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Bosons, gauge fields, and high-Tc cuprates
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A simple model of a degenerate two-dimensional Bose liquid interacting with a fluctuating gauge field is
investigated as a possible candidate to describe the charge degree of freedom in the normal state of the cuprate
superconductors. We show that the fluctuating gauge field efficiently destroys superfluidity even in the Bose
degenerate regime. We discuss the nature of the resulting normal state in terms of the geometric properties of
the imaginary-time paths of the bosons. We will also present numerical results on the transport properties and
the density correlations in the system. We find a transport scattering rate of\/t tr;2kBT, consistent with the
experiments on the cuprates in the normal state. We also find that the density correlations of our model
resemble the charge correlations of thet-J model.@S0163-1829~97!08601-3#
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We study the low-temperature behavior of repuls
bosons in a spatially fluctuating gauge field in two dime
sions. This is motivated by the gauge theories of thet-J
model for the cuprate superconductors, where low-ene
charge excitations are described by bosonic degrees of
dom. The internal gauge field of this model suppresses
perfluidity in the Bose liquid, even below the Bose dege
eracy temperature when there is significant exchange am
the bosons. We can study the imaginary-time trajectorie
the bosons in the path-integral representation of this mo
We see that the boson world lines retrace themselves in
presence of strong gauge fluctuations, giving rise to inter
ing dynamics in this degenerate but metallic Bose liquid.

We have studied this metallic state using quantum Mo
Carlo techniques. We find that this model does indeed c
ture some of the long-wavelength charge properties wh
are common to the cuprate superconductors. This includ
linear temperature dependence of the transport scattering
1/t tr , as deduced from a Drude-like optical conductiv
from our model. This is consistent with experimental data
the cuprate superconductors near optimal doping. We
find that the density excitations in our model are qualitativ
similar to those in the fullt-J model, by comparing our
results with diagonalization results in the literature. A br
account of this work has already appeared.1

I. MOTIVATION

The normal metallic state of the superconducting cupra
displays many non-Fermi-liquid properties. For instance,
in-plane resistivity of La22xSrxCuO4 has a power-law tem
perature dependence of the formr}Ta wherea increases
from 1 to 1.5 with increasing hole doping.2 In particular, near
optimal doping, the resistivity is linear in temperature up
1000 K. This linear-T dependence is found in many of th
cuprate superconductors with similar values ofdr/dT ~1.2
mV cm/K 6 20%!.3 This should be contrasted with the qu
dratic temperature dependence of Fermi-liquid theory. Si
larly, the transport relaxation rate appears to be unive
among optimally doped compounds: 1/t tr.2kBT @from a
two-component-model analysis of the optical conductivity
550163-1829/97/55~1!/591~15!/$10.00
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YBCO,4 LSCO,5 Bi2212,6 Bi2201 ~Ref. 6!#. Transport in a
magnetic field is also anomalous. The Hall coefficient in
cates the existence of holelike carriers in the doping ra
where superconductivity occurs. The Hall coefficientRH in-
creases with decreasing temperature, but it remains sm
than the classical value of 1/nhec for a hole density ofnh for
a wide range of temperatures down to the superconduc
transition. These compounds also have a small positive m
netoresistance with a temperature dependence7 different
from conventional theory usingt tr .

The transport properties of these compounds appea
have common features in spite of considerable difference
the transition temperature and spin fluctuation proper
among these compounds. This indicates that a comm
mechanism is responsible for the scattering of charge car
in these materials. One might hope that this scatter
mechanism can be understood in terms of a low-ene
theory with a minimum number of microscopic paramete
In this paper, we study a Bose liquid in a fluctuating gau
field as a possible candidate for such an effective theory

The anomalous transport behavior, together with other
usual features such as temperature-dependent magnetic
ceptibility and non-Korringa behavior of the nuclear ma
netic relaxation time, leads to the conclusion that the meta
state of the cuprates cannot be described in a simple Fe
liquid scenario. It has been postulated that ‘‘spin-cha
separation’’ is responsible for these anomalies.8 For instance,
such a scenario might reconcile the apparent low density
holelike character of the charge carriers with the observa
of a large, electronlike Fermi surface in photoemission. N
merical studies of thet-J model, which is believed to be a
low-energy model of the cuprates, also provide some sup
for spin-charge separation,9–11 such as different energy
scales for the spin and charge excitations, and the supp
sion of 2kF scattering in the charge spectrum.

A model of spin-charge separation is a gauge the
where neutral spin-half fermions~‘‘spinons’’! and charge-e
bosons ~‘‘holons’’ ! interact via an internalU(1) gauge
field.12,13Physically, the transverse part of the gauge field
related to ‘‘spin chirality’’ fluctuations.13 In this picture, the
charge properties of the system should be dominated by
behavior of the holons. We will study the holon subsystem
591 © 1997 The American Physical Society
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this paper, treating the spinon subsystem simply as a med
through which the gauge field propagates. To be more
cise, we study a model of bosons with on-site repulsion
the presence of a spatially fluctuating magnetic field w
short-range correlations. The repulsive interaction is nec
sary for the stability of the system, which means that o
cannot treat this problem perturbatively starting from
ideal Bose gas. Previous studies14–18have implicitly studied
the nondegenerate regime of low density or high tempe
ture, whereas the regime relevant to the cuprates is the
generate regime where the thermal de Broglie wavelengt
the bosons is greater than the mean particle spacing. A
cern from earlier studies of the gauge model is that dege
ate bosons would have strong diamagnetic response to
internal gauge field and hence effectively Bose-condense
relatively high temperature (kBTBE;4pnht;1000 K!. This
would in fact restore Fermi-liquid behavior to the syste
We shall show here that gauge fluctuations suppress this
magnetic response and the bosons remain normal wit
strong diamagnetism at all finite temperatures. Furtherm
our numerical results indicate that the resistivity of this Bo
metallic phase has a linear temperature dependence whi
consistent with experiments.

It should be noted that we will work exclusively in th
‘‘slave-boson’’ scheme where the holons are bosonic and
spinons are fermionic. One may also obtain a ‘‘slav
fermion’’ gauge theory where the statistics of the holons a
spinons are interchanged. Although these two approache
equivalent in principle, they do not produce the same res
in treatments which consider only Gaussian fluctuatio
around a mean-field solution. We believe that, at this leve
approximation, the slave-boson approach provides a be
starting point to describe the cuprates near optimal dop
~for instance, the observation of a large Fermi surface
photoemission!, while the slave-fermion theory may be mo
suitable near an antiferromagnetic state at very low dop
The physics of the spin gap in the underdoped regime is
beyond the scope of theU(1) gauge theory described in th
work ~see Ref. 19!.

Besides the possible relevance to the transport in the
prate superconductors, the model we consider is of intrin
theoretical interest. The model is a Bose version of the pr
lem of a quantum particle in a random magnetic flux, wh
has received considerable attention in recent years. It is
related to frustrated spin systems and vortex glasses. H
ever, since we deal exclusively with annealed averaging
this paper~see below!, we cannot draw any direct conclu
sions about these problems with quenched disorder.

The rest of the paper is organized as follows. In Sec.
we review the connection between the gauge theory of
t-J model and our boson model. In Sec. III, we discuss
path-integral formalism which provides a convenient fram
work to visualize physical processes in terms of t
imaginary-time paths of the bosons. In Sec. IV, we look
the effects of the gauge field on the world-line geometry
the bosons. We will see that the partition function of t
system is dominated by self-retracing world-line configu
tions. We will also argue that superfluidity is destroyed
the fluctuating gauge field, giving rise to a degenerate B
metal. In the subsequent sections, we present the results
quantum Monte Carlo study of this metallic phase. We w
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discuss the transport properties and the density correlat
in this boson model.

II. BOSON GAUGE MODEL

In this section, we provide the motivation for studying a
effective boson model from the gauge theory of thet-J
model, which describes the motion of vacancies in a do
Mott insulator:

H52t0 (
^ i j &s

~cis
† cjs1H.c.!1J(̂

i j &
Si•Sj ~1!

with the constraint of no double occupancy. Experimenta
J. 1500 K andt0 /J.3.

The constraint of no double occupancy allows us to wr
the creation of a physical hole in terms of the creation o
charged hard-core boson~holon! and the annihilation of a
spin-half fermion ~spinon!: cis5 f isbi

† In terms of these
slave bosons and fermions, the Hamiltonian of thet-J model
can be written as:

H52t0 (
^ i j &s

~ f is
† bibj

†f js1H.c.!1J(̂
i j &

Si•Sj

1(
i
ia0i~ f is

† f is1bi
†bi21!, ~2!

whereSi5 f ia
† sab f ib , Thea0i field is a Lagrange multiplier

enforcing the local occupancy constraint, and acts as a fl
tuating scalar potential for the spinons and holons.

