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Magnetic transitions and superconductivity in thet-J model
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With the use of the spin-wave and Born approximations the energy spectrum of the two-dimensional
model is self-consistently calculated in the range of hole concentratieag=®.3. The anomalous magnon
Green’s functions, which arise due to the hole-magnon interaction, are taken into consideration. They lead to
a sharp transition from short-range antiferromagnetic order to a completely disordered paramagnetic state at
x~0.19, in addition to the transition from long-range to short-range antiferromagnetic order at
x~0.02-0.04. In the region of hole concentrations &840.19 the obtained shape of the Fermi surface, the
hole dispersion near the Fermi level, and the density of states on it are in satisfactory agreement with experi-
ment in Lg_,Sr,CuQ, and Bi2212. The Eliashberg formalism is used for calculafing The hole-magnon
interaction is found to be unable alone to give rise to superconductivity. By adding a moderate interaction with
apex oxygen vibrations highT/'s are obtained for even-frequency,._,» pairing in the range
0.04<=x=<0.19. For larger hole concentrations the odd-frequesgyave solution becomes the leading one
which can lead ts-wave superconductivity in the overdoped regime with the participation of a hole-phonon
interaction of the respective symmetf{s0163-182@07)06101-§

[. INTRODUCTION disappearance of antiferromagnetic fluctuations in the nor-
mal state of overdoped samples was detett&rother pos-
sible consequence of this transition is the change of the sym-

Strong electron correlations play a great role in unusuametry of the superconducting order parameter. For small and
normal-state and superconducting properties of cuprate pejintermediate values ok the hole-magnon interaction was
ovskites. In particular, extended van Hove singularities, found to be unable alone to give rise to superconductivity.
which are considered to be responsible for a part of thesgy adding a moderate interaction with apex oxygen vibra-
properties’ are supposed to be connected with the correlatigns highT’s are obtained fod,2_,2 pairing® This sym-
tions. Their microscopic description is usually based on thQnetry of the order parameter was found in the major part of
extended Hubbard model or the related model. The aim  theories taking into account antiferromagnetic ordering and
of the present paper is to consider the energy spectrum of thge hole-magnon interaction as the main mechanism of
t-J model with special emphasis on the changes in magnetigairing1° It is clear that with the destruction of short-range
ordering with hole concentration The region of small and  antiferromagnetic order the situation is dramatically changed
intermediate concentrations was considered in Refs. 3-5. Hnd thes-wave Superconductivity, as in conventional super-
was shown that in agreement with experinfetite two-  conductors, has to become dominating. Indeed, we found a
dimenSional(zD) t-J model was able to describe the transi- Sharp growth of odd_frequensjwa\/e Superconducting fluc-
tion from long-range to short-range antiferromagnetic orderiyations near the paramagnetic transition where the
ing atx~0.02-0.04 and the existence of large flat regions OfY,2_,2-wave fluctuations disappear rapidly.

the energy band near the Fermi level around the points The outline of the paper is as follows. In Sec. Il we for-
k=(%,0),(0x ) at moderatex. By the position and eX- mulate the theoretical model and derive the self-energy equa-
tension these flat regions are completely analogous to thgons. The calculation procedure is discussed in Sec. Ill. The
extended saddle points of the photoemission experintentsenergy spectrum and manifestations of magnetic transitions
Also the obtained Fermi surfaces appear to be close to thosg it are considered in Sec. IV. The Eliashberg equation and

observed in these experiments. _ _ _ its solutions for different symmetries of the order parameter
The anomalous magnon Green’s functions, which arisgye discussed in Sec. V.

due to the hole-magnon interaction, are small for smalhd
therefore they were omitted in our previous consideration.
The respective terms are included in the present calculations
where, as in Refs. 4 and 5, the spin-wa¥and Born ap-
proximations are used. The anomalous magnon Green’s
functions are found to lead to some quantitative changes for
moderatex. However, the most essential, qualitative changed'he 2Dt-J model, used as the basis of our model, has been
occur in the overdoped region where due to these terms ahowrt?to be a good approximation for the low-energy
x~0.19 the system exhibits a second transition, this timelynamics of the Emery modé&i,which gives a realistic de-
from short-range order to a completely disordered paramagscription of CuQ planes of cuprate perovskites. In the spin-
netic state. The analogy can be drawn with the result ofvave approximation, the-J Hamiltonian can be written in
neutron scattering experiments on Y,Ba,O,, where the the forn#1?

