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Magnetic susceptibility in the Millis-Monien-Pines model
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Department of Theoretical Physics, University of Cluj, 3400 Cluj, Romania
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The temperature dependence of the susceptibility of electrons interacting with antiferromagnetic spin exci-
tations has been calculated using the Millis-Monien-Pines model. The deviation from the Pauli paramagnetism
is in agreement with the measurements ofx(T) for the normal state in the low doping region in the high-
critical-temperature superconductors.@S0163-1829~97!01806-7#
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I. INTRODUCTION

The high-Tc superconductors~HTS! have anomalous nor
mal state properties. At the present time there are two es
tially different explanations of the normal state of the HT

In one class of theories it is assumed that Landau Fe
liquid theory breaks down completely and an exotic meta
state described by the Luttinger-liquid theory is realized.1 In
the second class of theories it is assumed that the Lan
quasiparticle concept does work but the normal Fermi liq
has some peculiar properties. In this second class of theo
the most important models are the van Hove scenario de
oped by Fridel, Labbe, Bok, and the IBM group2,3 and the
Millis-Monien-Pines~MMP! model.4 In the model based on
the van Hove scenario the deviations from the usual meta
behavior are associated with anomalous scattering nea
saddle points of the Fermi surface. The MMP model is ba
on the existence of antiferromagnetic excitations which
described by a dynamic susceptibility with relaxational d
namics and the imaginary part of the spin susceptibi
Im x~q,v!;v for all q measured from the zone center.

In the first class of theories, called non-Fermi-liquid~NFI!
models, the temperature dependence of the resistivity
well as the optical properties, can be explained if we c
sider that the excitations are on the low-energy scale. Th
models present many difficulties if doping effects are tak
into consideration and Levine5 presented a scaling hypoth
esis for the spectral density of excitations in order to expl
the departure from the non-Fermi behavior of the dop
HTS. This idea was also considered by Barzykin and Pin4

in order to get the phase diagram of the HTS and the m
point of these investigations is that antiferromagnetic exc
tions are very sensitive to the concentration of impurities

Recently Pines6 introduced an additional contribution t
x~q,v!, considered initially in Ref. 4, containing the contr
bution of the excitation which has a peak at the commen
rate wave vectorQ5~p,p!, and in this way he correlate
magnetic and transport experiments supporting thed pairing.
The unusual temperature dependence of the magnetic
ceptibility of HTS has been considered by Wang and Fra7

using the linear dependence of the density of states on
energy. For small doping they obtained the linear dep
dence of the temperatureT and for large doping they ob
tained a logarithmic dependence ofT. The calculations have
been performed using at-J model taking a spin liquid and
the results have been compared with the measurements
550163-1829/97/55~9!/5998~6!/$10.00
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formed on La22xSrxCuO4. The results have been compare
with the density of states and forkBT smaller than the char
acteristic energyEv ~E5Ev is the van Hove singularity! the
calculations are in agreement with the experimental data.
have to mention that the linear prediction is not the b
dependence at small doping as it can be observed from
NMR data which are more accurate than the static meas
ments.

Recently Altshuleret al.9 reanalyzed the two-dimensiona
~2D! spin liquid with a gap and one important result was th
even in such a Fermi system, part of the magnetic respon
given by the particle-hole continuum of spin-1/2 fermions

In this paper we calculated the magnetic susceptibi
x(T) for the MMP taking into consideration the vertex co
rections in the self-energy due to the magnetic field. W
expect that these corrections are important for a Fermi s
tem interacting with antiferromagnetic excitations. In fa
Mitrovic and Picket10 considered this correction for the A-1
superconductors with an electron-phonon interaction,
showed that the magnetic susceptibility is enhanced at
temperatures.

On the other hand, Coffey11 showed that the quasiparticl
spectra of a 2D Fermi liquid is changed by the dynami
effect. The dynamical quasiparticle spectrum considered
a 3D Fermi liquid by Corneiro and Pethick12 gives similar
effects in a 2D Fermi liquid by introducing a term of th
form «3(p)ln «(p) associated withT3 ln T in the entropy.

If such a correction in the spectrum of quasiparticles
important for thermal properties we expect that the corr
tions given by the vertex are important for the magnetic
sponse. However, we have to mention that in the case of
MMP model, the results will be relevant only for the sma
doping where the particle-hole continuum of the spin-1
fermion is well defined. In the strong doping region the l
calization effects13,14 are important and the system is not
‘‘good’’ metal.

The paper is structured as follows: in Sec. II we calcul
the self-energy of the 2D electronic system interacting w
spin excitations described by the dynamic susceptibi
x~q,v!. The vertex correction given by the external magne
field was expressed by the Hartree-Fock correction in
self-energy. This general result has been applied for
MMP model and in Sec. III we calculated the magnetizati
and magnetic susceptibility forTÞ0. Using realistic param-
eters for the MMP model we showed that the obtainedT2

correction is important for the low doping region. In Sec.
5998 © 1997 The American Physical Society
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we discussed the result in connection with different calcu
tions and models.