Among the mean-field theories proposed to decouple
quartic terms in Eq.~2!, a candidate for the normal state ne
optimal doping is the the uniform resonating-valence-bo
~RVB! ansatz:(s^ f is

† f js&5jeiai j . This incorporates short
range antiferromagnetic correlations without any long-ran
Néel order. The Lagrangian of this RVB phase can be w
ten as:

L5(
i ,s

f is* ~]t2mF1 ia0i ! f is1(
i
bi* ~]t2mB1 ia0i !bi

2
J

2
j(̂

i j &
~eiai j f is* f js1H.c.!2t0j(̂

i j &
~eiai j bi* bj1H.c.!.

~3!

The vector potentialai j arises from the fluctuations in th
phase of the RVB order parameter. Longitudinal fluctuatio
of the gauge fieldai j do not affect the Lagrangian due to a
internalU(1) gauge symmetry:

f i→ f ie
iu i,

bi→bie
iu i,

ai j→ai j2u i1u j . ~4!

We will therefore work in a fixed gauge, such as the Co
lomb gauge, and consider only the fluctuations in the tra
verse part of the gauge fieldai j . In other words, we will
consider only fluctuations in the internal magnetic and el
tric fields which are gauge-invariant quantities.
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Since we are interested in the charge degrees of freed
we wish to consider an effective theory with bosons on
and regard the spinon fluid as a medium through which
gauge field propagates. The gauge field has no dynamicin
vacuo. The response of the spinon fluid to the gauge field
responsible for the dynamics of the gauge field as seen by
holons. More specifically, we can obtain the Gaussian fl
tuations of thea fields by treating the spinon response in t
random-phase approximation. The effective gauge-fi
propagator is

SG5
1

2bL2 (
k,vn

P00~k,vn!a0* ~k,vn!a0~k,vn!

1
1

2bL2 (
k,vn

P'~k,vn!a'
* ~k,vn!a'~k,vn!, ~5!

whereb51/T, vn52pnT, L is the linear size of the system
anda' is the transverse part of the gauge field.~We use units
where distance is measured in terms of the lattice spa
andkB5\5e51.! Here, for smallk andvn , P00.rF , the
spinon density of states at the Fermi level. This describes
Thomas-Fermi screening of internal electric fields by the f
mions. The effective interaction mediated by the scree
a0 field is a repulsion between the bosons~of range
}rF

21/2), consistent with the original hard-core requireme
for the bosons. We will model this with an on-site repulsi
energy,U. On the other hand, the magnetic fields due
fluctuations inai j are not effectively screened out by th
fermions.20 The gauge-field fluctuations as experienced
the holons are therefore strong. More specifically, the Ga
ian fluctuations have the correlation functio
D(k,vn)5^a'

* (k,vn)a'(k,vn)&, given ~in the continuum
limit ! by

D~k,vn!5
1

P'~k,vn!
5

1

guvnu/k1xk2
, ~6!

wherex is the orbital susceptibility of the spinon fluid an
g is a Landau damping coefficient.~In units where the lattice
spacing is unity,g.p2 for a spinon gas near half-filling.!
These gauge-field fluctuations cause profuse forward sca
ing of the bosons. We believe that this is the dominant s
tering mechanism in this problem. Since it is overdamped
long wavelengths with a relaxation rate which diverges
1/k3, we will ignore the slow relaxation and work in a ‘‘qua
sistatic’’ limit for the gauge fields:

D~k,vn!→D~k,vn50!dn,05dn,0 /xk
2. ~7!

@On a square lattice,k2 is replaced by 422(coskx1cosky).#
This quasistatic approximation is justified when the gau
field relaxes on a time scale longer than 1/T. In the Bose
degenerate regime, the shortest scattering length of intere
the interparticle spacing of the bosons. The relevant re
ation time scales asnb

3/2x/g. For a spinon band with hoppin
J near half-filling,x is a small fraction (;1022) of J due to
the weak diamagnetism of a Fermi system. One might th
fore expect that this quasistatic approximation to be valid
temperatures down to a small fraction ofJ, i.e., for the whole
of the normal state (T.Tc.0.1J).
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One might object that arguments above are based o
weak-coupling theory of the response of the spinons to
gauge fields. However, we believe that the essential feat
remain correct in general, namely, a separation of tim
scales between the relaxation of the gauge fields and
boson dynamics, as well as the magnitude of the gauge fl
tuations being controlled by the spinon diamagnetic susc
tibility x.

The gauge-field correlator~7! corresponds to a spatiall
uncorrelated flux distribution with the correlation function

^F rF r8&5
T

x
d r ,r8 , ~8!

whereF r5(F0/2p)(hai j ~oriented sum around the links o
plaquetter ) is the flux through plaquetter . (F05hc/e is the
flux quantum.! Since we are treating the thermodynamics
the gauge field classically, we have a thermal factor ofT in
Eq. ~8! for the flux variancê F2&. Given that the fermion
orbital susceptibility is roughly constant at low temperatur
we might expect the flux variance to have a linear tempe
ture dependence. However, a lattice calculation by Hlub
et al.21 has indicated that the Gaussian fluctuations are su
ciently strong that the flux through a plaquette is of the or
of the flux quantumF0: ^F2&1/2>0.5F0 down to a tempera-
ture of 0.4J. Since the experimental superconductingTc is of
the order of 0.1J, we expect that this regime of strong ra
dom flux is relevant to the normal state of the cuprates u
one approaches the superconducting transition. In this
gime, the precise value of^F2& should not affect the behav
ior of the bosons, and we will focus on alarge and
temperature-independentflux variance when we study th
transport and correlation functions of our boson system.

Another factor leading to the reduction of the flux va
ance at low temperature is one that has not been discuss
far, namely, that the magnitude of the gauge field should a
be affected by the diamagnetic response of the holons as
as the spinons, i.e.,̂F2&5T/@xspinon(T)1xholon(T)#. The
holon contribution dominates near an instability to Bose c
densation wherexholon diverges and the bosons develop
Meissner response to expel the gauge field from the sys
altogether. However, we will see in this paper that Bose c
densation and the holon diamagnetism are strongly s
pressed even below the boson degeneracy tempera
Therefore, in a wide range of temperatures above the su
conductingTc , we are justified in neglecting this feedbac
effect of the holons on the magnitude of the gauge-field fl
tuations.

We can now define more precisely the effective mo
which we study in the rest of the paper. It is a model
lattice bosons interacting with a quasistatic gauge field,
scribed by the effective actionS5SB1SG :

SB5E
0

bS (
i
bi* ~]t2mB!bi2HB~t! Ddt,

SG5
1

2bL2 (
k
D21~k,0!ua'~k,0!u2 ~9!

5(
r

F r
2

2^F2&
, ~10!
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with the boson Hamiltonian

HB52t(̂
i j &

~eiai j bi
†bj1H.c.!1

U

2(
i
ni~ni21!, ~11!

wheret5t0j;t0, L is the linear size in units of lattice spac
ing, andU@t. Note that, on performing the average over t
gauge field, we average over static configurations only,
a(k,vnÞ0)50.

We cannot say that we have rigorously derived abo
effective action from the slave-boson mean-field theory
the t-J model. Many approximations have been introduced
obtain this simple model with few adjustable parameters.
example, we have neglected the temperature dependen
the RVB order parameterj and also the gauge-field correla
tions of higher order.22We take the point of view that we ar
studying a ‘‘minimal’’ low-energy theory which hopefully
captures many of the generic features of more complica
models.

III. PATH-INTEGRAL REPRESENTATION

It is convenient to study our boson model in a firs
quantized formulation. The partition functionZ for a system
with N bosons in the canonical ensemble can be written
terms of a Feynman path integral23 over the boson trajecto
ries $xa(t)% (a51, . . . ,N):

Z5
1

N!(P Ex~0!5P„x„b)…
D@x1 , . . . ,xN#

3E Dad~¹•a!e2SG~a!2 i(
a
E
0

b

a• ẋadt2SB
0

~$x%!,

~12!

whereSB
0 is the action for bosons in the absence of magn

fields:

SB
05E

0

b

dtS (
i
bi* ]tbi2HB

0 D , ~13!

whereHB
0 is given by Eq.~11! with ai j50. In this section,

we discuss the model in the continuum limit for notation
convenience. In the continuum, one has

SB
05E

0

b

dtF (
a51

N
m

2
ẋa
21 (

a.g
Ud„xa~t!2xg~t!…G . ~14!

