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Correlation effects of ferromagnetism
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Using the local approach, we have discussed the correlation effects of the ferromagnetic state in the Hamil-
tonian of a single band, and calculated the ground-state energy and the boundary condition of the phase
diagram. The numerical results show that the exchange intergcptays a decisive role for the existence of
the ferromagnetic state; when Coulomb interactioiis increased, the correlation of electrons in both the
paramagnetic and ferromagnetic states is increased; the larger the spin polarzatenstronger the corre-
lation of electrons; the Coulomb interactiam between nearest-neighbor sites depresses the correlation of
electrons[S0163-18287)01601-9

[. INTRODUCTION plays an important role in discussing the properties of the
narrow-band system, however, Hirsch’'s work, in which the
The ferromagnetism of transition metals are rather comeorrelation effects of electrons are neglected, only gave a
plex as thed electrons show both itinerant and localized result in terms of mean-field theory for simplifying discus-
properties. That complexity is due to strong Coulomb inter-sion.
actions. According to Hund’s rule, they are local in nature In this paper, we use the local approdtivhich is devel-
and lead to the correlation of electrons and formation of locabped from Gutzwiller variational methdtito study the cor-
moments. This changes the criteria for the existence of &elation effects of the ferromagnetic state in the single band
ferromagnetic state in a rather drastic way, as has been digtamiltonian. The paper is organized as follows. In Sec. Il we
cussed in terms of second-order perturbation the@ince  derive the formulas of the ground-state energy and the con-
high-T, superconductors have been discovéréit correla- dition of the existence of the ferromagnetic state with the

tion of electrons(or holes in the narrow-band model has |ocq| approach. In Sec. 11l we show the numerical results and
been extensively investigatétito explain the superconduc- give some discussion. The conclusion is in Sec. IV.

tivities. So far it is still of interest to study the electron cor-
relation in the narrow-band model, the simplest of which is
the Hubbard model.

The ground state of a half-filed Hubbard model is be-
lieved to be antiferromagneticin the strong correlation o ) o
limit, electrons localized and form a localized spin interact- 1€ Hamiltonian of single band model is given by
ing by virtual hopping, they lead to an effective Heisenberg
model with kinetic exchange interacti6nFor the weak- U W
coupling condition, the mechanism of the antiferromag- _ n
netism is not so clear. Kubo and Uchindmiith the pertur- H _”Z,, tiCioCiot 5 % NioMi—ot % .% NigNjor
bation expansion and the Gutzwiller approximation have :
shown that there is an antiferromagnetic ground state for an J :
value U/D, on other hand, Oles a?nd Spga%kave pointed g + 2 > Citrcia’cio’civ’ (1)
out that in the case af=1 the ground state is antiferromag-
netic for any value of the ratit/D and in the case afi#1
the antiferromagnetism is destroyed and the ground state b@ere the first term denotes kinetic energy, the second term
comes paramagnetic for small ratidD. The extensive in- denotes Coulomb interaction of electrons onsite, the third
vestigations on the Hubbard mode lead to the conclusion: theerm denotes Coulomb interaction of electrons between
ferromagnetic state does not exist in the Hubbard model. nearest-neighbor sites, and the fourth term denotes the ex-

Hirsck® has proposed that certain matrix elements thathange interaction.
arise in deriving from first-principles calculations play a fun-  In the perturbation theory, the energy of a given system
damental role in the metallic ferromagnetism. These termgan be divided into two parts
have been neglected in studies of ferromagnetism based on
the Hubbard model. It is shown that if one electron is in
bonding and the other is in the antibonding state, the contri- Eg=Enrt Ecorr 2)
bution of the exchange integralis negative. This will favor
a situation where the Fermi surface for up and down elec-
trons are in the regions at the Brillouin zone that correspondvhereE - is the energy for Hartree-FodiHF) approxima-
to states of opposite bonding character, and that favor spition, andE_,,, is the correlation energy. Fourier transforma-
polarization. As we well know, the correlation of electronstion of Eq. (1) yields

1. FORMULATION
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electrons, it will show that the Coulomb interactien be-

