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J1-J2 model revisited: Phenomenology of CuGeO3
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We present a mean-field solution of the antiferromagnetic Heisenberg chain with nearest (J1) and next-to-
nearest neighbor (J2) interactions. This solution provides a way to estimate the effects of frustration. We
calculate the temperature-dependent spin-wave velocity,vs(T) and discuss the possibility to determine the
magnitude of frustrationJ2 /J1 present in quasi-one-dimensional compounds from measurements ofvs(T). We
compute the thermodynamic susceptibility at finite temperatures and compare it with the observed suscepti-
bility of the spin-Peierls compound CuGeO3. We also use the method to study the two-magnon Raman
continuum observed in CuGeO3 above the spin-Peierls transition.@S0163-1829~97!01009-6#
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I. INTRODUCTION

The discovery of the spin-Peierls~SP! transition in the
inorganic material CuGeO3 ~Ref. 1! has led to an intense
investigation of the magnetic properties of this system. I
becoming increasingly clear that this material may not b
prototype SP system such as the quasi-one-dimensiona
ganic material TTFCuBDT.2 For example, the temperatur
dependence of the SP gap3 is unlike what is expected fo
conventional SP systems.2 A recent inelastic-neutron
scattering experiment4 reports observing a spin gap at tem
peratures above the SP transition temperatureTSP. So far,
there has been no evidence for the presence of a phonon
mode.5 X-ray-scattering studies of the incommensurate ph
of CuGeO3 show the existence of a soliton lattice with th
width of the soliton being much larger than that predicted
calculations.6 These results, taken together, call for a bet
understanding of the homogeneous state of CuGeO3 above
TSP which should eventually shed light on the nature of t
SP transition itself.

The basic structure of CuGeO3 consists of edge-sharin
CuO6 octahedra forming CuO4 chains along the crystallo
graphic ĉ axis. The dimerization of theS5 1

2Cu ions below
14 K has been determined by neutron-diffracti
measurements.7 From inelastic-neutron-scattering~INS!
measurements, Nishiet al.8 estimated the intrachain and in
terchain exchange parametersJc'120 K, Jb'0.1Jc , sug-
gesting that interchain effects may not be negligible in t
compound. On the other hand, INS measurements ab
TSP

9 clearly show the two-spinon continuum which is cha
acteristic of a one-dimensionalS5 1

2 antiferromagnetic
chain.10 The susceptibility of CuGeO3 aboveTSP

1 shows a
broad maximum as expected for Heisenberg chains. F
the temperature at which this maximum is observed~56 K!,
one can estimate the value ofJc using the results of Bonne
and Fisher,11 yielding Jc588 K. This discrepancy betwee
550163-1829/97/55~9!/5944~9!/$10.00
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the value ofJc estimated from static susceptibility measur
ments and INS led to the proposal,12,13 that a minimal model
to describe the magnetic properties of this system ab
TSP is the so-called ‘‘J1-J2’’ model. This model describes an
antiferromagnetic Heisenberg chain with nearest neigh
~NN! and next-to-nearest neighbor~NNN! exchange interac-
tions. The model Hamiltonian is written as

H5J(
i

~Si•Si111aSi•Si12!, ~1!

whereJ[Jc is the intrachain superexchange between nei
boring Cu ions along theĉ direction. The second term in th
Hamiltonian~1! is the exchange interaction between next
nearest neighbor Cu ions. In CuGeO3, the NNN superex-
change path is through Cu-O-O-Cu and is identical to tha
the cuprate superconductors. A detailed analysis of the st
ture of CuGeO3 and its relation to the magnetic interactio
can be found in Refs. 14 and 15.

The model Hamiltonian~1! has been studied by sever
authors.16 Though the Hamiltonian is not exactly solvable f
all values ofa, the phase diagram is well understood qua
tatively. For 0,a,acr , the ground state remains gaple
~as is the case whena50). The effect ofa is to renormalize
the spin wave velocity in this regime. The value ofacr has
been estimated to be 0.2411.17 Whena.acr , the spectrum
becomes gapped and fora5 1

2, the Hamiltonian~1! is exactly
solvable.18 As mentioned earlier, there has been a renew
interest in this model in the context of CuGeO3. Riera and
Dobry12 as well as Castilla, Chakravarty, and Emery13 com-
puted the thermodynamic susceptibility of the Hamiltoni
~1! numerically and compared it with the experimental v
ues. Both groups found that the presence of a nonvanis
a is needed to provide a consistent description of both
INS and susceptibility results.