Particle identity is taken into account by performing the p
integral over all trajectories where the set of final boson
ordinates at$x1(b), . . . ,xN(b)% is some permutation of the
initial boson coordinates$x1(0), . . . ,xN(0)%. Any such per-
mutations can be broken down to cycles. Each cycle form
closed loop when the imaginary-time trajectories~world
lines! of a many-boson configuration are projected onto r
space. At high temperatures, cycles of length 1 dominate
partition function and the system is in a nondegenerate c
sical regime. At temperatures below the degeneracy temp
ture of the bosons, particles can travel large distances in
imaginary time, forming many ring exchanges~see Fig. 1!.

In this formulation, we may integrate out the Gauss
fluctuations of the gauge field in Eq.~12!. Thus, we arrive at
.,
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a boson-only effective theory which we study numerically
this work. The system is described by the partition functi
Z5*Dxe2Seff where the effective action is given by

Seff5SB
01S2 ~15!

with

S25
1

2(aa8
E
0

bE
0

b

D̃„xa~t!2xa8~t8!…ẋa• ẋa8dtdt8,

~16!

where D̃(x)5(1/bL2)(kÞ0D(k,0)e
2 ik•x. Note that the

k50 contribution has been excluded in the sum overk, cor-
responding to a gauge choice where thek50 part of a is
zero. This is one way to fix the remaining degree of gau
freedom which is not determined by the condition
“•a50. If we consider a system with periodic bounda
conditions in space, another scheme would be to fix the
integral of the gauge field around a specified path wh
wraps around the boundary. However, the latter schem
inconvenient for our purposes because it breaks translati
invariance explicitly.

The current interactionD(x) mediated by the gauge fiel
is logarithmic at large distances, and is attractive betw
opposite currents. Due to the quasistatic nature of the ga
fields, the interaction is also infinitely retarded in time. W
will see in the next section that this encourages world lines
retrace themselves, with important consequences for the
son dynamics.

Before proceeding to discuss the physical consequen
of the current interactionS2, some remarks about our ave
aging procedure for the gauge fields are in order. We h
performed an ‘‘annealed’’ average over the gauge fiel
rather than a ‘‘quenched’’ average. Annealed averaging
necessary in our case because our gauge fielda is an internal
thermodynamic variable. Formally, we evaluate observab
^O& as:

1

ZE DxOe2Seff5
*DxDaP@a#Oe2SB

0
2 i*a•dx

*DxDaP@a#e2SB
0

2 i*a•dx
, ~17!

whereP@a#5N21d(“•a)e2SG[a] is the probability distribu-
tion for the gauge field, andN is a suitable normalization
factor. This is different from quenched averaging, whi
would be appropriate if we dealt with a system with froz
impurities, such as a vortex glass. Quenched averaging
quires the evaluation of

FIG. 1. A schematic configuration for six bosons after proje
ing the imaginary-time paths onto thexy plane. There are a total o
three cycles: one cycle of one particle, one cycle of two partic
and one cycle of three particles. Solid circles denote particle p
tions att50 andb.
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E DaP@a#F *DxOe2SB
0

2 i*a•dx

*Dxe2SB
0

2 i*a•dx G . ~18!

The differences between quenched and annealed avera
from the point of view of perturbation~diagrammatic! theory
has been addressed elsewhere.17,24

From the point of view of the path-integral Monte Car
method, our ability to perform the annealed averaging me
that we would not have to perform extensive averages o
different frozen realizations of the random flux. Moreov
note that the effective action~15! is manifestly real, and so
we avoid the sign problem which occurs numerically wh
performing a quenched average over the gauge fields.
have studied boson densities betweennb51/4 and 1/6. We
choose an on-site interaction strengthU>4t. We follow the
Monte Carlo methods of Ceperley and Pollock25 and
Trivedi.26 Each Monte Carlo step involves the reconstruct
of the world lines,$xa(t)%, for all N particles using the idea
boson propagator in a short interval in imaginary time. T
on-site interaction and the current interactionS2 are taken
into account using Metropolis tests. To ensure quantum
change, we may insist that each accepted configuration
fers from the previous one by a pair exchange. This can
incorporated, without loss of detailed balance, as a Metro
lis test. We refer readers to the original references25,26 for
further details.~In evaluating the gauge field contributio
S2, we have also made use of a geometrical interpretatio
S2 which we discuss in the next section.! In the discretization
of the imaginary time, we have used a sm
Dt5b/M<0.1/t, so as to minimize the systematic error a
to allow the reliable use of maximum entropy techniques
perform analytic continuation on our imaginary-time data
obtain the dynamical quantities of interest. This sets the lo
est accessible temperature toT;0.1t for lattice sizes consid-
ered here. For studies on dynamic response to be discu
below, we have restricted ourselves to lattices of sizes u
636, due to the need to obtain imaginary-time correlat
functions to a high accuracy. For the calculation of sta
properties, we have studied lattices as large as 10310.

To summarize, we have obtained an effective theory
bosons with current interactions which are long-ranged
space and time. This model can be studied using p
integral Monte Carlo methods. In the next section, we w
discuss how these interactions affect the geometry of
boson world lines and hence the physical properties of
system.

IV. EFFECT OF GAUGE FIELDS
ON WORLD-LINE GEOMETRY

A. ‘‘Brinkman-Rice bosons’’

In this section, we will discuss how the current interacti
S2 mediated by the gauge field affects world-line geome
On the infinite plane, there is a simple geometrical interp
tation of this interaction in terms of the winding numbers
the boson world lines. The winding numberwr around a
plaquetter is the number of times the imaginary-time wor
lines of all the bosons wind around the plaquette. Cons
the partition function before averaging over the gauge fie
The effect of the gauge field enters the partition function
ing
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the phase factor exp@2i(a*a•dxa# in Eq. ~12! over the
gauge field. This phase factor can be written in terms
wr : (a*a•dxa5( rwrF r . We can now perform the averag
directly over the Gaussian flux distribution~10!, instead of
the gauge-field distribution~9!. We will be working with
periodic boundary conditions~i.e., on a torus!. This will be
well-defined if we impose a constraint of zero total flu
through the system. On averaging, the phase factor beco

E dlE )
r
dF rexpS 2(

r

F r
2

2^F2&
2
2p i

F0

3(
r
wrF r1 il(

r
F r D

}E dlexpS 22p2 ^F2&
F0

2 (
r

~wr1l!2D
}e2S2,

S252p2 ^F2&
F0

2 F(
r
wr
22

1

L2 S (r wr D 2G . ~19!

Thus we see that the action cost due to the current interac
is proportional to a geometrical property of the world line
similar to an unoriented area, which has been termed
‘‘Amperean area’’:15

Aa5F(
r
wr
22

1

L2 S (r wr D 2G . ~20!

This geometrical interpretation ofS2 is particularly useful in
the numerical evaluation of this quantity.

If we are working with periodic boundary conditions, th
geometrical definition ofwr given above will not work be-
cause there is an ambiguity in identifying which plaquet
are inside or outside a loop on a torus. Nevertheless, we
still use the above analysis for paths which do not wr
around the boundaries.~We will discuss wrapping paths in
the next section.! The only modification is that we need
definition of the winding numbers which preserves Stok
theorem:ra(x)•dx5( rwrF r . In the case of zero total flux
a suitable definition iswr5F̃21r@ar

0(x)2aR
0 (x)#•dx, where

ar
0(x) is the vector potential atx due to a test fluxF̃ placed
at plaquetter , andR is an arbitrary reference plaquette. Ge
metrically, this picksR to be on the ‘‘outside’’ of any loop
on the torus. The Amperean area as defined above is i
pendent of the choice of this plaquette, because differ
choices amount to global changes in the winding numb
~e.g.,wr→wr11) and the above definition is invariant und
such changes.

