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We present a mean-field solution of the antiferromagnetic Heisenberg chain with ndayeshd next-to-
nearest neighborJg) interactions. This solution provides a way to estimate the effects of frustration. We
calculate the temperature-dependent spin-wave velogiyf;) and discuss the possibility to determine the
magnitude of frustratiod, /J; present in quasi-one-dimensional compounds from measuremaniTof We
compute the thermodynamic susceptibility at finite temperatures and compare it with the observed suscepti-
bility of the spin-Peierls compound CuGgOWe also use the method to study the two-magnon Raman
continuum observed in CuGgGabove the spin-Peierls transitidi$0163-18207)01009-6

[. INTRODUCTION the value ofJ, estimated from static susceptibility measure-
ments and INS led to the propogaf-3that a minimal model

The discovery of the spin-Peierl§P transition in the to describe the magnetic properties of this system above
inorganic material CuGe@ (Ref. 1) has led to an intense Tspis the so-called J;-J,” model. This model describes an
investigation of the magnetic properties of this system. It isantiferromagnetic Heisenberg chain with nearest neighbor
becoming increasingly clear that this material may not be d4NN) and next-to-nearest neighb@NN) exchange interac-
prototype SP system such as the quasi-one-dimensional dions. The model Hamiltonian is written as
ganic material TTFCuBDT.For example, the temperature
dependence of the SP dhajs unlike what is expected for H:JEi (S$:S+1+aS-S42), N

conventional SP systeris.A recent inelastic-neutron- whereJ=1J, is the intrachain superexchange between neigh-

scattering experimehteports observing a spin gap at tem- boring Cu ions along the direction. The second term in the
peratures above the ,SP transition temperafige So far, Hamiltonian (1) is the exchange interaction between next to
there has been no e.V|dence. for the presence of a phonon st 5 est neighbor Cu ions. In CuGgQthe NNN superex-
mode® X-ray-scattering studies of the incommensurate phas@hange path is through Cu-O-O-Cu and is identical to that in
of CuGeQ; show the existence of a soliton lattice with the the cuprate superconductors. A detailed analysis of the struc-

width of the soliton being much larger than that predicted bytyre of CuGeQ and its relation to the magnetic interaction
calculation® These results, taken together, call for a bettercan be found in Refs. 14 and 15.

understanding of the homogeneous state of Cugakibve The model Hamiltoniar(1) has been studied by several
Tsp Which should eventually shed light on the nature of theauthors'® Though the Hamiltonian is not exactly solvable for
SP transition itself. all values ofa, the phase diagram is well understood quali-

The basic structure of CuGe(onsists of edge-sharing tatively. For O< e<a,, the ground state remains gapless
CuOg octahedra forming Cu@ chains along the crystallo- (as is the case whem=0). The effect ofx is to renormalize
graphic¢ axis. The dimerization of th&=3Cu ions below the spin wave velocity in this regime. The value ®f. has
14 K has been determined by neutron-diffractionbeen estimated to be 0.2411When a> «,, the spectrum
measurements. From inelastic-neutron-scatteringINS)  becomes gapped and far= 3, the Hamiltoniar(1) is exactly
measurements, Nisleit al® estimated the intrachain and in- solvable'® As mentioned earlier, there has been a renewed
terchain exchange parametelg~120 K, J,~0.1J;, sug- interest in this model in the context of CuGeCRiera and
gesting that interchain effects may not be negligible in thisDobry*? as well as Castilla, Chakravarty, and Enféryom-
compound. On the other hand, INS measurements abovauted the thermodynamic susceptibility of the Hamiltonian
Tsp clearly show the two-spinon continuum which is char- (1) numerically and compared it with the experimental val-
acteristic of a one-dimensionab=31 antiferromagnetic ues. Both groups found that the presence of a nonvanishing
chain® The susceptibility of CuGe@aboveTss shows a  «a is needed to provide a consistent description of both the
broad maximum as expected for Heisenberg chains. FronNS and susceptibility results.
the temperature at which this maximum is obseri&gl K), If indeed theJ;-J, model is an appropriate starting point
one can estimate the value &f using the results of Bonner to embark on a study of CuGeQit would be desirable to
and Fishet! yielding J,=88 K. This discrepancy between have some way of calculating physical quantities, especially
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on CuGeQ. This is the primary objective of this study di,
where we present some results obtained from a solitonic
mean-field theory of thé;-J, model. This method, which is one sees that the NN term written above preserves its form.
meaningful only for a<a., provides a simple self- By looking at the action of the NNN term in E¢L) on a pair
consistent way of evaluating the effects of frustration. Weof interacting spingor equivalently, a given bondone can