If indeed theJ1-J2 model is an appropriate starting poin
to embark on a study of CuGeO3, it would be desirable to
have some way of calculating physical quantities, especi
5944 © 1997 The American Physical Society
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considering the wealth of experimental data now availa
on CuGeO3. This is the primary objective of this stud
where we present some results obtained from a solito
mean-field theory of theJ1-J2 model. This method, which is
meaningful only for a,acr , provides a simple self-
consistent way of evaluating the effects of frustration. W
use this solution to obtain the spinon dispersion relation a
function ofa. We also calculate the ground-state energy a
bulk susceptibility at finite temperatures as a function ofa.
The results for the bulk susceptibility are compared with
experimentally observed values in CuGeO3. We then exam-
ine the Raman continuum seen experimentally aboveTSPand
show how this arises as a natural consequence of comp
magnetic interactions. We compute the Raman intensity
ing the mean-field solution and compare with experimen
results. The paper is organized as follows. In Sec. II,
present the mean-field solution of the Hamiltonian~1! and
use it to compute the static susceptibility. In Sec. III, w
compute the two-magnon Raman scattering intensity aris
from competing magnetic interactions. Section IV contain
brief summary of our results.

II. A MEAN-FIELD SOLUTION OF THE J1-J2 MODEL

In this section, we propose a mean-field solution of
Hamiltonian~1!. This solution is based on a mapping intr
duced by Go´mez Santos19 between the spin-12 Heisenberg
chain with NN interactions and a Hamiltonian describing t
dynamics of antiferromagnetic domain walls. It has also b
used by Weng and collaborators20 for the one-dimensiona
t-J model. We show below how the mapping can be gen
alized to the spin Hamiltonian~1! with NNN interactions as
well. In this mapping, the local degrees of freedom are giv
by the nature of the bond~ferromagnetic or antiferromag
netic! between two interacting spins. We work using period
boundary conditions and choose the following conventi
Néel ordering is characterized by an ‘‘up ’’ spin at the fir
site. Since, by definition, the Ne´el ordered state does no
have a ‘‘kink’’ ~henceforth, we shall use the words ‘‘kink,
‘‘soliton,’’ and ‘‘domain wall’’ interchangeably!, this state is
the vacuum stateu0& of the solitons, which we write sym
bolically as

u0&[u↑↓↑↓↑↓↑↓↑↓↑↓•••&.
A state with a kink between sitesi and i11 is defined to be
a one-soliton statedi

†u0&. For example,d4
†u0& defines the spin

configuration

d4
†u0&[u↓↑↓↑↑↓↑↓↑↓↑↓•••&.

With these definitions, it is easy to verify that the N
term in Eq.~1! is mapped into

J

2(i H ~di21
† di111di21

† di11
† 1H.c.!~12di

†di !

1S di†di2 1

2D J .
Here, we have avoided the sign problem by assuming
solitons to be hard-core bosons. On performing the Jord
Wigner transformation
e
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di→expS ip (
m, i

dm
† dmDdi ,

one sees that the NN term written above preserves its fo
By looking at the action of the NNN term in Eq.~1! on a pair
of interacting spins~or equivalently, a given bond!, one can
write down the NNN term in terms of the soliton operators
the same manner as above. Doing this and performin
Jordan-Wigner transformation, we obtain theJ1-J2 model in
terms of fermionic soliton operators as

H5
J

2(i H ~di11
† 1di11!~12di

†di !~di21
† 2di21!

1S di†di2 1

2D J
1

aJ

2 (
i

~di12
† 1di12!~di11

† di1di
†di11!~di21

† 2di21!

1
aJ

4 (
i

~2di
†di21!~2di11

† di1121!. ~2!

