOR C. Y. CHANG AND C. S. CHU
with L2 decreases from Fig. 2~a! to 2~d!. The energy gaps
D15D250.2 meV, m510 meV, temperatureT50, and
L50.1j, where the coherence lengthj5m/kFD1. The ratio
D1 /m50.02 is small enough for the Andreev approximati
to hold. The Andreev levels from thep process are indicate
by solid curves while that from then process are indicate
by dashed curves. The double degeneracy in Fig. 2~a!, when
L2 is infinite, are removed whenL2 decreases, from Fig. 2~b!
to 2~d!. The phase separationDf0 increases whenL2 de-
creases. These features are consequences of the quasip
tunneling between the two normal regions. Near the pha
f when E50, theE'0 Andreev level changes from on
type of process (p or n) to another type of process. Th
feature has important bearing on the low-temperature su
current characteristics.

B. Bound-state supercurrent

The supercurrent due to the Andreev levels is calcula
from Eq. ~9!, when the summation indexl includes only the
bound levels. After some algebra, the bound-state curre
found to be

FIG. 2. Andreev levels as a function of the phase differencef
for a SNSNS junction with~a! L25`; ~b! L254j; ~c! L252j; ~d!
L25j. D15D250.2 meV,m510 meV, andL50.1j. Andreev lev-
els arise from both thep processes~————! and then processes
~– – – – –!.
ticle
es

r-

d

is

I d~f!52
e\

m (
a561

(
Ea l,D1

akFtanh~Ea l /2kBT!

3ua~Ea l ,af!u2, ~16!

wherea511 (21) refers to thep process (n process!, and
a(E,f) is the coefficient in Eq.~8!. The I d(f) is shown in
Fig. 3 by the dash-dotted curves for the same physical
rameters used in Fig. 2. The CPR in Fig. 3~a!, whereL2 is
infinite, is the same as a single SNS junction except that
phase period is 4p instead of 2p. This is because of the
different meaningf represents. An abrupt current chan
occurs atf52p. From Fig. 3~b! to 3~d!, as L2 decreases
from 4j to j, the abrupt-current-change feature splits in
two, and their phase separation increases. These cur
phase characteristics are not transparent from the curren
pression in Eq.~16!. On the other hand, there is a curre
expression, Eq.~11!, which has been used to calculate t
bound-state current in SNS junctions.15,3,8 We evaluate Eq.
~11! and show numerically that it is equal toI d , as given by

FIG. 3. Supercurrent versus phase differencef across a SNSNS
junction for fourL2 values and atT50. The physical parameter
are the same as in Fig. 2. The total current~————! consists of
the currentI d due to the discrete levels~—— – ——! and the
currentI s due to the scattering states~– – – – –!.
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55 6009ANDREEV-LEVEL TUNNELING IN A BALLISTIC . . .
Eq. ~16!. Since I 1 in Eq. ~11! has the nice feature that
involves only the Andreev levels, it provides us a direct c
relation between the Andreev-level-phase characteristics
the current-phase characteristics.

Before we turn our attention to the current-phase cha
teristics, a few more comments aboutI 1 is in order here. This
I 1 expression was obtained by Beenakker and van Houte
one of the three terms that together give the total equilibri
currentI in a superconducting point contact.31 The other two
terms are an integral over the continuous spectrum an
spatial integral. To obtain this result, they start from a re
tion I5(2e/\)dF/df,32 instead of starting from Eq.~9!.
Here F is the free energy andf is the phase difference
between the two superconducting end electrodes. The d
vation can be extended to the case of a superconduc
junction of more general configurations by allowing the BC
interaction constantg to have spatial variation consiste
with the junction configuration. The total equilibrium curre
I still consists of three terms—a sum over the discrete sp
trum, given also byI 1, an integral over the continuous spe
trum and a spatial integral. However, the spatial integ
might not be small in a superconducting junction, ev
though it is negligible in a point contact withL!j,31 where
L is the length of the point contact. Thus it is not clear th
the discrete sumI 1 should equal to the discrete sumI d in Eq.
~9!, even though it seems probably so. Our numerical ch
establishes unequivocally that the two discrete sums
equal. With the establishment thatI d5I 1, we choose to use
the I 1 expression to explain, in the following, the curren
phase characteristics.

