
PHYSICAL REVIEW B 1 MARCH 1997-IVOLUME 55, NUMBER 9
Exact ground-state properties of disordered Ising systems

J. Esser, U. Nowak, and K. D. Usadel
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t-Duisburg, D-47048 Duisburg, Germany

~Received 9 September 1996!

Exact ground states are calculated with an integer optimization algorithm for two- and three-dimensional
site-diluted Ising antiferromagnets in a field~DAFF! and random field Ising ferromagnets~RFIM!, the latter
with Gaussian- and bimodal-distributed random fields. We investigate the structure and the size distribution of
the domains of the ground state and compare it to earlier results from Monte Carlo~MC! simulations for finite
temperature. Although DAFF and RFIM are thought to be in the same universality class we found differences
between these systems as far as the distribution of domain sizes is concerned. In the limit of strong disorder for
the DAFF in two and three dimensions the ground states consist of domains with a broad size distribution that
can be described by a power law with exponential cutoff. For the RFIM this is only true in two dimensions
while in three dimensions above the critical field where long-range order breaks down the system consists of
two infinite interpenetrating domains of up and down spins—the system is in a two-domain state. For DAFF
and RFIM the structure of the domains of finite size is fractal and the fractal dimensions for the DAFF and the
RFIM agree within our numerical accuracy supporting that DAFF and RFIM are in the same universality class.
Also, the DAFF ground-state properties agree with earlier results from MC simulations in the whole whereas
there are essential differences between our exact ground-state calculations and earlier MC simulations for the
RFIM which suggested that there are differences between the fractality of domains in RFIM and DAFF.
Additionally, we show that for the case of higher disorder there are strong deviations from Imry-Ma-type
arguments for RFIM and DAFF in two and three dimensions.@S0163-1829~97!06609-5#
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I. INTRODUCTION

Many aspects of the influence of random field disorder
a system of interacting spins are still not well understood~for
a review, see Ref. 1!. Since it has been argued that the d
luted Ising antiferromagnet in a homogeneous field~DAFF!
and the random field Ising ferromagnet~RFIM! are in the
same universality class2,3 experimental investigations focu
on the DAFF~Ref. 4! as experimental realizations of a sy
tem with random field disorder while theorists usually foc
on the RFIM.5

However, there have been investigations on the dom
structures of the RFIM6 and the DAFF,7,8 both based on
Monte Carlo ~MC! simulations which suggest that the
might be essential differences between DAFF and RFIM
least as far as the domain structure is concerned. In the
of strong disorder for the RFIM the domains are fractal
three dimensions and more compact in two dimensio6

while the domains of the DAFF have a fractal structure b
in two and three dimensions.7,8 Additionally, essential devia-
tions from Imry-Ma-type9 behavior which can be thought t
be valid for small disorder have been found for both t
RFIM and the DAFF but the corresponding exponents
different for these two systems. In order to clarify the situ
tion and to prove how far the results from MC simulatio
which are out of equilibrium for these systems with froz
dynamics10 can be transferred to the equilibriumT50 case
we performed exact ground-state calculations on DAFF
RFIM with an integer optimization algorithm. With thi
method we get exact information on equilibrium propert
at zero temperature.

We investigate the distribution of domain sizes and
structure of the domains and we compare our findings for
550163-1829/97/55~9!/5866~7!/$10.00
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DAFF and the RFIM. Hopefully, the results may help
improve our understanding of the critical behavior of the
systems. Apart from this also for an analytic description
the dynamics of a disordered system the knowledge of
main structures and distributions is often used as a star
point.10,11

The Hamiltonian of the DAFF in units of the neares
neighbor coupling constantJ is

H5(̂
i j &

e ie js is j2B(
i

e is i ~1!

with the uniform fieldB.0 on all sites of the quadratic
L3L, respectively, cubicL3L3L lattice. Heres i561 de-
notes Ising spins and a fractionp of the sites is occupied
with a spin~quenched disorder:e i50,1). The phase diagram
of the two-dimensional~2D! DAFF is thought to consist of
an antiferromagnetic low-temperature phase for magn
field B50 and a disordered phase for all finite values ofB.
In three dimensions there exists a long-range orde
phase12,13 for magnetic fieldsB smaller than the critical
fields Bc which is Bc'1.4 for a dilution of p50.5.7 For
higher fields and low temperatures the DAFF develop
frozen disordered domain state in two and three dimensio
This domain state has many of the characteristics of a s
glass, as for instance a remanent magnetization and an
versibility line scaling such as the de Almeida-Thoule
line.7