The above mapping may also be verified by using the d
nition of the original spin operators in terms of the soliton
operators, viz.,

Si
15

1

2
~di21

† 2di21!~di
†1di !~122Si

z!,

Si
25

1

2
~di21

† 2di21!~di
†1di !~112Si

z!,

Si
z5

1

2
~2 ! i11expS ip(

j, i
dj
†dj D .

Substituting the above expressions for the spin operator
Eq. ~1!, we recover Eq.~2!. It should be noted that the max
mum number of fermion operators occurring in Eq.~2! is
four, both for the NN term and for the NNN term. Longe
ranged interactions such asSi•Si13 would, on the other
hand, lead to terms containing products of six or more fer
ion operators.

The Hamiltonian~2! is solved by treating the quarti
terms in mean-field theory. We define the following averag
that are determined self-consistently: n̄5^di

†di&,
D15^di21

† di11&, andD25^di21
† di11

† &. In terms of these av-
erages, the mean-field Hamiltonian is given by

HMF5(
i
di
†di H J2 @122~D11D2!#1aJ~2n̄21!J

1(
i

~di21
† di111di21

† di11
† 1H.c.!

3H J2 ~12n̄!1aJ~D11D2!J 1E0 ,

whereN is the number of spins in the chain andE0 is defined
by
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5946 55V. N. MUTHUKUMAR et al.
E05NJ~D11D2!2
NJ

4
2NJ~12n̄!~D11D2!

2NaJ~D11D2!
22NaJS n̄22 1

4D .
The mean-field Hamiltonian can be simplified further by d
fining the following two quantities:

JB[
J

2
@122~D11D2!#1aJ~2n̄21!,

JA[
J

2
~12n̄!1aJ~D11D2!.

Using these definitions and Fourier transforming, the me
field J1-J2 model is written as

HMF5(
k

~JB12JAcos2k!dk
†dk

1 i(
k
JAsin2k~dk

†d2k
† 2d2kdk!1E0 , ~3!

where the lattice constant has been set to be unity.
mean-field Hamiltonian~3! can now be solved by introduc
ing the Bogoliubov transformation

dk5ukak2 ivka2k
† ,

where

uk5
1

A2
S 11

ek
Ek

D 1/2,
vk5

1

A2
S 12

ek
Ek

D 1/2sgnk,
with ek5JB12JAcos2k, Dk52JAsin2k, andEk5Aek

21Dk
2.

It is then easy to see that the Hamiltonian~3! reduces to

HMF5(
k
Ekak

†ak1
1

2(k ~ek2Ek!1E0 .

On evaluating the mean-field quantities and substitut
them in the definitions forJA andJB we get two mean-field
equations that have to be solved for self consistency,

JB5
J

2 F11
1

N(
k

JBcos2k12JA
Ek

~122nk!G
2

aJ

N (
k

2JAcos2k1JB
Ek

~122nk!, ~4!

2JA5
J

2 F11
1

N(
k

2JAcos2k1JB
Ek

~122nk!G
2

aJ

N (
k

JBcos2k12JA
Ek

~122nk!,
-

n-

e

g

where nk is the usual Fermi distribution function. Whe
a50, the above equations reduce to the mean-field eq
tions written down in Refs. 19 and 20. The solution in th
case was obtained asJB52JA . By inspection, we see tha
the solution of the mean-field equations is still given
JB52JA[ J̄, where now,J̄ is modified bya. The dispersion
relation is as before,Ek52J̄ucosku. On substituting the so-
lution in either of the above two equations, we determineJ̄
by the equation

J̄5
J

2 F11
122a

N (
k

ucoskutanh~b J̄ucosku!G .
At zero temperature, the above expression gives us

dispersion relation,

Ek5JF11
2~122a!

p G ucosku. ~5!