The bound-state current, in units ofeD1 /\ and at zero
temperature, is given by the expression2(2/D1)( ldEl /
df, except for the case whenEl50. This expression relate
the currentI d directly with the Andreev levelsE(f) through
the phase derivative2dE/df. It is clear from Fig. 2 that the
ct
e

i-
r

p
a

ta
-
nd

c-

as

a
-

ri-
ng

c-

l
n

t

k
re

contributions toI d from thep process and then process are
opposite in sign. The phase derivative is very small wh
E&D1 and its magnitude is the largest nearE50. Hence the
changing of one type of process to another type of proc
nearE'0 results in the large abrupt change inI d . The phase
separation between the abrupt-current-change feature inI d is
exactly the phase separation between the twoE50 Andreev
levels. The same argument can be applied to understand
kinks, near, for example,f'0.5p and 3.5p in Fig. 3~b!.
The kinks are due to Andreev levels appearing n
E'D1. From the above results, we have established the c
nection of theI d current-phase features with the microscop
Andreev levels.

C. Scattering-state supercurrent and current-phase relations

The supercurrent due to the scattering states is calcul
from Eq.~9!, where the discrete sum includes only quasip
ticles with El.D1. When we calculate the scattering sta
supercurrentI s in the normal regionN1, the coefficients such
asA3 andA4 in Eq. ~7! are involved. However, when we
calculateI s in the normal regionN2, other coefficients such
as A7 and A8 in Eq. ~7! are involved. But, after some
lengthly algebra, theI s expressions in both of the norma
regions are found to be the same, as they should. TheI s is
given by

I s52
2e

h ED1

Am21D1
2

dE
E

AE22D1
2
tanh~E/2kBT!

3F F1~E,f/2!

uD~E,f/2!u2
2
F1~E,2f/2!

uD~E,2f/2!u2G~u122v1
2!2,

~17!

where
D~E,u!5exp@ i ~2k̃hL1kh,2L21u!#u1
2u2

22exp@ i ~2k̃eL1ke,2L22u!#v1
2u2

212$exp@ i ~ k̃hL1 k̃eL1ke,2L2!#

2exp@ i ~ k̃hL1 k̃eL1kh,2L2!#%u1u2v1v22exp@ i ~2k̃hL1ke,2L21u!#u1
2v2

21exp@ i ~2k̃eL1kh,2L22u!#v1
2v2

2 ,

~18!

and

F1~E,u!5u2
41v2

422 @2cos~u1 k̃hL2 k̃eL1kh,2L22ke,2L2!u1v1u2
3v22cos~u1 k̃hL2 k̃eL2kh,2L21ke,2L2!u1v1u2v2

3

1cos~u1 k̃hL2 k̃eL !u1v1u2v21cos~kh,2L22ke,2L2!u2
2v2

2#. ~19!
ent-
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In Fig. 3, the dependence of the current-phase chara
istics onL2 is presented. Both the bound-state supercurr
I d and the scattering-state supercurrentI s have kink features,
which occur at the samef ’s and, as discussed in the prev
ous subsection, are associated with Andreev levels appea
nearE&D1. Remarkably, these kink features inI d and I s
cancel each other exactly so that these features disap
from the total supercurrent. Similar exact cancellation w
found also in SNS junctions,8 but it is shown here in SNSNS
junctions. Besides this nice cancellation, the other impor
er-
nt

ing

ear
s

nt

features in the total supercurrent are the abrupt-curr
change features, which are due solely toI d . Hence, the un-
derstanding we establish in the previous subsection, ab
the abrupt-current-change features inI d , can be carried over
to understand the same features in the total supercurrent.
direct connection between the features in the CPR, at z
temperature, and the Andreev levels, nearE50, shows the
importance of the CPR to the microscopic characterization
the mesoscopic superconducting junctions.

In Fig. 4, the difference in the CPR, between our resu
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and the results from the transmission approach, is prese
The physical parameters are the same as that in Fig.~c!.
Our results, denoted by the solid curve, are the total su
currentI d1I s . The results from the transmission approa
given by the dashed curve, areI 11I 2. The currentI 2, ac-
cording to Eq.~12!, is found to have the same form asI s in
Eq. ~17!, except thatF1(E,u) is replaced byF2(E), with

F2~E!5u2
41v2

422 u2
2v2

2 . ~20!