use this solution to obtain the spinon dispersion relation as arite down the NNN term in terms of the soliton operators in
function of «. We also calculate the ground-state energy andhe same manner as above. Doing this and performing a
bulk susceptibility at finite temperatures as a functiorwof  Jordan-Wigner transformation, we obtain theJ, model in

The results for the bulk susceptibility are compared with theterms of fermionic soliton operators as

experimentally observed values in CuGgQ®@Ve then exam-

ine the Raman continuum seen experimentally aliayeand J
show how this arises as a natural consequence of competinb| = 52
magnetic interactions. We compute the Raman intensity us-

ing the mean-field solution and compare with experimental
results. The paper is organized as follows. In Sec. I, we +
present the mean-field solution of the Hamiltonidn and

use it to compute the static susceptibility. In Sec. lll, we
compute the two-magnon Raman scattering intensity arising
from competing magnetic interactions. Section IV contains a
brief summary of our results.

considering the wealth of experimental data now available p(
di—>eX

{(dhﬁdiﬂ)(l—d?di)(d?1—di1>

1

d?di—z)
ad

+ 52 (Aot dio)(dlditdldi ) dl - diy)

J
+ > (2d]di=1)(2df, 1 1), @

Il. A MEAN-FIELD SOLUTION OF THE J;-J, MODEL
The above mapping may also be verified by using the defi-

In this section, we propose a mean-field solution of thepjtion of the original spin operators in terms of the solitonic
Hamiltonian(1). This solution is based on a mapping intro- gperators, viz.

duced by Gmez Santd$ between the spig- Heisenberg

chain with NN interactions and a Hamiltonian describing the 1

dynamics of antiferromagnetic domain walls. It has also been s’ =§(diT_1— d; _1)(diT+ di)(1-23),

used by Weng and collaborat8tgor the one-dimensional

t-J model. We show below how the mapping can be gener- 1

alized to the spin Hamiltoniaffl) with NNN interactions as S ==(d_,—di_y)(d +d)(1+25),

well. In this mapping, the local degrees of freedom are given 2

by the nature of the bonéferromagnetic or antiferromag-

netic) between two interacting spins. We work using periodic , 1 i1 ) t

boundary conditions and choose the following convention: Si=5(=)""ex I7Tj2<i did;|.

Neel ordering is characterized by an “up ” spin at the first

site. Since, by definition, the & ordered state does not Substituting the above expressions for the spin operators in
have a “kink” (henceforth, we shall use the words “kink,” Eq. (1), we recover Eq(2). It should be noted that the maxi-
“soliton,” and “domain wall” interchangeably, this state is mum number of fermion operators occurring in E@) is
the vacuum stat¢0) of the solitons, which we write sym- four, both for the NN term and for the NNN term. Longer

bolically as ranged interactions such &-S.3; would, on the other
hand, lead to terms containing products of six or more ferm-
[0)=[TLTLTLTLTITL ). ion operators.
A state with a kink between sitésandi + 1 is defined to be The Hamiltonian(2) is solved by treating the quartic
a one-soliton statd!|0). For exampled}|0) defines the spin  €rMs in mean-field theory. We define the following averages
configuration that are determined self-consistently:n=(d;d;},
Ay=(d!_,di.1), andA,=(d!_,dI, ). In terms of these av-
dlOY=|LTLTTLTLTLTL ). erages, the mean-field Hamiltonian is given by
With these definitions, it is easy to verify that the NN J _
term in Eq.(1) is mapped into HMFZZi ddei[ 5[1—2(A1+A2)]+a\](2n—1)]