Whena50, ~5! describes the dispersion relation for spino
obtained by Faddeev and Takhtajan.21 As pointed out in Ref.
20, the spinon velocity obtained from the mean-fie
theory of antiferromagnetic domain walls, name
(112/p)J'1.64J is quite close to the exact valu
(p/2J'1.57J). Whena is nonzero, our result shows that th
spinon velocity is reduced because of frustration arising fr
the NNN interaction. This is to be expected from physic
grounds. On comparing the spinon velocity in Eq.~5! with
the spinon velocity fora50, we see that the effect of th
NNN term is to reduce the spinon velocity a
vs(a)5vs(0)@124a/(p12)#. The ground-state energy a
T50 is given by E05E0(a50)12aNJ/p2, where
E0(a50)/NJ52(1/p11/p2)'20.420 is the ground-state
energy of the NN Heisenberg chain within this approa
which compares well with the exact result 1
2 ln2'20.443.22

The mean-field solution described above provides
simple way to calculate physical quantities in theJ1-J2
model. In particular, one can see how the presence of
NNN term in the Hamiltonian~1! alters the susceptibility a
finite temperatures. Before we proceed to show this, we
cuss the limitations of the mean-field theory. First, we po
out that though the mean-fieldsolutionis valid for any value
of a, the theory itself is meaningful only in the gapless r
gime, i.e, whena,acr where the spinons are deconfine
This mean-field theory is not suited for studying the tran
tion between the gapless and gapped phases of theJ1-J2
model. We reemphasize that our objective is not to undert
such a study~indeed, far more powerful techniques are ava
able and have been used to study this problem! but to pro-
vide a simple self-consistent prescription to calculate phy
cal quantities in the gapless phase of theJ1-J2 model. Next,
we point out that the mean-field solution is plagued by
reluctance to move away from the universality class of
XY model. This can be seen by writing down the~mean-
field! ground-state wave function in terms of the soliton o
eratorsdk as uC&5)k(uk1vkdk

†d2k
† )u0&. Whereas in the

XY model, the Hamiltonian can be solved exactly to det
mineuk andvk , the mean-field solution of the Heisenberg
well as theJ1-J2 model give the sameuk and vk . In this
sense, this theory has the same difficulties as the mean-
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FIG. 1. Spinon velocity as a function of tem
peratureT, obtained by the solitonic mean-fiel
theory. The long-dashed line shows results f
J5115 K anda50. The solid line is obtained
with J5142 K anda50.24. The values ofJ are
chosen such that the velocities at zero tempe
ture are the same in both cases.
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theory of Bulaevskiı˘23 though the nature of the quasiparticl
in the two theories are entirely different. Finally, let us co
sider the reduction in the spinon velocity as a function of
NNN coupling a. From Eq. ~5!, we see that the velocity
vs(a)'vs(0)(120.8a). This result can be checked nume
cally. In a recent numerical study, Fledderjohann and Gro24

found that the spinon velocity in theJ1-J2 model can be fit
to the relationvs(a)5vs(0)(121.12a). Thus we see tha
the results from mean-field theoryunderestimatethe effects
of frustration.

We are now ready to consider the static susceptibility
finite temperatures. In particular, we are interested in see
how the presence of a NNN interaction alters the susce
bility of an antiferromagnetic Heisenberg chain. Now, it
well known that the susceptibility of the Heisenberg chain
constant at zero temperature and increases to a broad m
mum atT50.641J.11 The increase in susceptibility is due
the gapless spinon excitations. As we shall see, the N
term causes a suppression in the maximum value of
susceptibility. The reason for this is that the spinon veloc
now has a different temperature dependence with a non
a. To illustrate this, we show in Fig. 1, the spinon velocity
a function of temperature. The long-dashed line shows
results for the casea50. The solid line shows the spino
velocity as a function of temperature fora50.24. For the
latter case, we have, for purposes of illustration, choseJ
such that the velocity atT50, given by Eq.~5! is the same
as that fora50. It should be noted that while the low tem
perature velocities for differenta are identical, the results
begin to differ as temperature increases. In particular, t
are perceptibly different atT'0.6J. Therefore, we should
expect a difference in the finite temperature susceptibili
as a function ofa at these temperatures.