It is straightforward to show thatF1(E,u)5F2(E) for the
casesL250 andD250. This means that our results are t
same as that of the transmission approach in the SNS li
However, in general,F1(E,u) is not equal toF2(E), and our
results for the SNSNS junctions are not the same as tha
the transmission approach. To demonstrate this more ex
itly, we obtain the smallf expansion ofDI5I s2I 2 for the
special case whenD15D2, and when the normal region
haveL50. TheDI expression, given by

DI52
2ef

h E
D1

Am21D1
2

dE
E

AE22D1
2
tanh~E/2kBT!

3F2 sin~ke,2L22kh,2L2!u1
2v1

2

~u1
22v1

2!2 G , ~21!

is clearly not zero for generalT andL2. As shown in Fig. 4,
in which L50.1j, the differences are quite significant
that, besides the abrupt-current-change features, there
kink in our results, but there are kinks in the results of t
transmission approach. Moreover, the critical currents
different, and the critical current according to the transm
sion approach is, in this case, smaller. On the other ha
there are similar features—the abrupt-current-change

FIG. 4. Supercurrent versus phase differencef. The physical
parameters are the same as in Fig. 2~c!. The results according to th
transmission approach~– – – – –! is shown for comparison.
ed.
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tures, in which the phase separationDf0 between the fea-
tures is the same. It is because the bound-state cur
I d5I 1.

The dependence of the CPR on the energy-gap config
tion is presented in Fig. 5. The physical parameters
D150.2 meV, L50.1j, T50, and L255j. As the ratio
D2 /D1 decreases from 1.00 to 0.0, the phase separa
Df0 between the abrupt-current-change features increa
This is due to the enhancement in the Andreev-level tunn
ing as the pair-potential barrier of the middle superconduc
lowers. There is no kink other than the abrupt-current-cha
features. TheD2 /D150 curve corresponds to a SNS jun
tion, with the length of the normal region 2L1L2, and the
f period reduces to 2p. The critical current is the lowest in
this case because the Cooper pairs have to traverse the
est effective distance through the normal region. Thus, as
D2 increases, the effective length of the normal region
the Cooper pairs to traverse decreases, and the critical
rent increases. This trend is confirmed by the curves in F
5.

We have other data for differentL ’s, and we find that the
Df0’s for the abrupt-current-change features remain
same as in Fig. 5. This shows that, within our model,
abrupt-current-change features depend only on the phys
properties of the middle superconductor. That the abru
current-change features are independent ofL can be under-
stood in terms of the Andreev reflection. From Eq.~8!, the
p-process wave function in the normal region has spa
dependence involving both exp(ik̃ex) and exp(ik̃hx), which
represent the right-going electronlike quasiparticles and
left-going holelike quasiparticles, respectively. As the qua
particles complete a close path in the normal region, th
phases change, and the change in phase involve
L-dependent term, given by (k̃e2 k̃h)L. At energyE50, the
wave vectorsk̃e5 k̃h5kF . Hence the phase change becom
L independent, and so is theDf0 for the abrupt-current-

FIG. 5. Supercurrent versus phase differencef for four
D2 /D1 ratios, and atT50. D150.2 meV,L255j, andL50.1j .
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55 6011ANDREEV-LEVEL TUNNELING IN A BALLISTIC . . .
change features. We note that thisL-independent feature
cannot be obtained from normal reflection processes.

In Fig. 6, the finite-temperature effects on the CPR
presented. Within the low-temperature regime, in which
kBT&0.2D1, we can assume that the energy gaps retain t
zero-temperature values. The temperature effects thus c
merely from the hyperbolic tangent factors in Eqs.~16! and
~17!. The results show that the abrupt-current-change
tures remain recognizable up tokBT&0.025D1. At
kBT'0.2D1, the features disappear, while the CPR begins
exhibit more sinusoidal-like behavior, though with af pe-
riod of 4p. By then, the connection of the CPR with th
microscopic Andreev levels is destroyed.

