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A simple model of a degenerate two-dimensional Bose liquid interacting with a fluctuating gauge field is
investigated as a possible candidate to describe the charge degree of freedom in the normal state of the cuprate
superconductors. We show that the fluctuating gauge field efficiently destroys superfluidity even in the Bose
degenerate regime. We discuss the nature of the resulting normal state in terms of the geometric properties of
the imaginary-time paths of the bosons. We will also present numerical results on the transport properties and
the density correlations in the system. We find a transport scattering réater pf- 2kgT, consistent with the
experiments on the cuprates in the normal state. We also find that the density correlations of our model
resemble the charge correlations of thé model.[S0163-182¢07)08601-3

We study the low-temperature behavior of repulsiveYBCO,* LSCO? Bi2212° Bi2201 (Ref. §]. Transport in a
bosons in a spatially fluctuating gauge field in two dimen-magnetic field is also anomalous. The Hall coefficient indi-
sions. This is motivated by the gauge theories of thk  cates the existence of holelike carriers in the doping range
model for the cuprate superconductors, where low-energwhere superconductivity occurs. The Hall coeffici®t in-
charge excitations are described by bosonic degrees of freereases with decreasing temperature, but it remains smaller
dom. The internal gauge field of this model suppresses suthan the classical value ofrifec for a hole density ofy;, for
perfluidity in the Bose liquid, even below the Bose degen-a wide range of temperatures down to the superconducting
eracy temperature when there is significant exchange amongansition. These compounds also have a small positive mag-
the bosons. We can study the imaginary-time trajectories ofietoresistance with a temperature dependerdierent
the bosons in the path-integral representation of this modefrom conventional theory using, .

We see that the boson world lines retrace themselves in the The transport properties of these compounds appear to
presence of strong gauge fluctuations, giving rise to intereshave common features in spite of considerable differences in
ing dynamics in this degenerate but metallic Bose liquid. the transition temperature and spin fluctuation properties

We have studied this metallic state using quantum Monteamong these compounds. This indicates that a common
Carlo techniques. We find that this model does indeed capmechanism is responsible for the scattering of charge carriers
ture some of the long-wavelength charge properties whicln these materials. One might hope that this scattering
are common to the cuprate superconductors. This includesraechanism can be understood in terms of a low-energy
linear temperature dependence of the transport scattering rat@eory with a minimum number of microscopic parameters.
l/7y, as deduced from a Drude-like optical conductivity In this paper, we study a Bose liquid in a fluctuating gauge
from our model. This is consistent with experimental data orfield as a possible candidate for such an effective theory.
the cuprate superconductors near optimal doping. We also The anomalous transport behavior, together with other un-
find that the density excitations in our model are qualitativelyusual features such as temperature-dependent magnetic sus-
similar to those in the fullt-J model, by comparing our ceptibility and non-Korringa behavior of the nuclear mag-
results with diagonalization results in the literature. A brief netic relaxation time, leads to the conclusion that the metallic
account of this work has already appeated. state of the cuprates cannot be described in a simple Fermi-

liquid scenario. It has been postulated that “spin-charge
separation” is responsible for these anomafi€sr instance,

I. MOTIVATION such a scenario might reconcile the apparent low density and
holelike character of the charge carriers with the observation

The normal metallic state of the superconducting cupratesf a large, electronlike Fermi surface in photoemission. Nu-
displays many non-Fermi-liquid properties. For instance, thenerical studies of thé-J model, which is believed to be a
in-plane resistivity of La_,Sr,CuO, has a power-law tem- low-energy model of the cuprates, also provide some support
perature dependence of the fopn: T where a increases for spin-charge separatidni® such as different energy
from 1 to 1.5 with increasing hole dopifdn particular, near scales for the spin and charge excitations, and the suppres-
optimal doping, the resistivity is linear in temperature up tosion of Xg scattering in the charge spectrum.

1000 K. This linearF dependence is found in many of the A model of spin-charge separation is a gauge theory
cuprate superconductors with similar valuesdpfdT (1.2  where neutral spin-half fermiongspinons”) and charges

w cm/K = 20%).2 This should be contrasted with the qua- bosons (“holons”) interact via an internalU(1) gauge
dratic temperature dependence of Fermi-liquid theory. Simifield.*23Physically, the transverse part of the gauge field is
larly, the transport relaxation rate appears to be universaklated to “spin chirality” fluctuations? In this picture, the
among optimally doped compounds:rJ#2kgT [from a charge properties of the system should be dominated by the
two-component-model analysis of the optical conductivity inbehavior of the holons. We will study the holon subsystem in
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this paper, treating the spinon subsystem simply as a mediuntiscuss the transport properties and the density correlations
through which the gauge field propagates. To be more pran this boson model.

cise, we study a model of bosons with on-site repulsion in

the presence of a spatially fluctuating magnetic field with Il. BOSON GAUGE MODEL

short-range correlations. The repulsive interaction is neces- . . . o .
sary for the stability of the system, which means that one In this section, we provide the motivation for studying an

cannot treat this problem perturbatively starting from aneffecnve b_oson mo_del from th? gauge theo_ry (.)f the
ideal Bose gas. Previous studi&s8have implicitly studied model, which describes the motion of vacancies in a doped

the nondegenerate regime of low density or high tempera’yIOtt insulator.

ture, whereas the regime relevant to the cuprates is the de-
generate regime where the thermal de Broglie wavelength of H=—1o 2
the bosons is greater than the mean particle spacing. A con- (i
cern from earlier studies of the gauge model is that degenewith the constraint of no double occupancy. Experimentally,
ate bosons would have strong diamagnetic response to tiie= 1500 K andty/J=3.
internal gauge field and hence effectively Bose-condense at a The constraint of no double occupancy allows us to write
relatively high temperaturekgTge~4mnut~1000 K). This  the creation of a physical hole in terms of the creation of a
would in fact restore Fermi-liquid behavior to the system.charged hard-core bosdholon) and the annihilation of a
We shall show here that gauge fluctuations suppress this digpin-half fermion (spinon: Ci(rzfiabiT In terms of these
magnetic response and the bosons remain normal withoglave bosons and fermions, the Hamiltonian ofttlemodel
strong diamagnetism at all finite temperatures. Furthermore;an be written as:
our numerical results indicate that the resistivity of this Bose
metallic phase has a linear temperature dependence which is +
consistent with experiments. H=—to >, (f
It should be noted that we will work exclusively in the
“slave-boson” scheme where the holons are bosonic and the
spinons are fermionic. One may also obtain a ‘“slave-
fermion” gauge theory where the statistics of the holons and
spinons are interchanged. Although these two approaches awdiereS =fl o ,4f; 5, Theay; field is a Lagrange multiplier
equivalent in principle, they do not produce the same resultenforcing the local occupancy constraint, and acts as a fluc-
in treatments which consider only Gaussian fluctuationguating scalar potential for the spinons and holons.
around a mean-field solution. We believe that, at this level of Among the mean-field theories proposed to decouple the
approximation, the slave-boson approach provides a bettéuartic terms in Eq(2), a candidate for the normal state near
starting point to describe the cuprates near optimal dopingptimal doping is the the uniform resonating-valence-bond
(for instance, the observation of a large Fermi surface iH{RVB) ansatz:20<fﬁgfjg>=ge‘aii. This incorporates short-
photoemissioy while the slave-fermion theory may be more range antiferromagnetic correlations without any long-range
suitable near an antiferromagnetic state at very low dopingNeel order. The Lagrangian of this RVB phase can be writ-
The physics of the spin gap in the underdoped regime is alsten as:
beyond the scope of tHg(1) gauge theory described in this
work (see Ref. 18 _ * . % .
Besides the possible relevance to the transport in the Cu@—% fio(d:= MF+'aOi)fia+Ei b (9,— ug+iag)b;
prate superconductors, the model we consider is of intrinsic
theoretical interest. The model is a Bose version of the prob-
lem of a quantum particle in a random magnetic flux, which
has received considerable attention in recent years. It is also
related to frustrated spin systems and vortex glasses. How-
ever, since we deal exclusively with annealed averaging in
this paper(see below, we cannot draw any direct conclu-

(clcigtHC)+IX S-S (1
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> (flbib/fj,+H.c)+3X S-S
(o (i)

+ 2 iag(fl,fi,+blb—1), @)

J ‘ .
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271) i
©)