Il. SELF-ENERGY EQUATIONS
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which, as follows from Eqgs(2), do not depend on the sub-
H=v22 (Giciohiokr —obiro+ H.C)+ 2 wpbl, by, lattice indexo. Angular brackets denote averaging over the
kk'o ko grand canonical ensembl&;is the time-ordering operator,
: . hkU(T):eXQ(H—W Tlhexd—(H—uN)7]  with the
Z Yahk-q.oMkoMr 4q, ok =0 s (1) chemical potential x, and the hole number operator
Kk'gor N=3,,h! hy,. The hole-hole interaction adds the constant
where h,IU is the creation operator of a hole with the 2D term —4ex to the hole self-energy. This term is included in
wave vectork in one of the classical N# states,g=+1  the chemical potentiall is the temperaturay, and w, are
labels two sublattices with spins up or down in this state, anddd and even Matsubara frequencies, andare the Pauli
summations ovek are limited to the magnetic Brillouin matrices. Inl5(k7-), élg is the two-component magnon op-
zone.bl is the creation operator of a magnon with the un-erator g/ ,b_, _,). Thus, Eqs(2) contain the anomalous
perturbed frequencwEZZJ V1-— yE, whereJ is the super- magnon Green’s functions
exchange constany, =[ cosk,)+cosk,)]/2. The interaction

4e
N,

constant gy = — 4t(Yi— U+ y0 )/ VN comprises  the D1a(k7) == (Tby,(T)b_g o),
hopping constant, the number of sitedN, u,=coshgy), : : (3
v=—sinh(@), and a,=IN[(1+n)/(1— y)1/4. The first Day(k7)=—=(T0%) _,(7)Dyy).

term in EC](l) is the hole kinetic term. Its form reflects the As follows from ECIS(Z) le(k i o ) andHll(k i ) have
fact that in thet-J model on the antiferromagnetic back- o same structure and can be of a comparable value. As a

ground the hole movement is accompanied by the emissm@onsequence, in the overdoped region the anomalous mag-

and absorption of magnons. Their energy is described by th§,,  Green’s functions become comparable  with

second term. The last term in E¢l) describes the static Diy(kiw,).
attraction of holes on neighboring sites due to the bond- Sel,f-e;ergies in Eq42) can be described by the follow-
breaking mechanistfiwith the binding energy. ing diagrams:
Self-energy equations have been derived in the Born ap-
proximation. Its applicability is based on the small parameter

- ~ ,/'é\ - -

X in the case of very small hole concentrations, when hole N OSN Y O
bandwidths are comparable with the limiting magnon Yoot~ to—~—=+—<¢=,
frequency® and on a small ratio of the magnon frequency to

the hole bandwidtl for x=0.04, when narrow spin-polaron

bands are transformed into a much wider band with a band- M= *O‘" Lz = "G’"

width of the order ot>J.* The self-energy equation can be

written in the form where solid and dashed lines correspond to hole and magnon

; —Ti _ ; -1 Green’s functions, respectively. A set of self-energy equa-
Gkt =llont p=2(kion) ] tions which is analogous to Eq®) was obtained in Ref. 16.
I5(k iw)=[iw (}3_(08(}0_1:[('( iw)] Equationd2) are inconvenient for calculations due to rea-
Y v Y ' sons discussed in the next section. Instead we use the real
frequency version of these equations. It can be obtained from
S(Kiwy)=—2T>, {9k Ok k' [D 1K' iw,) Egs. (2) by application of the spectral representations for
k'v Green'’s functions. First it should be verified that there exist

;o 2 .- such representations for functio(,
+ DoK' iw,) ]+ 0 Dk’ iw,) P ®

;o * dw Bjj(k
+gi’—k'k’Dll(_k 1_“1)1/)} D'l(k’lw”):J _wM, (4)
—e T W—lw,
XG(k—k'jiwp—iw,), (2 _ .
where, as forG(k,iw,) and the diagonal elements of
M(Kiw,)=I,—k,—iw,) D(k,iw,), the spectral function8;;(kw) are real. Taking
into account thaGG(k,iw,) is invariant with respect to the
_ 2 r L transformations of the point group, of the 2D lattice, it can
ZTE G Gk, T0n) G(K' —kion—iw,), be seen from Egg2) that
le(k,iw,,)Zl_[m(k,iw,,) H;Z(kliwv):l—-[ll(k!iwv)l H’]‘:Z(k'iwv):HIZ(kiiwv)l

_ and consequently
=27 Ok 'kk—k kG(K',iwy)
< Digk,iw,)=Diski,).