The Hamiltonian of the RFIM in units of the neares
neighbor coupling constantJ is

H52(̂
i j &

s is j2(
i
Bis i . ~2!
5866 © 1997 The American Physical Society
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55 5867EXACT GROUND-STATE PROPERTIES OF DISORDERED . . .
Here, all sites are occupied and the random fieldsBi are
taken from a Gaussian~Gaussian RFIM!, respectively, bimo-
dal (6D RFIM! probability distribution corresponding to

P~Bi !5
1

A2pD
e2~Bi /A2D!2 ~3!

and

P~Bi !5 1
2 @d~Bi2D!1d~Bi1D!#, ~4!

respectively.
As in the case of the DAFF the phase diagram of the

system is thought to consist of a long-range ordered lo
temperature phase for zero random fields and a disord
phase for all finite values of the random field. In three
mensions for weak random fields and low temperatures th
exists a long-range ordered phase.12,13 The critical value for
the random field at which long-range order disappears
found to beDc52.35 at zero temperature.14 Even for the
RFIM a possible glassy transition has been discussed.15

We calculate exact ground states using an optimiza
algorithm well known in graph theory. The Ising system
mapped on an equivalent transport network, and the m
mum flow is calculated using the Ford-Fulkers
algorithm.16–18In order to investigate the distribution and th
structure of domains we perform a cluster analysis with
suitable adjusted Hoshen-Kopelman-type algorithm.19 This
algorithm pieces the system into domains, where a doma
defined as a group of spins which are connected and ant
romagnetically ~DAFF!, respectively, ferromagneticall
~RFIM! ordered.

The investigations for the DAFF are carried out for sy
tems of size 4003400 with an average over 50 differen
dilution configurations withp50.7 for each value ofB. For
some structural aspects even ground states of size u
7003700 were calculated. Systems of size 50350350 av-
eraged over 40 dilution configurations withp50.5 are used
for D53. The calculation of ground states for the RFIM
more time consuming. Here we considered 3003300 sys-
tems with 50 different random field configurations in 2D a
40 systems of size 30330330 in 3D.

II. DISTRIBUTION OF DOMAIN SIZES

A. DAFF

In two dimensions forB.0 no long-range order exist
and the ground state of the system consists of antiferrom
netic domains of finite size. Within a ground state for ea
domain the domain-wall energyEw , i.e., the number of bro-
ken bonds, must be smaller than the field-energyBmD ,
wheremD is the absolute value of the magnetization of t
domain which is not zero in these antiferromagnetic doma
due to the dilution. Therefore, only domains wi
mD>Ew /uBu exist in the system. The minimum wall energ
of a domain is one broken bond,Ew51. Additionally, it is
alwaysVD>mD , whereVD is the size of the domain~num-
ber of spins!, so that withVD>1/uBu we get a rigorous lower
cutoff for possible domain sizes. This relation indicates t
except from the isolated spin clusters only large domains
D
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be realized for very weak fields. Due to this finite-size effe
we consider here fieldsB>0.5 only and hence, all domai
sizesVD>3 exist.

As has been shown earlier11 for the two-dimensional case
the distribution of domains in a DAFF is well described by
power law with an exponential cutoff,

ND~VD!;VD
2dexp~2VD /V0! ~5!

whereV0 depends strongly on the field. Because of the
accuracy in the determination ofV0 no significantp depen-
dence can be observed for this quantity. We increased
numerical effort in order to investigate a possible concen
tion and field dependence ofd. We findd weakly decreasing
for increasing field but nop dependence. The results a
summarized in Table I.

Figure 1 shows the size distribution of the domain state
the three-dimensional DAFF for different fields. For the lar
est value of the field a reasonable fit to Eq.~5! can be carried
out yielding d51.860.3 andV0550620. However, a de-
tailed investigation of the field or concentration depende
of V0 andd is not possible with satisfactory precision for th
following reasons: As has been shown earlier8 for B'Bc the
domain state consists mainly of two large interpenetrat
domains ~for B54 these domains contain approximate
80% of the spins!. In Fig. 1 the two isolated peaks in the siz

TABLE I. Field dependence for the exponentd of the domain-
size distribution for the 2D DAFF.