J
-> [(df_ di,,+d’_,df, ., +H.c)(1—dld)
P - +Z (df_ydisq+dlydl, 4+ H.c)

—+

ddei - —> ] J —
2 X E(l—n)+aJ(Al+A2) +Eo,
Here, we have avoided the sign problem by assuming the
solitons to be hard-core bosons. On performing the JordarwhereN is the number of spins in the chain aBg is defined

Wigner transformation by
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NJ where ny is the usual Fermi distribution function. When
Eo=NJ(A;+A5)— = —NJ(1- n)(A;+4,) a=0, the above equations reduce to the mean-field equa-
tions written down in Refs. 19 and 20. The solution in that
) — case was obtained akg=2J,. By inspection, we see that
~NaJ(A;+A42)°—Nad|n T4l the solution of the mean-field equations is still given by
Jg=2J,=J, where now,J is modified bya. The dispersion
The mean-field Hamiltonian can be simplified further by de- q|5ti0n is as beforeE, = 2J|cosk|. On substituting the so-

fining the following two quantities: lution in either of the above two equations, we determine
by the equation

——[1 2(A1+A,)]+ad(2n—1), 3
\]ZE 1+

1-2 —
N %S |cosk|tank BI|cosk|) .
k

J _
Ja= (1= +al(A114,). At zero temperature, the above expression gives us the
dispersion relation,
Using these definitions and Fourier transforming, the mean-

field J;-J, model is written as 2(1-2a)
E=J 1+ - |cosk|. (5)

_ t
Hwr= Ek (Jg+2Jac05K) dy di Whena=0, (5) describes the dispersion relation for spinons

obtained by Faddeev and Takhtafams pointed out in Ref.
20, the spinon velocity obtained from the mean-field
theory of antiferromagnetic domain walls, namely
(1+2/7)J=1.64) is quite close to the exact value
where the lattice constant has been set to be unity. Ther/2J~1.57]). Whena is nonzero, our result shows that the
mean-field Hamiltoniar{3) can now be solved by introduc- spinon velocity is reduced because of frustration arising from

+i, Jasin2k(did",—d_d)+Eo, ()
k

ing the Bogoliubov transformation the NNN interaction. This is to be expected from physical
_ N grounds. On comparing the spinon velocity in E§) with
dy=Uka—ivgay, the spinon velocity fore=0, we see that the effect of the

NNN term is to reduce the spinon velocity as
vs(a@)=v4(0)[1—4al/(m+2)]. The ground-state energy at
2 T=0 is given by Ey=Eq(a=0)+2aNJ/ 7% where
1+ 3) , Eo(a=0)/NJ=— (1/m+ 1/m?)~—0.420 is the ground-state
energy of the NN Heisenberg chain within this approach,
which compares well with the exact result 1/4
1 |12 —In2~-0.443%
(1— ) sgrk, The mean-field solution described above provides a
simple way to calculate physical quantities in the-J,
model. In particular, one can see how the presence of the
With €, =Jg+2J,C08%, A,=2J,sinX, and E, = m NNN term in the Hamiltoniar(1) alters the suscepti_bility at
It is then easy to see that the Hamiltonig® reduces to finite temperatures. Before we prc_)ceed to shov_v this, we (.j's'
cuss the limitations of the mean-field theory. First, we point