The effect of the gauge field on the particles is now cle
The actionS2 suppresses world-line loops with large win
ing numbers. Indeed, sinceS2 is non-negative, it excludes a
configurations with finite Amperean area in the limit of infi
nite ^F2&. This suppression can be related to the origin
problem of holes moving in a spin liquid with a slowly vary
ing spin quantization axis. A hole moving in a loop com
back with a random phase due to the locally fluctuating s
chiralities of the spin background.13 The random phase ca
be interpreted as arising from a fictitious random flu
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World-line loops that enclose large areas are strongly s
pressed when averaged over random flux distribution du
the destructive interference of the random phases. There
we expect that, in the presence of strong random flux,
dominant contribution to the partition function comes from
special kind of paths that do not ‘‘see’’ the random flux, i.
paths where*a•dx50. These are ‘‘retracing paths’’ wher
each traversal of a link on the lattice is retraced in the op
site direction at some point in time,27,28and such paths hav
zero Amperean area.

A similar picture of retracing paths has been studied
Brinkman and Rice,27 who studied a single hole in a Mo
insulator where the spins are treated classically. Indeed, s
ies of a single particle in a strong random flux have yield
a density of states nearly identical to that of the Brinkma
Rice problem.29–31The Brinkman-Rice model gives a linea
T resistivity at high temperatures (T.t) but a constant scat
tering rate of ordert. Although we might expect this to b
applicable to our model far above the degeneracy temp
ture of the bosons, this behavior does not extend down to
degenerate regime relevant to the present problem.

At boson densities of interest here and at low tempe
tures, Bose statistics and particle exchange are impor
they can give rise to behavior different from the sing
particle Brinkman-Rice result. We shall look at the effect
the gauge field on the quantum exchanges among bo
more carefully in Sec. IV C. For now, we point out that, ev
in the presence of strong gauge-field fluctuations, the bos
nature of the particles cannot be ignored because the
ticles can form long exchange cycles that retrace themse
so that an individual boson does not have to retrace its o
path. This is an important consideration at low temperatu
where the imaginary-time paths are long, allowing for
strong degree of particle exchange. Although the system
be highly degenerate at low temperatures, we shall now
gue that these ‘‘Brinkman-Rice bosons’’ remain normal
all finite temperatures, due to interactions with the fluctu
ing gauge fields.

B. Destruction of superfluidity

We will now discuss the effect of the gauge-field fluctu
tions on the superfluidity of the Bose system. We will see
in the previous section, that this can be understood in te
of the geometrical properties of the boson world lines.

A neutral Bose system with short-range interaction in t
dimensions is a superfluid below Kosterlitz-Thouless te
peratureTKT . The onset of superfluidity atTKT is caused by
the binding of vortex-antivortex pairs in the Bose fluid
that vortex motion does not cause phase slips across the
tem. An essential ingredient of the existence of the superfl
phase is a long-range logarithmic attraction between the
tices and the antivortices. A single vortex costs infinite e
ergy in an infinite systemEv5(prs /m)ln(L/a) wherea is a
short distance cutoff (; vortex core radius! and rs is the
superfluid density. Therefore single vortices cannot exis
low temperatures. Nevertheless, the proliferation of free v
tices is possible aboveTKT because this provides a gain
entropy which also scales as lnL. However, in a charged
Bose system, screening currents causes the vortex intera
to be short-ranged. In our problem, the vortex interact
p-
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becomes exponentially weak at distances beyo
lP5@T/2rst^F

2&#1/2F0, which can be interpreted as a pe
etration depth of the Bose fluid. Now, the creation of a sin
vortex costs a finite amount of energy32,33

Ev5(prs /m)ln(lP /a). This no longer compensates the e
tropic gain from vortex-antivortex unbinding, and so we
not expect to see a sharp phase transition of the Koster
Thouless type at finite temperatures.

One might still expect that there is a crossover tempe
ture scale below which the vortex density will be sufficien
low that the Bose system would have strong diamagn
response. A rough estimate of this temperature scale usi
Boltzmann weight for the vortex density gives a large va
for this crossover temperature.33 However, we will see later
that, in the presence of strong gauge fluctuations, the
magnetic response of the bosons remains small.

To understand the suppression of superfluidity specific
in our model, we turn to the path-integral formulation of th
problem with periodic boundary conditions~i.e., on a torus!.
Ceperley and Pollock25 have shown that superfluidity is as
sociated with the existence of long world-line cycles whi
wrap around the torus. The superfluid density is given by

ns5
^W2&
4bt

, ~21!

whereWx (Wy) is the number of times the boson world line
wrap around the torus in thex (y) direction. In other words,
W5(a51

N *0
bdt ẋa /L. In the presence of gauge fields, supe

fluidity is destroyed by the same mechanism that causes
Brinkman-Rice behavior: wrapping configurations pick
random phases, and should be suppressed by destructiv
terference on averaging over the gauge field. The numbe
plaquettes whose random fluxes contribute to the ph
picked up by a wrapping path should increase with incre
ing system size. For a large enough system, one might ex
this phase to be totally random. We therefore expect
suppression to be very strong. For instance, one can eva
S2 for a straight-line path which wraps around the torus
they direction. To do so, we use Eq.~16! instead of Eq.~19!
because the geometrical interpretation ofS2 in terms of
winding numbers is not applicable for wrapping paths. W
find that such a path gives

S25
Wy

2

2b (
kxÞ0, ky50

D~k,0!.2p2Wy
2L2

^F2&
F0

2 . ~22!

To computeS2 for a more general path with wrappingWy ,
one can break it down into a wrapping path with the sa
wrapping number and a nonwrapping path~Fig. 2!. (S2 will

FIG. 2. ~a! Projection of a world line onto thexy plane shows a
retracing path.~b! A wrapping path.~c! Decomposition of~b! into a
reference path and a nonwrapping path.
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consist of the contributions of the wrapping paths and n
wrapping paths separately, as well as a cross term betw
the two paths.! We argue thatS2 diverges for all wrapping
paths in the thermodynamic limit, and so superfluidity is d
stroyed at all finite temperatures.

It should be noted that we are studying a gauge mo
where the uniform part ofa is set to zero. We may alterna
tively work with a model without this gauge fixing. With
periodic boundary conditions, this model allows an arbitra
Aharonov-Bohm~AB! flux through the torus. This flux is
related to the phase of the product of RVB paramet
(j i j ) along a~Wilson! loop which wraps around the torus.
we average over this AB flux assuming a uniform distrib
tion, we would find that all wrapping paths are strictly pr
hibited andns50 at all temperatures even for samples
finite size. We will not impose such a drastic condition
the wrapping paths in this work.

We can also ask whether long-range order exists in
Green’s function for the bosons. The Green’s function its
^b†(r )b(0)& is not gauge invariant, and would vanish o
averaging over different gauges. However, we can study
Green’s function in a fixed gauge, for example, the tra
verse gauge¹•a50. In fact, one can write a gauge-invaria
analogue correlation function which coincides with t
Green’s function in the transverse gauge:34

G~r !5^b†~r !b~0!&¹•a50

5 K b†~r !b~0!expS 2 i E d2r 8f ~r 8!“•a~r 8! D L ,
~23!

where“ r8
2 f (r 8)5d(r 82r )2d(r 8). In the path-integral rep-

resentation, the evaluation ofG involves a world line origi-
nating at siter and a world line terminating at site 0 at th
same point in imaginary time. Note that this quantity co
cides with the Green’s function in the Coulomb gauge. C
sider now the phase factor(a*a•dxa picked up by the world
lines $xa% in the evaluation of the Green’s functionG(r ) in
this gauge. The random fluxFR at a distant plaquetteR
~with R@r ) has a contribution of magnitudeFR /R to the
vector potential at a pointQ near 0 andr . The sum of the
contributions to the vector potential atQ due to the random
fluxes at radiusR from the origin is a random vector with
mean squared magnitude of 2pR3(^F2&/R2);^F2&/R.
This analysis is valid for all fluxes which are at a distan
R.r . Integrating over the contribution of such fluxes, t
variance of the magnitude of the vector potential atQ scales
as^F2& ln(L/r). Summing over allQ near 0 andr , we obtain
a random phase with a divergent variance:^F2&r 2ln(L/r).
Thus, averaging over the distant fluxes for these sites,
obtains a suppression factor of exp@2^F2&r2g(r/L)# where
g(x); ln1/x for smallx. This can be interpreted as a bindin
potential for the end points ofG(r ). We therefore do not find
long-range order in this quantity because of the destruc
interference of the random phases due to distant fluxes.
will now present numerical evidence for the suppression
superfluidity below the degeneracy temperatureTD0 of the
system. A measure of the degeneracy temperature is
Kosterlitz-Thouless temperature of the system at zero fl
We make use of the observation of Ceperley and Polloc35
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that the the probability of bosons to participate in the mu
particle exchange is about12 at the Kosterlitz-Thouless tran
sition. In other words, the probabilityP1 that a boson is in an
exchange cycle of length 1 is about1

2. We estimate that, for
our lattice bosons with densitynb50.25 and on-site interac
tion U54t, the degeneracy temperatureTD051.1t. ~For
strong on-site repulsion,TD0 is not particularly sensitive to
the value ofU, e.g.,TD050.9t for U516t.!