II. SELF-ENERGY AND VERTEX CORRECTIONS

A. General expression

In order to calculate the magnetic susceptibility of t
electrons interacting with the antiferromagnetic spin fluct
tions in the MMP model we will consider in the Green
functions the corrections given by the self-energy and by
vertex due to the interactions with the external field. W
neglect the vertex corrections in the electron spin fluctua
energy because it was shown8 that these corrections ar
small.

The Hamiltonian which describes the electron-spin flu
tuation interaction has the form

H5(
p,a

cp,a
† @«~p!2t3H#cp,a

2
U2

2 (
k,i , j

Si~k!x i j ~k!Sj~2k!, ~1!
-

-

e

n

-

whereti ~i51,2,3! are the Pauli matrices,U is the coupling
constant,Si~k! is the spin density operator,

Si~k!5(
p
ck1p
† t icp , ~2!

andxi j ~k! is the dynamic susceptibility of the spin fluctua
tions which will be considered as

x i j ~k!5x~k,ivm!d i j ,

wherex~k,ivm! has to be specified by the model.
The self-energy correction due to the interaction with t

spin fluctuations has the general form

S1~p,ivn!52
U2

b (
m,k

t i j ~k,ivm!t iG~p2k,ivm2 ivn!t j ,

~3!

where

t i j ~k,ivm!5x~k,ivm!d i j . ~4!

From these equations we obtain, using the spectral repre
tation forx~k,ivm! andG~p,ivm!, the expression
approxi-
S1~p,v1 id!56U2(
k
E

2`

` dv8

2p E
2`

` dv1

2p

Im G~p2k,v1!Im x~p,v8!

v81v12v2 id F tanhv1

2T
1coth

v8

2TG . ~5!

In a 2D electronic system we transform(k→~2p!22*k dk* 0
2pdu and using the approximations from Ref. 9 we obtain

S1~p,v1 id!52
3U2

~2p!2
2p

vF
E

2`

` dv8

2p H E
0

` dv1

2p E
v1 /vF

2pF
dk

Imx~k,v8!

v81v12v2 id

1

A12~k2/4p2!~122mv1 /k!2

3F tanhv1

2T
1coth

v8

2TG2E
0

` dv1

2p E
v1 /vF

2pF
dk

Imx~k,v8!

v81v11v1 id

1

A12~k2/4p2!~122mv1 /k!2

3F tanhv1

2T
1coth

v8

2TG J , ~6!

wherepF is the Fermi momentum andvF the Fermi velocity.
In order to evaluate the real and imaginary parts of the self-energy we use the Kramers-Kronig relations and the

mation

A12
k2

4p2 S 12
2mv1

k D 2. 2pF

A4pF22k2
~7!

which is valid if p.pF andv1!EF whereEF is the Fermi energy. We get for the real part of the self-energy

ReS1~p,v!5
3U2

~2p!2
2ppF
vF

E
2`

` dv1

2p E
v1 /vF

2pF
dk

Rex~k,v1!

A4pF22k2
F tanhv12v

2T
2tanh

v11v

2T G ~8!

and for the imaginary part of the self-energy

Im S1~p,v!52
3U2

~2p!2
4p2pF
vF

E
0

` dv1

2p E
v1 /vF

2pF
dk

Imx~k,v1!

A4pF22k2
F2 cothv1

2T
2tanh

v12v

2T
2tanh

v11v

2T G . ~9!

The vertex corrections given by the external magnetic fieldH gives the contribution

Sv~p,ivn!52
U2

b (
k

(
m

(
i

x~p2k,ivn2 ivm!H̄t3t iG~k1q,ivm1 ivn!G~k,ivm!t i , ~10!
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whereH̄5mBH and for the Green’s function we will takeG5G0 . Using now the identity

G0~k1q,ivm1 ivn!G0~k,ivm!5
1

«~k1q!2«~k!2 ivn
@G0~k1q,ivm1 ivn!2G0~k,ivm!# ~11!

and the spectral representation forx andG0 we get from Eq.~10! the general expression

Sv~p,ivn!5H̄t3U
2E d2k

~2p!2
1

b (
m

E
2`

` dv8

p E
2`

` dv1

p

Im x~p2k,v1!

ivn2 ivm2v1
F Im G0~k1q,v8!

ivm1 ivn2v8
2
Im G0~k,v8!

ivm2v8 G . ~12!

In this expression we can perform the summation overm and we get

Sv~p,ivn!52H̄t3U
2E d2k

~2p!2
E

2`

` dv8

2p E
2`

` dv1

2p

Im x~p2k,v8!Im G0~k,v1!