The vector potentiad; arises from the fluctuations in the
phase of the RVB order parameter. Longitudinal fluctuations

sions about these problems with quenched disorder. of the gauge fieldy; do not affect the Lagrangian due to an
The rest of the paper is organized as follows. In Sec. ”’internaIU(l) gauge symmetry:

we review the connection between the gauge theory of the

t-J model and our boson model. In Sec. Ill, we discuss the f,—felf

path-integral formalism which provides a convenient frame-

work to visualize physical processes in terms of the b—be

imaginary-time paths of the bosons. In Sec. IV, we look at

the effects of the gauge field on the world-line geometry of ay—ay — 0, + 0. (4)

the bosons. We will see that the partition function of the

system is dominated by self-retracing world-line configura-We will therefore work in a fixed gauge, such as the Cou-
tions. We will also argue that superfluidity is destroyed bylomb gauge, and consider only the fluctuations in the trans-
the fluctuating gauge field, giving rise to a degenerate Boseerse part of the gauge field; . In other words, we will
metal. In the subsequent sections, we present the results ofcansider only fluctuations in the internal magnetic and elec-
guantum Monte Carlo study of this metallic phase. We willtric fields which are gauge-invariant quantities.
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Since we are interested in the charge degrees of freedom, One might object that arguments above are based on a
we wish to consider an effective theory with bosons only,weak-coupling theory of the response of the spinons to the
and regard the spinon fluid as a medium through which thgauge fields. However, we believe that the essential features
gauge field propagates. The gauge field has no dynamics remain correct in general, namely, a separation of times
vacuo The response of the spinon fluid to the gauge field isscales between the relaxation of the gauge fields and the
responsible for the dynamics of the gauge field as seen by tHeoson dynamics, as well as the magnitude of the gauge fluc-
holons. More specifically, we can obtain the Gaussian fluctuations being controlled by the spinon diamagnetic suscep-
tuations of thea fields by treating the spinon response in thetibility y.
random-phase approximation. The effective gauge-field The gauge-field correlatai7) corresponds to a spatially
propagator is uncorrelated flux distribution with the correlation function:

1 T
SG:W ka 1%k, w,)a% (K, wn)ag(K, wp) <(I)rq)r’>:;5r,r’v t3)
1 where® = (®y/27)2Ha;; (oriented sum around the links of

+— 2 I (k,0,)at (k,op)a, (K,0,), (5 plaquette) is thg flux through pquuetue (Py=hcleis the

2BL7 Ko, flux quantum). Since we are treating the thermodynamics for
the gauge field classically, we have a thermal factor arfi
Eq. (8) for the flux variance(®?). Given that the fermion
where distance is measured in terms of the lattice Spacinorbital susceptibility is roughly constant at low temperatures,

We might expect the flux variance to have a linear tempera-

¥ 00
andkB—ﬁ—g—l.) Here, for smalk a_ndwn, "= pe, t.he ture dependence. However, a lattice calculation by Hlubina
spinon density of states at the Fermi level. This describes thgt al2! has indicated that the Gaussian fluctuations are suffi-

Thomas-Fermi screening of internal electric fields by the fer- iently strong that the flux through a plaquette is of the order
mions. The effective interaction mediated by the screene§f the flux quanturm -<q)2>1/2>o 5b,, down to a tempera
0. = . O -

Ao _f'l?ld IS a repuls_|on betvv_e(_an the bosofef rangde  ture of 0.4. Since the experimental superconductings of
*Pr ), consistent W!th the orlg!nal .hard-core .requwemgntthe order of 0.1, we expect that this regime of strong ran-
for the bosons. We will model this with an on-site repulsion 4, f,x is relevant to the normal state of the cuprates unti
energy,U. On the other hand, the magnetic fields dué t0,,s annroaches the superconducting transition. In this re-
fluctuations ina;; are not effectively screened out by the gime, the precise value ¢fb2) should not affect the behav-
fermions?® The gauge-field fluctuations as experienced byior o,f the bosons, and we will focus on karge and
the holons are therefore strong. More specifically, the Gaussg e rature-independeriix variance when we study the
lan ﬂ“Ct”a*t'O”S have the  correlation  function yanqhort and correlation functions of our boson system.
D(k,wn)=(al (k,@n)a, (k,wy)), given (in the continuum Another factor leading to the reduction of the flux vari-
limit) by ance at low temperature is one that has not been discussed so
far, namely, that the magnitude of the gauge field should also
D(K,w,)= 1 _ 1 6) be affected by the diamagnetic response of the holons as well
VUL (Kwn) Y| opl Ikt K2 as the spinons, i.e{®?)=T/[ xspinod T) + Xnoio T)]- The
holon contribution dominates near an instability to Bose con-
wherex is the orbite_ll suscepti'bility of .the spinon fluid .and densation whereypopo, diverges and the bosons develop a
v is a Landau damping coefficieritn units where the lattice  peissner response to expel the gauge field from the system
spacing is unity,y=? for a spinon gas near half-filling. ajtogether. However, we will see in this paper that Bose con-
These gauge'ﬁeld ﬂuctuations cause profuse fOl’Wal’d Scatteﬂ'ensation and the ho'on diamagnetism are Strong'y Sup_
ing of the bosons. We believe that this is the dominant scatpressed even below the boson degeneracy temperature.
tering mechanism in this problem. Since it is overdamped atherefore, in a wide range of temperatures above the super-
long wavelengths with a relaxation rate which diverges agonductingT,, we are justified in neglecting this feedback
1k&*, we will ignore the slow relaxation and work in a “qua- effect of the holons on the magnitude of the gauge-field fluc-

whereB=1/T, w,=2mnT, L is the linear size of the system,
anda, is the transverse part of the gauge fi¢\le use units

sistatic” limit for the gauge fields: tuations.
5 We can now define more precisely the effective model
D(k,wp)—D(K,0,=0) 8y,0= 0/ xK*. () which we study in the rest of the paper. It is a model of

: . lattice bosons interacting with a quasistatic gauge field, de-
[On a square latticék? is replaced by 4 2(cosk, +co,).] - . Lo :

This quasistatic approximation is justified when thﬂ;y gaugescnbed by the effective actioB=Sg+Sg:
field relaxes on a time scale longer tham.lIn the Bose B

degenerate regime, the shortest scattering length of interest is SBZJ (2 b (9,— ug)bi—Hg(7) |d7,

the interparticle spacing of the bosons. The relevant relax- A

ation time scales a$§’2)(/ v. For a spinon band with hopping 1

J near half-filling, y is a small fraction ¢ 10 ?) of J due to Ss==—— >, D7k, 0)a, (k,0)? 9
the weak diamagnetism of a Fermi system. One might there- 2BL" %

fore expect that this quasistatic approximation to be valid for 5
temperatures down to a small fractiondfi.e., for the whole =3 @7

A 10
of the normal state > T.=0.1J). T 2(d?) (10
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with the boson Hamiltonian
N ]
Hg=—1t>, (e®ib/b,+H.c)+ 2 n(n—1), (12
(ij)

wheret=tyé~tg, L is the linear size in units of lattice spac- . . ) ) )
ing, andU>t. Note that, on performing the average over the FIG. 1. A schematic configuration for six bosons after project-

gauge field, we average over static configurations only, i. e|ng the imaginary-time paths onto thg plane. There are a total of
a(k, w,#0)=0. three cycles: one cycle of one particle, one cycle of two particles,

We cannot sav that we have rigorously derived abov and one cycle of three particles. Solid circles denote particle posi-
y 9 y ?ions at7=0 andp.

effective action from the slave-boson mean-field theory o
thet-J model. Many approximations have been introduced to

obtain this simple model with few adjustable parameters. Fof boson -only effective theory which we study numerically in
example, we have neglected the temperature dependencey’S workﬁ;rhe system is desc_rlbed t.’y the partltlon function
the RVB order parametef and also the gauge-field correla- 2~ J Pxe " where the effective action is given by

tions of higher ordef? We take the point of view that we are

studying a “minimal” low-energy theory which hopefully Seir= S+ S, (15
captures many of the generic features of more complicated
models. with

IIl. PATH-INTEGRAL REPRESENTATION 1 B (B~ ..
S=52 D (X (7) = Xt (7))X X A7,
It is convenient to study our boson model in a first- aa’ 70 J0
guantized formulation. The partition functighfor a system (16)

with N bosons in the canonical ensemble can be written in ) Sikx
terms of a Feynman path integiabver the boson trajecto- Where D(x)=(1/BL?) oD (k,0)e Note that the

ries{x,(7)} (=1, ... N): k=0 contribution has been excluded in the sum duecor-
responding to a gauge choice where #we0 part ofa is
1 x(0)=P(x(8)) zero. This is one way to fix the remaining degree of gauge
= —2 f X1, XnJ freedom which is not determined by the condition of