H= 2 £1CiyCuo T 5N E Ck+q¢7c|:r’7q +Ck’ = Cke tween nearest-neighbor sites depresses the correlation of
kk'q electrons which mainly depends on the Coulomb interaction
w iqs~+ + u- . .
toN > € Cr+qoCr/ — o' Ckr o Cior To calculate the correlation enerds,,, with the local
kk'qdoa’ approach, one first decomposes the HF ground s$tate
J o . into a linear combination of configurations. The trial function
+ 5N > eltkk +q)5Ck++q(,Ck,,q,,,Ck,(,,Ck,,, for the ground statéy; ) is constructed by modulating the
kk'qdoo’ linear combination as
()
where |‘/’L>:1;[ (lr_n[ (1— 70" )|l/fHF> (11
__ R 2 elks (4) where(7,,) is a set of variational parametersandj run over

all sites, and O,J M) js a set of local operators. For simplic-
ity, we only consider the single site correlation, tf@r‘\,m)

is the kinetic energy in the tight-binding approximation andreduces tO=n;n;, and 7, to 7.

D=2Zt is the bandwidth,6 are the vectors that connect a For a aiven local operator. the around-state ener er

site to its nearest neighborg, is a number of nearest- 9 P ' 9 gy p
site can be written as

neighbor sites. To calculate the HF energy at zero tempera-

ture, we consider a “reduced Hamiltonian” for ferromag- 1 (g |H|y)
netism as in the BCS theory of superconductivity. For Eg:ﬁ =Epet+ Econr- 12
antiparallel spins we take the terms of the exchange interac- (uly0)
tion in Eq. (3) with a= 0 only, for the parallel spin we keep The first term in Eq(12) is the HF ground-state energy, the
q=0 andg=k’ —k,° then the Hamiltoniar(3) becomes second term is the correlation energy.
Substituting Eq(11) into Eqg.(12) and expanding Eq12)
H=2 ExoCiCro (5) in powers of 7 up to second order?, one can obtain the
expression for the ground-state energy per site as
and Eg=Enr—27(OH)+ 7*((OHO)+(O0H)), (13
2J , 1 where 7 is determined by minimization of the ground-state
e iké —
Bro= ek ND 5 € kEG kMgt + N kE Unw—y energyEy in Eq. (13) with respect toy, then we obtain the
correlation energy as
—ZINg ,+ZWD nk,a,). (6) (OH)?
a’ Econ=— (14

(OHO)+(OO0OH)"

To obtain the analytic results, we introduce the rectangular

density of states As we have mentionéd the term(OOH) represents the
off-diagonal elements of the density matrix. When the term
(OOH) is included for calculating the correlation energy in

ple)= D for [e|< 5 (") second-order perturbation theory, one can obtain more accu-
] rate results in the so-called=0,a approximation than the
and the occupation number of electrons results where the termfOOH) is neglected. With Wick”s

theorem and the linked diagram rule, one can obtain the ana-
lytic expressions of the ground-state energy by complicated
then, the HF energy of the ground state is easily calculated;alculation, and then the boundary condition of phase dia-
and Eqgs.(5), (6), and(7) lead to the boundary condition of gram is obtained by minimization of the ground-state energy
the phase diagram by minimization of the HF ground-statd=y With respect tam, i.e., JE,/dm=0. These expressions are
energy with respect to. It yields too complicated to present here, we will show the numerical
results as follows.

n=n;+n, (8)

1+j[m?+(n—1)>—2]—u=0, 9
wherem is defined as magnetization Ill. NUMERICAL RESULTS
m=n.—n (10) The numerical results are shown in Figs. 1, 2, and 3,
o respectively, where the solid lines correspond to the local
andu=U/D, j=2J/D, andw=ZW/D. approach and the dashed lines correspond to the mean-field

We note that Eq(9) does not include the terms of the theory. From patterd\ of Fig. 1, we found that for the case
Coulomb interactiorw between nearest-neighbor sites. Thisof u=0 the solid lines are very close to the dashed lines for
equation is same as the result given by Hir3dtis means m=0.0, 0.5, and 1.0, respectively. It means that when the
that in mean-field theory the Coulomb interactiorbetween  Coulomb interactiom=0, the correlation of electrons is very
nearest-neighbor sites does not influence the existence of tleeak, in other words, the contribution of the exchange inter-
ferromagnetic state, but if we consider the correlation ofactionj to the correlation effects is small in both paramag-
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FIG. 3. Spin polarizatiom vs exchange interactiopfor fixed