We have calculated the static susceptibility at finite te
peratures from the mean-field solution. At this point, it
crucial to realize that the results from the mean-field the
violate spin-rotational invariance of the underlying Ham
tonian, and that the physically relevant susceptibility wou
be given by the average
-
e

t
g
ti-

s
xi-

N
is
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ro

e

y

s
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y

x5
1

3
~xxx1xyy1xzz!,

wherexxx , xyy , xzz are the susceptibilities for the applie
magnetic fields inx, y, andz directions, respectively. Nex
we note that our mean-field theory becomes exact for
XY model for which the susceptibilitiesxzz

XY51/p'0.318
andxxx

XY5xyy
XY'0.075'xzz

XY/4,25 in dimensionless units and
at zero temperature. We therefore have for theXYmodel, the
relation

x'
1

3 S 141
1

4
11Dxzz

XY5
1

2
xzz
XY. ~6!

We have applied this relation to our mean-field solution
the Heisenberg model.

A straightforward calculation shows that the susceptibil
at zero temperature is given by

x

g2mB
2N

5
1

2pvs
,

whereg is the gyromagnetic ratio,mB is the electron Bohr
magneton andvs , as before, is the spinon velocity. The fa
tor 2 in the denominator comes from the average over
directions of the applied magnetic field as given by Eq.~6!.

As a quick check of our results, let us consider the c
a50 and compare with the results of Bonner and Fishe11

At T50, from Eq.~5! and the above expression for susce
tibility, we getx(T50)J/(g2mB

2N)'0.106, which compares
very well with the Bethe-Ansatz results 1/p2'0.101.11 At
finite temperatures, we solved the mean-field Eqs.~4! nu-
merically and used it to determine the susceptibility. W
found that the temperature at which the susceptibility atta
its maximum value is given bykBTmax/J50.61, while the
corresponding value quoted in Ref. 11 is 0.641. These c
parisons encourage us to proceed to the caseaÞ0.

Our results for the caseaÞ0 are summarized in Fig. 2
where they are compared with experimentally obtained v
ues from a polycrystalline sample of CuGeO3.

26 We have
choseng52.0 in all our calculations. The long-dashed lin
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FIG. 2. Experimental susceptibility of CuGeO

3 @filled squares,~Ref. 26!# as a function of tem-
perature compared with results from the mea
field theory of theJ1-J2 model. The long-dashed
line shows results withJ588 K anda50. The
dotted line shows results withJ5115 K and
a50. The solid line is obtained withJ5142 K
anda50.24.
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shows the results forJ588 K, a50 that are clearly in dis-
agreement with experiment. The choice ofJ588 K ~Ref. 1!
stems from the observed temperature~56 K! at which the
susceptibility attains its maximal value and its relation toJ
from the results of Ref. 11 or equivalently, our results. T
dotted line shows the results we obtained from choos
J5115 K,a50. This choice ofJ yields the observed valu
of spinon velocity from INS~Ref. 8! without including the
effects of frustration. It is clear that there still remains
discrepancy between the observed and calculated value
intermediate temperatures. Our results for the susceptib
with a nonvanishinga are given by the solid line. Here, w
have chosenJ5142 K anda50.24. This choice of param
eters when substituted in Eq.~5! gives the value of the
spinon velocity observed in INS.~Note that the correspond
ing value ofJ determined numerically in Ref. 13 isJ5150
K.! At low temperatures, results with and withouta are iden-
tical ~see Fig. 1 and our discussion of those results!. How-
ever, we see that as temperature increases, a nonvani
a does tend to suppress the susceptibility. We see that t
is still a discrepancy between theory and experiment whic
of the order of 10%. We believe this discrepancy is beca
the mean-field theory underestimates the effects of frus
tion. We also considered the possibility that the discrepa
between theory and experiment may well be due to the ef
of interchain coupling. As mentioned earlier, the interch
superexchangeJb'0.1Jc and this could play an importan
role. A qualitative argument against this possibility is that
temperatures where the discrepancy is maxim
(T.0.5TSP), the magnetic correlation lengths should
small. To substantiate this argument, we did a simple ca
lation using renormalized spin wave theory with the app
priate values ofJb and Jc . Were it to order antiferromag
netically, the observed values of the superexcha
interactions suggest that the ‘‘Ne´el temperature’’ of
CuGeO3 would be;10 K which is lower thanTSP. At
temperatures aboveTSP, the effect of~short-range! antifer-
romagnetic ordering can be easily estimated by spin w
e
g

at
ty

ing
re
is
e
a-
y
ct

t
l

u-
-

e

e

theory. A standard calculation using the ‘‘decouplin
approximation’’27 gives us the susceptibilityx in terms of
the integral equation