B d

0.6 1.7660.06
0.9 1.7660.06
1.2 1.6860.04
1.4 1.6160.06
1.5 1.5860.05
2.2 1.4460.03
2.5 1.4260.06
2.8 1.3760.04
3.5 1.3260.05

FIG. 1. ND vs VD for the DAFF in three dimensions. Fo
B54.01 a fit to Eq.~5! is also shown as solid line.
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5868 55J. ESSER, U. NOWAK, AND K. D. USADEL
distribution corresponding to the two percolating doma
are not shown but due to the existence of these two infi
domains there are only few data for domains of finite size
that the statistics for these domains is rather bad. In the l
of very high fields the domains become very small. F
B.6 all spins are polarized by the field, i.e., all domai
have size 1. Hence, there is only a small region of value
the magnetic field where a broad distribution of domain si
exist. As we will show in the next subsection the existence
two infinite domains has even more dramatic consequen
for the RFIM. Here, there are no values of random fie
where relevant domains of finite size can exist.

B. RFIM

In the limit of strong random fields all spins follow th
direction of the random field. Hence, the ferromagnetic
mains are the clusters of sites with uniform random fi
signs. In this limit the domains of the RFIM correspond
clusters of the percolation problem20 with a concentration of
50%.

The distribution of domain sizes for differentD is shown
in Fig. 2 for the two-dimensional6D RFIM. For compari-
son the size distribution for the percolation problem with
concentration of 50% is also shown. With increasingD, the
domain-size distribution approaches the cluster-size distr
tion of the percolation problem which follows Eq.~5! with
d51.5560.05 andV05120620.

For lower random fields there is a striking difference b
tween the Gaussian RFIM on the one hand and the6D

FIG. 2. Domain-size distributions for the two-dimensional6D
RFIM ~impulses! and size distribution of the random field cluste
~open symbols!.
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RFIM on the other hand. For the latter system there i
lower cutoff for the possible domain sizes depending on
strength of the random fieldD. This lower cutoff is the only
qualitative difference we found between6D and Gaussian
RFIM. It can be seen in Fig. 2 and it can be determin
analytically: Similar to the arguments given for the DAF
for each domain the relationEw,EB5( i51

V s iBi must hold.
The positive domain-wall energy has to be compensated
the negative field energy. In the most favorable case all r
dom fields acting on the spins of a domain have the sa
sign,EB5VDD so that for the smallest possible domains w
get VD>Ew /D. With this relation as starting point a lowe
cutoff can be determined as the sizes of those domains w
have a minimum surface. For large domain sizes the m
mum surface of a domain is the surface of a circle~2D!,
Ew;VD

1/2, respectively, sphere~3D!, Ew;VD
2/3. For smaller

sizes, the domain with the minimum surfaceVmin can be
determined numerically. Figure 3 shows this dependenc
Vmin from D for the6D RFIM in two dimensions. In addi-
tion, the minimum domain volumes of the ground states
the RFIM for differentD are depicted. ForD<1 there is a
strong deviation of the observed domains of minimum s
from the theoretical curve. Obviously, this is due to the fa
that for larger domains it is less probable that all rand
fields within a domain with minimized surface have the sa
orientation. Hence, either the field energyEB is overesti-
mated or the shapes of the domains are more complic
than those with minimum surface. The first possibility wou
correspond to a crossover to a behavior following t
Imry-Ma argument,9 whereEB is thought to scale with the
root of the domain size due to simple statistical fluctuatio
of random fields within a domain. However, in the range
fields where this crossover may occur the minimum dom
size is larger than the system sizes that we can investi
with numerical methods.

Figure 4 shows the volumes of the two largest domains
the ground state of the6D and the Gaussian RFIM. Fo
lower fieldsD,0.8 the order parameter is finite. Obviousl
this is the region where finite-size effects lead to wrong
sults for the system sizes we investigated since in this reg

FIG. 3. Minimum domain size for given valuesD of the field of
a 6D RFIM in two dimensions.
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55 5869EXACT GROUND-STATE PROPERTIES OF DISORDERED . . .
minimum domain sizes are larger than the system. Theref
in the following we consider only results forD.0.8.