XG(k'—k,iwy~iw,). Since by definition

HereG(k,iw,) and f)(k,iw,,) are the Fourier transforms of N YR (e i YR (e
the Green’s functions Dai(kiiw,)=D1fk, ~iw,) =D ~k/iw,),

; - - - andDj;(k,iw,) are also invariant with respect to the group
G(k7)=—(Thi(1)hy,), D(k7)=—(TB,(7)By,), transformations, we come to the conclusion that
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D21(k,iw,,)= Dlz(k,i a),,).

This equality requires that the spectral functions

51(kw) =B ko)
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for J/t the range 0.%£J/t<0.5 from which the above value
has been picked; the uncertainty is connected with the uncer-
tainty in the parameters of L&uQ, and with a possible in-
fluence of terms dropped from the extended Hubbard Hamil-
tonian. Since the parameters are related to well-isolated

be real. It is now easy to verify that these functions are equaCuQ, planes, they can be expected to be approximately valid
to the imaginary parts of the respective retarded Green’'slso for relatedp-type cuprate perovskites. From these esti-
functions. Substituting the spectral representations analogouwsations t~0.5eV. The ranges of the hole concentrations
to Eq. (4) into Egs.(2) and using the analytic continuation 0<x=0.3 and temperatures<OT<0.0% were considered.

we find

G(ko)=[w+u—2(ko)]™?,

Im2(kw)= —22 —{gkk,Ilel(k ')

_gk_kr,_krIlel(_k/u_w/)
+ 20k G-k’ k' IMD 1K @) }
X[ng(w")+Ne(0' —w)]

XIMG(k—k',o—w'),

. R* (k,— w)
Dii(kw)= R(kw)R*(k,—w)_Hiz(k*w)’
Dyskeo)= P

R(kw)R* (k,— w)—I5,(k,0)’

= dw
ImI ;o (kw) =2 gﬁ,kj —ImG(k'w’")
k! — 0

XIMG(k'—k,0' —w)[ng(w’)

—n,:(w’—w)],

!

©)

* dw L
ImITyyko)=22, gk’kgk’—k,—kf e IMG(k'w")
k’ — o0

XIMG(k'—k,0' —w)[ng(w’)
—Ne(0'~o)],
do’ Im3 (ke
Res (kw)= Pf (—)
a)—w
» dw’ ImH,](kw’)
Re”iﬂkw):PJ, ERTET R
where G(kw) and Djj(kw) are the
Green’s functions, R(kw)=w— wk I11(kw),

=[exp/T)—1]%, andng(w)=[exp/T)+1]*

Ill. CALCULATION PROCEDURE

The following parameters were used in the calculations:

J=0.2, ¢=0.5].

retarded
ng(w)

(6)

Equations(5) were solved iteratively on a 2020 lattice.
Sets of equally spaced 400 points in the frequency range
—5t<w=4t and 54 points with the same spacing in the
range —0.4t<w=<0.8 were used for the representation of
the hole and magnon Green’s functions, respectively. To
make the iteration procedure stable the respective artificial
broadenings 0.045and 0.015 were introduced into these
Green’s functions. Simple iterations are well convergent
only for small hole concentrations, while the chemical poten-
tial is widely spaced from the intensive quasiparticle peaks in
the hole spectrum. The instability arising wherapproaches
these peaks can be overcome as follows: Let
A'(kw)=ImG'(kw) andBfj(kw)=ImD];(kw) be the spec-
tral functions obtained from some initial valud§k) and

(kw) in an iteration step; for the next step the linear com-
blnatlons (+c)Af(kw)+cA(kw) and (1- c)B (kw)
+cB' j(kw) are used as initial values= 0.7 was enough to
reach convergence in the major part of the considered con-
centration range. The larger valaes 0.9 was necessary only
near the transition from short-range order to the paramag-
netic state. To verify convergence with the use of this pro-
cedure spectral functions obtained in widely separated itera-
tion steps were compared.