1

p2E
0

pE
0

p

dz dy
1

2~go2gk!2x21 5
1

4kBT
,

where go[Jc1Jb and gk[Jccosz1Jbcosy. We have ig-
noredJa'20.01Jc and setgmB to be unity for convenience
One integration in the left-hand side of the above express
can be done trivially and we obtain

E
0

p

dz
1

A~ x̄1cosz!220.01
5

p

2 S J

kBT
D ,

where x̄[(2Jx)2121.1 and Jc[J510Jb . Solving the
above equation numerically withJ5115 K, we obtain the
susceptibility as shown in Fig. 3. It should be remembe
that the theoretical results are valid only at temperatures w
aboveTSPwhere the effects of phonons as well as effects d
to competing antiferromagnetic and SP instabilities can
ignored. The results in Fig. 2 and Fig. 3 show that a o
dimensional model with frustration is indeed a better start
point to study CuGeO3 rather than an anisotropic two
dimensional model. This is in agreement with a number
experimental observations such as~i! a nonzero nuclear spin
lattice relaxation rate seen in a Cu NQR study,28 ~ii ! the
two-spinon continuum observed in INS aboveTSP,

4,9 and
~iii ! a broad continuum of magnetic excitations seen in tw
magnon Raman scattering aboveTSP,

29 which will be dis-
cussed in the next section. All these experiments show c
acteristic features of a one-dimensional Heisenb
antiferromagnetic chain.

Since our mean-field solution underestimates the effe
of frustration, we are unable to determine the exact ratio
J2 /J1 in CuGeO3. As we mentioned in the Introduction, th
value ofJ2 /J1 was estimated to be 0.36~Ref. 12! and 0.24
~Ref. 13! by two independent studies. Since these two val
lead to two different fixed points~gapped and ungapped sp
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FIG. 3. A comparison between the exper
mental susceptibility of CuGeO3 @filled squares,
~Ref. 26!# and results obtained from a 2D spi
wave theory withJc5115 K andJb50.1Jc .
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excitation spectra, respectively!, careful experimental inves
tigation of spin dynamics aboveTSP may provide further
clues. Recently, Kuroe et al.30 have claimed that
J2 /J150.3560.05 leads to a good fit of the magnetic sp
cific heat as determined by quasielastic Raman scatterin
should be noted, however, that this choice does not fit
observed magnetic susceptibility.

Before we conclude this section, we discuss how the te
perature dependence of the spinon velocity may be use
determine the presence of competing magnetic interact
in quasi-one-dimensional~1D! materials. As shown in Fig. 1
a nonzero value ofJ2 /J1 leads to a difference in the tem
perature dependence ofvs(T). This feature may be detecte
experimentally. As a possibility, we suggest INS expe
ments in the presence of a magnetic field. In the presenc
a magnetic field, it is known that the spinon dispersionEk
goes to zero atk given by cosk522H/vs(T).

31 This is a fea-
ture of low-dimensional spin excitations and is seen in
XY model as well. This behavior should be contrasted w
spin wave~magnon! excitations, where no such node appe
in the magnon dispersion as a function of the magnetic fi
An examination of the temperature dependence of this n
with moderately high fieldsH/J;0.2 should indicate the
presence of frustration as shown in Fig. 1.

III. TWO-MAGNON RAMAN CONTINUUM IN CuGeO 3

In this section, we consider the Raman spectra in the
mogeneous phase of CuGeO3 observed in two-magnon sca
tering experiments.29 A partial account of the results in thi
section has been published elsewhere.32 For completeness
we first give a brief summary of the pertinent experimen
results.