An additional, striking feature of Fig. 4 is the jump in th
data for the6D RFIM atD52. Considering Fig. 5~left! one
realizesD52 as a special value: The random fields a
marked with1 and2 signs and the arrows represent t
spin orientations (↑ spins are oriented parallel to a positiv
D). The energy of the center spin withs561 is

Es52s2sD. ~6!

In the ground state it iss511 for D.2 and the bold drawn
domain wall is realized.D,2 favorss521 and the center
spin belongs to the down domain. Generally, forD.2 the
domain wall arranges in such a way that the sign of
random fields changes at each position of a domain wall,
the domain walls run along the surfaces of the random fi
clusters~clusters of sites with uniform random field sign!.
Figure 5 ~right! demonstrates that nevertheless even
D.2 domains larger than these random field clusters
exist. A cluster with a magnetization that is oriented antip
allel to the random fields is enclosed such that its surface
within the domain. Hence, forD.4 each domain is a ran
dom field cluster while for 2,D,4 each domain wall is a
part of the surfaces of the random field clusters. Con
quently, the domains in this range ofD are larger. In three
dimensions each spin has six next neighbors. Here, the
responding effect occurs atD54.

FIG. 4. Largest~open symbols! and second largest~filled sym-
bols! domain size divided by the system sizen5L3L for the
6D RFIM in two dimensions.

FIG. 5. 6D RFIM; left: cut of a domain wall; right: a domain
for D.2 consisting of multiple random field clusters.
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Both, forD52 andD53 the RFIM approaches the pe
colation problem with a concentration of 50% for largeD,
but while for D52 in this case there exists no percolatin
cluster of random fields in three dimensions 50% is abo
the percolation threshold. This means that as mentio
above for the case of the DAFF in three dimensions one
find two infinite interpenetrating domains.

The normalized volumes of the largest and second-larg
domain for theD53 RFIM are shown in Fig. 6. Adding the
sizes of these two largest domains we found that more t
97% of the spins of the system belong to these two doma
in the whole range of random fields. Consequently, the ph
transition from the ordered to the disordered state is not
to a breakup of the system into finite domains. Instead,
infinite interpenetrating domains with antiparallel orient
magnetizations cause the order parameter to vanish.

In contrast toD52 there is no broad range of doma
sizes forD53 and in contrast to the DAFF there is no ran
of fields where a relevant number of domains of finite s
exist. For this reason it is senseless to analyze the distr
tion of the domains in more detail.

III. DOMAIN STRUCTURES

A. DAFF

In a DAFF, domains are composed in such a way tha
many spins as possible are oriented parallel to the app
field with a minimum number of broken bonds. Hence, d
main walls favorably run along vacancies to minimize t
wall energy. These two competing requirements for mi
mizing the total energy lead to highly nontrivial structure
Figure 7 shows the antiferromagnetic domains in the gro
state. Here, the configuration of occupied sites and vacan
is kept fixed, while the external fieldB is tuned. In order to
investigate the structural properties of the domains we c
sider the following quantities and corresponding scaling
lations: ~i! volume VD : number of spins,~ii ! surfaceSD :
sum of all unsatisfied bonds~broken or ‘‘open’’ due to va-
cancies! with SD;VD

1/Dv f , ~iii ! radius of gyrationRD , i.e.,
root of mean squared distance of all spins of a domain w

FIG. 6. Largest and second-largest domain size correspondin
Fig. 4 for the RFIM in three dimensions.
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5870 55J. ESSER, U. NOWAK, AND K. D. USADEL
VD;RD
Dv , ~iv! absolute value of the magnetization of a d

mainmD with mD;VD
u , and~v! wall energyEW , sum of all

broken bonds withEW;VD
s .