We have measured, using Eq.~21!, the superfluid fraction
ns /nb atT5t/6 withU54t for a range of flux variances an
for systems up to 838 in size ~Fig. 3!. We see that the
superfluid fraction decreases with increasing system size
fact, the superfluid fraction as a function of^F2&L collapses
onto a single curve ~Fig. 3, inset!, indicating that
ns(L,b,^F

2&)5 f (L^F2&,b). Since f (x,b)→0 as x→`,
we see that an arbitrarily small random magnetic flux wo
destroy superfluidity in the thermodynamic limit. In the la
guage of the renormalization group, this shows that the s
tering by gauge fields is a relevant perturbation at finite te
perature.

C. World-line geometry in the normal phase

Having established that our system remains normal at
temperatures, we will now examine the geometry of t
world lines in this normal phase in the presence of stro
gauge fluctuations. In particular, we will look at the effect
the gauge fields on quantum exchange and imaginary-t
diffusion. These are mutually related: imaginary-time diff
sion over large distances aids quantum exchange among
ticles and quantum exchange facilitates imaginary-time
fusion. For example, in a dissipative model of boso
coupled to an external heat bath, a slow logarithm
imaginary-time diffusion is expected to suppress quant
exchange very strongly, resulting in an incoherent liqu
even at zero temperature.14,36 In our case, the bosons ar
elastically scattered by the gauge fields. We find that
gauge fields have a less dramatic effects on quantum
change and imaginary-time diffusion.

We have shown that the world lines retrace themselve
the presence of random flux. One might expect that, co
pared with the case of zero flux, this would reduce the d
tance traveled by the particles in the imaginary-time inter
b before their paths must return to some permutation of th
starting positions. This should slow down the imaginary-tim

FIG. 3. Superfluid density vŝF2& for different system sizes a
bt56. Inset: a scaling plot suggests that superfluidity vanishe
^F2&c;1/L.
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598 55DON H. KIM, DEREK K. K. LEE, AND PATRICK A. LEE
motion of the bosons as well as reduce the probabilities
exchange. We find that this is indeed the case.

We first look at the exchange probabilitiesPi of a particle
participating in an exchange cycle ofi bosons. As before, we
may deduce a degeneracy temperatureTD from the probabil-
ity (12P1) for a particle to be involved in particle
exchange.37 This degeneracy temperature is reduced co
pared to the case of zero flux. ForU54t at quarter filling,
we find that the zero-flux degeneracy temperat
TD051.1t is reduced toTD50.5t at ^F2&50.5F0

2. At 1
6-

filling, it is reduced fromTD050.8t to TD50.34t. A finite
TD does not imply Bose condensation at a finite temperat
Indeed, one cannot deduce a superfluid transition by ex
ining the exchange probabilities. Remarkably, in the deg
erate regime belowTD , the exchange probabilities for th
cases of̂ F2&50 and 0.5F0

2 are nearly identical~see Table
I!. In this temperature regime, a particle is equally likely
participate in an exchange cycle of any siz
P1.P2.•••.PN.1/N.

We can gain a qualitative understanding of the lo
temperature exchange probabilities by examining how
suppression of Amperean area byS2 affects the geometry o
the world-line configurations. When there is significa
quantum exchange, individual bosons do not have to ret
their own paths in order to minimize the total Amperean a
of the world-line configuration of all the bosons. Instead, o
might minimize the Amperean area of each world-line lo
formed by several bosons in the same exchange cycle.
find that this is not the entire situation at sufficiently lo
temperatures. BelowTD , the different world-line loops have
strong overlap. We find that different cycles retrace ea
others’ paths~see Fig. 4!. Thus, although the gauge field
have a drastic effect on thetotal area enclosed by all th
boson world lines, individual world-line cycles may enclo
large areas. One might therefore expect that aspects o
world-line geometry, which are insensitive to the total ar
may be very similar to the case of zero flux.

The observation that individual particles do not have
retrace their own paths suggests that they could diffus
greater distance than in the single-particle case. One sh
see a reduction in the kinetic energy^K& of the particles
compared to the Brinkman-Rice theory.27 This is indeed the
case.~See the Appendix for a discussion of the measurem
of the kinetic energy.! A single particle with retracing path
has a band edge at22A3t rather than24t. In our system,

TABLE I. One-, two-, three-, and four-boson exchange pro
ability for variousT,^F2&, andU at quarter-filling.

T U ^F2&/F0
2 P1 P2 P3 P4

0.5t 4t 0.5 0.51 0.23 0.13 0.07
0.5t 4t 0 0.20 0.12 0.11 0.11
0.25t 4t 0 0.12 0.11 0.11 0.11
0.25t 4t 0.5 0.26 0.16 0.13 0.12
0.25t 16t 0.5 0.41 0.21 0.13 0.10
0.11t 4t 0 0.11 0.11 0.11 0.11
0.11t 4t 0.5 0.12 0.11 0.11 0.11
0.11t 16t 0.5 0.12 0.11 0.11 0.11
r
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the kinetic energy per particle goes below the Brinkma
Rice band edge at low temperatures, approaching24t
roughly linearly in temperature~Fig. 5!. Thus, we see tha
the strong gauge fluctuations do not have a large effec
some aspects of the world-line geometry~e.g., exchange
probabilities! while having a dramatic influence on othe
~e.g., superfluidity!.

Let us now examine the imaginary-time motion of th
particles in more detail. Ideal bosons are diffusive in ima
nary time at all temperatures, i.e., the mean-squared displ
ment of particle a is linear in imaginary time t:
R2(t)5^@xa(t)2xa(0)#

2&54tt for 0,t,b/2. With re-
pulsive interactions, there is an increase in the effective m
of the particle, e.g., forU54t at quarter filling, we find
t→t*50.95t. In the presence of random magnetic flux, t
imaginary-time diffusion is slowed down, and the mea
squared displacementR2(t) is no longer linear int at all
temperatures. Figure 6 shows our results for the~superfluid!
zero-flux case at temperaturebt59 and the case of stron
random flux atbt54,6,9. Since we are working with peri
odic boundary conditions, we have used the definitio
R2(t)5^@*0

b/2ẋa(t)dt#2&. We can see that, whereasR2(t)
has significant downward curvature atbt52, it becomes
closer to diffusive behavior as the temperature is lower
However, we are unable to reach the asymptotic reg
where the particle has traveled far on the scale of the in
particle spacing over a time period ofb/2 ~see Fig. 6 inset!.

-

FIG. 4. Schematic world-line cycles which retrace when p
jected onto thexy plane. Solid circles denote boson positions
t50. ~a! Each boson retraces its own path;~b! exchange cycles
with more than one boson retrace their own paths;~c! two exchange
cycles can retrace each others’ paths, and two wrapping paths
retrace each other to give zero total wrapping around the bou
aries.

FIG. 5. Kinetic energy per particle as a function of temperatu
Dashed line marks the Brinkman-Rice band edge for the sin
particle problem.̂F2&50.5F0

2 andU54t.
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55 599BOSONS, GAUGE FIELDS, AND HIGH-Tc CUPRATES
In order to study the long-time behavior, we can exam
the size of the world-line exchange cycles. A cycle where
world lines of l particles$x1 , . . . ,xl% form a loop can be
roughly regarded as a particle traveling over a time inter
of lb. Exchange allows such a world-line cycle to cov
large distances compared with an individual boson. In a s
tem with periodic boundaries, the sizeRl of the cycle is
defined by:

Rl
25K F E

0

b/2

ẋ~ l11!/2dt1 (
a51

~ l21!/2 E
0

b

ẋadtG2L , l odd

5K F (
a51

l /2 E
0

b

ẋadtG2L , l even. ~24!