V.-a=0. If we consider a system with periodic boundary
_ B 0 conditions in space, another scheme would be to fix the line
XJ D35(V'a)e_s‘5(a)_'§ L A Xelr Sl integral of the gauge field around a specified path which
wraps around the boundary. However, the latter scheme is
(12 inconvenient for our purposes because it breaks translational
whereS is the action for bosons in the absence of magnetidnvariance explicitly.
fields: The current interactiol (X) mediated by the gauge field
is logarithmic at large distances, and is attractive between
B . 0 opposite currents. Due to the quasistatic nature of the gauge
Sg= fo dT( EI b; ﬁfbi_HB)’ (13)  fields, the interaction is also infinitely retarded in time. We
will see in the next section that this encourages world lines to
whereH is given by Eq.(11) with &;=0. In this section, retrace themselves, with important consequences for the bo-
we dlscuss the model in the continuum limit for notationalson dynamics.
convenience. In the continuum, one has Before proceeding to discuss the physical consequences
of the current interactiois,, some remarks about our aver-
aging procedure for the gauge fields are in order. We have
Sg f dr| > (14 performed an “annealed” average over the gauge fields,
rather than a “quenched” average. Annealed averaging is
Particle identity is taken into account by performing the pathnecessary in our case because our gaugedieddan internal
integral over all trajectories where the set of final boson cothermodynamic variable. Formally, we evaluate observables
ordinates a{x;(B8), ... Xn(B)} is some permutation of the (O) as:
initial boson coordinatesx;(0), .. . xn(0)}. Any such per-
mutations can be broken_dow_n to cy_cles. Each cycle forms a [DxDaP[a] e~ Sa—ifa-dx
closed loop when the imaginary-time trajectoriesorld _f DxOe ™~ Sefi= . @
lines) of a many-boson configuration are projected onto real fDxDaP[a]e‘S’B"fa1 dx
space. At high temperatures, cycles of length 1 dominate the
partition function and the system is in a nondegenerate clagwhereP[a]=N" 15(V -a)e Seld is the probability distribu-
sical regime. At temperatures below the degeneracy temperéion for the gauge field, andV' is a suitable normalization
ture of the bosons, particles can travel large distances in thiactor. This is different from quenched averaging, which
imaginary time, forming many ring exchangese Fig. L would be appropriate if we dealt with a system with frozen
In this formulation, we may integrate out the Gaussianimpurities, such as a vortex glass. Quenched averaging re-
fluctuations of the gauge field in E€L2). Thus, we arrive at  quires the evaluation of

> 2x +2 U S(Xo (1) —X,(7)].
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the phase factor expiz,fa-dx,] in Eq. (12) over the
. (18  gauge field. This phase factor can be written in terms of
w,: 2 Ja-dx,=X,w,®,. We can now perform the average

i directly over the Gaussian flux distributiqi0), instead of
The differences between quenched and annealed averagife, gauge-field distributior9). We will be working with

from the point of view of perturbatiofdiagrammatittheory  horigdic boundary conditioné.e., on a torus This will be

has been addressed elsewtgré. well-defined if we impose a constraint of zero total flux

From the point of view of the path-integral Monte Carlo y,6,qh the system. On averaging, the phase factor becomes
method, our ability to perform the annealed averaging means
s ®? 2

that we would not have to perform extensive averages over
j d)\J]_—r_[ d@rex;{— “ m—a

fpxoe-sg-ua. dx

fDxe_Sg_ifa'dx

f DaP[a]

different frozen realizations of the random flux. Moreover,
note that the effective actiofl5) is manifestly real, and so
we avoid the sign problem which occurs numerically when
performing a quenched average over the gauge fields. We X > WD, +iN Y, cbr)
have studied boson densities betwegns-1/4 and 1/6. We r r
choose an on-site interaction strengites 4t. We follow the (D2
Monte Carlo methods of Ceperley and Poll&tkand ocf d)\exp< _2772_TE (W, +\)?
Trivedi.2® Each Monte Carlo step involves the reconstruction D5 T

of the world lines{x,(7)}, for all N particles using the ideal oS

boson propagator in a short interval in imaginary time. The
on-site interaction and the current interactiBy are taken (2 1 2
into account using Metropolis tests. To ensure quantum ex- S,=2mx? 5 2 wf——2< Z Wr> .
change, we may insist that each accepted configuration dif- Q5 |7 L=\ 5

fers from the previous one by a pair exchange. This can bgp g e see that the action cost due to the current interaction
incorporated, without loss of detailed balance, as a Metropo proportional to a geometrical property of the world lines,

lis test. We refer readers to the original _refereﬁ%é%for. similar to an unoriented area, which has been termed the
further details.(In evaluating the gauge field contribution 15

el . “Amperean area’
S,, we have also made use of a geometrical interpretation of
S, which we discuss in the next sectipin the discretization 1
of the imaginary time, we have used a small A= 2 Wrz—p( 2w,
A7=BIM<0.1k, so as to minimize the systematic error and ' '
to allow the reliable use of maximum entropy techniques toThis geometrical interpretation &, is particularly useful in
perform analytic continuation on our imaginary-time data tothe numerical evaluation of this quantity.
obtain the dynamical quantities of interest. This sets the low- If we are working with periodic boundary conditions, the
est accessible temperatureTte- 0.1t for lattice sizes consid- geometrical definition ofv, given above will not work be-
ered here. For studies on dynamic response to be discusseduse there is an ambiguity in identifying which plaquettes
below, we have restricted ourselves to lattices of sizes up tare inside or outside a loop on a torus. Nevertheless, we can
6X6, due to the need to obtain imaginary-time correlationstill use the above analysis for paths which do not wrap
functions to a high accuracy. For the calculation of staticaround the boundarieg$wWe will discuss wrapping paths in
properties, we have studied lattices as large as 1@ the next section.The only modification is that we need a
To summarize, we have obtained an effective theory oflefinition of the winding numbers which preserves Stokes’
bosons with current interactions which are long-ranged irtheorem:$a(x)-dx=2,w,®, . In the case of zero total flux,
space and time. This model can be studied using pathy suitable definition isvr=5‘145[a?(x)—a%(x)]-d5, where

integral Monte Carlo methods. In the next section, we willa?(x) is the vector potential at due to a test fluxb placed

discuss how these interactions affect the geometry of thg; o5 ette, andR is an arbitrary reference plaquette. Geo-
boson world lines and hence the physical properties of th?netrically, this picksR to be on the “outside” of any loop

system. on the torus. The Amperean area as defined above is inde-
pendent of the choice of this plaquette, because different
IV. EFFECT OF GAUGE FIELDS choices amount to global changes in the winding numbers
ON WORLD-LINE GEOMETRY (e.g.,w,—w,+1) and the above definition is invariant under
such changes.
The effect of the gauge field on the particles is now clear.
In this section, we will discuss how the current interactionThe actionS, suppresses world-line loops with large wind-
S, mediated by the gauge field affects world-line geometrying numbers. Indeed, sin& is non-negative, it excludes all
On the infinite plane, there is a simple geometrical interpreconfigurations with finite Amperean area in the limit of infi-
tation of this interaction in terms of the winding numbers of nite (®2). This suppression can be related to the original
the boson world lines. The winding numbet, around a problem of holes moving in a spin liquid with a slowly vary-
plaquetter is the number of times the imaginary-time world ing spin quantization axis. A hole moving in a loop comes
lines of all the bosons wind around the plaquette. Consideback with a random phase due to the locally fluctuating spin
the partition function before averaging over the gauge fieldchiralities of the spin backgrourtd.The random phase can
The effect of the gauge field enters the partition function ade interpreted as arising from a fictitious random flux.

(19

2
} . (20

A. “Brinkman-Rice bosons”
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World-line loops that enclose large areas are strongly sup-

pressed when averaged over random flux distribution due to L

the destructive interference of the random phases. Therefore,

we expect that, in the presence of strong random flux, the (@) by 4 N ©f
dominant contribution to the partition function comes from a +_

special kind of paths that do not “see” the random flux, i.e.,

paths wherefa-dx=0. These are ‘“retracing paths” where
each traversal of a link on the lattice is retraced in the oppo- FIG. 2. (a) Projection of a world line onto they plane shows a
site direction at some point in tinfé;?® and such paths have retracing path(b) A wrapping path(c) Decomposition ofb) into a
zero Amperean area. reference path and a nonwrapping path.