For large domains the scaling relations above hold and
exponents are determined by analyzing all domains in
ground states and taking an average of the quantities a
for all domains of equal sizeVD . In Ref. 11 we showed an
example for the two-dimensional case. In the meantime
investigated the three-dimensional system also. Our resu
exponents are summarized in Table II and compared to
values resulting from MC simulations.7,8

The domains are fractal with fractal dimensio
Dv51.65 forD52 andDv52.14 forD53. This fractality
is also reflected in the proportionality of surface and volu

FIG. 7. Ground states of a 2003200 DAFF with a fixed dilution
configuration for increasing fieldsB50.8, 1.4, 2.2~from above!.
The two antiferromagnetic phases are represented in black
white. The vacancies are also black.

TABLE II. Structural exponents for the DAFF.

MC simulation Exact ground states
D 2 3 2 3

u 1.0060.01 0.99660.001 0.9760.01 0.9960.01
s 0.9860.01 0.99560.001 0.9660.02 0.9860.03
Dv f 1.00160.002 1.00060.001 1.0060.01 1.0060.01
Dv 1.5660.03 2.060.1 1.6460.06 2.1460.08
e
e
ve

e
ng
e

e

(Dv f'1). A great part of the surface is inside the domai
Slight deviations of exponents from exact ground states fr
those resulting from MC simulation are due to a systema
inaccuracy which is not reflected by the error bars repres
ing the fluctuations of the data only. Probably, a small, s
tematic error is due to the fact that the data are sligh
curved in a log-log plot so that the linear range for lar
domains can hardly be determined~see also the correspond
ing Fig. 10 for the RFIM!. From comparison with the corre
sponding figures7,8 it is found that in spite of similar expo
nents the valuesmd(VD) are larger for exact ground states—
the domains of the ground states are obviously be
optimized.

In good agreement with MC simulations isu'1 both in
two and three dimensions. Altogether the fractal structu
for strong disorder lead to deviations from Imry-Ma-typ
arguments9 based on compact domains. Here, a statist
distribution of vacancies in a domain would yieldu'1/2
which can clearly be ruled out by our data for the range
fields that we investigated. The implication of this findin
will be discussed in connection with the RFIM where w
have found similar results. A field dependence of any of
exponents could not be found.

B. RFIM

As we showed in the previous section there is no bro
distribution of domains for the three-dimensional RFIM—
domains of finite size are irrelevant for the ground sta
Therefore, in this subsection we restrict ourselves to the c
D52.

Figure 8 shows the ferromagnetic domain configuration
a 6D RFIM in the ground state. The configuration of sig
of the random fields is kept fixed, while the valueD of the
field is tuned. As for the DAFF we study the structural qua
tities volume, surface and radius of the domains. Since th
is no dilution the surface and the domain wall energy
identical. Also, the magnetization and the volume of the d
mains are identical. We study the following quantities:~i!
local random field fluctuationsbD , which is the absolute
value of the sum of the random fields of a domain,~ii ! ran-
dom field fluctuations of all sites of a domain along the d
main wall inside the domainbin , ~iii ! random field fluctua-
tions of all sites of a domain along the domain wall outsi
the domainbout.

Figure 9 showsbin /SD andbout/SD each multiplied with
the sign of the magnetization of the considered domain
the6D RFIM. As we demonstrated with Fig. 5 forD.2 the
domain walls run exactly along the boundaries of rand
field clusters. Hence, in this range of fields it
ubin /SDu5ubout/SDu51. Even for smaller fields the domai
walls are presumably located along these random field
faces and for large domains these fluctuations are pro
tional to the surface of the domains.

Corresponding to the DAFF the exponentsDv , Dv f , and
u with bD;VD

u are determined from appropriate fits~Fig.
10!. In Table III the exponents are summarized. The ex
nents resulting from MC are from Ref. 6.

The investigations are carried out for relative strong ra
dom fields,D53.01 ~Gaussian RFIM! and D54.01 (6D
RFIM!, because then—as explained in the previo

nd
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chapter—a broad range of domain sizes exists. It is fo
that the exponents do not depend on the kind of random fi
distributions within the given precision.

