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Correlation effects of ferromagnetism
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Department of Physics, Box 326, Northeastern University, Shenyang, People’s Republic of China

~Received 20 June 1996!

Using the local approach, we have discussed the correlation effects of the ferromagnetic state in the Hamil-
tonian of a single band, and calculated the ground-state energy and the boundary condition of the phase
diagram. The numerical results show that the exchange interactionj plays a decisive role for the existence of
the ferromagnetic state; when Coulomb interactionu is increased, the correlation of electrons in both the
paramagnetic and ferromagnetic states is increased; the larger the spin polarizationm, the stronger the corre-
lation of electrons; the Coulomb interactionw between nearest-neighbor sites depresses the correlation of
electrons.@S0163-1829~97!01601-9#
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I. INTRODUCTION

The ferromagnetism of transition metals are rather co
plex as thed electrons show both itinerant and localize
properties. That complexity is due to strong Coulomb int
actions. According to Hund’s rule, they are local in natu
and lead to the correlation of electrons and formation of lo
moments. This changes the criteria for the existence o
ferromagnetic state in a rather drastic way, as has been
cussed in terms of second-order perturbation theory.1 Since
high-Tc superconductors have been discovered,

2 the correla-
tion of electrons~or holes! in the narrow-band model ha
been extensively investigated3,4 to explain the superconduc
tivities. So far it is still of interest to study the electron co
relation in the narrow-band model, the simplest of which
the Hubbard model.

The ground state of a half-filled Hubbard model is b
lieved to be antiferromagnetic.5 In the strong correlation
limit, electrons localized and form a localized spin intera
ing by virtual hopping, they lead to an effective Heisenbe
model with kinetic exchange interaction.6 For the weak-
coupling condition, the mechanism of the antiferroma
netism is not so clear. Kubo and Uchinami7 with the pertur-
bation expansion and the Gutzwiller approximation ha
shown that there is an antiferromagnetic ground state for
valueU/D, on other hand, Oles and Spalek8 have pointed
out that in the case ofn51 the ground state is antiferromag
netic for any value of the ratioU/D and in the case ofnÞ1
the antiferromagnetism is destroyed and the ground state
comes paramagnetic for small ratioU/D. The extensive in-
vestigations on the Hubbard mode lead to the conclusion:
ferromagnetic state does not exist in the Hubbard model

Hirsch9 has proposed that certain matrix elements t
arise in deriving from first-principles calculations play a fu
damental role in the metallic ferromagnetism. These te
have been neglected in studies of ferromagnetism base
the Hubbard model. It is shown that if one electron is
bonding and the other is in the antibonding state, the con
bution of the exchange integralJ is negative. This will favor
a situation where the Fermi surface for up and down e
trons are in the regions at the Brillouin zone that corresp
to states of opposite bonding character, and that favor
polarization. As we well know, the correlation of electro
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plays an important role in discussing the properties of
narrow-band system, however, Hirsch’s work, in which t
correlation effects of electrons are neglected, only gav
result in terms of mean-field theory for simplifying discu
sion.

In this paper, we use the local approach10 which is devel-
oped from Gutzwiller variational method11 to study the cor-
relation effects of the ferromagnetic state in the single ba
Hamiltonian. The paper is organized as follows. In Sec. II
derive the formulas of the ground-state energy and the c
dition of the existence of the ferromagnetic state with t
local approach. In Sec. III we show the numerical results a
give some discussion. The conclusion is in Sec. IV.

II. FORMULATION

The Hamiltonian of single band model is given by

H5(
i j s

t i j cis
1Cjs1

U

2 (
is

nisni2s1
W

2 (
i j ss8

nisnjs8

1
J

2 (
i j ss8

cis
1Cjs8

1 Cis8Cjs , ~1!

where the first term denotes kinetic energy, the second t
denotes Coulomb interaction of electrons onsite, the th
term denotes Coulomb interaction of electrons betwe
nearest-neighbor sites, and the fourth term denotes the
change interaction.