1 out that though the mean-fietblutionis valid for any value
HMF=2 EkalakJr —Z (ex—Ep)t+Eg. of «, the theory itself is meaningful only in the gapless re-
k 2% gime, i.e, whena<a, where the spinons are deconfined.
On evaluating the mean-field quantities and substitutmg%rh's mean-field theory is not suited for studying the transi-
them in the definitions fod, andJg we get two mean-field 1oN between the gapless and gapped phases of fhk
equations that have to be solved for self consistency, model. We rgemphasae that our objective |s.not to undertgke
such a studyindeed, far more powerful techniques are avail-

where

Jacosk+2J, able and have been used to study this probleot to pro-
Jg= 2[ —2 —(1—2nk) vide a simple self-consistent prescription to calculate physi-

cal quantities in the gapless phase of $hel, model. Next,
23,cosK+Jg we point out that the mean-field solution is plagued by its
- —E —(1—2nk), (4) reluctance to move away from the universality class of the

XY model. This can be seen by writing down tfreean-
field) ground-state wave function in terms of the soliton op-

ZJA=£ 1+£2 2JACOS'ZkJ“]B(l_an) eratorsd, as |\P>=Hk(u,§+vkdldik)|0). Whereas in the
2 N“K Ex XY model, the Hamiltonian can be solved exactly to deter-
mineu, andv,, the mean-field solution of the Heisenberg as

JgCosXK+2J,

_ _2 (1-2n,) well as theJ;-J, model give the same, andv. In this
N % = Ko sense, this theory has the same difficulties as the mean-field
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FIG. 1. Spinon velocity as a function of tem-
< peratureT, obtained by the solitonic mean-field
o 800} theory. The long-dashed line shows results for
g J=115 K anda=0. The solid line is obtained
with J=142 K anda=0.24. The values ol are
chosen such that the velocities at zero tempera-
ture are the same in both cases.
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theory of Bulaevskf though the nature of the quasiparticles 1

in the two theories are entirely different. Finally, let us con- X= §(Xxx+ XyyT Xz2)

sider the reduction in the spinon velocity as a function of the o )
NNN coupling a. From Eg.(5), we see that the velocity WN€rexxx: Xyy. Xz, are the susceptibilities for the applied
vo(@)~v4(0)(1—0.8). This result can be checked numeri- magnetic fields irx, v, aqdz directions, respectively. Next
cally. In a recent numerical study, Fledderjohann and ros we note that our .mean-fleld the‘?rY.k.’e")??‘_es eiact for the
found that the spinon velocity in th#-J, model can be fit X\ij mxc:(d_el L?(nghégghiyilﬁg?ptép"me’?.ﬂ _I 1/W~0.£318 d
to the relationvg(a)=v¢(0)(1—1.12x¢). Thus we see that and Xx = Xyy = - Xzz % 1N GIMENSION'ESS UNIs an

. . at zero temperature. We therefore have forthemodel, the
the results from mean-field theoonderestimatahe effects P

. relation
of frustration.
We are now ready to consider the static susceptibility at 11 xy_ 1 xy
finite temperatures. In particular, we are interested in seeing 3 27271 Xz =Xz ©®

how the presence of a NNN interaction alters the suscepti- . . . ) .
bility of an antiferromagnetic Heisenberg chain. Now, it is B[/r\(: Ez;lszr?ggr“ge?nggzlrelauon to our mean-field solution of