The dependence of the critical current on the lengthL2 of
the middle superconductor is shown in Fig. 7. The phys
parameters areD15D250.2 meV andT50. Our results for
L50 are given by curveA, and the results for the transmis
sion approach are given by curveB. The difference between
the results from the two approaches is the largest n
L2'0.5j, where the difference is more than 12%. This d
ference is much greater than the Andreev accuracy, give
D1 /m, which is 2% in our case. The critical current from th
transmission approach can be greater or smaller than
results, depending on the values ofL2. The critical current at
L250 is eD1 /\, which is the critical current of a SNS junc
tion with zero normal region length. In the largeL2 limit, the
critical current approacheseD1 /\ again, which is the resul
for two independent SNS junctions. We note that both cur
do not exhibit oscillations on the scale ofkFL2;p. This can
be understood also in terms of the Andreev reflection. F
of all, the critical current is essentially the current when t
abrupt-current-change occurs, and is therefore closely a
ciated with the Andreev levels atE50. For a right-going
electronlike quasiparticle, and atE50, completing a closed
path in the middle superconductor, theL2-dependent phas
change is given by (ke,22kh,2)L2. But, from Eq.~6!, when
ke,25kF(11 iD2/2m), and kh,25kF(12 iD2/2m), the phase
change becomes purely imaginary. This means that the

FIG. 6. Supercurrent versus phase differencef for five tempera-
turesT. D15D250.2 meV,L50.1j, andL252j.
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fects of L2 do not give rise to oscillations on the scale
kFL2;p. We present in curveC the critical current for
L50.1j and show that the critical current is smaller, due
the effectively longer normal region distance the Coop
pairs have to traverse. The critical current atL250 is that of
a SNS junction with normal region length 0.2j. In the large
L2 limit, the critical current approaches that of two indepe
dent SNS junctions, each with normal region length 0.j,
which is 0.91eD1 /\. The curveC shows that atL255j, the
critical current is already close to its asymptotic value. Ho
ever, for the transmission results, given by curveD, the criti-
cal current approaches its asymptotic value in a much lon
L2.

Finally, in Fig. 8, we present the temperature depende
of the critical current. The physical parameters a
D15D250.2 meV andL250.4j. The solid curves are ou
results and the dashed curves are the results from the tr
mission approach. CurvesA andB are for the caseL50 and
CurvesC, andD are for the caseL50.1j. The critical cur-
rent drops monotonically with the increasing of the tempe
ture. All the four curves show a similar trend, though th
differ in magnitude.

IV. CONCLUSION

We have studied the supercurrent characteristics in a s
metric SNSNS junction and have established the connec
between the current-phase relation and the microsco
Andreev-level tunneling in such systems. As a conseque
of Andreev reflection, the low-temperature supercurr
characteristics are shown to depend more on the phys
properties of the middle superconductor and less on the
mal regions as well as on the two superconducting e
trodes. The importance of the current-phase relation to

FIG. 7. Critical current versusL2 for two SNSNS junctions and
at T50. D15D250.2 meV. For the caseL50, our results~curve
A), and the transmission results~curveB) are shown for compari-
son. For the caseL50.1j, our results~curveC) and the transmis-
sion results~curveD) are shown for comparison.
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6012 55VICTOR C. Y. CHANG AND C. S. CHU
microscopic characterization of the junction is pointed o
and is shown to hold at the finite but low-temperature
gime.

We have also demonstrated that the total current obta
from the transmission approach differs from our result
SNSNS junctions. Since the discrete sum of the two
proaches are the same, the difference in the total curre
from the difference between the continuous spectrum in
grals in Eq.~9!, and in Eq.~12!, which areI s andI 2, respec-
tively. The difference vanishes for the case of a single S
junction. Before we present a physical reason for the diff
ence, we want to point out again that the current expres
in I s is microscopically derived, while that given byI 2 is not.
The latter expression expressesI 2 in terms of the transmis
sion coefficients. This amounts to evaluate, in the right
perconducting electrode, the contribution to the current fr
the right-going quasiparticles, and, in the left supercondu
ing electrode, the contribution from the left-going quasip
ticles. In fact, imposing this view point into the evaluation
Eq. ~9! does lead toI 2.

33 However, a correct evaluation o
Eq. ~9!, as we have done so in obtainingI s , requires us to
calculate all contributions at the same location. Even tho
the view point that leads toI 2 is found to give the correc
transport current in mesoscopic normal structures,19 and in
SNS junctions, our result for SNSNS junctions demonstra
the case when the current can no longer be expressed m
by transmission coefficients.