An iteration procedure can be also applied for solving the
imaginary frequency version of self-energy equatid8s
We carried out such calculations and compared results with
Matsubara Green’s functions obtained from retarded Green’s
functions of Eqs(5) and spectral representatio@s. Percep-
tible differences between the two results were observed even
at the imaginary frequency cutofb.=30t which is more
than 3 times larger than the considered real frequency range.
The source of these differences can be understood from the
equation

Myy(kiw,)=2>, gi,kf f
k! — 0
XIMG(k' =K, w,)T

X !

n (01— lop)(w—ioptie,)’

dwldwz

IMG(K', ;)

which is derived from the respective equati@) and spec-
tral representations for the hole Green’s function. As follows
from Egs.(5), in the real frequency version of the above
equation the sum oven is substituted by the function
[Ne(®1) — Ne(ws) 1/ (w,— wr—iw,). The introduction of the
cutoff transforms this infinite sum into a finite one. However,
the sum converges rather slowly to the function, especially

They were estimated with the use of the known param€tersfor |w,|,|w,|>T. This is the reason for the mentioned dif-
of La,CuQ, and the mapping procedure of the extendedferences in results of the two approaches. A further increase
Hubbard model onto thé-J model? (this procedure gives of the cutoff frequency in the imaginary frequency equations



55 MAGNETIC TRANSITIONS AND SUPERCONDUCTIVIT ... 585

FIG. 1. The hole spectral functioA(kw) for k=(0,0) (a),
(0,7) (b), and (0,0.4r) (c). T=0. Curves 1, 2, and 3 correspond to
x=0.021, 0.169, and 0.195, respectively.

imposes much heavier demands on computer resources in
comparison with the real frequency equations.

IV. ENERGY SPECTRUM

The evolution of the hole spectral function with the con-
centration

2 ©
X=— W% jﬁwdwn,:(w)lmG(kw)

is shown in Fig. 1 for different points of the Brillouin zone
(all energy parameters here and in the following figures are
given in units oft). A comparison of these results with the
previous calculation$® where anomalous magnon Green’s
functions(3) were ignored, shows that they are unessential at
smallx and lead to some quantitative changes for moderate
x (especially near the paramagnetic transitien0.19). The
most essential, qualitatively, changes occur in the overdoped
regionx=0.19.

At x=<0.04 the spectra contain series of maxima corre-
sponding to narrow spin-polaron bandsirves 1 in Fig. 1;
energy vs momentum relationships for these bands are given
in Fig. 3(@) of Ref. 5]. For largerx these peaks, excluding the
lowest one, are washed awégurves 2 in Fig. L The de-
pendence of the energies of the remaining peakk oarre-
sponds to a band with bandwidth of the ordert ofhich is
much larger thanJ, the characteristic width of the spin-
polaron bands. The evolution of the hole energy spectrum
with doping forx>0.04 is shown in Fig. 2. The portion of
the arising wide energy band near the Fermi level in Fig) 2
and Fig. Zb) originates from the lowest spin-polaron band
and partly retains its dispersion. This portion corresponds to
narrow intensive peaks of the spectral function and remains
on or in the nearest vicinity of the Fermi level up to
x~0.19(notice that the hole picture is used and states below
the Fermi level are filled by holésin Fig. 2b) the shape of
the hole band for moderate is compared with the band
E=2t[cosk,)+cosk,)] produced by the kinetic term of the
t-J Hamiltonian at an utter absence of correlatigims the
used magnetic Brillouin zone this latter band has two
branches An apparent similarity of the two bands indicates
a certain weakening of correlations»at0.04.