In agreement with the findings for the DAFF the doma
are fractal with nearly the same exponentsDv'1.6 and

FIG. 8. Ground states of a 2003200 6D RFIM for a fixed
configuration of random fields andD51.0, 1.1, 1.5~from above!.
The two ferromagnetic phases are represented in black and w

FIG. 9. Random field fluctuationsbout and bin of the domain
surfaces each multiplied with the sign of the domain-magnetiza
and divided by the surfaceSD for the two-dimensional6D RFIM.
d
ld

Dv f'1. Also, it isu'1 indicating that the random fields ar
distributed nonstatistically within a domain. These results
in contradiction to the earlier investigations using M
methods6 where results were found corresponding to mo
compact domains. We interpret this discrepancy as being
to the fact that the MC simulations were carried out w
D51 andT/kB51. As we showed before for this value o
D only very large domains can exist in the ground sta
Therefore, the broad range of analyzed domains in Re

e.

n

FIG. 10. Figures for the determination of the structural exp
nentsu, Dv , andDv f for the two-dimensional6D RFIM.

TABLE III. Structural exponents for the 2D RFIM;D54.01 for
6D andD53.01 for Gaussian-distributed random fields.

MC simulation Exact ground states
6D Gaussian 6D Gaussian

Dv 1.6560.08 1.6760.08
Dv f 0.5960.04 0.9860.05 0.9760.05
u 0.6660.04 1.0060.01 1.0060.01
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5872 55J. ESSER, U. NOWAK, AND K. D. USADEL
results obviously from thermal fluctuations. Apart from th
for small domains one cannot observe a hierarchy of
mains inside domains which is an important feature of
domains we observed. For larger fields and lower temp
ture we would expect agreement of these two meth
above.

Our results deviate once more from the assumption
Imry-Ma-type random field fluctuations9 for compact domain
structures withu51/2. Also, noD dependence for our ex
ponents can be determined as indication for a crossove
Imry-Ma behavior within the range of fields that we inves
gated.

We interpret this as being due to the fact that for t
strength of disorder we consider domains are not comp
and they do not have a shape for which a statistical argum
holds. Instead very complicated structures arise. Domains
interpenetrating and there is a hierarchy of domains ins
domains so that even large domains for which the Imry-
argument was thought to hold can draw advantage from
dom field fluctuations on small length scales.

Note that all exponents found for the fractal behavior
the domains of the RFIM as well as the DAFF are very clo
to those for the lattice animals of the percolati
problem.20,21This is plausible since as mentioned before
domains of the RFIM in the limit of high random fields hav
the same distribution and structure like the clusters from
percolation problem. As we discussed in the previous s
section systematic inaccuracies are not reflected by the e
bars and systematic error can be due to a slight curvatur
the data.

IV. CONCLUSIONS

We investigated the distribution and structure of the d
mains of the ground state of DAFF and RFIM in two a
three dimensions. Since except for the Gaussian RFIM th
is always a lower cutoff for the minimum domain size one
restricted to rather large disorder due to finite size effe
i.e., high dilution and fields of the order of the spin-sp
coupling constant.
-
e
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s

f
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The domain-size distribution for the DAFF can be we
described by a power law with a field-dependent exponen
cutoff for a broad range of the applied fields in 2D and f
strong fields (B.3) in 3D. For the RFIM with increasing
random field strength there is a continuous transition to
cluster-size distribution of the percolation problem whi
also follows a power law with an exponential cutoff. For th
6D RFIM a nontrivial minimum domain size is found, tha
can be estimated based on energetic considerations.

Investigating structural properties we have found that
finite domains of the domain state are fractal for the DA
(D52,3) as well as for the RFIM (D52) with the same
fractal exponents. Surprisingly, the domain state of
RFIM in 3D is found to consist mainly (.97%) of two
infinite interpenetrating domains of opposite phase in
whole range of random fields for which the long-range ord
is broken. In this sense, the phase diagram of the RFIM
T50 consists only of two regions, a one-domain state~long-
range order below the critical field! and this two-domain
state.

While for the RFIM the results for the structural scalin
exponents differ essentially from earlier findings at fin
temperature carried out using MC simulations, our results
in good agreement with Monte Carlo simulations for t
DAFF both in two and three dimensions. Also, the results
DAFF and RFIM agree.

Due to the complex shape of the domains the magnet
tion of the domains~DAFF! and the distribution of random
fields within the domains~RFIM!, respectively, strongly de
viates from the assumptions of the Imry-Ma argument whi
however, can still be thought of as correct in the limit
small disorder. A more detailed investigation of the structu
of domains for weak random fields is desirable. Unfor
nately, for this the numerics exceeds current capacities.
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