To understand whyI s and I 2 are different in a SNSNS
junction, we first discuss how they are the same in a S

FIG. 8. Critical current versus temperatureT for two SNSNS
junctions.D15D250.2 meV, L250.4j. For the caseL50, our
results~curveA) and the transmission results~curveB) are shown
for comparison. For the caseL50.1j, curveC is our results and
curveD is the transmission results.
t
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junction. Theu* (x) p̂xu(x) and thev(x) p̂xv* (x) expres-
sions due to a left-~right-! going quasiparticle, when evalu
ated in the normal region of a SNS junction, are found
equal to the respective expressions, when evaluated in
left ~right! superconducting electrode. These results guar
tee thatI 2 and I s are equal in varying temperatures becau
the u* p̂xu and thev p̂xv* expressions have different tem
perature dependence, given byf (E), and 12 f (E), respec-
tively. For convenience, we choose to evaluateI s in the nor-
mal region.

In the case of a SNSNS junction, there are two norm
regions. According to the above result, theu* p̂xu and the

v p̂xv* expressions due to left-~right-! going quasiparticles,
when evaluated in the left~right! superconducting end
electrode, are equal to the respective expressions, w
evaluated in the left~right! normal region. It is then clear tha
if I s were to equal toI 2, theu* p̂xu and thev p̂xv* expres-
sions should equal their counterparts in both of the norm
regions. This, however, is not true because the middle su
conductor gives rise to an additional Andreev reflecti
which results in converting electronlike quasiparticles in
holelike quasiparticles, or vice versa, by reflection. Since
extent of the conversion depends on the energies of the
siparticles as well as the parameters describing the junct
theu* p̂xu expression cannot maintain the same value in
two normal regions. Similarly, thev p̂xv* expressions are
different in the two normal regions. ThusI s is not equal to
I 2 in a SNSNS junction.

This discrepancy in current shows that the transport c
rent cannot be expressed merely by transmission coeffici
in SNSNS junctions, in particular, and, more generally,
junctions where the additional Andreev reflection occu
within the region between the two superconducting end e
trodes. On the other hand, for the case when only nor
scattering, such as those caused by an impurity, oc
within the region between the two superconducting end e
trodes, the same argument leads to the conclusion thaI s
equalsI 2. In any case, Eq.~9! gives the correct current ex
pression.
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APPENDIX A: TRANSMISSION COEFFICIENTS

For an electronlike quasiparticle incident from the le
hand side of the junction, thete(h) , and ther e(h) coefficients
in Eq. ~7! are obtained, given by

r e5th50, r h5
G~E,f/2!

D~E,f/2!
, te5

K1~E,f/2!

D~E,f/2!
, ~A1!

where
G~E,u!5exp@ i ~2k̃eL1ke,2L22u!#u1v1u2
22exp@ i ~2k̃hL1kh,2L21u!#u1v1u2

22exp@ i ~ k̃hL1 k̃eL1ke,2L2!#u2v2
1exp@ i ~ k̃hL1 k̃eL1kh,2L2!#u2v21exp@ i ~2k̃hL1ke,2L21u!#u1v1v2

22exp@ i ~2k̃eL1kh,2L22u!#u1v1v2
2 ,
~A2!
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and

K1~E,u!5exp$ i @2~ k̃h1 k̃e2ke,1!L1~kh,21ke,2!L2

2ke,1L22u#%~u1
22v1

2!~u2
22v2

2!. ~A3!

The transmission and the reflection coefficients are defi
in terms of thete(h) and ther e(h) coefficients, given by

TL→R
e ~E,u!5uteu2, ~A4!

RL→R
h ~E,u!5ur hu2. ~A5!

We have checked thatTL→R
e 1RL→R

h 51, which is expected
because the BdG equation is Hermitian.

For a holelike quasiparticle incident from the left-ha
side of the junction, thete(h) and ther e(h) coefficients are

r h5te50, r e5
G~E,2f/2!

D~E,2f/2!
, th5

K2~E,2f/2!

D~E,2f/2!
,

~A6!

where

K2~E,u!5exp$ i @kh,1~2L1L2!1u#%~u1
22v1

2!~u2
22v2

2!.
~A7!

Again, the transmission and the reflection coefficients
defined as

TL→R
h ~E,u!5uthu2, ~A8!