In the perturbation theory, the energy of a given syst
can be divided into two parts

Eg5EHF1Ecorr, ~2!

whereEHF is the energy for Hartree-Fock~HF! approxima-
tion, andEcorr is the correlation energy. Fourier transform
tion of Eq. ~1! yields
59 © 1997 The American Physical Society
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~3!

where

«k52
D

2Z (
d

eikd ~4!

is the kinetic energy in the tight-binding approximation a
D52Zt is the bandwidth,d are the vectors that connect
site to its nearest neighbors,z is a number of nearest
neighbor sites. To calculate the HF energy at zero temp
ture, we consider a ‘‘reduced Hamiltonian’’ for ferroma
netism as in the BCS theory of superconductivity. F
antiparallel spins we take the terms of the exchange inte
tion in Eq. ~3! with q50 only, for the parallel spin we kee
q50 andq5k82k,9 then the Hamiltonian~3! becomes

H5(
ks

EksCks
1 Cks ~5!

and

Eks5«k2
2J

ND (
d

eikd (
k8s8

«k8nk8s81
1

N (
k8

SUnk82s

2ZJnk8s1ZW(
s8

nk8s8D . ~6!

To obtain the analytic results, we introduce the rectangu
density of states

r~«!5
1

D
for u«u<

D

2
~7!

and the occupation number of electrons

n5n↑1n↓ , ~8!

then, the HF energy of the ground state is easily calcula
and Eqs.~5!, ~6!, and ~7! lead to the boundary condition o
the phase diagram by minimization of the HF ground-st
energy with respect tom. It yields

11 j @m21~n21!222#2u50, ~9!

wherem is defined as magnetization

m5n↑2n↓ ~10!

andu5U/D, j5ZJ/D, andw5ZW/D.
We note that Eq.~9! does not include the terms of th

Coulomb interactionw between nearest-neighbor sites. Th
equation is same as the result given by Hirsch.9 This means
that in mean-field theory the Coulomb interactionw between
nearest-neighbor sites does not influence the existence o
ferromagnetic state, but if we consider the correlation
a-

r
c-

r

d,

e

the
f

electrons, it will show that the Coulomb interactionw be-
tween nearest-neighbor sites depresses the correlatio
electrons which mainly depends on the Coulomb interact
u.

To calculate the correlation energyEcorr with the local
approach, one first decomposes the HF ground stateucHF&
into a linear combination of configurations. The trial functio
for the ground stateucL& is constructed by modulating th
linear combination as

ucL&5)
i j

S)
m

~12hmOi j
~m!! D ucHF&, ~11!

where~hm! is a set of variational parameters,i and j run over
all sites, and (O i j

(m)) is a set of local operators. For simplic
ity, we only consider the single site correlation, thenO i j

(m)

reduces toO5ni↑ni↓ andhm to h.
For a given local operator, the ground-state energy

site can be written as

Eg5
1

N

^cLuHucL&

^cLucL&
5EHF1Ecorr. ~12!

The first term in Eq.~12! is the HF ground-state energy, th
second term is the correlation energy.

Substituting Eq.~11! into Eq.~12! and expanding Eq.~12!
in powers ofh up to second orderh2, one can obtain the
expression for the ground-state energy per site as

Eg5EHF22h^OH&1h2~^OHO&1^OOH&!, ~13!

whereh is determined by minimization of the ground-sta
energyEg in Eq. ~13! with respect toh, then we obtain the
correlation energy as

Ecorr52
^OH&2

^OHO&1^OOH&
. ~14!

As we have mentioned12 the term^OOH& represents the
off-diagonal elements of the density matrix. When the te
^OOH& is included for calculating the correlation energy
second-order perturbation theory, one can obtain more a
rate results in the so-calledR50,a approximation than the
results where the term̂OOH& is neglected. With Wick’’s
theorem and the linked diagram rule, one can obtain the a
lytic expressions of the ground-state energy by complica
calculation, and then the boundary condition of phase d
gram is obtained by minimization of the ground-state ene
Eg with respect tom, i.e.,]Eg/]m50. These expressions ar
too complicated to present here, we will show the numeri
results as follows.