In parallel with the transformations in the hole spectrum
changes occur in the magnon spectrum where the branch of
overdamped magnons appeaxat0.02 in the central part of
the Brillouin zone** The overdamped magnons manifest
themselves in a perceptible intensity of the magnon spectral
function B;(kw) with a correspondingk at w<<0. In
this case the magnon occupation numben,
=— [ _(dw/m)ng(w)B;(kw) is finite atT=0 which leads
to a finite zero-temperature correlation lengtim the corre-
lation function

1 2
<3253>“[ 5 N; [vE(1+np) +uiny]

2
2
+ [ —

2
E il(k—k');,2,,2
Kk’ € ukvk’

N 2

+

2

i — k' 2 2 2 2
> €KW o2y (uE+ )N, (7)
kk’

Z
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(0,0) o,7) (%3 (0,0
k

FIG. 2. Energy vs momentum relationships for0.042 (a),
0.169(b), and 0.262c) (solid lineg. T=0. Vertical bars in parta)
indicate halfwidths of the respective spectral peaks. For sthis

weak peak, which can be associated with the second spin-polaro
band, is observed betweér (0,0) and ¢r/2,7/2). The respective

(0,0) (m,7)  (0,7) (0,0)
k

FIG. 3. The hole band obtained in the present calculations for
x=0.135 (solid line). Circles indicate positions of quasiparticle
peaks in the photoemission experiment in a Bi2212 crystal with
T.=85 K (from Ref. ). Both the experimental and theoretical data
correspond tol =100 K. The hole picture is used.

where S is the z component of the spin and sitésand O
belong to the same sublattice. Thus, the mentioned changes
in the magnon spectrum at=0.02 are connected with the
destruction of long-range antiferromagnetic order and the es-
tablishment of short-range order. The size of the region in
the Brillouin zone around thE point where the overdamped
magnon branch is located amg#0 definesé. It can be
showr? that in agreement with experiméng~1/\x for
small x. The critical concentration,~0.02 is also close to
the value observéd® in La,_,(Ba,Sy,CuQ,. The over-
damped magnons can be identified with relaxational modes
describing relative rotations of magnetic quantization axes in
regions of size¢. In the hole spectrum the destruction of
long-range antiferromagnetic order manifests itself in the
mentioned change of the characteristic energy of the spec-
trum fromJ to t at x~0.04. Qualitatively this can be under-
stood in the following way: In rigorous antiferromagnetic
order the hole movement is accompanied by magnon emis-
sion and, as a consequence, the characteristic width of the
hole bands coincides with the characteristic magnon energy
J. After the destruction of long-range order holes can move
without introducing additional disorder in the magnon sub-
system and, as a result, the larger characteristic energy
reveals itself in the spectrum. Some additional details of the
long-range to short-range antiferromagnetic transition and its
manifestations in the hole and magnon spectra can be found
in Refs. 3 and 4.

In Fig. 3 the hole band of theJ model is compared with
photoemission data of Ref. 1 from a Bi2212 crystal. Both
experimental and theoretical data correspond t0100 K
(T=0.01% for t=0.5 eV). In the experiment a crystal with
T.=85 K was used for which the hole concentration can be
estimated to lie in the range 0£X<0.16. The value
x=0.135 was taken for the calculations. Since for swch
long-range antiferromagnetic order is already destroyed, the
q1ata are shown in the usual Brillouin zone, for which pur-
pose some portions of the theoretical band are transferred

dispersion curve is not shown in the figure. The dashed curve iffom the first magnetic Brillouin zone to the second ¢te

part(b) is the bandE,=2t[cosk,)+cosk,)] in the magnetic Bril-

louin zone.
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(a)
r
Y

FIG. 5. The Fermi surface for=0.131(a), x=0.188(b), and
x=0.316(c). Hatched regions in patb) are the two-dimensional
portions of the surface. In pa#), the pointsX, Y, andM corre-
spond tok=(,0), (0~ ), and (, ), respectively.

(b) (©)

! O

M

w tive property of long- or short-range antiferromagnetic order-
ing. The jump of these peaks to the central part of the zone
suggests the destruction of this ordering and the establish-
ment of a completely disordered paramagnetic state.

