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Exact ground-state properties of disordered Ising systems
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Exact ground states are calculated with an integer optimization algorithm for two- and three-dimensional
site-diluted Ising antiferromagnets in a figldAFF) and random field Ising ferromagne®FIM), the latter
with Gaussian- and bimodal-distributed random fields. We investigate the structure and the size distribution of
the domains of the ground state and compare it to earlier results from Monte(®&@)csimulations for finite
temperature. Although DAFF and RFIM are thought to be in the same universality class we found differences
between these systems as far as the distribution of domain sizes is concerned. In the limit of strong disorder for
the DAFF in two and three dimensions the ground states consist of domains with a broad size distribution that
can be described by a power law with exponential cutoff. For the RFIM this is only true in two dimensions
while in three dimensions above the critical field where long-range order breaks down the system consists of
two infinite interpenetrating domains of up and down spins—the system is in a two-domain state. For DAFF
and RFIM the structure of the domains of finite size is fractal and the fractal dimensions for the DAFF and the
RFIM agree within our numerical accuracy supporting that DAFF and RFIM are in the same universality class.
Also, the DAFF ground-state properties agree with earlier results from MC simulations in the whole whereas
there are essential differences between our exact ground-state calculations and earlier MC simulations for the
RFIM which suggested that there are differences between the fractality of domains in RFIM and DAFF.
Additionally, we show that for the case of higher disorder there are strong deviations from Imry-Ma-type
arguments for RFIM and DAFF in two and three dimensid®£163-18207)06609-3

I. INTRODUCTION DAFF and the RFIM. Hopefully, the results may help to
improve our understanding of the critical behavior of these
Many aspects of the influence of random field disorder orsystems. Apart from this also for an analytic description of
a system of interacting spins are still not well understtfod ~ the dynamics of a disordered system the knowledge of do-
a review, see Ref.)1Since it has been argued that the di- main structures and distributions is often used as a starting
luted Ising antiferromagnet in a homogeneous fi@&dFF) point!01!
and the random field Ising ferromagn@FIM) are in the The Hamiltonian of the DAFF in units of the nearest-
same universality class experimental investigations focus Nneighbor coupling constardtis
on the DAFF(Ref. 4 as experimental realizations of a sys-
tem with random field disorder while theorists usually focus _ o .
on the RFIM® : <.2,> 69,0,~B2 &0, @)
However, there have been investigations on the domain . , , . ,
structures of the RFIMand the DAFF® both based on with the uniform fieldB>0 on all sites of the quadratic
Monte Carlo (MC) simulations which suggest that there LXL. respectively, cubi¢ XL XL lattice. Hereo;=* 1 de-
might be essential differences between DAFF and RFIM, afotes Ising spins and a fractign of the sites is occupied
least as far as the domain structure is concerned. In the limWith @ spin(quenched disordek; =0,1). The phase diagram
of strong disorder for the RFIM the domains are fractal in©f the two-dimensional2D) DAFF is thought to consist of
three dimensions and more compact in two dimenSions@n antiferromagnetic low-temperature phase for magnetic
while the domains of the DAFF have a fractal structure botHield B=0 and a disordered phase for all finite valuesBof
in two and three dimensiori€ Additionally, essential devia- I thr28183 dimensions there exists a long-range ordered
tions from Imry-Ma-typ& behavior which can be thought to Phase*** for magnetic fieldsB smaller than the ;3““05“
be valid for small disorder have been found for both thefields B; which is B;~1.4 for a dilution ofp=0.5." For
RFIM and the DAFF but the corresponding exponents ardlgher fields and low temperatures the DAFF develops a
different for these two systems. In order to clarify the Situa_fro;en d|so_rdered domain state in two and thr_ee.d|men3|on_s.
tion and to prove how far the results from MC simulations This domain state has many of the characteristics of a spin
which are out of equilibrium for these systems with frozenglass, as for instance a remanent magnetization and an irre-
dynamicd® can be transferred to the equilibriufi=0 case \_/ersibility line scaling such as the de Almeida-Thouless
we performed exact ground-state calculations on DAFF an§ne- o _ _
RFIM with an integer optimization algorithm. With this ~ The Hamiltonian of the RFIM in units of the nearest-
method we get exact information on equilibrium propertiesn€ighbor coupling constaritis
at zero temperature.
We investigate the distribution of domain sizes and the H= _2 ‘Tio'j_Z B,a,;. )

structure of the domains and we compare our findings for the {pn
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Here, all sites are occupied and the random fiddgsare TABLE I. Field dependence for the exponehbf the domain-
taken from a GaussiaiGaussian RFIN| respectively, bimo-  size distribution for the 2D DAFF.