\év:rl]lslgrc])g/v ar;[ ?:rtot?g nfggf:tﬂ?gI!:Zdor nt?é:seé:etgbaerg rggglr%:xi- A straightforward (_:alc_ulation shows that the susceptibility
mum atT=0.641).1 The increase in susceptibility is due to at zero temperature is given by
the gapless spinon excitations. As we shall see, the NNN X 1
term causes a suppression in the maximum value of this
susceptibility. The reason for this is that the spinon velocity
now has a different temperature dependence with a nonzemghereg is the gyromagnetic ratigug is the electron Bohr
a. Toillustrate this, we show in Fig. 1, the spinon velocity asmagneton and., as before, is the spinon velocity. The fac-
a function of temperature. The long-dashed line shows théor 2 in the denominator comes from the average over the
results for the casee=0. The solid line shows the spinon directions of the applied magnetic field as given by E&j.
velocity as a function of temperature far=0.24. For the As a quick check of our results, let us consider the case
latter case, we have, for purposes of illustration, chosen @=0 and compare with the results of Bonner and Fisher.
such that the velocity af=0, given by Eq.(5) is the same At T=0, from Eq.(5) and the above expression for suscep-
as that fora=0. It should be noted that while the low tem- tibility, we getX(T=O)J/(gz,uéN)%O.l%, which compares
perature velocities for different are identical, the results very well with the Bethe-Ansatz results77~0.101 At
begin to differ as temperature increases. In particular, thefinite temperatures, we solved the mean-field Bg$.nu-
are perceptibly different aT~0.6]. Therefore, we should merically and used it to determine the susceptibility. We
expect a difference in the finite temperature susceptibilitie§ound that the temperature at which the susceptibility attains
as a function ofx at these temperatures. its maximum value is given b%gTnma/J=0.61, while the
We have calculated the static susceptibility at finite tem-corresponding value quoted in Ref. 11 is 0.641. These com-
peratures from the mean-field solution. At this point, it is parisons encourage us to proceed to the ces®.
crucial to realize that the results from the mean-field theory Our results for the case#0 are summarized in Fig. 2
violate spin-rotational invariance of the underlying Hamil- where they are compared with experimentally obtained val-
tonian, and that the physically relevant susceptibility wouldues from a polycrystalline sample of CuGgéy We have
be given by the average choseng=2.0 in all our calculations. The long-dashed line

92uiN 27
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_ FIG. 2. Experimental susceptibility of CuGeO
2 3 [filled squares(Ref. 26] as a function of tem-
£ perature compared with results from the mean-
c,I,E field theory of thel;-J, model. The long-dashed
2 line shows results withl=88 K anda=0. The
= 100 dotted line shows results witd=115 K and
' a=0. The solid line is obtained witd=142 K
anda=0.24.
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shows the results fai=88 K, «=0 that are clearly in dis- theory. A standard calculation using the “decoupling
agreement with experiment. The choiceJof 88 K (Ref. 1) approximation?’ gives us the susceptibility in terms of
stems from the observed temperat® K) at which the the integral equation

susceptibility attains its maximal value and its relationJto

from the results of Ref. 11 or equivalently, our results. The if”f”dz dv _ 1
dotted line shows the results we obtained from choosing mJ)o Jo yZ(yo—yk)—)fl AkgT’
J=115 K, «=0. This choice of] yields the observed value

of spinon velocity from INS(Ref. 8 without including the ~Where y,=Jc+Jp and y,=Jccosz+J,cosy. We have ig-
effects of frustration. It is clear that there still remains anoredJ,~—0.01J; and segug to be unity for convenience..
discrepancy between the observed and calculated values @€ integration in the left-hand side of the above expression
intermediate temperatures. Our results for the susceptibility@" P& done trivially and we obtain

with a nonvanishingx are given by the solid line. Here, we

have chosed =142 K anda=0.24. This choice of param- J'Wdz 1 _ Z(i)
eters when substituted in E@5) gives the value of the o J(xy+tcoz)2-0.01 2\ksT/’
spinon velocity observed in IN§Note that the correspond- o

ing value ofJ determined numerically in Ref. 13 =150 Where y=(2Jx) *—1.1 and J;=J=1QJ,. Solving the

K.) At low temperatures, results with and withautare iden- ~ above equation numerically with=115 K, we obtain the
tical (see Fig. 1 and our discussion of those regukw- susceptibility as shown in Fig. 3._ It should be remembered
ever, we see that as temperature increases, a nonvanishi t the theoretical results are valid only at temperatures well

a does tend to suppress the susceptibility. We see that theéo
is still a discrepancy between theory and experiment which i - ;
of the order of 10%. We believe this discrepancy is becaus nored. The results in Fig. 2 and Fig. 3 show that a one-

the mean-field theory underestimates the effects of frustra-;Tninféog?iyocgdgggf:;tsrt]z“?r?;; 'giezcri]izobtgteigst\?vrg_ng
tion. We also considered the possibility that the discrepancg y P