FIG. 1. Exchange interactignvs electron numbaen for fixed u,
where solid lines correspond to the local approach, dashed lines to=1, where dashed lines correspond to mean-field theory, solid
lines to the local approach. Pattefn Curvesa, b, andc corre-

mean-field theory; patter\: curvesa, b, and ¢ correspond to
m=0.0, 0.5, and 1.0; patter®: Curvesa, b, ¢, andd to w=0.0,  spond tou=0.0, 0.3, and 0.5; patterB: Curvesa, b, c, andd
0.2, 0.4, and 0.5, respectively. correspond tav=0.0, 0.2, 0.4, and 0.5 far=0.5.

teractionw depresses the correlation of electrons in the fer-

B of Fig. 1 shows the exchange interactiprversus band romagnetic phase. Comparing Fig. 2 with Fig. 1, we found
filling for various values ofw. For the case of larga, the  that the correlation of electrons in the ferromagnetic phase is
solid lines are always above the dashed line. It implies thagtronger than in paramagnetic phase for fixedndn; the
the electron correlation in the paramagnetic ph@se=0)  larger the spin polarizatiom, the stronger the correlation of
mainly depends on the Coulomb interactiap and it en-  electrons. The numerical results for spin polarizatiors
hances the boundary of the phase diagram. When the Coexchange interactiop are shown in Fig. 3 where solid lines
lomb interactionw between nearest-neighbor sites is in-correspond to the local approach, dashed lines to mean-field
creased, the boundary of the phase diagram is decreased, tliaéory, and curvea, b andc to u=0.0, 0.3, and 0.5, respec-
is, the Coulomb interactiow depresses the correlation ef- tively. In patternA, it is shown that whew is increased, the
fects of electrons. The numerical results for exchange intereorrelation effect is increased; in patteBnwe show that for
actionj versus electron numberin the ferromagnetic phase u=0.5, the correlation effect is decreased with increasing
are shown in Fig. 2, from which we can see that in ferromag- In general discussions, one uses the Hubbard model to
netic stategm=0.5, 1.0 all solid lines are always above the describe the electron correlation; it is believed that the
dashed lines. It means that when we consider the correlground state of the Hubbard mode is antiferromagnetic for
tion effects of electrons, a large valjies needed to keep a n=1, and the ground state is paramagnetic for the case of
certain spin polarization. For the caseve£0.0, the Hamil-  n+#1 and smaliu;® when we consider the exchange interac-
tonian is reduced to the one given by Hirsciuhere the tion j between nearest-neighbor sites, the Hamiltonian be-
dashed line corresponds to the numerical results of Hirscbomes Hirsch’s type; then one can obtain the condition of the
and the solid linga) corresponds to the results of the local existence of the ferromagnetic phase. It means that exchange
approach. From patterns and B, it is seen that when the interactionj plays a decisive role for the existence of the
Coulomb interactiorw between nearest-neighbor sites is in- ferromagnetic phase and the correlation of electrons mainly
creased, the solid lines are decreased, i.e., the boundary @épends on the Coulomb interactionWhenu is large, the

phase diagram is decreased. It means that the Coulomb igorrelation of electrons is strong. The correlation of electrons
is unfavorable to the existence of ferromagnetic phase, while

it favors the existence of the antiferromagnetic phase. When
we consider Coulomb interactiow between nearest-
neighbor sites, we found that Coulomb interactinde-
presses the correlation of electrons which mainly depends on
the Coulomb interaction.

Finally, the ground state of a given system is a para-,
ferro- or antiferromagnetic phase which depends on the com-
petition of the contribution of exchange interactipnand

Coulomb interactionsi andw.

netic(m=0) and ferromagnetic phasén=0.5, 1.0. Pattern

1.8 8.5 n ®
IV. CONCLUSION

FIG. 2. Exchange interactionvs electron numben for fixed With the local approach, we have discussed the correla-

u=0.5, where dashed lines correspond to mean-field theory, soliion of electrons in the Hamiltonian of a single band model.
We found that the exchange interactiprplays a decisive

lines to the local approach, curvasb, ¢, andd tow=0.0, 0.2, 0.4,
and 0.5, respectively. role for the existence of ferromagnetism; the correlation ef-
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fects of electrons mainly depend on the Coulomb interactiometic and ferromagnetic phases is increased; the larger the
u and the contribution of the exchange interactjoto the  spin polarizationm, the stronger the correlation effects; the
correlation is very small; when Coulomb interactionis  Coulomb interactionv between nearest-neighbor sites de-
increased, the correlation of electrons in both the paramagsresses the correlation of electrons.
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