dal (A RFIM) probability distribution corresponding to

B 1)

1 A2 0.6 1.76:0.06
Y= —(B;/\2A)

P(B:) 2mA e 3 0.9 1.76-0.06
1.2 1.68-0.04
and 1.4 1.61-0.06
15 1.58-0.05
P(B))=3[8(Bi—A)+8(B;+4)], (4) 2.2 1.44-0.03
25 1.42+0.06
respectively. 2.8 1.370.04
As in the case of the DAFF the phase diagram of the 2D 3.5 1.32:£0.05

system is thought to consist of a long-range ordered lows=
temperature phase for zero random fields and a disordered

phase for all finite values of the random field. In three di-be realized for very weak fields. Due to this finite-size effect
mensions for weak random fields and low temperatures ther¢e consider here field8=0.5 only and hence, all domain
exists a long-range ordered phdéé® The critical value for ~ SizesVp=3 exist.

the random field at which long-range order disappears was As has been shown earliéfor the two-dimensional case
found to beA,=2.35 at zero temperatuté.Even for the the distribution of domains in a DAFF is well described by a

RFIM a possible glassy transition has been discusded. ~ power law with an exponential cutoff,
We calculate exact ground states using an optimization _s
algorithm well known in graph theory. The Ising system is Np(Vp)~Vp “exp( —Vp /Vo) (5

mapped on an equivalent transport network, and the max
mum flow is calculated using the Ford-Fulkerson
algorithm®~8|n order to investigate the distribution and the
structure of domains we perform a cluster analysis with

Vvherevo depends strongly on the field. Because of the in-
accuracy in the determination & no significantp depen-
dence can be observed for this quantity. We increased the
Shumerical effort in order to investigate a possible concentra-

suitable adjusted Hoshen-Kopelman-type algoritfirhis . tion and field dependence éf We find § weakly decreasing
algorithm pieces the system into domains, where a domain 8, increasing field but ng dependence. The results are
defined as a group of spins which are connected and antifeg'ummarized in Table |

romagnetically (DAFF), respectively, ferromagnetically Figure 1 shows the size distribution of the domain state of

(RFIM) ordered. th . : ; .
. S . e three-dimensional DAFF for different fields. For the larg-
The |nv.est|gat|ons for.the DAFF are carried out 'for SYS-est value of the field a reasonable fit to E5). can be carried
tems of size 408400 with an average over 50 different | . yielding 5= 1.8+ 0.3 andV,=50+20. However, a de-
dilution configurations wittp=0.7 for each value oB. For ailed investigation of the field or concentration dependence

some structural aspects even ground states of size up - ; : : ‘o
; Vg andé is not possible with satisfactory precision for the
700X 700 were calculated. Systems of size5iDX 50 av- following reasons: As has been shown eaflfer B~B the

eraged over 40 dilution configurations with=0.5 are used domain state consists mainly of two large interpenetrating

for D=3. The calculation of ground states for the RFIM is j, - o (for B=4 these domains contain approximately

more time consuming. Here we considered 8@00 sys- % of th ins In Fia. 1 th isol ks in the si
tems with 50 different random field configurations in 2D and80 6 of the spink In Fig. 1 the two isolated peaks in the size

40 systems of size 3030x 30 in 3D.

: <1
Il. DISTRIBUTION OF DOMAIN SIZES o B=151
A. DAFF <L ° © B=251

In two dimensions forB>0 no long-range order exists
and the ground state of the system consists of antiferromag-
netic domains of finite size. Within a ground state for each % 10® |
domain the domain-wall enerdy,,, i.e., the number of bro-
ken bonds, must be smaller than the field-eneByy,
wheremp is the absolute value of the magnetization of the 10° |
domain which is not zero in these antiferromagnetic domains
due to the dilution. Therefore, only domains with
mp=E,,/|B| exist in the system. The minimum wall energy 107 , .
of a domain is one broken bon#,,=1. Additionally, it is 10° 10' 10°
alwaysVp=mp, whereVy is the size of the domaithum- Vo
ber of sping, so that withV,= 1/|B| we get a rigorous lower
cutoff for possible domain sizes. This relation indicates that FIG. 1. Ny vs Vp for the DAFF in three dimensions. For
except from the isolated spin clusters only large domains caB=4.01 a fit to Eq.(5) is also shown as solid line.
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FIG. 3. Minimum domain size for given valuésof the field of
a = A RFIM in two dimensions.