Scattering of light from magnetic~as opposed to phonon!
excitations in CuGeO3 is strongest in the (zz) geometry,
viz., when both incident and scattered light are polariz
along the crystallographicĉ direction. This is consistent with
the fact that exchange interactions are strongest along
-
It
e

-
to
ns

-
of

e
h
s
d.
de

o-

l

d

is

direction. The Raman spectra aboveTSP are rather feature-
less and the spectral weight is distributed over a wide ra
of energies~100–300 cm21). A broad maximum is observed
around 250 cm21. This should be contrasted with the Ram
spectra observed in antiferromagnetically ordered co
pounds such as the rutile or perovskite halides. In these c
pounds, one typically observes a well defined peak at ch
acteristic magnon energies which is broadened by magn
magnon interactions.33 This comparison immediately
suggests light scattering in CuGeO3 from a continuum of
excitations rather than single-particle excitations~magnons!.

The magnetic Raman scattering in CuGeO3 can be stud-
ied using the scheme of Fleury and Loudon.34 The basic idea
is that in an exchange-coupled system, an incident pho
can create particle-hole excitations accompanied by a pa
spin flips that propagate as magnons. In this scheme the
man operatorHR has essentially the same form as t
Heisenberg exchange interaction, i.e.,HR;( iSi•Si11. In
one dimensional chains with NN exchange interaction,
are faced with an intriguing situation where the Raman
erator for scattering in the (zz) geometry is proportional to
the Hamiltonian itself. Thus, there should be no Raman s
tering from a NN Heisenberg spin chain, a fact which has
been appreciated previously.29 However, there are two way
in which Raman scattering can occur:~i! interchain cou-
plings and ~ii ! exchange interactions that are extended
space, i.e., NNN interactions. Let us first consider the form
possibility. The role of the interchain couplings is to esta
lish short-range antiferromagnetic order. In such a case,
cident light is scattered off paramagnon excitations. Ho
ever, as we mentioned earlier, the featureless spe
observed in CuGeO3 seem to indicate scattering from a co
tinuum of excitations. This is basically a one-dimension
feature. The second possibility is therefore a more via
explanation of the experimental results. In view of the resu
discussed in the previous section, it is also a more nat
choice. Thus, we work with a Hamiltonian which has bo
NN and NNN interactions. This implies that the Raman o
erator will also have both NN and NNN terms. For conv
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FIG. 4. The two-magnon Raman continuu
seen in experiment@filled squares,~Ref. 32! see
also~Ref. 29!# at T520 K compared with results
obtained from mean-field theory~solid line!. The
theoretical results were obtained withJ5142 K
anda50.24.
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nience, we subtract from the Raman operator, a part wh
commutes with the basic Hamiltonian of CuGeO3 ~1!, we
can write down a Raman operator of the form

HR5A(
i
Si•Si12 .

The Raman intensity is then evaluated by considering
appropriate spectral function.

We now use the mean-field theory described in the pre
ous section to compute the Raman intensity. The Raman
eratorR can be written in terms of the soliton operators a
transformed into quasiparticle or spinon operators just as
did in the previous section. We find that there are three b
physical processes caused byR: ~i! spinon-spinon scattering
~ii ! two-spinon creation/annihilation, and~iii ! four-spinon
creation/annihilation. Of these,~ii ! corresponds to one
magnon excitations. On using the mean-field solution,
can show that the contribution to light scattering from the
excitations vanishes, which is just the statement that o
magnon excitations withk50 have zero spectral weigh
Two-magnon scattering is given by~iii !. We find that the
matrix element for two-magnon~four-spinon! creation
~Stokes component of the scattering intensity! is given by

1

N (
kk8qq8

d~k1k81q1q8!ak
†ak8

† aq
†aq8

†

3@ 1
2 exp$2 i ~2k1k82q8!%

3$~ukuk81 ivkuk8!~vqvq81 ivquq8!

2~ukvk81 ivkvk8!~uqvq81 iuquq8!%

2exp$2 i ~q1q8!%ukvk8uqvq8#,

where the summation is over the range of spinon mome
and the quantitiesuk and vk are as defined in the previou
section. The matrix element can be understood as ari
from a decomposition of two magnon excitations into fo
h

e

i-
p-

e
ic

e
e
e-

ta

ng
r

spinon excitations with total momentum zero. Given this m
trix element, we can calculate the Raman intensity. T
mean-field solution thus provides a way of incorporating m
trix element effects arising from the Raman operator inst
of postulatingad hocfiltering functions that mimic matrix
element effects. As noted elsewhere,32 such effects could be
very important and ignoring them often leads to erroneo
conclusions.