between theory and experiment mav well be due to the eff imensional model. This is in agreement with a number of
etween theory and experime ay well be due 1o the etec xperimental observations such(8sa nonzero nuclear spin-

of interchain coupling. As men_tioned earlier, the_ in'[erchainIattice relaxation rate seen in a Cu NQR stﬁﬁl;(ji) the
superexchangd,~0.1]. and this could play an important two-spinon continuum observed in INS aboVep,*° and
role. A qualitative argument against this possibility is that at(iii) a broad continuum of magnetic excitations seen in two-
temperatures  where the discrepancy is maximalnagnon Raman scattering aboVee,2° which will be dis-
(T>0.5Tsp), the magnetic correlation lengths should becyssed in the next section. All these experiments show char-
small. To substantiate this argument, we did a simple calcuacteristic features of a one-dimensional Heisenberg
lation using renormalized spin wave theory with the appro-antiferromagnetic chain.

priate values of], andJ,. Were it to order antiferromag- Since our mean-field solution underestimates the effects
netically, the observed values of the superexchangef frustration, we are unable to determine the exact ratio of
interactions suggest that the “Mle temperature” of J,/J; in CuGeQ;. As we mentioned in the Introduction, the
CuGeO; would be ~10 K which is lower thanTgp. At value ofJ,/J; was estimated to be 0.3Ref. 12 and 0.24
temperatures abovEsp, the effect of(short-rangg antifer-  (Ref. 13 by two independent studies. Since these two values
romagnetic ordering can be easily estimated by spin wavkead to two different fixed pointgapped and ungapped spin
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excitation spectra, respectivglycareful experimental inves- direction. The Raman spectra abolep are rather feature-
tigation of spin dynamics abov&sp may provide further |ess and the spectral weight is distributed over a wide range
clues. Recently, Kuroeetal® have claimed that of energieg100~300 cnY). A broad maximum is observed
J2/3,=0.35+0.05 leads to a good fit of the magnetic spe-around 250 cmil. This should be contrasted with the Raman
cific heat as determined by quaS|eI_ast|c Raman scattering. gpectra observed in antiferromagnetically ordered com-
should be noted, however, that this choice does not fit theonds such as the rutile or perovskite halides. In these com-
observed magnetic susceptibility. _ pounds, one typically observes a well defined peak at char-
Before we conclude this section, we discuss how the temjerisiic magnon energies which is broadened by magnon-
perature dependence of the spinon velocity may be used Wiagnon interaction® This comparison immediately
_determi_ne the_prese_nce of compe_ting magnetic_inte_ractiorlﬁlggests light scattering in CuGg@rom a continuum of
in quasi-one-dimension&lD) materials. As shown in Fig. 1, oy citations rather than single-particle excitatigmagnons
a nonzero value 08,/J; leads to a difference in the tem- o magnetic Raman scattering in CuGe€an be stud-
perature dependence of(T). This feature may be detected joq ysing the scheme of Fleury and LoudiThe basic idea
experimentally. As a possibility, we suggest INS experi-is that in an exchange-coupled system, an incident photon
ments in the presence of a magnetic field. In the presence @b, create particle-hole excitations accompanied by a pair of
a magnetic field, it is known that the spinon dispersin  gpin flips that propagate as magnons. In this scheme the Ra-
goes to zero &k given by cok=—2H/u(T).”" This is a fea- an operatorHg has essentially the same form as the
ture of Iow-dlmensmngl spin metaﬂons and is seen in t_heHeisenberg exchange interaction, i.6lg~3,S-S ;. In
XY model as well. This behavior should be contrasted withyne gimensional chains with NN exchange interaction, we
spin wave(magnon excitations, where no such node appearsyre faced with an intriguing situation where the Raman op-
in the magnon dispersion as a function of the magnetic fieldg;ator for scattering in thez¢) geometry is proportional to
An examination of the temperature dependence of this nodge Hamiltonian itself. Thus, there should be no Raman scat-
with moderately high fieldsH/J~0.2 should indicate the (ering from a NN Heisenberg spin chain, a fact which has not
presence of frustration as shown in Fig. 1. been appreciated previousyyHowever, there are two ways
in which Raman scattering can occui) interchain cou-
plings and(ii) exchange interactions that are extended in
space, i.e., NNN interactions. Let us first consider the former
possibility. The role of the interchain couplings is to estab-
In this section, we consider the Raman spectra in the hadish short-range antiferromagnetic order. In such a case, in-
mogeneous phase of CuGgObserved in two-magnon scat- cident light is scattered off paramagnon excitations. How-
tering experimenté® A partial account of the results in this ever, as we mentioned earlier, the featureless spectra
section has been published elsewh®r&or completeness, observed in CuGe@seem to indicate scattering from a con-
we first give a brief summary of the pertinent experimentaltinuum of excitations. This is basically a one-dimensional
results. feature. The second possibility is therefore a more viable
Scattering of light from magneti@s opposed to phonpn explanation of the experimental results. In view of the results
excitations in CuGe@ is strongest in theZz) geometry, discussed in the previous section, it is also a more natural
viz., when both incident and scattered light are polarizecchoice. Thus, we work with a Hamiltonian which has both
along the crystallographic direction. This is consistent with NN and NNN interactions. This implies that the Raman op-
the fact that exchange interactions are strongest along therator will also have both NN and NNN terms. For conve-