RFIM on the other hand. For the latter system there is a
lower cutoff for the possible domain sizes depending on the
strength of the random fiel. This lower cutoff is the only
qualitative difference we found betweenA and Gaussian

. RFIM. It can be seen in Fig. 2 and it can be determined
10 analytically: Similar to the arguments given for the DAFF
b for each domain the relatio,,<Eg=3}_,0;B; must hold.

The positive domain-wall energy has to be compensated by
the negative field energy. In the most favorable case all ran-
dom fields acting on the spins of a domain have the same
sign,Eg=VpA so that for the smallest possible domains we
distribution corresponding to the two percolating domainsget\/;=E,,/A. With this relation as starting point a lower
are not shown but due to the existence of these two infinitgutoff can be determined as the sizes of those domains which
domains there are only few data for domains of finite size sqyave a minimum surface. For large domain sizes the mini-
that the statistics for these domains is rather bad. In the limignum surface of a domain is the surface of a cir2®),

of very high fields the domains become very small. Forg, ~vY2 respectively, spheréD), E,,~VZ°. For smaller
B>6 all spins are polarized by the field, i.e., all domainsgjzes, the domain with the minimum surfavg,, can be

have size 1. Hence, there is only a small region of values Ofietermined numerically. Figure 3 shows this dependence of
the magnetic field where a broad distribution of domain sizes; . from A for the = A RFIM in two dimensions. In addi-

exist. As we will show in the next subsection the existence otjony the minimum domain volumes of the ground states of
two infinite domains has even more dramatic consequencgfe REIM for differentA are depicted. FoA<1 there is a
for the RFIM. Here, there are no values of random fieldsgirong deviation of the observed domains of minimum size
where relevant domains of finite size can exist. from the theoretical curve. Obviously, this is due to the fact
that for larger domains it is less probable that all random
fields within a domain with minimized surface have the same
In the limit of strong random fields all spins follow the orientation. Hence, either the field enerfy is overesti-
direction of the random field. Hence, the ferromagnetic do-mated or the shapes of the domains are more complicated
mains are the clusters of sites with uniform random fieldthan those with minimum surface. The first possibility would
signs. In this limit the domains of the RFIM correspond tocorrespond to a crossover to a behavior following the
clusters of the percolation probléfwith a concentration of Imry-Ma argumen®, where E is thought to scale with the
50%. root of the domain size due to simple statistical fluctuations
The distribution of domain sizes for differeatis shown  of random fields within a domain. However, in the range of
in Fig. 2 for the two-dimensionatk A RFIM. For compari- fields where this crossover may occur the minimum domain
son the size distribution for the percolation problem with asize is larger than the system sizes that we can investigate
concentration of 50% is also shown. With increasingthe  with numerical methods.
domain-size distribution approaches the cluster-size distribu- Figure 4 shows the volumes of the two largest domains in
tion of the percolation problem which follows E¢) with  the ground state of thecA and the Gaussian RFIM. For
6=1.55+0.05 andV,=120= 20. lower fieldsA <0.8 the order parameter is finite. Obviously,
For lower random fields there is a striking difference be-this is the region where finite-size effects lead to wrong re-
tween the Gaussian RFIM on the one hand and the  sults for the system sizes we investigated since in this regime

FIG. 2. Domain-size distributions for the two-dimensiortal
RFIM (impulses and size distribution of the random field clusters
(open symbols

B. RFIM
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FIG. 6. Largest and second-largest domain size corresponding to

FIG. 4. Largestopen symbolsand second largesfilled sym-
gestop Y b ges y Fig. 4 for the RFIM in three dimensions.

bols) domain size divided by the system sipe=L XL for the
+A RFIM in two dimensions.
Both, forD=2 andD =3 the RFIM approaches the per-

minimum domain sizes are larger than the system. Thereforgplation problem with a concentration of 50% for larde
in the following we consider only results fd«>0.8. but while for D=2 in this case there exists no percolating