This conclusion is also supported by sharp changes in the
total shape of the band in Fig. 3 is similar to that shown inmagnon spectrum at=~0.19 which are illustrated by Fig. 4.
Fig. 2(b)]. The hole picture is used and hence the photoemisThe domain of existence of the overdamped magnon branch
sion points are located on and above the Fermi Idt@l around thd’ point grows with growingk and forx=0.1 the
convert to the electron picture the data should be reflected &pin correlation lengtl¥ is decreased to one to two lattice
the Fermi level. In this comparison it is necessary to take periods atT=0. In spite of this short correlation length, a
into account the rapid increase of the decay widths of stategeak corresponding to the usual magnon branch is well seen
with distance from the Fermi levéfor the given concentra- at ®>0 up tox=0.188 (Fig. 4; the maximal magnon fre-
tion range these widths are comparable with those shown iquency atk=(/2,7/2) is decreaséd” from the unper-

Fig. 2@]. As a result, a higher-energy portion of the theo-turbed value 2 with increasingx). However, already at
retical curve in Fig. 3 can be expected to be lost to a backx=0.195 this peak disappears and only the overdamped
ground observed in the experiment. Besides, extensions @fagnon is observed. For=0.195 the real part of its fre-

the nearly dispersionless portion of the band rieartO be-  quency is less than the used frequency step and the spectral
yond the higher-energy branches correspond to wealntensity is comparable on both sides @=0. This result
maxima on a background of much more intensive maxima ofmplies the complete destruction of the usual magnon branch
these branchgsee curve 2 in Fig. (t)]. With these remarks and of the short-range antiferromagnetic ordering along with
the quasiparticle dispersion of titeJ model can be con- it.

cluded to be in satisfactory agreement with the experimentin A number of experimental results indicates that the tran-
Bi2212. sition from short-range antiferromagnetic order to a para-

When 0.04&x=<0.19 the hole energy band in theJ magnetic state really occurs in cuprates. The disappearance
model has large flat regions on and in the nearest vicinity obr a substantial weakening of magnetic correlations in the
the Fermi level around the points=(+,0), (O£ =) (at  normal state of overdoped Y Bau;O;_,, observed in neu-
smallerx the respective regions of the spin-polaron band aréron scattering experimentsis direct evidence of such a
far from the Fermi level This result agrees with previous transition. A radical change in the electronic state of
calculations*® As seen in Fig. 3, by the position and exten- overdoped crystals, which accompanies the transition,
sion these regions are analogous to the extended saddias detected in experimefts on the in-plane re-
points observed in photoemissibfor the parameters of this  sistivity of Zn-substituted single crystals YRBau,0;_, and
figure the flat regions of the calculated band are positioneda,_,Sr,CuQ,.
approximately 10 meV above the Fermi level, while the ex- The applicability of the spin-wave approximation to the
perimental valut®is +30-50 meV for Bi2212 and 19 meV paramagnetic region of concentrations 0.19 is subject to
for YBa,Cu,Og. Notice that the flat regions are shifted, in the serious question. Nevertheless, some results obtained with
absolute scale, to higher energies with growingemaining model Hamiltonian(1) may be relevant to the considered
near the Fermi level up t8~0.19. As expectef and con-  system. With an increase of the hole concentration from the
firmed by calculations,they play the key role in the super- valuex~0.19 the shape of the hole energy band approaches

FIG. 4. The magnon spectral functidy,(kw) for x=0.188
(solid line) and 0.195(dashed ling k= (=/2,7/2), T=0.

conducting transition. the usual rigid 2D nearest-neighbor baffédg. 2(c)]. The
In comparison with transformations near0.04 even Fermi surface and the density of statep(w)
sharper changes of the spectral shapes procegd-at19. =—(2/7)Z,ImG(kw) very accordingly, as shown in Figs. 5

As follows from Fig. 1, sharp quasiparticle peaks jump fromand 6. The flat regions of the hole band determine the shape
the periphery to the central part of the magnetic Brillouinof the Fermi surface when 0.64=<0.19. At
zone. It should be emphasized that these changes occur in tBel5<x=<0.19 these regions are placed directly on the Fermi
narrow concentration range=0.188-0.195. For the system level and holes form an anomalous 2D Fermi liquid with a
considered the sharp quasiparticle peaks at the periphery &ermi surface which is also two dimensioRdRepresenta-
the magnetic Brillouin zone, which are observed in a widetive shapes of the Fermi surface in the ranges of hole con-
range of concentrations starting froxs0, are the distinc- centrations 0.04x<0.15 and 0.15x=<0.19 are shown in
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T ! T T T rise to superconductivity. The reason is a negligibly small
\ coupling with magnons transferring holes from one portion

of the Fermi surface to another which is eventually con-

nected with spin flips accompanying the hole movenisaé

Eqg. (1)]. Thus, in spite of the favorable condition for super-

conductivity — the large density of states nesr 0, which

is created by the hole-magnon interaction — it cannot make

use of the condition itself.