RL→R
e ~E,u!5ur eu2, ~A9!

where we have checked thatTL→R
h 1RL→R

e 51. From the
above expressions for theTL→R

e(h) and theRL→R
e(h) we find the

relations

TL→R
h ~E,u!5TL→R

e ~E,2u!, ~A10!

and

RL→R
h ~E,u!5RL→R

e ~E,2u!. ~A11!
d

e

For the cases when the quasiparticles are incident f
the right-hand side of the junction, the results are the sa
except that the signs of the phases are reversed. These
tions are

TR→L
e~h! ~E,u!5TL→R

e~h! ~E,2u!, ~A12!

and

RR→L
e~h! ~E,u!5RL→R

e~h! ~E,2u!. ~A13!

We note that our results are for general normal-region len
L. Our transmission coefficients reduce to that obtained
Hurd and Wendin18 when taking theL50 limit.

APPENDIX B: MICROSCOPIC DERIVATION OF EQ. „9…

The electron field operatorsĈ(rW,s) are related to the
quasiparticle operatorsĝ l ,s , andĝ l ,s

† 30

Ĉ~rW,s!5(
l

@ ĝ l ,sul~rW !2sĝ l ,2s
† v l* ~rW !#, ~B1!

wherel refers to the quasiparticle states in Eq.~2!, ands is
the spin index, withs511 (21) corresponding to spin up
~down! electrons. The electric current density opera
jWop(rW,s) in the second quantized form is given by

jWop~rW,s!5
e

2mE drWeĈ
†~rWe ,s!F S pW 2

e

c
AW D d~rW2rWe!

1d~rW2rWe!S pW 2
e

c
AW D GĈ~rWe ,s!. ~B2!

Here, thepW andAW are both functions ofrWe . After performing
the integration, the current density operator

jWop~rW,s!5
e

2m F Ĉ†~rW,s!S pW 2
e

c
AW D Ĉ~rW,s!

2H S pW 1
e

c
AW D Ĉ†~rW,s!J Ĉ~rW,s!G , ~B3!

where pW and AW become functions ofrW. The electron field
operators in Eq.~B3! can be expressed in terms of the qu
siparticle operators, using Eq.~B1!, and are given by
jWop~rW,s!5
e

2m(
l ,l 8

@ ĝ l ,s
† ul* ~rW !2sĝ l ,2sv l~rW !#S pW 2

e

c
AW D @ ĝ l 8,sul 8~r

W !2sĝ l 8,2s
† v l 8

* ~rW !#

2
e

2m(
l ,l 8

H S pW 1
e

c
AW D @ ĝ l ,s

† ul* ~rW !2sĝ l ,2sv l~rW !#J @ ĝ l 8,sul 8~r
W !2sĝ l 8,2s

† v l 8
* ~rW !#. ~B4!
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The summation involves quasiparticles with energ
El ,El 8.0. The thermal averaged current dens
jW(rW)5(s^ jWop(rW,s)&, which can be evaluated using the the
mal average properties of the quasiparticle operators30

^ĝ l ,s
† ĝ l 8,s&5 f ~El !d l ,l 8,

^ĝ l ,sĝ l 8,s
† &5@12 f ~El !#d l ,l 8. ~B5!

The thermal averaged current densityjW(rW) is then given by

jW~rW !5
e

m(
l

H f ~El !ul* ~rW !S pW 2
e

c
AW Dul~rW !1@12 f ~El !#v l~rW !

3S pW 2
e

c
AW D v l* ~rW !J 1c.c. ~B6!

Equation~B6! becomes Eq.~9! in the text when the system i
one dimensional and the vector potentialAW 50. A more gen-
eral form for the equilibrium average of a single-electr
operator can be found in Ref. 31.

APPENDIX C: QUANTIZATION CONDITION „E5D1…

Both the bound-state supercurrentI d and the scattering
state supercurrentI s have kink features which occur at th
.

M.
sf ’s when Andreev levels appear atE5D1. The conditions
for finding thesef ’s are given by

f

2
12pn56S D1

m
kFL1tan21b2sin21g D ,

f

2
12pn56S D1

m
kFL1tan21b1sin21g2p D , ~C1!

wheren is an integer, and the upper~lower! sign represents
the condition for thep process (n process!. Here,

b5tanSAD1
22D2

2kFL2
2m

D YA12S D2

D1
D 2, ~C2!

and

g5
~D2 /D1!sin@~AD1

22D2
2kFL2!/2m#

A12$~D2 /D1!cos@~AD1
22D2

2kFL2!/2m#%2
.

~C3!
hys.
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