An additional, striking feature of Fig. 4 is the jump in the cluster of random fields in three dimensions 50% is above
data for thex A RFIM at A =2. Considering Fig. Bleft) one  the percolation threshold. This means that as mentioned
realizesA=2 as a special value: The random fields areabove for the case of the DAFF in three dimensions one will
marked with+ and — signs and the arrows represent thefind two infinite interpenetrating domains.
spin orientations { spins are oriented parallel to a positive  The normalized volumes of the largest and second-largest

A). The energy of the center spin with= £ 1 is domain for theD=3 RFIM are shown in Fig. 6. Adding the
sizes of these two largest domains we found that more than
E,=20—0A. (6) 97% of the spins of the system belong to these two domains

in the whole range of random fields. Consequently, the phase
In the ground state it is=+1 for A>2 and the bold drawn transition from the ordered to the disordered state is not due
domain wall is realizedA <2 favorse= —1 and the center to a breakup of the system into finite domains. Instead, two
spin belongs to the down domain. Generally, for-2 the infinite interpenetrating domains with antiparallel oriented
domain wall arranges in such a way that the sign of thenagnetizations cause the order parameter to vanish.
random fields changes at each position of a domain wall, i.e., In contrast toD=2 there is no broad range of domain
the domain walls run along the surfaces of the random fielaizes forD =3 and in contrast to the DAFF there is no range
clusters(clusters of sites with uniform random field sjgn of fields where a relevant number of domains of finite size
Figure 5 (right) demonstrates that nevertheless even forexist. For this reason it is senseless to analyze the distribu-
A>2 domains larger than these random field clusters cation of the domains in more detail.
exist. A cluster with a magnetization that is oriented antipar-
allel to the random fields is enclosed such that its surface lies
within the domain. Hence, foA>4 each domain is a ran- IIl. DOMAIN STRUCTURES
dom field cluster while for 2 A<4 each domain wall is a A DAFF
part of the surfaces of the random field clusters. Conse- '
quently, the domains in this range Af are larger. In three In a DAFF, domains are composed in such a way that as
dimensions each spin has six next neighbors. Here, the comany spins as possible are oriented parallel to the applied
responding effect occurs at=4. field with a minimum number of broken bonds. Hence, do-
main walls favorably run along vacancies to minimize the
wall energy. These two competing requirements for mini-
— mizing the total energy lead to highly nontrivial structures.
+ T + T + 1 + Figure 7 shows the antiferromagnetic domains in the ground
state. Here, the configuration of occupied sites and vacancies
- l + Ol - l I + | - |+ I is kept fixed, while the external field is tuned. In order to
investigate the structural properties of the domains we con-
- l - l - l _ + sider the following quantities and corresponding scaling re-
lations: (i) volume Vp: number of spins(ii) surfaceSy:

sum of all unsatisfied bond$roken or “open” due to va-
- i - i ith Sp~ V2ot iii) radi f tionRp, i
FIG. 5. =A RFIM; left: cut of a domain wall; right: a domain cancie$ wi D D 1 (iii) radius of gyrationRp, i.e.,

for A>2 consisting of multiple random field clusters. root of mean squared distance of all spins of a domain with
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(D,s=1). A great part of the surface is inside the domains.
Slight deviations of exponents from exact ground states from
those resulting from MC simulation are due to a systematic
inaccuracy which is not reflected by the error bars represent-
ing the fluctuations of the data only. Probably, a small, sys-
tematic error is due to the fact that the data are slightly
curved in a log-log plot so that the linear range for large
domains can hardly be determinézke also the correspond-
ing Fig. 10 for the RFIM. From comparison with the corre-
sponding figures® it is found that in spite of similar expo-
nents the valuemy(Vp) are larger for exact ground states—
the domains of the ground states are obviously better
optimized.

In good agreement with MC simulations és=1 both in
two and three dimensions. Altogether the fractal structures
for strong disorder lead to deviations from Imry-Ma-type
argument3 based on compact domains. Here, a statistical
distribution of vacancies in a domain would yielt:=1/2
which can clearly be ruled out by our data for the range of
fields that we investigated. The implication of this finding
will be discussed in connection with the RFIM where we
have found similar results. A field dependence of any of the
exponents could not be found.