~ ivn1v82v1!
2 F tanhv1

2T
2coth

v8

2TG . ~13!
th

ce

ns

d
m

u-
Taking ivn→v1 id in Eq. ~13! we can see that

Sv~p,v!52
1

3
H̄t3

]

]v
S1~p,v!, ~14!

an equation which gives the vertex correction due to
external field as a function of the self-energy correctionS1.

Using these results we can calculate the magnetic sus
tibility for a model which is in fact defined byx~k,v!.

B. Self-energy for the Millis-Monien-Pines model

We consider the low-energy region where

v,T,vSF, ~15!

vSF is the energy of the antiferromagnetic spin fluctuatio
The dynamical susceptibilityx~k,v! for the MMP model has
the form6

x~k,v!5
xQ~T!

11j2k22 i ~v/vSF!
, ~16!

wherexQ(T) is a temperature-dependent contribution anj
is the antiferromagnetic correlation length and is also te
perature dependent.

In this region we approximate

tanh
v12v

2T
2tanh

v11v

2T
.2

v

T
~17!

and Eq.~8! becomes

ReS1~v,pF!523vA~pF!, ~18!

where

A~pF!5
U2N~0!

4

xQ~T!

A114pF
2j2

. ~19!

The imaginary part of the self-energy given by Eq.~9! can
be evaluated using as

Im x~k,v!5xQ~T!
v/vSF

~11j2k2!21~v/vSF!
2 ~20!

and forv!vSF we take
e

p-

.

-

Im x~k,v!5xQ~T!
v

vSF

1

~11j2k2!2
. ~21!

The integral overv1 can be performed and we get

E
0

`

dv1v1F2 cothv1

2T
2tanh

v12v

2T

2tanh
v11v

2T G5v21~pT!2,

which leads to the result

Im S152@v21~pT!2#
3mU2

2vSF
xQ~T!

112pF
2j2

~114pF
2j2!3/2

.

~22!

Using now Eq.~15! we approximate Eq.~22! as

ImS1~pF!52vSF
2 B~pF!, ~23!

where

B~pF!5
3

2

N~0!U2

vSF
xQ~T!

112pF
2j2

~114pF
2j2!3/2

. ~24!

III. MAGNETIZATION
AND MAGNETIC SUSCEPTIBILITY

A. Green’s functions

In order to calculate the magnetic susceptibility we calc
late the Green’s functions from the equation

Ĝ21~p,ivn!5 ivn1̂2«~p!1̂1H̄ t̂32Ŝ~p,ivn!, ~25!

where

Ŝ~p,ivn!5Ŝ1~p,ivn!1Ŝv~p,ivn! ~26!

and

Ŝ1~p,ivn!523Aivn1̂2 ivSF
2 B1̂ sgnvn

Ŝv~p,ivn!5H̄ t̂3A, ~27!

where we consideredA5A(pF) andB5B(pF). From Eqs.
~25!–~27! we get
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G1~p,ivn!5
1

113A

1

@ ivn2 «̃~p!1 iB̃#1̂1H̃ t̂3
, ~28!

G2~p,ivn!5
1

113A

1

@ ivn2 «̃~p!2 iB̃#1̂1H̃ t̂3
, ~29!

where

«̃~p!5
«~p!

113A
, H̃5H̄

12A

113A
, B̃5vSF

2 B

113A
and the magnetizationM (T,H) will be defined as

M ~T,H !5mB(
p

F 1
b

(
vn,0

Tr@t3G2~p,ivn!#

1
1

b
(

vn.0
Tr@t3G1~p,ivn!#G . ~30!

In this equation we can perform the summation overvn and
we get
M ~T,H !52
mB

p~113A!
(
p
E

2`

`

dz f~z!F B̃

@z2 «̃~p!2H̃#21B̃2
2

B̃

@z2 «̃~p!1H̃#21B̃2G . ~31!

B. Magnetic susceptibility

The magnetic susceptibilityx(T) defined as

x~T!5S ]M ~T,H !

]H D
H50

~32!

was obtained from Eq.~31! as

x~T!5
4mB

2

p
(
p
B̄~12A!E

2`

`

d z f~z!
«~p!2z~113A!

$@«~p!2z~113A!#21B̄2%2
, ~33!

whereB̄5vSF
2 B and f (z) is the Fermi distribution function.

In order to perform the integral overz in Eq. ~33! we approximate for low-temperature values

f ~z!5H expF2
z2«F
T G , z.«F,

12expFz2«F
T G , z,«,

~34!

and

I ~«!5E
2`

`

dz f~z!
«~p!2z~113A!