For ideal bosons,Rl
2 should equalR2(t5 lb/2) at inverse

temperaturelb, and therefore should scale linearly withl .
Figure 7 showsRl

2 for a 434 lattice with nine particles. We
have measured only cycles which do not have a net wrap
number around the periodic boundaries so that we do
have contributions from cycles with different topologies. W
see thatRl

2 is linear in l for the cases of zero flux and stron
random flux, although the slope of the case with the stro

FIG. 6. Single-particle diffusionR2(t)5^@x(t)2x(0)#2& in
imaginary time for 0,t,b/2. Solid lines: strong random flux with
^F2&50.5F0

2 at bt54,6,9. Dashed line: zero flux atbt59. Inset:
R2(b/2) for zero flux (s) and ^F2&50.5F0

2 (h); dashed line
marks the squared interparticle spacing.

FIG. 7. Cycle sizesRl
2 as a function of cycle lengthl for a

636 lattice with nine particles.
e
e

l
r
s-

g
ot

g

random flux is reduced substantially. This demonstrates
the imaginary-time motion of the bosons is diffusive at lo
distances.

These results indicate that we are probing an unconv
tional phase of a Bose liquid. Although the system rema
normal, many aspects of the imaginary-time motion of t
particles in the degenerate regime resemble that of a ne
Bose liquid which is a superfluid in such temperatures.
subsequent sections, we shall study the physical propertie
this ‘‘strange metal’’ and discuss the relevance to the norm
state of the cuprate superconductors.

V. TRANSPORT AND OPTICAL CONDUCTIVITY

In this section, we will present our quantum Monte Ca
~QMC! results on longitudinal transport for this strange Bo
metal. To obtain the conductivity of the system, we meas
its imaginary-time analoguesab( ivn) in our quantum
Monte Carlo simulation:

sab~ ivn!5
1

uvnu
Pab~ ivn!, ~25!

Pab~ ivn!5E
0

b

^ j q50
a ~t! j q50

b ~0!&eivntdt, ~26!

where j q(t)5( r j r(t)e
iq•r and j r(t)5(ad„r

2xa(t)…(dxa /dt) is the gauge-invariant current~Fig. 8!.
The imaginary-time measurements are related to the r

time conductivitys(v)[sxx(v) by

2
1

2L2
^ j q50~t!• j q50~0!&5E

2`

` ve2vts~v!

12e2bv

dv

p
.

~27!

Deducing dynamical properties~such as conductivity! from
imaginary-time data is in general an ill-posed problem. S
eral approximate methods are often used in the contex
QMC studies. A simple method, which has been used in
study of the superfluid-insulator transition,38,39 is to fit
s( ivn) to a simple functional form, such as the Drude for
s( ivn)5s0 /(11uvnut tr). More generally, one can use
Padéapproximant to fit an arbitrary number of poles a
zeros:

FIG. 8. Current correlation functionPxx( ivn) for a 636 lattice
with nine bosons witĥF2&50.5F0

2 andU54t.
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s~z!5
a01a1z1•••1aNnz

Nn

b01b1z1•••1bNdz
Nd
. ~28!

This approach is particularly suitable if the scattering r
1/t tr @or the position of the pole closest to the origin in~28!#
is large compared to the temperature at low temperatu
This is, however, not the case in our problem. In our syst
Pxx( ivn) is nearly constant as a function ofn for finite n
even at low temperatures, suggesting that 1/t tr is propor-
tional to T. @Note thatPxx(n50)50 in the limit of strong
random flux because paths which wrap around the torus
strongly suppressed.#

We have calculated the conductivity by numerical an
lytic continuation using the maximum-entropy~MaxEnt!
method.40,41Equation~27! takes the form of a linear integra
equation:

d~t!5E K~t,v!r ~v!dv, ~29!

whereK(t,v) is the kernel relating the imaginary-time da
d(t) to the response functionr (v). In our QMC simula-
tions,d(t) is measured at discrete pointst l5 lDt with mean
d̄l . The errors for the time pointsl andm are correlated with
a covariance matrixClm5dldm2d̄l d̄m . The MaxEnt method
finds an estimate ofr (v) by optimizing the ‘‘entropy’’S:

S5E dvF r ~v!2m~v!2r ~v!ln
r ~v!

m~v!G , ~30!

defined relative to a default modelm(v), while ensuring a
reasonable goodness of fitx25( l ,m(Dl2d̄l)@C

21# lm(Dm

2d̄m) whereDl5*dvK(t l ,v)r (v). This is achieved by
maximizing the functional:f@r (v);a#52x2/21aS. The
variablea controls the tradeoff between the smoothness
the goodness of the fit, andf is also maximized with respec
to it.42We have chosenm(v) to be a constant in order not t
build in any bias. Our results are not sensitive to this cho
Details of the MaxEnt method are given in Refs. 40–42.

One can check the results of the MaxEnt inversion us
relevant sum rules. In the case of conductivity, we have u
the sum rule

E
0

`

s~v!dv52
p

4

^K&
L2

, ~31!

which is the lattice version of the more familiar form in th
continuum: *0

`s(v)dv5pnb/2m. In our MaxEnt results,
this sum rule is obeyed to within 3% error. In order to obta
reliable data for the MaxEnt inversion, we have worked w
a fine discretization in imaginary time (tDt<0.1). For the
lowest temperatures (T,0.4t), we worked at fixedDt and
b/L2. We choseb}L2 to control the finite-size effects be
cause of the imaginary-time motion of the bosons is roug
diffusive, as discussed above. Our results are in fact not v
sensitive to this choice, indicating that finite-size effects
small. For instance, the values of resistivity atbt54 and
nb51/4 for 434 and 636 are similar within statistical er
ror.

We find thats(v) consists of a single Drude-like pea
~Fig. 9!. Since this peak exhausts the sum rule~31!, its spec-
e

s.
,

re

-

d

.

g
d

y
ry
e

tral weight is proportional to2^K&. This spectral weight has
a weak temperature dependence in this temperature r
because, as already discussed, the kinetic energy approa
24t per particle as the temperature is lowered. This sho
be contrasted with the Brinkman-Rice result27 for nondegen-
erate particles (T@t) where the weight unders(v) de-
creases aŝ2K&;T21.

The width ofs(v) gives a transport scattering rate co
sistent with: 1/t tr5zkBT with z51.822.2 ~Fig. 10!. This
result has been obtained for two densitiesnb51/4 and 1/6 so
that this scattering rate appears to be independent of den
Again this differs from the Brinkman-Rice result whe
1/t tr is a constant of ordert ~as one begins to see at th
highestT in Fig. 10!. The resistivityr, given by the peak
height, is consistent with a linear temperature dependenc
re2/h5(1/2pnb)T/t for T,2t ~Fig. 11!. We estimate a sta
tistical error of 5% forr by examining fluctuations due to
statistical errors in the measurement of the current corr
tion function. There are also systematic errors due to
smoothing of structures.

There appears to be a systematic deviation from
linear-T behavior belowT50.3t, in particular in the case o
quarter filling. This deviation is stronger forr than for
1/t tr . The difference can be attributed to theT dependence
of the Drude weight discussed above which should affect
resistivity but not the relaxation time. We speculate that
deviation from linearity at the lowest temperatures may
dicate the approach to zero-temperature critical behav
This is beyond the scope of this paper.

FIG. 9. Optical conductivity for 636 lattice with nine bosons a
bt59,6,4,2,1,0.5.̂F2&50.5F0

2 andU54t.

FIG. 10. Scattering rate 1/t tr as a function of temperature. Soli
~hollow! symbols correspond to a boson density ofnb51/4 ~1/6!.
^F2&50.5F0

2 andU54t.
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Our resistivity agrees, to within a factor of 2, with Jaklˇ
and Prelovsˇek,43 who provided an approximate diagonaliz
tion of the t-J model on 434 lattices and found a Drud
peak with width 2T. They also found a broad backgroun
and interpreted it with a frequency-dependent scattering
t(v). Indeed, some authors have interpreted the experim
tal optical conductivity as possessing a power-law tail a
emphasized its importance.44 This incoherent part of the con
ductivity is absent from our boson model, and may be due
inelastic scattering of the bosons with the gauge field
more generally, with the fermionic degrees of freedom.

VI. MAGNETIC RESPONSE

We now discuss the response of this degenerate Bose
uid to a weak external magnetic field perpendicular to
plane. In the absence of the random magnetic fields, a B
liquid has a strong diamagnetic response as the temper
is lowered towards the transition to a superfluid when it
velops a Meissner response. We argue here that the li
response of the system to a magnetic field is strongly s
pressed by the gauge fluctuations. Qualitatively, this can
again understood by examining the world-line configu
tions. We have already demonstrated that the partition fu
tion is dominated by world-line paths which are unaffect
by the internal gauge fields(a*a•dxa50 for anya. These
configurations are therefore also unaffected by any exte
magnetic fields. Thus, we see that the system has a vanis
linear response to magnetic fields in the limit of strong gau
fluctuations. For the sake of completeness, we will now d
cuss more quantitatively the magnetic response of the
tem. Relevant physical quantities are the diamagnetic
ceptibility xB , the Hall coefficient RH , and the
magnetoresistanceDr/r.