B. RFIM

As we showed in the previous section there is no broad
distribution of domains for the three-dimensional RFIM—
domains of finite size are irrelevant for the ground state.
Therefore, in this subsection we restrict ourselves to the case
D=2.

FIG. 7. Ground states of a 26200 DAFF with a fixed dilution ~ Figure 8 shows the ferromagnetic domain configuration of
configuration for increasing field8=0.8, 1.4, 2.2(from above. & *A RFIM in the ground state. The configuration of signs
The two antiferromagnetic phases are represented in black arf the random fields is kept fixed, while the valieof the
white. The vacancies are also black. field is tuned. As for the DAFF we study the structural quan-

tities volume, surface and radius of the domains. Since there
VDNRBU’ (iv) absolute value of the magnetization of a do- ?s no dilution the surface _and_ the domain wall energy are

. . P identical. Also, the magnetization and the volume of the do-

mainmp with mp~Vp, and(v) wall energyE,y, sum of all . . : . N
_ mains are identical. We study the following quantiti€s:
broken bonds wittEy,~ V3.

. . . local random field fluctuation®y, which is the absolute
For large domains the scaling relations above hold and th@alue of the sum of the random fields of a domdii, ran-
exponents are determined by analyzing all domains in th '

. . Bom field fluctuations of all sites of a domain along the do-
ground states and taking an average of the quantities aboYﬁain wall inside the domaib.,, (iii) random field fluctua-
for all domains of equal siz¥ . In Ref. 11 we showed an n

; i : tions of all sites of a domain along the domain wall outside
example for the two-dimensional case. In the meantime Wehe domainb
investigated the three-dimensional system also. Our resulting Figure 9 s(;)ﬁt(.)wsb /S, andby,/Ss each multiplied with
in out’ ¥D

exponents are summarized in Table Il and compared to thfﬁe sign of the magnetization of the considered domain for

values resulting from MC simulatiors’ the = A RFIM. As we demonstrated with Fig. 5 fd&r>2 the

The domains are fractal with fractal dimension ; ;
B o - _ ) . domain walls run exactly along the boundaries of random
D,=1.65 forD=2 andD,=2.14 forD=3. This fractality o4 ¢jysters. Hence, in this range of fields it is

is also reflected in the proportionality of surface and volumq by /Sp| = |bout/So| = 1. Even for smaller fields the domain
in — | Mout e
walls are presumably located along these random field sur-

faces and for large domains these fluctuations are propor-
tional to the surface of the domains.

TABLE Il. Structural exponents for the DAFF.

MC simulation Exact ground states .

g Corresponding to the DAFF the exponebts, D¢, and

D 2 3 2 3 : o . ! i
0 with bp~Vp are determined from appropriate fitsig.

0 1.00+0.01  0.996-0.001 0.9720.01 0.9%-0.01  10). In Table Ill the exponents are summarized. The expo-
o 0.98+0.01 0.995-0.001 0.96:0.02 0.98-0.03 nents resulting from MC are from Ref. 6.
D,s 1.001+0.002 1.006:0.001 1.08:0.01 1.08-0.01 The investigations are carried out for relative strong ran-
D, 1.56+0.03 2.0-0.1 1.64-0.06 2.14-0.08 dom fields,A=3.01 (Gaussian RFIM and A=4.01 (A

RFIM), because then—as explained in the previous
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15+

log,, R,

FIG. 8. Ground states of a 286@00 A RFIM for a fixed
configuration of random fields antl=1.0, 1.1, 1.5from abovse. 101
The two ferromagnetic phases are represented in black and white.

0.0 : :
chapter—a broad range of domain sizes exists. It is found 0.0 10 20 3.0 4.0
that the exponents do not depend on the kind of random field log,, v,
distributions within the given precision.
In agreement with the findings for the DAFF the domains  FIG. 10. Figures for the determination of the structural expo-
are fractal with nearly the same exponems~1.6 and nents¢, D,, andD,; for the two-dimensionat- A RFIM.