III. NUMERICAL RESULTS

The numerical results are shown in Figs. 1, 2, and
respectively, where the solid lines correspond to the lo
approach and the dashed lines correspond to the mean
theory. From patternA of Fig. 1, we found that for the cas
of u50 the solid lines are very close to the dashed lines
m50.0, 0.5, and 1.0, respectively. It means that when
Coulomb interactionu50, the correlation of electrons is ver
weak, in other words, the contribution of the exchange int
action j to the correlation effects is small in both parama
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netic ~m50! and ferromagnetic phases~m50.5, 1.0!. Pattern
B of Fig. 1 shows the exchange interactionj versus band
filling for various values ofw. For the case of largeu, the
solid lines are always above the dashed line. It implies t
the electron correlation in the paramagnetic phase~m50!
mainly depends on the Coulomb interactionu, and it en-
hances the boundary of the phase diagram. When the C
lomb interactionw between nearest-neighbor sites is
creased, the boundary of the phase diagram is decreased
is, the Coulomb interactionw depresses the correlation e
fects of electrons. The numerical results for exchange in
action j versus electron numbern in the ferromagnetic phas
are shown in Fig. 2, from which we can see that in ferrom
netic states~m50.5, 1.0! all solid lines are always above th
dashed lines. It means that when we consider the corr
tion effects of electrons, a large valuej is needed to keep a
certain spin polarization. For the case ofw50.0, the Hamil-
tonian is reduced to the one given by Hirsch,9 where the
dashed line corresponds to the numerical results of Hir
and the solid line~a! corresponds to the results of the loc
approach. From patternsA andB, it is seen that when the
Coulomb interactionw between nearest-neighbor sites is
creased, the solid lines are decreased, i.e., the bounda
phase diagram is decreased. It means that the Coulom

FIG. 2. Exchange interactionj vs electron numbern for fixed
u50.5, where dashed lines correspond to mean-field theory, s
lines to the local approach, curvesa, b, c, andd tow50.0, 0.2, 0.4,
and 0.5, respectively.

FIG. 1. Exchange interactionj vs electron numbern for fixedu,
where solid lines correspond to the local approach, dashed line
mean-field theory; patternA: curves a, b, and c correspond to
m50.0, 0.5, and 1.0; patternB: Curvesa, b, c, andd to w50.0,
0.2, 0.4, and 0.5, respectively.
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teractionw depresses the correlation of electrons in the f
romagnetic phase. Comparing Fig. 2 with Fig. 1, we fou
that the correlation of electrons in the ferromagnetic phas
stronger than in paramagnetic phase for fixedu andn; the
larger the spin polarizationm, the stronger the correlation o
electrons. The numerical results for spin polarizationm vs
exchange interactionj are shown in Fig. 3 where solid line
correspond to the local approach, dashed lines to mean-
theory, and curvesa, b andc to u50.0, 0.3, and 0.5, respec
tively. In patternA, it is shown that whenu is increased, the
correlation effect is increased; in patternB, we show that for
u50.5, the correlation effect is decreased with increasingw.

In general discussions, one uses the Hubbard mode
describe the electron correlation; it is believed that
ground state of the Hubbard mode is antiferromagnetic
n51, and the ground state is paramagnetic for the cas
nÞ1 and smallu;8 when we consider the exchange intera
tion j between nearest-neighbor sites, the Hamiltonian
comes Hirsch’s type; then one can obtain the condition of
existence of the ferromagnetic phase. It means that excha
interaction j plays a decisive role for the existence of th
ferromagnetic phase and the correlation of electrons ma
depends on the Coulomb interactionu. Whenu is large, the
correlation of electrons is strong. The correlation of electro
is unfavorable to the existence of ferromagnetic phase, w
it favors the existence of the antiferromagnetic phase. W
we consider Coulomb interactionw between nearest
neighbor sites, we found that Coulomb interactionw de-
presses the correlation of electrons which mainly depend
the Coulomb interactionu.

Finally, the ground state of a given system is a par
ferro- or antiferromagnetic phase which depends on the c
petition of the contribution of exchange interactionj , and
Coulomb interactionsu andw.

IV. CONCLUSION

With the local approach, we have discussed the corr
tion of electrons in the Hamiltonian of a single band mod
We found that the exchange interactionj plays a decisive
role for the existence of ferromagnetism; the correlation

lid

FIG. 3. Spin polarizationm vs exchange interactionj for fixed
n51, where dashed lines correspond to mean-field theory, s
lines to the local approach. PatternA: Curvesa, b, and c corre-
spond tou50.0, 0.3, and 0.5; patternB: Curvesa, b, c, and d
correspond tow50.0, 0.2, 0.4, and 0.5 foru50.5.

to



tio

a

the
e
e-
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fects of electrons mainly depend on the Coulomb interac
u and the contribution of the exchange interactionj to the
correlation is very small; when Coulomb interactionu is
increased, the correlation of electrons in both the param
n

g-

netic and ferromagnetic phases is increased; the larger
spin polarizationm, the stronger the correlation effects; th
Coulomb interactionw between nearest-neighbor sites d
presses the correlation of electrons.
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