Consider first the diamagnetic susceptibility. On the in
nite plane, in the presence of a weak external fieldH, each
world-line configuration picks up an extra factor
exp@2i(aAext•dxa#5exp@2iHAo# where curlAext5H, and
Ao5( rwr is the oriented area of the configuration.~In this
section, we will use units whereF052p.! Expanding this in
a Taylor series, one can write the partition functionZ(H) as

FIG. 11. Resistivity as a function of temperature. Solid~hollow!
symbols correspond to a boson density ofnb51/4 ~1/6!.
^F2&50.5F0

2 andU54t.
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Z~H !5E D$x%S 12 iHAo2
1

2
H2Ao

2De2Seff

5Z~0!S 12
1

2
H2^Ao

2& D , ~32!

whereAo is the oriented area of a world-line configuratio
and ^•••& denotes an average for the system atH50. We
have assumed here that the external magnetic fieldH has
negligible effect on the spectrum of the gauge fluctuatio
The diamagnetic susceptibility is given by

xB5
1

b

]2lnZ

]H2 5
4p2T

F0
2 ^Ao

2&. ~33!

SinceAa.Ao by definition, we can see that, when the gau
fluctuations are strong so that configurations with zero A
perean area dominate, the system has no diamagnetic
sponse, as suggested in Sec. IV B.

It should be noted that, with periodic boundary cond
tions, the total flux penetrating the torus is quantized in un
of the flux quantum. One should use replace^Ao

2& by
4^sin2@H0Ao/2#&/H0

2 whereH05F0 /L
2 is the smallest uni-

form field allowed in a torus of sizeL. Moreover, as in the
case for the Amperean area, a geometrical interpretatio
the phase factor*Aext•dx is not possible for paths which
wrap around periodic boundaries. However, these wrapp
configurations are strongly suppressed in the case of st
random flux and should give negligible contribution to t
susceptibility.

We can also consider magnetotransport properties.
need the current-current correlator at a small external fi
^ j a(t) j b(0)&H . Expanding again inH and dropping terms
which vanish by symmetry, one obtains

^ j a j b&H5
^ j a j b&2 1

2 H
2^ j a j bAo

2&1•••

12 1
2 H

2^Ao
2&1•••

. ~34!

Using~26!, we obtain the Hall conductivitysxy
H and the mag-

netoconductivityDsxx5sxx
H 2sxx

H50 :

sxy
H ~ ivn!

H
5

2p i

uvnuF0
E
0

b

dteivnt^ j q50
x ~t! j q50

y ~0!Ao&,

Dsxx~ ivn!

H2 5
2p2

uvnuF0
2E

0

b

dteivnt@^ j q50
x ~t! j q50

x ~0!Ao
2&

2^ j q50
x ~t! j q50

x ~0!&^Ao
2&#. ~35!

Since the oriented areaAo can be written asAo5
1
2

( r*0
bẑ•„j r(t)3r …dt, we see that we can relate this expre

sion for the Hall conductivitysxy
H to the more familiar one

involving the average of three currents.45 In principle, the
quantities Imsxy

H (v) ~from which we can obtain Resxy
H from

a Kramers-Kronig relation! andDsxx(v) can be computed
by analytic continuation. However, these quantities are
small to measure in the regime of strong gauge fluctuati
that we study. Thus, we see that the magnetotranspor
sponse is strongly suppressed by the gauge fluctuations
cause it is sensitive to the oriented area of the world-l
configurations.
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602 55DON H. KIM, DEREK K. K. LEE, AND PATRICK A. LEE
Since we have argued that the gauge field fluctuations
indeed strong in the cuprates at temperatures above the
perconducting transition, it appears that our simple bo
model with a quasistatic gauge field cannot describe qua
tatively the magnetotransport in these materials. This re
is however qualitatively consistent with the experimen
finding that these magnetotransport properties are gene
suppressed from the classical values. To obtain a quantita
prediction for these properties, one may attempt to res
dynamics to the gauge fields. If the gauge field may relax
time, then the boson world lines no longer have to obey
condition of strictly retracing paths. This would allow th
world lines to enclose a finite oriented area and hence a fi
response to external magnetic fields. However, we emp
size that such an approach might not represent the phy
completely. We believe that our model illustrates the gene
point that the influence of an external field on the system
strongly masked by the fluctuations of the internal magn
field.

VII. DENSITY CORRELATION FUNCTION

A. Phase separation

Noninteracting bosons are infinitely compressible. Th
would therefore collapse into a small region of the system
the presence of any quenched disorder which has a ta
localized states in the single-particle spectrum. An analog
collapse is also found in this problem with annealed rand
flux. Such an instability was discussed by Feigelmanet al.33

who have argued that it occurs also in the case of interac
bosons at low densities, leading to a hole-rich phase an
hole-absent phase. They further argued a long-range C
lomb repulsion would be necessary to stabilize the unifo
phase.

Within the world-line picture, one can visualize the inst
bility of the homogeneous phase in the limit of strong gau
fluctuations. The condition of retracing paths in this lim
encourages the bosons to come close to each other so
their paths may retrace each other. This will allow individu
boson paths to explore a larger area~in imaginary time!, and
hence lower the kinetic energy of the system compared to
case with each boson has to retrace its own path. In
absence of any repulsive interactions, this effect wo
dominate at low temperatures, making the homogene
phase unstable to collapse.

We find that this instability towards the formation o
dense aggregates indeed occurs in our model in the abs
of boson repulsion, although the instability is prevented
on-site repulsion, at least for the moderate boson densitie
interest here. We have studied the instability by examin
the compressibility of the system:k5 limq→0k(q) with

k~q!5
1

Nnb
E
0

b

dt^nq~t!n2q~0!&, ~36!

wherenq(t) is the Fourier transform of the boson density
imaginary timet. Alternatively,k5 limq→0bS(q)/nb

2 where
S(q) is the static structure factor:

S~q!5
1

L2
^nq~t!n2q~t!&. ~37!
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In Fig. 12, we show the behavior ofS(q) and k(q) for
different values of the on-site repulsionU for a 10310 lat-
tice with 25 bosons. The structure factorS(q) as a function
of q is qualitatively different for the cases of smallU and
largeU ~compared tot): S(q) for q5(p/5,p/5) is greater
than the densitynb for when the on-site interaction is smal
We can also look at the compressibility. Since we work w
finite systems at fixed boson number, we will evalua
k(q) at the smallest wave vector of the system as an estim
of theq50 behavior. We see that, in the presence of rand
magnetic flux, the compressibility increases with decreas
U. This can be interpreted as a divergence asq→0 for small
U, and hence an instability of the homogeneous phase.@This
is also reflected in the magnitude of the fluctuations in o
QMC results fork(q) which grows asq→0 for sufficiently
smallU.# However, for strong on-site repulsion, the dens
correlations show no sign of an instability at this density.

B. Static structure factor

The density fluctuations in our boson model should
relevant to the charge fluctuations in the fullt-J model. It has
been pointed out that the density excitations of thet-J model
does not resemble those of a conventional Fermi system.
will now compare our results with numerical results on t
full t-J model in the literature.

The static structure factor~37! has been calculated b
various means.9,46 Figure 13 shows the static structure fact
for our boson system together with that of thet-J model9 at
T50.25t. We see that our results are qualitatively similar
the t-J model, with improving quantitative agreement as o
approaches the hard-core limit~see, for example,U516t).
We should point out that this dependence onU should not be
as strong for the transport properties of the system, beca
the particle currents are not directly affected by the repuls
density interactions.

It is also interesting to note that the magnitude of t
gauge field fluctuations has a relative weak effect onS(q)
when the on-site repulsionU is strong. However, as we sha
see in the next section, thedynamicsof the density excita-
tions is strongly modified by the interaction with the gau
fields.