The results for the Raman intensity atT520 K with
J5142 K anda50.24 are shown in Fig. 4~solid line! where
they are compared with experimental results~squares! ob-
tained from a single-crystal sample. Phonon lines at 184
330 cm21 have been subtracted from the experimental da
Since we do not know the value ofA in our definition of the
Raman operatorR, we have normalized the maximal theo
retical value of the intensity to the maximal experimen
value. A uniform background of 50 counts has also be
subtracted from the experimental data. We see that there
reasonable agreement between theory and experiment a
as the observed continuum is concerned. The shoulder
served experimentally at; 390 cm21 is not understood and
our calculations show no indications of this feature. We a
see that the maximum of the experimental data is shif
slightly toward larger energies than the theoretical resu
This could either be due to interchain couplings and phon
effects that have been neglected or a mismatch in the pa
eters we have chosen. Our calculations are in good ag
ment with results from exact diagonalization32 as well as
those of Singh and collaborators35 who have studied the
same problem recently using a finite temperature Lanc
method. We have also calculated the Raman intensitie
higher temperatures. We find that the continuum broad
out as temperature is increased and there is no accumul
of spectral weight at lower energies as seen in experime29

From the results shown in Fig. 4, we conclude that
Hamiltonian~1! provides a good description of the observ
Raman continuum owing solely to the presence of the N
interaction. These results as well as the reasoning be
them also lead us to conclude that there would be no inela
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Raman intensity in one-dimensional chains such as KC3
where NNN interactions are negligible. In such materia
while INS can observe theone-magnoncontinuum, thetwo-
magnoncontinuum cannot be observed in Raman scatter
These conclusions are indeed borne out by experiments36

IV. SUMMARY

To summarize the results of this study, we have propo
a mean-field solution to the antiferromagnetic Heisenb
chain with NN and NNN interactions. This was motivated
recent interest evinced in the spin-Peierls compou
CuGeO3 where it is suspected that NNN interactions play
important role. Our mean-field solution provides a se
consistent way to include the effects of frustration and c
culate physical quantities of interest as a function of te
perature. Though we have limited our attention
experimental results in CuGeO3, the results in this paper ca
be used to study the effects of frustration in generic quasi
systems.

As a first application, we have evaluated the tempera
dependent spin-wave velocity,vs(T) and found that~i!
vs(T) decreases rapidly fora50 with increasingT, a being
the ratio between the NNN and NN interactions and~ii ! this
decrease is much less pronounced foraÞ0. We propose tha
this fact could be exploited to determine the frustration
rametera directly from measurements ofvs(T), e.g., by
inelastic-neutron-scattering studies in other quasi-1D s
tems.

We then used the mean-field theory to evaluate the s
susceptibility x. A comparison with experimental resul
shows that the inclusion of frustration does reproduce
suppression of susceptibility at finite temperatures seen
-

.
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g.

d
g

d

-
l-
-

D

re

-

s-

tic

e
x-

perimentally. We have been able to identify the physical re
son for the suppression ofx as a function ofa with the
differing behavior of the respectivevs(T). We have also
presented the results of a spin wave calculation for an an
tropic two-dimensional Heisenberg model which do not,
the other hand, compare well with the experimental resu
for the susceptibility. This suggests that a one-dimensio
model with frustration is a more appropriate starting point
model the homogeneous phase of CuGeO3.

We also used the mean-field solution to calculate the tw
magnon Raman intensity from a one-dimensional antifer
magnetic chain and showed that frustration is necessary
obtaining a nonvanishing spectral weight. Considering
fact that NNN interactions are needed to produce a good
to the static susceptibility of CuGeO3, using the same idea to
explain the Raman continuum provides a consistent pict
as far as modeling goes. Quite apart from the relevance
CuGeO3, this method of computing Raman intensity can
used to study experimental results now available
Sr2CuO3 and SrCuO2.

37 Clearly, a complete understandin
of CuGeO3 calls for the inclusion of interchain and phono
effects. The mean-field solution presented in this paper p
vides a way to incorporate these effects systematically. W
is in progress on these issues and results will be reported
forthcoming publication.
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