lll. TWO-MAGNON RAMAN CONTINUUM IN CuGeO 3
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nience, we subtract from the Raman operator, a part whicBpinon excitations with total momentum zero. Given this ma-
commutes with the basic Hamiltonian of CuGg@L), we trix element, we can calculate the Raman intensity. The
can write down a Raman operator of the form mean-field solution thus provides a way of incorporating ma-
trix element effects arising from the Raman operator instead

of postulatingad hocfiltering functions that mimic matrix

Hr=AY S-S.». element effects. As noted elsewhéfesuch effects could be
' very important and ignoring them often leads to erroneous

The Raman intensity is then evaluated by considering théonclusions.
appropriate spectral function. The results for the Raman intensity @a&=20 K with

We now use the mean-field theory described in the previd=142 K anda = 0.24 are shown in Fig. &olid line) where
ous section to compute the Raman intensity. The Raman ophey are compared with experimental resuliguares ob-
eratorR can be written in terms of the soliton operators andtained from a single-crystal sample. Phonon lines at 184 and
transformed into quasiparticle or spinon operators just as wg30 cm™ ! have been subtracted from the experimental data.
did in the previous section. We find that there are three basigince we do not know the value afin our definition of the
physical processes causedRy(i) spinon-spinon scattering, Raman operatoR, we have normalized the maximal theo-
(i) two-spinon creation/annihilation, andii) four-spinon  retical value of the intensity to the maximal experimental
creation/anni_hilgtion. Of th.ese(ii) corresponds to one- yajue. A uniform background of 50 counts has also been
magnon excitations. On using the mean-field solution, ongypiracted from the experimental data. We see that there is a
can show that the contribution to light scattering from thesgg550nable agreement between theory and experiment as far
excitations vanishes, which is just the statement that oN€jq the ohserved continuum is concerned. The shoulder ob-
magnon excitations .vvithl<:O. havemzero spgctral weight, served experimentally at 390 cm™ ! is not understood and
Two-magnon scattering Is given kigi). We find that _the our calculations show no indications of this feature. We also
matrix element for tWO'maQ”OT”OL_”'SP”?O"_ creation  goe that the maximum of the experimental data is shifted
(Stokes component of the scattering intensitygiven by slightly toward larger energies than the theoretical results.
This could either be due to interchain couplings and phonon
1 , bttt effects that have been neglected or a mismatch in the param-
NI E O(k+K+a+a)agey aqag eters we have chosen. Our calculations are in good agree-
kk'ag ment with results from exact diagonalizatiéras well as
X[ % exp{—i(2k+k'—q’)} those of Singh and collaporata?s_,who have studied the
same problem recently using a finite temperature Lanczos
method. We have also calculated the Raman intensities at