A similar picture of retracing paths has been studied by
Brinkman and Ricé’ who studied a single hole in a Mott becomes exponentially weak at distances beyond
insulator where the spins are treated classically. Indeed, studs=[T/2pst(®?)]*?®,, which can be interpreted as a pen-
ies of a single particle in a strong random flux have yieldedetration depth of the Bose fluid. Now, the creation of a single
a density of states nearly identical to that of the Brinkman~vortex —costs a finte amount of enefgy®
Rice problent®~3' The Brinkman-Rice model gives a linear- E,=(7ps/m)In(\p/a). This no longer compensates the en-
T resistivity at high temperature3 t-t) but a constant scat- tropic gain from vortex-antivortex unbinding, and so we do
tering rate of ordet. Although we might expect this to be not expect to see a sharp phase transition of the Kosterlitz-
applicable to our model far above the degeneracy temperd-houless type at finite temperatures.
ture of the bosons, this behavior does not extend down to the One might still expect that there is a crossover tempera-
degenerate regime relevant to the present problem. ture scale below which the vortex density will be sufficiently

At boson densities of interest here and at low temperalow that the Bose system would have strong diamagnetic
tures, Bose statistics and particle exchange are importamesponse. A rough estimate of this temperature scale using a
they can give rise to behavior different from the single-Boltzmann weight for the vortex density gives a large value
particle Brinkman-Rice result. We shall look at the effect offor this crossover temperatuté However, we will see later
the gauge field on the quantum exchanges among bosofigat, in the presence of strong gauge fluctuations, the dia-
more carefully in Sec. IV C. For now, we point out that, evenmagnetic response of the bosons remains small.
in the presence of strong gauge-field fluctuations, the bosonic To understand the suppression of superfluidity specifically
nature of the particles cannot be ignored because the paiR our model, we turn to the path-integral formulation of the
ticles can form long exchange cycles that retrace themselvggroblem with periodic boundary conditioffise., on a torug
so that an individual boson does not have to retrace its owfeperley and Pollodk have shown that superfluidity is as-
path. This is an important consideration at low temperaturesociated with the existence of long world-line cycles which
where the imaginary-time paths are long, allowing for awrap around the torus. The superfluid density is given by
strong degree of particle exchange. Although the system can

be highly degenerate at low temperatures, we shall now ar- _<W2>

gue that these “Brinkman-Rice bosons” remain normal at Ns= 4Bt ° 2D

all finite temperatures, due to interactions with the fluctuat-

ing gauge fields. whereW, (W,) is the number of times the boson world lines

wrap around the torus in the(y) direction. In other words,

_ B w=3N_. 8d7x,/L. In the presence of gauge fields, super-
B. Destruction of superfluidity fluidity is destroyed by the same mechanism that causes the
We will now discuss the effect of the gauge-field fluctua- Brinkman-Rice behavior: wrapping configurations pick up
tions on the superfluidity of the Bose system. We will see, agandom phases, and should be suppressed by destructive in-
in the previous section, that this can be understood in termi@rference on averaging over the gauge field. The number of
of the geometrical properties of the boson world lines. plaquettes whose random fluxes contribute to the phase
A neutral Bose system with short-range interaction in twopicked up by a wrapping path should increase with increas-
dimensions is a superfluid below Kosterlitz-Thouless teming system size. For a large enough system, one might expect
peratureT . The onset of superfluidity &t is caused by this phase to be totally random. We therefore expect this
the binding of vortex-antivortex pairs in the Bose fluid soSuppression to be very strong. For instance, one can evaluate
that vortex motion does not cause phase slips across the sy& for a straight-line path which wraps around the torus in
tem. An essential ingredient of the existence of the superfluighey direction. To do so, we use E(L6) instead of Eq(19)
phase is a long-range logarithmic attraction between the volecause the geometrical interpretation $f in terms of
tices and the antivortices. A single vortex costs infinite enWwinding numbers is not applicable for wrapping paths. We
ergy in an infinite systerk, = (7ps/m)In(L/a) wherea is a  find that such a path gives
short distance cutoff £ vortex core radiusand p; is the ) )
Isuperflwd density. Therefore single vortices cannot exist at Szzm S Dbk 0)22172W2L2@.
ow temperatures. Nevertheless, the proliferation of free vor- 2B . +86k -0 ’ T D3
tices is possible abov&yt because this provides a gain in ¢
entropy which also scales asLinHowever, in a charged To computeS, for a more general path with wrappiyy ,
Bose system, screening currents causes the vortex interactione can break it down into a wrapping path with the same
to be short-ranged. In our problem, the vortex interactiorwrapping number and a nonwrapping péfig. 2). (S, will

(22
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consist of the contributions of the wrapping paths and non- 1.0 -
wrapping paths separately, as well as a cross term between § ]
the two paths. We argue thasS, diverges for all wrapping g 08 s 1A
paths in the thermodynamic limit, and so superfluidity is de- 3 I ﬁ ]
stroyed at all finite temperatures. & 06 s 1
. 9 L 0 1 2
It should be noted that we are studying a gauge model é 04 - @ LID, i
where the uniform part oé is set to zero. We may alterna- g | ——a5%5
tively work with a model without this gauge fixing. With 2 o2 L 066
periodic boundary conditions, this model allows an arbitrary . . ‘;:;
Aharonov-Bohm(AB) flux through the torus. This flux is 0.0 ™ S e
00 01 02 03 04 05

related to the phase of the product of RVB parameters
(&) along a(Wilson) loop which wraps around the torus. If
we average over this AB flux assuming a uniform distribu- FIG. 3. Superfluid density v&b?) for different system sizes at

ti,or?’ we would find that all wrapping paths are strictly pro- Bt=6. Inset: a scaling plot suggests that superfluidity vanishes at
hibited andng=0 at all temperatures even for samples of (D) ~1IL.

finite size. We will not impose such a drastic condition on
the wrapping paths in this work.

We can also ask whether long-range order exists in th
Green'’s function for the bosons. The Green’s function itsel
(b™(r)b(0)) is not gauge invariant, and would vanish on
averaging over different gauges. However, we can study th
Green'’s function in a fixed gauge, for example, the trans
verse gaug® -a=0. In fact, one can write a gauge-invariant
analogue correlation function which coincides with the
Green'’s function in the transverse gate:

G(r)=(b"(r)b(0))y.a-0

@/,

that the the probability of bosons to participate in the multi-

article exchange is abogtat the Kosterlitz-Thouless tran-
sition. In other words, the probabilify, that a boson is in an
exchange cycle of length 1 is abohitWe estimate that, for
Bur lattice bosons with density,=0.25 and on-site interac-
tion U=4t, the degeneracy temperatuiig,,=1.1. (For
strong on-site repulsiorntq is not particularly sensitive to
the value ofU, e.g., Tpp=0.% for U=16t.)

We have measured, using E&1), the superfluid fraction
ng/ny at T=1t/6 with U= 4t for a range of flux variances and
for systems up to 88 in size (Fig. 3. We see that the

superfluid fraction decreases with increasing system size. In
>, fact, the superfluid fraction as a function@b?)L collapses
onto a single curve(Fig. 3, insel, indicating that
(23 ny(L,B(D2)=F(L(D?),B). Since f(x,8)—0 as x—x,
we see that an arbitrarily small random magnetic flux would
destroy superfluidity in the thermodynamic limit. In the lan-
guage of the renormalization group, this shows that the scat-

nating at.sitc_ar gnd a worlq line terminating at site 0 at th_e tering by gauge fields is a relevant perturbation at finite tem-
same point in imaginary time. Note that this quantity €oiN-perature

cides with the Green'’s function in the Coulomb gauge. Con-
sider now the phase factar, [a- dx, picked up by the world _ )
lines{x,} in the evaluation of the Green’s functi@yr) in C. World-line geometry in the normal phase

this gauge. The random flusbr at a distant plaquett&® Having established that our system remains normal at low
(with R>r) has a contribution of magnitud@g/R to the  temperatures, we will now examine the geometry of the
vector potential at a poin@ near 0 and. The sum of the world lines in this normal phase in the presence of strong
contributions to the vector potential @ due to the random  gauge fluctuations. In particular, we will look at the effect of
fluxes at radiuRR from the origin is a random vector with a the gauge fields on quantum exchange and imaginary-time
mean squared magnitude ofmBRX ((®%)/R?)~(P?)/R.  diffusion. These are mutually related: imaginary-time diffu-
This analysis is valid for all fluxes which are at a distancesjon over large distances aids quantum exchange among par-
R>r. Integrating over the contribution of such fluxes, theticles and quantum exchange facilitates imaginary-time dif-
variance of the magnitude of the vector potentiaQascales fusion. For example, in a dissipative model of bosons
as(®?)In(L/r). Summing over al near 0 and', we obtain  coupled to an external heat bath, a slow logarithmic
a random phase with a divergent varian¢@?)r2in(L/r).  imaginary-time diffusion is expected to suppress quantum
Thus, averaging over the distant fluxes for these sites, onexchange very strongly, resulting in an incoherent liquid
obtains a suppression factor of gxdd?)rg(r/L)] where even at zero temperatut&3® In our case, the bosons are
g(x)~Inl/x for smallx. This can be interpreted as a binding elastically scattered by the gauge fields. We find that the
potential for the end points @&(r). We therefore do not find gauge fields have a less dramatic effects on quantum ex-
long-range order in this quantity because of the destructivehange and imaginary-time diffusion.