D,i=~1. Also, it is #~1 indicating that the random fields are

10 F 0% . . o . distributed nonstatistically within a domain. These results are
B0, ® in contradiction to the earlier investigations using MC
ce o °® method§ where results were found corresponding to more

~ 05 . compact domains. We interpret this discrepancy as being due
Es o A=1.9 to the fact that the MC simulations were carried out with
© A=21 A=1 andT/kg=1. As we showed before for this value of

00 m-—————=rTT T 7] A only very large domains can exist in the ground state.

@ Therefore, the broad range of analyzed domains in Ref. 6
&
-05 e S 2. ) TABLE Ill. Structural exponents for the 2D RFIMy=4.01 for
o .}".","o,. .?. +A andA=3.01 for Gaussian-distributed random fields.
L]
-1or - ! : s MC simulation Exact ground states
1 10 100V 1000 10000 *A Gaussian *A Gaussian
D
D, 1.65-0.08 1.670.08
FIG. 9. Random field fluctuationb,, and b;, of the domain D¢ 0.59+0.04 0.98:0.05 0.970.05
surfaces each multiplied with the sign of the domain-magnetizatiorp 0.66+0.04 1.00:0.01 1.00:0.01

and divided by the surfacg, for the two-dimensionat- A RFIM.




5872 J. ESSER, U. NOWAK, AND K. D. USADEL 55

results obviously from thermal fluctuations. Apart from this The domain-size distribution for the DAFF can be well
for small domains one cannot observe a hierarchy of doeescribed by a power law with a field-dependent exponential
mains inside domains which is an important feature of thecutoff for a broad range of the applied fields in 2D and for
domains we observed. For larger fields and lower temperastrong fields B>3) in 3D. For the RFIM with increasing
ture we would expect agreement of these two methodsandom field strength there is a continuous transition to the
above. cluster-size distribution of the percolation problem which

Our results deviate once more from the assumption oflso follows a power law with an exponential cutoff. For the
Imry-Ma-type random field fluctuatiodgor compact domain  +A RFIM a nontrivial minimum domain size is found, that
structures withd=1/2. Also, noA dependence for our ex- can be estimated based on energetic considerations.
ponents can be determined as indication for a crossover to Investigating structural properties we have found that the
Imry-Ma behavior within the range of fields that we investi- finite domains of the domain state are fractal for the DAFF
gated. (D=2,3) as well as for the RFIM=2) with the same

We interpret this as being due to the fact that for thefractal exponents. Surprisingly, the domain state of the
strength of disorder we consider domains are not compad@®FIM in 3D is found to consist mainly ¥97%) of two
and they do not have a shape for which a statistical argumerfinite interpenetrating domains of opposite phase in the
holds. Instead very complicated structures arise. Domains akghole range of random fields for which the long-range order
interpenetrating and there is a hierarchy of domains insidés broken. In this sense, the phase diagram of the RFIM at
domains so that even large domains for which the Imry-MaT =0 consists only of two regions, a one-domain stidag-
argument was thought to hold can draw advantage from rarrange order below the critical fieldand this two-domain
dom field fluctuations on small length scales. state.

Note that all exponents found for the fractal behavior of  While for the RFIM the results for the structural scaling
the domains of the RFIM as well as the DAFF are very closeexponents differ essentially from earlier findings at finite
to those for the lattice animals of the percolationtemperature carried out using MC simulations, our results are
problem?®2! This is plausible since as mentioned before thein good agreement with Monte Carlo simulations for the
domains of the RFIM in the limit of high random fields have DAFF both in two and three dimensions. Also, the results for
the same distribution and structure like the clusters from th&©AFF and RFIM agree.
percolation problem. As we discussed in the previous sub- Due to the complex shape of the domains the magnetiza-
section systematic inaccuracies are not reflected by the errtibn of the domaingDAFF) and the distribution of random
bars and systematic error can be due to a slight curvature dields within the domaingRFIM), respectively, strongly de-
the data. viates from the assumptions of the Imry-Ma argument which,
however, can still be thought of as correct in the limit of
small disorder. A more detailed investigation of the structure

_ ) o of domains for weak random fields is desirable. Unfortu-
We investigated the distribution and structure of the doyately, for this the numerics exceeds current capacities.
mains of the ground state of DAFF and RFIM in two and

three dimensions. Since except for the Gaussian RFIM there
is always a lower cutoff for the minimum domain size one is
restricted to rather large disorder due to finite size effects,
i.e., high dilution and fields of the order of the spin-spin

IV. CONCLUSIONS
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