$@«~p!2z~113A!#21B̄2%2
~35!

becomes

I5
1

2~113A!
F 21

@«~p!2«F~113A!#2
1E

0

` due2u

@«~p!2~Tu1«F!~113A!#21B̄2
1E

2`

0 dueu

@«~p!2~Tu1«F!~113A!#21B̄2G
~36!

and in the limit of small temperature Eq.~36! will be approximated as

I5
1

2~113A!

1

@«~p!2«F~113A!#21B̄2 F12
4~113A!2T2

@«~p!2«F~113A!#21B̄2G . ~37!

From Eqs.~33! and ~37! we obtain

x~T!5
4mB

2

p
(
p

B̄~12A!

113A

1

@«~p!2«F~113A!#21B̄2 F12
4~113A!2T2

@«~p!2«F~113A!#21B̄2G . ~38!
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If we transform the summation overp in Eq. ~38! in a 2D
integral we calculate the magnetic susceptibility as

x~T!

x~0!
512

4A

113A
2
2~12A!~113A!

B̄2
T2, ~39!

wherex~0!5m B
2N(0) is the Pauli susceptibility. From thi

equation we can see that the first correction to the magn
susceptibility due to the electron-spin excitation interact
is quadratic in temperature, and forU50 we obtain the Paul
paramagnetismx~0!5m B

2N(0).
In the approximationpFj@1 the parametersA and B

given by Eq.~9!, respectively, Eq.~24!, becomes

A5
U2N~0!

8pFj
xQ~T!, ~40!

B5
3pU2N~0!

8pFj

xQ~T!

vSF
, ~41!

wherexQ(T) is given in the MMP model6 as

xQ~T!5aj2~T!, ~42!

wherea is an independent temperature constant. The co
ence lengthj(T) is given in this model by

S j~T!

a D 25S j

aD
T50

2 Q

T1Q
, ~43!

whereQ.100 K anda is the lattice constant. If we take fo
vSF5350 K, in the condition of Eq.~15!, where we can take
the results from Ref. 10 which are well approximated
j21(T)→0, we can approximate Eq.~39! as

x~T!

x~0!
512

4A

113A
1

2

3p2 S T

vSF
D 2. ~44!

The temperature dependence ofx(T) is given in Fig. 1. Us-
ing for x~0!.0.9531024 emu/mol we calculatex(T) for dif-
ferent values ofUN~0!.

The experimental data obtained in Ref. 8 f
La22xSrxCuO with 0.08,x,0.15 represented in Fig. 1 are
good agreement with our calculations and showed that
density of statesN~0! is decreasing with the tendency of th
localization effects13,14 observed in the transport measur
ments. Our calculations will be modified to take into cons
eration at the same time the temperature and disorder de
dence of the magnetic susceptibility.

IV. DISCUSSION

We calculated the magnetic susceptibility of a 2D elect
gas interacting with antiferromagnetic excitations taking
the spectrum of the energy excitations the vertex correct
due to the magnetic field. This contribution to the self-ene
has been expressed by the Hartree-Fock self-energy o
electrons interacting with the magnetic excitations wh
tic
n

r-

e

-
en-

n

s
y
he

have the dynamic susceptibilityx~q,v!. This result, which
can be applied to other models, has been applied for
MMP model. In this modelx~q,v! is considered of the form
given by Eq.~16! and in fact all these calculations have
phenomenological character due to the form of the dyna
cal susceptibility. However all the calculations can be p
formed analytically, even for the 2D system, and we o
tained atT50 an enhancement of the susceptibility whi
depends on the parameters of the MMP model and the e
tron excitation interaction. ForTÞ0 the correction is qua-
dratic in temperature and is also dependent on these pa
eters. We mention that for a free-electron gas such
correction is given by the temperature dependence of
chemical potential but in this case it is very small becau
has the order of (kBT/EF)

2.
This calculation is expected to be relevant for the sm

doping region where the coherence lengthj(T) is not af-
fected very much by impurities. The density of states w
also considered as a parameter but we considered value
UN~0! which are realistic for HTS. The linear and logarith
mic dependence obtained in Ref. 7 can be given by the
proximations in the density of states and it is expected if
energy spectrum gives van Hove singularities. Our comp
son with the experimental data was presented only to sh
the relevance of the vertex correction in the problem of
teracting electrons with magnetic excitations. The MM
model is the most appropriate for this aim but a realis
calculation has to consider the van Hove singularities in
2D spin-excitation model as was suggested in Ref. 15.
generalization for the layered model could also improve
relevance of the present calculations.
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FIG. 1. Comparison of the calculated susceptibility to the e
perimental data of Refs. 11 and 12. Fits of the susceptibility
different values ofUN~0! correspond to the Sr concentration
follows: x50.08 @UN~0!50.9#, x50.12 @UN~0!50.7#, andx50.15
@UN~0!50.45#.
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