interference of the random phases due to distant fluxes. We We have shown that the world lines retrace themselves in
will now present numerical evidence for the suppression othe presence of random flux. One might expect that, com-
superfluidity below the degeneracy temperatlifg of the  pared with the case of zero flux, this would reduce the dis-
system. A measure of the degeneracy temperature is thance traveled by the particles in the imaginary-time interval
Kosterlitz-Thouless temperature of the system at zero fluxg before their paths must return to some permutation of their
We make use of the observation of Ceperley and Potfock starting positions. This should slow down the imaginary-time

:<bT(r)b(0)exp( —if d’r’'f(r")V-a(r’)

Wherer,f(r’)z o(r'=r)—=4(r'). In the path-integral rep-
resentation, the evaluation & involves a world line origi-
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TABLE I. One-, two-, three-, and four-boson exchange prob-
ability for variousT,(®?), andU at quarter-filling.

T u (P2 D Py P, P3 P, , ﬁ

0.5 4 05 051 023 013 007 &}I @ ® ©
0.8 a 0 020 012 011 011
028 4 0 012 011 011 011

FIG. 4. Schematic world-line cycles which retrace when pro-

0.23 A 0.5 0.26 0.16 0.13 0.12 jected onto thexy plane. Solid circles denote boson positions at
0.23 et 0.5 0.41 0.21 0.13 0.10 7=0. (a) Each boson retraces its own path) exchange cycles
0.11 4 0 011 011 011 011  with more than one boson retrace their own patbstwo exchange
0.11 4t 05 0.12 011 011 011 cycles can retrace each others’ paths, and two wrapping paths can
0.11 16t 0.5 0.12 0.11 0.11 0.11  retrace each other to give zero total wrapping around the bound-

aries.

motion of the bosons as well as reduce the probabilities fothe kinetic energy per particle goes below the Brinkman-
exchange. We find that this is indeed the case. Rice band edge at low temperatures, approachingt
We first look at the exchange probabilitig of a particle  roughly linearly in temperaturéFig. 5. Thus, we see that
participating in an exchange cycleiobosons. As before, we the strong gauge fluctuations do not have a large effect on
may deduce a degeneracy temperafigdrom the probabil- some aspects of the world-line geometis.g., exchange
ity (1—-P;) for a particle to be involved in particle probabilities while having a dramatic influence on others
exchang€’ This degeneracy temperature is reduced com{e.qg., superfluidity.
pared to the case of zero flux. For=4t at quarter filling, Let us now examine the imaginary-time motion of the
we find that the zero-flux degeneracy temperatureparticles in more detail. Ideal bosons are diffusive in imagi-
Tpo=1.1t is reduced toT,=0.5 at (®2)=0.5P3. At -  narytime at all temperatures, i.e., the mean-squared displace-
filling, it is reduced fromTpo=0.8 to Tp=0.34. A finite ~ ment of particle « is linear in imaginary time 7
Tp does not imply Bose condensation at a finite temperaturéR*(7) ={[X,(7) —X,(0)]?) =4t7 for 0<7<p/2. With re-
Indeed, one cannot deduce a superfluid transition by exanpulsive interactions, there is an increase in the effective mass
ining the exchange probabilities. Remarkably, in the degenef the particle, e.g., fold=4t at quarter filling, we find
erate regime below,, the exchange probabilities for the t—t*=0.95. In the presence of random magnetic flux, the
cases of ®2)=0 and 0.@(2) are nearly identicalsee Table imaginary-time diffusion is slowed down, and the mean-
1). In this temperature regime, a particle is equally likely tosquared displacemei®?(7) is no longer linear inr at all
participate in an exchange cycle of any size:temperatures. Figure 6 shows our results for(teperfluid
P,=P,=-..=Py=1/N. zero-flux case at temperatugt=9 and the case of strong
We can gain a qualitative understanding of the low-random flux atgt=4,6,9. Since we are working with peri-
temperature exchange probabilities by examining how th@dic boundary conditions, we have used the definition:
suppression of Amperean area 8y affects the geometry of Rz(r):<[fg’25<a(r)dr]2>. We can see that, where&3(7)
the world-line configurations. When there is significanthas significant downward curvature gt=2, it becomes
quantum exchange, individual bosons do not have to retracgloser to diffusive behavior as the temperature is lowered.
their own paths in order to minimize the total Amperean areaHowever, we are unable to reach the asymptotic regime
of the world-line configuration of all the bosons. Instead, onewhere the particle has traveled far on the scale of the inter-
might minimize the Amperean area of each world-line loopparticle spacing over a time period 812 (see Fig. 6 insgt
formed by several bosons in the same exchange cycle. We
find that this is not the entire situation at sufficiently low
temperatures. BelowWp , the different world-line loops have
strong overlap. We find that different cycles retrace each r @L=6
others’ paths(see Fig. 4 Thus, although the gauge fields :gﬁ}:}ﬁ °
have a drastic effect on thital area enclosed by all the 30 - * 4
boson world lines, individual world-line cycles may enclose
large areas. One might therefore expect that aspects of the
world-line geometry, which are insensitive to the total area, o y
may be very similar to the case of zero flux. :
The observation that individual particles do not have to | a
retrace their own paths suggests that they could diffuse a
greater distance than in the single-particle case. One should Y0 o5 10
see a reduction in the kinetic energi) of the particles T/t
compared to the Brinkman-Rice thedtyThis is indeed the
case(See the Appendix for a discussion of the measurement F|G. 5. Kinetic energy per particle as a function of temperature.
of the kinetic energy.A single particle with retracing paths Dashed line marks the Brinkman-Rice band edge for the single-
has a band edge at2/3t rather than—4t. In our system, particle problem({®2)=0.5b2 andU=4t.

(K)/ Nt
| 2
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FIG. 6. Single-particle diffusionR?*(r)=([x(7)—~x(0)]?) in FIG. 8. Current correlation functioH (i w,) for a 6x 6 lattice

imaginary time for 6< 7< 8/2. Solid lines: strong random flux with  with nine bosons wit{ ®2)=0.5b3 andU = 4t.

(®?)=0.5P3 at Bt=4,6,9. Dashed line: zero flux #t=9. Inset:

R%(BI2) for zero flux ©) and (®?)=0.5b3 (0); dashed line  random flux is reduced substantially. This demonstrates that

marks the squared interparticle spacing. the imaginary-time motion of the bosons is diffusive at long
distances.

In order to study the long-time behavior, we can examine These results indicate that we are probing an unconven-
the size of the world-line exchange cycles. A cycle where thejonal phase of a Bose liquid. Although the system remains
world lines of | particles{xy, ... x} form a loop can be normal, many aspects of the imaginary-time motion of the
roughly regarded as a particle traveling over a time intervaparticles in the degenerate regime resemble that of a neutral
of I 8. Exchange allows such a world-line cycle to coverBose liquid which is a superfluid in such temperatures. In
large distances compared with an individual boson. In a syssubsequent sections, we shall study the physical properties of
tem with periodic boundaries, the sif of the cycle is  this “strange metal” and discuss the relevance to the normal

defined by: state of the cuprate superconductors.
B2 13" B ’ V. TRANSPORT AND OPTICAL CONDUCTIVITY
R|2: < |: j X(|+l)/2dT+ 2 XadT:| > y | odd ’
-t Jo In this section, we will present our quantum Monte Carlo

(24)  metal. To obtain the conductivity of the system, we measure
its imaginary-time analoguer,g(iw,) in our quantum
Monte Carlo simulation:

2> (QMC) results on longitudinal transport for this strange Bose
, | even.