FIG. 12. Static structure factor~inset! and theq-dependent com-
pressibility as a function ofq in the (p,p) direction for different
values ofU. bt54, ^F2&50.5F0

2, nb50.25.
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55 603BOSONS, GAUGE FIELDS, AND HIGH-Tc CUPRATES
C. Dynamic structure factor

We discuss now the dynamic structure factorS(q,v):

S~q,v!5
1

L2E dteivt^nq~ t !n2q~0!&, ~38!

wherenq(t) is the Fourier transform of the density in re
time. The dynamic structure factor is related to t
imaginary-time density-density correlation function by

1

L2
^nq~t!n2q~0!&5E

0

`

~e2tv1e2~b2t!v!S~q,v!dv.

~39!

Again, we use MaxEnt to perform the inversion of this int
gral equation. Two sum rules can be used as a check o
MaxEnt procedure:

E
0

`

dv~12e2bv!vS~q,v!52
^K&
2L2

~22cosqx2cosqy!t,

E
0

`

dv
12e2bv

v
S~q,v!5

1

2
nb
2k~q!. ~40!

These are lattice versions of thef -sum rule and the com
pressiblity sum rule. They are satisfied within 1% error
our results.

Figure 14 showsS(q,v) for our bosons with and withou
the random flux. The system in the absence of random

FIG. 13. Static structure factor of the boson model at den
nb50.2 along the (p,p) direction atT50.25t. Asterisks:t-J model
result ~Ref. 9! at electron densityn512nb50.8 andt/J52.

FIG. 14. Dynamic structure factor of the superfluid pha
(^F2&50) and the normal phase (^F2&50.5F0

2) in the (p,p) di-
rection.U54t, T5t/6 at quarter-filling.
-
he

x

should be a superfluid at the temperature and densities
sidered here, and therefore should possess well-defined
non excitations. We see sharp phonon peaks in the den
excitation spectrum, for instance, at wave vec
q5(p/3,p/3). These long-lived phonon excitations of th
superfluid phase do not survive the coherence-breaking
fect of the gauge-field interactions. We find only broad pea
in S(q,v) in the presence of strong random flux.

Another effect of the presence of the gauge field is
reduction in the bandwidth of the density excitations. Th
might be expected because the gauge-field interaction te
to increase the compressibility of the system. Indeed, we
that the center of the (p,p) peak is pulled in from 7.6t to
6.8t.

We also see that the dynamic structure factor has a sim
scaling with the hole density~Fig. 15!: S(q,v;nh)
5nhS

0(q,v) holds for nh50.1–0.3. This is natural in a
model of degenerate bosons where the boson density is e
to the hole density.

We will now compare our results with numerical resu
on the full t-J model.10,11 It should be noted that, althoug
we expect the electron density excitations of thet-J model to
be dominated by its holon component, there is no quant
tive equivalence between the structure factors of thet-J
model and our boson-only model. Nevertheless, we ar
that the dynamic structure factor of our model has qualitat
similarities with that of thet-J model. For instance, the ab
sence of sharp peaks in the dynamic structure factor is
found in thet-J model. An obvious similarity, built into our
boson modela priori, is the lack of any structure indicatin
scattering across a Fermi surface atq52kF . Another feature
is the scaling of dynamic structure factor with the hole de
sity as found in Ref. 11.

We find thatS(q,v) along the (p,p) direction agrees
well with an exact diagonalization study of thet-J model at
a similar hole density, as shown in Fig. 16.~We have used a
moderate rescaling of the hopping energy:t50.9t0 where
t0 is the hopping energy in thet-J model.! The area under
q5(p/3,p/3) peak is larger in our model than in thet-J
model. We believe that, as in the case of the static struc
factor, this discrepancy can be improved with if we use
stronger on-site repulsion. However, the structure factor d
not agree with thet-J model along the (p,0) direction. It
might be that the spectrum of the holes at zero temperatu
qualitatively different from the simple tight-binding spe
trum that we have assumed here. It should also be noted

y

FIG. 15. Scaling ofS(q,v) with boson density in the (p,p)
direction. The solid~dashed! lines areS(q,v;nh)/nh for 9 ~6!
bosons on a 636 lattice.bt56, U54t, ^F2&50.5F0

2.
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604 55DON H. KIM, DEREK K. K. LEE, AND PATRICK A. LEE
we have neglected the spinon contribution in this compari
with results of the electronic structure factor calculated
diagonalization studies.

VIII. CONCLUSION

In summary, we have studied a degenerate Bose sys
which remains metallic below its degeneracy temperat
due to elastic scattering with random and quasistatic ga
fields. In the path-integral picture, the bosons retrace t
paths in the limit of strong gauge fluctuations in order
avoid the quantum frustration due to the fluctuating gau
field. We have demonstrated that many features of th
‘‘Brinkman-Rice bosons’’ indeed mimic the behavior of th
full t-J model and the normal state of the cuprate superc
ductors. These features include the linear-T dependence o
the longitudinal scattering rate and a charge excitation sp
trum which consists of broad incoherent structures. T
model itself has a strongly suppressed response to exte
magnetic fields, hinting that the behavior of the system
measured in Hall and magnetoresistance experiments ha
understood in terms of a separate mechanism.

It would also be interesting to understand the behavio
the system in the zero-temperature limit. Although the lim
of infinite gauge fluctuations~i.e., a uniform flux distribution
on a lattice! would strictly forbid any world lines to wrap
around periodic boundaries, one may consider the cas
weaker gauge fluctuations in the zero-temperature limit
ask whether there is a critical value of^F2& below which the
system is a superfluid at zero temperature. This will invo
a study of the system at very low temperatures near a q
tum critical point. This is beyond the scope of this paper
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APPENDIX: OPERATOR AVERAGES

In this appendix, we discuss the evaluation of operat
averages. In the path-integral representation of the partit
function, world-line configurations are sampled according
a distribution proportional to exp(2SB

02S2). In our Monte
Carlo scheme, we discretize the imaginary-time intervalb
into M segments of lengthDt, and we define a world-line
configuration by the boson coordinates at these discrete ti
points: $R0 ,R1 ,R2 , . . . ,RM5P(R0)%. @Rm denotes the co-
ordinates of the N bosons at mth time slice:
Rm5(x1

(m) , . . . ,xN
(m)), andRM is a permutation of the coor-

dinates ofR0.#
The configurations are sampled according to the probab

ity:

P~$R%!5
1

Ne
2S2~$R%! )

m50

M21

rDt~Rm ,Rm11!, ~A1!

whereN is a normalization constant, andrDt(R,R8) is the
short-time~high-temperature! density matrix in the absence
of gauge fields. It is given by

rDt~R,R8!5^Rue2Dt~HK
0

1HU!uR8&

.^Rue2 ~1/2! DtHUe2DtHK
0
e2 ~1/2! DtHUuR8&

5^Rue2DtHK
0
uR8&e2 ~1/2! Dt„H̃U~R!1H̃U~R8!…,

~A2!

with H̃U(R)5^RuHUuR&, and

HK
052t(̂

i j &
~bi

†bj1H.c.!, ~A3!

HU5
U

2 (
i
ni~ni21!. ~A4!

The error involved in this approximation of the density ma
trix is O(Dt3).

Measurements which depend only on particle positio
are simple to evaluate in this path-integral representatio
The expectation value of such a measurementO is given by

^O&5Tr@O~R0 ,R1 ,R2 , . . . !P~R0 ,R1 ,R2 , . . . !#,
~A5!

whereO($R%) is the measured value for the world-line con
figuration $R%, and the trace is taken over all such configu
rations.
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Averages of operators which are nonlocal in positi
space are more cumbersome to evaluate. An example is
kinetic energy:

^HK&52t(̂
i j &

^~eiai j bi
†bj1H.c.!&. ~A6!

The gauge fieldai j is defined on the link between the neig
boring sitesi and j . The Peierls factor closes the gap in t
imaginary-time loop caused by the action of kinetic ene
operator. Inserting the operatorHK in the imaginary-time
slice between them50 and 1, it can be shown that th
kinetic energy can be evaluated as
J

k
hy

or

L

T.

gu

o,

fie
tie
the

y

^HK&5TrF ^R0uHK
0UDtuR1&

^R0uUDtuR1&
P~$R%!G

5TrF ^R0uHK
0e2DtHK

0
uR1&

^R0ue2DtHK
0
uR1&

3e~1/2! Dt„H̃U~R0!2H̃U~KR0!…P~$R%!G , ~A7!

where H̃U(KR) is defined by HU$HK
0 uR&%

[H̃U(KR)$HK
0 uR&%, andUDt is the short-time evolution op

erator:

UDt5e2 ~1/2! DtHUe2DtHK
0
e2 ~1/2! DtHU. ~A8!
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