X{(Ukukr+iUkUkr)(Uqur+quUq/)
higher temperatures. We find that the continuum broadens

— (Ui v ) (Ugugr +ilgUg)} out as temperature is increased and there is no accumulation
—exp{—i(q+9")} Ui Ugvg ], of spectral weight at lower energies as seen in experifient.
From the results shown in Fig. 4, we conclude that the

where the summation is over the range of spinon momentilamiltonian(1) provides a good description of the observed
and the quantitiesl, andv, are as defined in the previous Raman continuum owing solely to the presence of the NNN
section. The matrix element can be understood as arisingteraction. These results as well as the reasoning behind
from a decomposition of two magnon excitations into fourthem also lead us to conclude that there would be no inelastic
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Raman intensity in one-dimensional chains such as KCuF perimentally. We have been able to identify the physical rea-
where NNN interactions are negligible. In such materials,son for the suppression of as a function ofe with the
while INS can observe thene-magnorcontinuum, thewo-  differing behavior of the respective,(T). We have also
magnoncontinuum cannot be observed in Raman scatteringpresented the results of a spin wave calculation for an aniso-
These conclusions are indeed borne out by experinints. tropic two-dimensional Heisenberg model which do not, on
the other hand, compare well with the experimental results
for the susceptibility. This suggests that a one-dimensional
model with frustration is a more appropriate starting point to
To summarize the results of this study, we have proposefnodel the homogeneous phase of CuGeO
a mean-field solution to the antiferromagnetic Heisenberg We also used the mean-field solution to calculate the two-
chain with NN and NNN interactions. This was motivated by Ma@gnon Raman intensity from a one-dimensional antiferro-
recent interest evinced in the spin-Peierls compoundnagnetic chain and showed that frustration is necessary for
CuGeO; where it is suspected that NNN interactions play anoPtaining a nonvanishing spectral weight. Considering the
important role. Our mean-field solution provides a self-fact that NNN interactions are needed to produce a good fit
consistent way to include the effects of frustration and cald0 the static susceptibility of CuGeQusing the same idea to
culate physical quantities of interest as a function of tem£Xplain the Raman continuum provides a consistent picture
perature. Though we have limited our attention to@S far as modeling goes. Quite apart from the relevance to
experimental results in CuGeQthe results in this paper can CuGe0;, this method of computing Raman intensity can be
be used to study the effects of frustration in generic quasi-1b/Séd to study experimental results now available in
systems. Sr,CuO; and SrCuQ.*’ Clearly, a complete understanding
As a first application, we have evaluated the temperatur€f CuGeQ;, calls for the inclusion of interchain and phonon
dependent spin-wave velocity;(T) and found that(i) e_ffects. The mt_aan—field solution presented in this_ paper pro-
v(T) decreases rapidly far=0 with increasingT, « being ~ Vides a way to incorporate these effects systematically. Work
the ratio between the NNN and NN interactions dinjithis IS in progress on these issues and results will be reported in a
decrease is much less pronounceddef0. We propose that forthcoming publication.
this fact could be exploited to determine the frustration pa-
rameter« directly from measurements afy(T), e.g., by
inelastic-neutron-scattering studies in other quasi-1D sys-
tems. This work was supported by the Deutsche Forschungsge-
We then used the mean-field theory to evaluate the statimeinschaft through SFB 341, SFB 252, by BMBF
susceptibility y. A comparison with experimental results 13N6586/8, and by the Graduiertenkolleg “Fegikospek-
shows that the inclusion of frustration does reproduce théroskopie.” V.N.M. acknowledges useful correspondence
suppression of susceptibility at finite temperatures seen exwith Guillermo Castilla.
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