112 B
=<{ E Xadr
a=1J0

For ideal bosonsR|2 should equalR?(7=1p/2) at inverse
temperaturd 8, and therefore should scale linearly with 1
Figure 7 showdR? for a 4x 4 lattice with nine particles. We oupliwn)= mﬂaﬁ(iwn), (29
have measured only cycles which do not have a net wrapping "

number around the periodic boundaries so that we do not

have con'gri.bujtions from cycles with different topologies. We 1,40 wop) = ff*(jgzo(ﬂjqﬁ:o(o))eiwnrd - (26)
see thaRy is linear inl for the cases of zero flux and strong 0
random flux, although the slope of the case with the strong here jq(T):Erjr(T)eiqr and i(1)=3,6(
—X,(7))(dx,/d7) is the gauge-invariant curreffig. 8).
0 Br=9, '@2>=0 ‘ ‘ m ~ The imaginary-time measurements are related to the real-
60 | w Br=9, (¢2>=0.5q,02 o time conductivityo(w)=o,,(w) by
o Br=4, (@)= O -
. [Bs;, §¢2;=g.5<1>02 ¥ _ i<- (i = [ 28 “To(w) do
40 L ] ™ ] 2L2 Jq:O T) Jq:O( )> 700 1_e—le T
o o - (27
u <
20 | © o © Deducing dynamical propertigsuch as conductivijyfrom
o " o o« * 1 imaginary-time data is in general an ill-posed problem. Sev-
g <'> f o« * eral approximate methods are often used in the context of
¢ ¢ QMC studies. A simple method, which has been used in the
%, 2 4 6 8 study of the superfluid-insulator transitiéh®® is to fit
cycle length I o(iw,) to a simple functional form, such as the Drude form

o(iw,)=0o/(1+|wy| ;). More generally, one can use a
FIG. 7. Cycle sizeR? as a function of cycle length for a ~ Padeapproximant to fit an arbitrary number of poles and
6X 6 lattice with nine particles. Zeros:
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agtaz+---+ay 2\ ! '
L (29) 20
bot+biz+--- +bNdz d

o(2)=

This approach is particularly suitable if the scattering rate
1/7, [or the position of the pole closest to the origin(&8)]
is large compared to the temperature at low temperatures.
This is, however, not the case in our problem. In our system,
I1,,(iw,) is nearly constant as a function offor finite n
even at low temperatures, suggesting that, 16 propor-
tional to T. [Note thatll,,(n=0)=0 in the limit of strong
random flux because paths which wrap around the torus are
strongly suppresseq.

We have calculated the conductivity by numerical ana- FIG. 9. Optical conductivity for & 6 lattice with nine bosons at
lytic continuation using the maximum-entropfMaxEny  Bt=9,6,4,2,1,0.5(®2)=0.5P3 andU =4t.

method!®*! Equation(27) takes the form of a linear integral o _ . _
equation: tral weight is proportional te- (K). This spectral weight has

a weak temperature dependence in this temperature range
because, as already discussed, the kinetic energy approaches
d(T):f K(7,0)r (o)do, (29 — 4t per particle as the temperature is lowered. This should

be contrasted with the Brinkman-Rice re$(for nondegen-

whereK(7,w) is the kernel relating the imaginary-time data erate particles T>t) where the weight under(w) de-

d(7) to the response function(w). In our QMC simula-  creases aé— K)~T 1.

tions,d(7) is measured at discrete poins=1A 7 with mean The width of o(w) gives a transport scattering rate con-

d, . The errors for the time pointsandm are correlated with ~ sistent with: 1#,=/kgT with {=1.8—2.2 (Fig. 10. This

a covariance matri,,,=d,d,,—d,d,,. The MaxEnt method result has been obtained for two densitigs- 1/4 and 1/6 so

() We'

o/t

finds an estimate af(w) by optimizing the “entropy”S: that this scattering rate appears to be independent of density.
Again this differs from the Brinkman-Rice result where
_ M) 1/7, is a constant of ordet (as one begins to see at the
S‘f do r(w)—m(w)—r(w)lnm(w) ’ (30 nighestT in Fig. 10. The resistivityp, given by the peak

] _ ) ) height, is consistent with a linear temperature dependence of
defined relative to a default modei(w), while ensuring a pe?lh=(1/2n,) T/t for T<2t (Fig. 11). We estimate a sta-
reasonable goodness of fit’=% (D;—d)[C™ " ]im(Dy tistical error of 5% forp by examining fluctuations due to
—d,) whereD,=fdwK(7,w)r(w). This is achieved by statistical errors in the measurement of the current correla-
maximizing the functional:g[r(w);a]=—x?2+aS. The tion function. There are also systematic errors due to the
variablea controls the tradeoff between the smoothness andgmoothing of structures.
the goodness of the fit, anfl is also maximized with respect There appears to be a systematic deviation from the
to it.*> We have chosem(w) to be a constant in order not to linear-T behavior belowl =0.3, in particular in the case of
build in any bias. Our results are not sensitive to this choicequarter filling. This deviation is stronger fgs than for
Details of the MaxEnt method are given in Refs. 40-42. 1/7,. The difference can be attributed to tfiedependence

One can check the results of the MaxEnt inversion usingf the Drude weight discussed above which should affect the
relevant sum rules. In the case of conductivity, we have usetesistivity but not the relaxation time. We speculate that the

the sum rule deviation from linearity at the lowest temperatures may in-
dicate the approach to zero-temperature critical behavior.
” 7 (K) This is beyond the scope of this paper.
o(w)do=———, (32
0 4 L
2.0 T -
which is the lattice version of the more familiar form in the e
: w ®=6 . *
continuum: [yo(w)dw=mny/2m. In our MaxEnt results, 15 L wpr=ue T /i i
this sum rule is obeyed to within 3% error. In order to obtain AP/L=1/4 i
reliable data for the MaxEnt inversion, we have worked with - g//i
a fine discretization in imaginary time¢ X r<0.1). For the £ Lor 7 i
lowest temperaturesT(<0.4t), we worked at fixedA 7 and m’
BIL2. We choseBxL? to control the finite-size effects be- 05 L 9/ Ve =2T |
cause of the imaginary-time motion of the bosons is roughly &
diffusive, as discussed above. Our results are in fact not very A&
sensitive to this choice, indicating that finite-size effects are 0.000 0‘5 To

small. For instance, the values of resistivity gtt=4 and
n,=1/4 for 4X4 and 6<6 are similar within statistical er-
ror. FIG. 10. Scattering rate 4/ as a function of temperature. Solid

We find thato(w) consists of a single Drude-like peak (hollow) symbols correspond to a boson densityngt=1/4 (1/6).
(Fig. 9. Since this peak exhausts the sum (@), its spec-  (®2)=0.5bZ andU =4t.

T/t
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0.8 _ 1 5
T Z(H):fp{x} 1—|HA0—§H2A0 e et
®1=6 o *
06 wpL=1/6 o e 1
N . :2(0)( 1- §H2<A§ : (32
S 04t R4 1
a 7 SN where A, is the oriented area of a world-line configuration
Pl and(---) denotes an average for the systenHat 0. We
02 as " pelh=T2mnt i have assumed here that the external magnetic fieldas
/gf{ negligible effect on the spectrum of the gauge fluctuations.
0.0 <A . The diamagnetic susceptibility is given by
0.0 0.5 1.0
T/t 14nZ _ 4m°T I a3
XB_E(?_HT_?g_< o) (33)

FIG. 11. Resistivity as a function of temperature. Sdkidllow)
symbols correspond to a boson density of=1/4 (1/6).  Since.A,> A, by definition, we can see that, when the gauge
(®%)=0.50F andU =4t. fluctuations are strong so that configurations with zero Am-

perean area dominate, the system has no diamagnetic re-

Our resistivity agrees, to within a factor of 2, with Jaklic SPOnse, as suggested in Sec. IVB. .
and Prelovek;*® who provided an approximate diagonaliza- It should be noted that, with periodic boundary condi-
tion of the t-J model on 4<4 lattices and found a Drude tons, the total flux penetrating the torus is quantized in units
peak with width 2. They also found a broad background, ©f the flux quantum. One should use replacdg) by
and interpreted it with a frequency-dependent scattering rat@<5'“2[_Hvo/2]>/Ho_WhereHo:(DQ/LZ is the smallest uni-
7(w). Indeed, some authors have interpreted the experimeform field allowed in a torus of size. Moreover, as in the
tal optical conductivity as possessing a power-law tail and?@S€ for the Amperean area, a geometrical interpretation of
emphasized its importané&This incoherent part of the con- the Phase factof Ae,-dx is not possible for paths which

ductivity is absent from our boson model, and may be due tg/rap arou.nd periodic boundaries. Howe_ver, these wrapping
inelastic scattering of the bosons with the gauge field Orconﬁgura‘uons are strongly suppressed in the case of strong

more generally, with the fermionic degrees of freedom. fandom.fl.u.x and should give negligible contribution to the
susceptibility.

We can also consider magnetotransport properties. We
need the current-current correlator at a small external field:
{(j*(7)jP(0))y . Expanding again irH and dropping terms
which vanish by symmetry, one obtains

We now discuss the response of this degenerate Bose lig-
uid to a weak external magnetic field perpendicular to the (j91P)— S HA(jjP AR+ - - -
plane. In the absence of the random magnetic fields, a Bose (%P n= T2, 12
liguid has a strong diamagnetic response as the temperature 1= HY A+
is lowered towards the transition to a superfluid when it desing(26), we obtain the Hall conductivity?y and the mag-
velops a Meissner response. We argue here that the lineggtoconductivityA oy = ot — o=
response of the system to a magnetic field is strongly sup-
pressed by the gauge fluctuations. Qualitatively, this can be o';'y(iwn) 2@ (B T _
again understood by examining the world-line configura- H  Jon® f dre'“n™(jg_o(7)jg-0(0)Ao),

. o wn[®oJo

tions. We have already demonstrated that the partition func-

tion is QOm|nated by w_orld-llne paths which are unaffected Aoy (iwy) 272
by the internal gauge fields ,fa-dx,=0 for anya. These = 5
configurations are therefore also unaffected by any external |onl @5
magnetic fields. Thus, we see that_the sy_ste_m has a vanishing —(j é=o(7)j§=o(0)><«4g>]- (35)

linear response to magnetic fields in the limit of strong gauge

fluctuations. For the sake of completeness, we will now disSince the oriented aread, can be written asA,=3

cuss more quantitatively the magnetic response of the sysrJ52-(j(7)xr)d7, we see that we can relate this expres-
tem. Relevant physical quantities are the diamagnetic sussion for the Hall conductivityor)'j'y to the more familiar one
ceptibility yg, the Hall coefficient Ry, and the involving the average of three curredtsin principle, the
magnetoresistanc&p/p. quantities Irmr;'y(w) (from which we can obtain Rré;'y from

Consider first the diamagnetic susceptibility. On the infi-a Kramers-Kronig relationand A o,.(w) can be computed
nite plane, in the presence of a weak external fléldeach by analytic continuation. However, these quantities are too
world-line configuration picks up an extra factor of small to measure in the regime of strong gauge fluctuations
exd —iZ Aex dX,]=exd —iH.A,] where curh.=H, and that we study. Thus, we see that the magnetotransport re-
A,=2,w, is the oriented area of the configuratigin this  sponse is strongly suppressed by the gauge fluctuations be-
section, we will use units whei®,=27.) Expanding thisin cause it is sensitive to the oriented area of the world-line
a Taylor series, one can write the partition functibfH) as  configurations.

VI. MAGNETIC RESPONSE

(34)

B L x X 2
fo drel (i o( 7)o 0).42)
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Since we have argued that the gauge field fluctuations are 40 ‘ : :
indeed strong in the cuprates at temperatures above the su- e =8 05
perconducting transition, it appears that our simple boson e U=dt 04
model with a quasistatic gauge field cannot describe quanti- 30 [0 U0 1

. ) . i A U=025t 5 03 [
tatively the magnetotransport in these materials. This result = 02

is however qualitatively consistent with the experimental

finding that these magnetotransport properties are generally
suppressed from the classical values. To obtain a quantitative
prediction for these properties, one may attempt to restore
dynamics to the gauge fields. If the gauge field may relax in

time, then the boson world lines no longer have to obey the
condition of strictly retracing paths. This would allow the 0
world lines to enclose a finite oriented area and hence a finite 0
response to external magnetic fields. However, we empha- n (g=nln/5,w5])
size that such an approach might not represent the physics . .
completely. We believe that our model illustrates the general FIG. 12. Static structure fa_xctcﬁmset) and t_heq-_depende_nt com-
point that the influence of an external field on the system ié)ress'b'“ty as a function off in the () direction for different

= 2 = 2 =
strongly masked by the fluctuations of the internal magnetié'alues ofU. ft=4, (% =0.50, ny=0.25.

K(q)

20 L 0.1 1]
0'0 1 L 1 L
0

field.
In Fig. 12, we show the behavior &(q) and «(q) for
_ tice with 25 bosons. The structure fact8fq) as a function
A. Phase separation of g is qualitatively different for the cases of small and

Noninteracting bosons are infinitely compressible. Theylarge U (compared ta): §(q) for q=(#/5,7/5) is greater
would therefore collapse into a small region of the system irfhan the densityy, for when the on-site interaction is small.
the presence of any quenched disorder which has a tail oVe can also look at_the compressibility. Since we work with
localized states in the single-particle spectrum. An analogoufinite systems at fixed boson number, we will evaluate
collapse is also found in this problem with annealed randoni () at the smallest wave vector of the system as an estimate
flux. Such an instability was discussed by Feigelreaal®®  of theq=0 behavior. We see that, in the presence of random
who have argued that it occurs also in the case of interactinglagnetic flux, the compressibility increases with decreasing
bosons at low densities, leading to a hole-rich phase and . This can be interpreted as a divergenceas0 for small
hole-absent phase. They further argued a long-range Col, and hence an instability of the homogeneous pHases
lomb repulsion would be necessary to stabilize the unifornis also reflected in the magnitude of the fluctuations in our
phase. QMC results forx(q) which grows asj— 0 for sufficiently

Within the world-line picture, one can visualize the insta-small U.] However, for strong on-site repulsion, the density
bility of the homogeneous phase in the limit of strong gaugecorrelations show no sign of an instability at this density.
fluctuations. The condition of retracing paths in this limit
encourages the bosons to come close to each other so that
their paths may retrace each other. This will allow individual
boson paths to explore a larger afgaimaginary time, and The density fluctuations in our boson model should be
hence lower the kinetic energy of the system compared to theelevant to the charge fluctuations in the full model. It has
case with each boson has to retrace its own path. In theeen pointed out that the density excitations oftttdemodel
absence of any repulsive interactions, this effect wouldioes not resemble those of a conventional Fermi system. We
dominate at low temperatures, making the homogeneousill now compare our results with numerical results on the
phase unstable to collapse. full t-J model in the literature.

We find that this instability towards the formation of  The static structure factof37) has been calculated by
dense aggregates indeed occurs in our model in the absenggrious mean$*® Figure 13 shows the static structure factor
of boson repulsion, although the instability is prevented byfor our boson system together with that of thé modeP at
on-site repulsion, at least for the moderate boson densities qf=0.25. We see that our results are qualitatively similar to
interest here. We have studied the instability by examininghet-J model, with improving quantitative agreement as one

B. Static structure factor

the compressibility of the systernx:=1lim,_,ox(q) with approaches the hard-core lintgee, for examplel) =16t).
1 s We should point out that this dependencelbshould not be
_ = as strong for the transport properties of the system, because
«(a) Nn, jo dr(ng(7)n—o(0)), (36 the particle currents are not directly affected by the repulsive

density interactions.
wheren(7) is the Fourier transform of the boson density at |t js also interesting to note that the magnitude of the
imaginary timer. Alternatively, k=limq_o8S(q)/n; where  gauge field fluctuations has a relative weak effectsgq)
S(q) is the static structure factor: when the on-site repulsiad is strong. However, as we shall
see in the next section, tldynamicsof the density excita-

S(q)= é(nq(ﬂn—q(ﬂ)- 37) ]E:glr:jss.is strongly modified by the interaction with the gauge



55 BOSONS, GAUGE FIELDS, AND HIGHF, CUPRATES 603

0.25 ; . . ‘ 0.5 ‘
q=(n/3,m/3)
04 r (@m/3,2m/3) (m,m) ]
. / £ el
0.20 1 ) \ Py —
£037 =106 ]
0.15 | g 00
G g0
7 0.10 9&6—>letJmodel2 0.1
o U=4, (cI>2>=0
oo U=41, (0")=0.50, 0.0 - e
0.05 | 5—8 U=16t, (D=0 1 0o 2 4 6/ 38 10 12
wu U=161, (0))=0.50," it
0.00 0 1 2 3 4'; 5 FIG. 15. Scaling ofS(q,w) with boson density in thesf,)
N (q=nim/5,m5]) direction. The solid(dashedl lines are S(q,w;n,)/n, for 9 (6)

bosons on a B 6 lattice. Bt=6, U=4t, ($2)=0.5D3.
FIG. 13. Static structure factor of the boson model at density i .
n,=0.2 along the -, ) direction atT =0.2%. Asteriskst-J model ~ should be a superfluid at the temperature and densities con-

result(Ref. 9 at electron densit}n:lfnb: 0.8 andt/J=2. sidered here, and therefore should possess well-defined phO'
non excitations. We see sharp phonon peaks in the density

C. Dynamic structure factor excitation spectrum, for instance, at wave vector

We discuss now the dynamic structure facg6g, o): g=(/3,7/3). These long-lived phonon excitations of the

superfluid phase do not survive the coherence-breaking ef-
1 _ fect of the gauge-field interactions. We find only broad peaks
S(q,w)= FJ dte'“'(ng(t)n_4(0)), (38  in S(q,w) in the presence of strong random flux.
Another effect of the presence of the gauge field is a
whereny(t) is the Fourier transform of the density in real reduction in the bandwidth of the density excitations. This
time. The dynamic structure factor is related to themight be expected because the gauge-field interaction tends

imaginary-time density-density correlation function by to increase the compressibility of the system. Indeed, we see
1 that the center of the#, ) peak is pulled in from 716to
—(Ng(TIN_4(0))=| (e ™+e ¥ 79)3(q,w)dw. 6.8. . :
L2< a(IN-q(0) fo ( )0, 0)dw We also see that the dynamic structure factor has a simple

(39 scaling with the hole density(Fig. 15: S(q,w;ny)

_ O _ . . .
Again, we use MaxEnt to perform the inversion of this inte- _nglsl (C}’é") hOIdSthl; nh—O.lEO.3.ﬂ;rh|k;s IS ”gt“fa!'t in-a |
gral equation. Two sum rules can be used as a check of tt{%o €l ol degenerate bosons where the boson density IS equa

MaxEnt procedure: the ho_Ie density. . .
We will now compare our results with numerical results

o ) (K) on the fullt-J model®! It should be noted that, although
f do(l1-e #)wS(q,w)=— o2 (2~ cosi,—coqy)t, we expect the electron density excitations of themodel to
0 be dominated by its holon component, there is no quantita-
1_g B 1 tive equivalence between the structure factors of the
J dw—S(q,w):—nf,K(q). (40) model and our boson-only model. Nevertheless, we argue
0 @ 2 that the dynamic structure factor of our model has qualitative
These are lattice versions of tesum rule and the com- Similarities with that of_thet-J model._ For instance, the _ab-
pressiblity sum rule. They are satisfied within 1% error inSence .Of sharp peaks in the Qynam'lc 'strgcture.fa.ctor Is also
our results. found in thet-J mode!. An obvious similarity, bunt' |nt.o our
Figure 14 shows(q, ) for our bosons with and without boson modeh priori, is the lack of any structure indicating

the random flux. The system in the absence of random ﬂuicattering across a Fermi surfaceat 2k . Another feature
Is the scaling of dynamic structure factor with the hole den-

04 sity as found in Ref. 11.

q=(n',3,n/3) ‘ T <d>2>;0 We_find thatS(q,'w) alor)g t.he @r,) direction agrees
03 | i (@050 well with an exact diagonalization study of thel model at
— " ’ a similar hole density, as shown in Fig. 18/e have used a
3 02 o moderate rescaling of the hopping energj:0.%, where
& Y (@n3.2/3) ty is the hopping energy in theJ model) The area under
0.1 ,f \ () q=(w/3,7/3) peak is larger in our model than in theJ
~ model. We believe that, as in the case of the static structure
0.0 0 ’ 4 6 3 0 12 factor, this discrepancy can be improved with if we use a

@it stronger on-site repulsion. However, the structure factor does
not agree with thé-J model along the 4,0) direction. It
FIG. 14. Dynamic structure factor of the superfluid phasemight be that the spectrum of the holes at zero temperature is
((®2)=0) and the normal phasé®?)=0.5b3) in the (,7) di- qualitatively different from the simple tight-binding spec-
rection.U =4t, T=t/6 at quarter-filling. trum that we have assumed here. It should also be noted that
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g,_ APPENDIX: OPERATOR AVERAGES
2004 In this appendix, we discuss the evaluation of operator
0.00 averages. In the path-integral representation of the partition
0 2 4 6 8 function, world-line configurations are sampled according to

a distribution proportional to exp(ﬁ—sz). In our Monte
Carlo scheme, we discretize the imaginary-time inteygal

Carlo results for &6 lattice with nine bosons aBt=6 with — configuration by the boson coordinates at these discrete time
t=0.%,. (®°)=0.5D; and U=4t. Dashed lines denote exact di- points: {Ry,Ry,Ry, . . . Ru=P(Ro)}. [R,, denotes the co-
agonalization result¢Ref. 11 for four holes in an 18-site cluster ordinates of the N bosons at mth time slice:

With to/J=2.5. Rn=(x{", ... x("), andRy, is a permutation of the coor-
dinates ofR;.]

we have neglected the spinon contribution in this comparison The configurations are sampled according to the probabil-
with results of the electronic structure factor calculated inity:

diagonalization studies.
M—-1

1
PR =& T py(Ro.Rues),  (AD)
VIll. CONCLUSION m=0

. o N
In summary, we have studied a degenerate Bose systeﬂﬁ]he:e,(_j\/ IS ha'l r;}o:mahzat;on gonst_ztmt, a?.i"(R'tE ) 'E the
which remains metallic below its degeneracy temperaturé ort-time (high-temperaturedensity matrix in the absence

due to elastic scattering with random and quasistatic gaug%]c gauge fields. It is given by

fields. In the path-integral picture, the bosons retrace their
paths in the limit of strong gauge fluctuations in order to
avoid the quantum frustration due to the fluctuating gauge
field. We have demonstrated that many features of these
“Brinkman-Rice bosons” indeed mimic the behavior of the
full t-J model and the normal state of the cuprate supercon-
ductors. These features include the lindadependence of
the longitudinal scattering rate and a charge excitation spec-
trum which consists of broad incoherent structures. Thisyith ﬁu(R)=<R|Hu|R>, and

model itself has a strongly suppressed response to external

magnetic fields, hinting that the behavior of the system as

measured in Hall and magnetoresistance experiments have to Hﬁz —tE (binj +H.c),
understood in terms of a separate mechanism. (i)

It would also be interesting to understand the behavior of
the system in the zero-temperature limit. Although the limit
of infinite gauge fluctuation§.e., a uniform flux distribution
on a lattice would strictly forbid any world lines to wrap
around periodic boundaries, one may consider the case Gfhe error involved in this approximation of the density ma-
weaker gauge fluctuations in the zero-temperature limit angix is O(A 73).
ask whether there is a critical value(obz) below which the Measurements which depend only on particle positions
system is a superfluid at zero temperature. This will involveare simple to evaluate in this path-integral representation.
a study of the system at very low temperatures near a quarfFhe expectation value of such a measurent@g given by
tum critical point. This is beyond the scope of this paper.

pa-(RR)=(Rle" 4 H Hu)|RY)
~(Rle (112) ATHUe—ATHﬁe— (112) ArHy| R')
_ <R|e—ATHﬂ| R)e~ (112 ArHY(RIFH(R')

(A2)

(A3)

U
Hy=7 2 m(ni—1). (A4)

<O>:Tr[O(R0,Rl,R2, .. .)P(R()aRlvRZ! . )]1
(A5)
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Averages of operators which are nonlocal in position
space are more cumbersome to evaluate. An example is the (H)=Tr
kinetic energy:

(Ro|HRUA|Ry)
Roltds Ry (R

—_ 7l 0
r (RolHRe™ *™k|Ry)
—ArHO
(Role A HK|R1>

(Hy)= —t% ((€"%ib]b;+H.c)). (A6)
ij

x e(1/2 87(HU(R)~HIKRDP((RY) |, (A7)

The gauge fieldy; is defined on the link between the neigh- _
boring sitesi andj. The Peierls factor closes the gap in thewhere H_(KR) is defined by HU{Hﬂ|R>}
imaginary-time loop caused by the action of kinetic energyE“H'U(KR){H%R», andi{, . is the short-time evolution op-
operator. Inserting the operatét, in the imaginary-time grator:

slice between then=0 and 1, it can be shown that the

. . 0
kinetic energy can be evaluated as Uy, =e~ (12 ArHyg=atHke (1/2) AtHy (A8)
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