However, the large density of states can be utilized by
another hole-boson interaction, first of all by the interaction
with full-symmetric apex oxygen vibrations which in accor-
dance with the tunnelifg and Ramaff spectroscopy data
interact most strongly with holes. The respective terms of the
Hamiltonian originate from the zero-order, level-energy
terms of the procedutéreducing the Emery Hamiltonian to
the t-J Hamiltonian. Doped hole states are mainly con-

1 ' ' ' T structed from fourmp orbitals of oxygens surrounding a cop-
(b) per site. Since two neighboring plaguettes contain a common
0.8 [ . oxygen site, there are two comparable terms in the hole-
. phonon interaction which describe changes in level energies
0.6 L ,’\\ N with displacements of apex oxygen in the same and in the
ff ' \ neighboring cellga more detailed discussion see in Ref):24
i
04 | - 2 +
Hp.ph= NE NN o(VS1QQk—k
02 L | kk'or
T4k VS0 Qukr - o). 8
0_4 whereQy,= Bkot+ ﬁikyg and ], is the creation operator of

a phonon with the frequenc§ (a weak dispersion of rel-
evant phonons is negleciedlhe Stokes shiftsS; and S,

FIG. 6. The density of states in units of state/eV Cu spin neacharacterize interactions of a hole with apex oxygen defor-
the Fermi levela) and in a wider frequency randb). t=0.5eV. mations in the same and in the neighboring cells, respec-
In part (a), curves 1, 2, and 3 corresponde-0.021, 0.101, and tively. Notice that Hamiltoniar8) can also describe interac-
0.195, respectively. In partb), the solid curve corresponds to tions of holes with in-plane and other interplane oxygen
x=0.101 the dashed curve i6=0.316, respectively. vibrations. It should be emphasized that the order of trans-

formations leading to hole-phonon interacti@) — first the
Figs. 5a) and §b). Analogous Fermi surfaces were observedreduction of the Emery Hamiltonian to thel Hamiltonian
in Bi2212 and Bi2201.Whenx exceeds 0.19 the flat regions and then the introduction of the hole-phonon interaction —
disappear and the Fermi surface acquires an ordinary forrgflects the hierarchy of the relevant energy parameters: The
[Fig. 5(c)]. At 0.04<x=0.19 the flat regions produce a pro- Hubbard repulsion on coppéris much larger than the hole-
nounced maximum in the density of states near the Fernfphonon interaction constang andS,.
level (Fig. 6). Notice that the calculated maximal~3 The presence of two comparable terms in the Hamiltonian
state/eV Cu spin is close to experimental estimafiofts Bi which describe the interaction of holes and phonons in dif-
compounds. This maximum disappears when0.19 and ferent sublattices is essential for singlet superconductivity on
the density of states approaches the shape of the usual 2be antiferromagnetic background. Only the interference of

nearest-neighbor barjthe dashed line in Fig.(B)]. these terms contributes to singlet pairing, as holes with dif-
ferent spins move within different sublattices.

For Hamiltonians(1) and (8) the linearized equation for
V. SUPERCONDUCTIVITY the anomalous self-energy can be written in the form

The strong-coupling Eliashberg formaliéhand the ob-
tained hole and magnon spectral functions were used for caly, i - oy )=2T, 20k k+ a0 ks gRED 11K+ Qi wp+i wpy)
culating T.. Even- and odd-frequency order parameters be- non am Krasalera o
longing to all one-dimensional representations of the point
groupD, of the CuQ plane were tested for singlet pairing.
In comparison with our previous considerafidfthe equa-
tion for the anomalous self-energy(ko,i w,) contains new
terms, connected with the anomalous magnon Green'’s func- de 850 i )
tions. In the range of hole concentrationss0.19 these t N Yo Ty Yk-oCldmKion—ion)
terms, however, do not alter the main conclusion of Refs. 5
and 24: The hole-magnon interaction is unable alone to give X |G(q,iwm)|2¢(qa,i ®m), (9

+ 024 Didk+Qiwn+iog)

+ 04 ke qD2(k+ A iop+iwy)
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where S=.S;S, and the phonon Green’s function Equation(9) can be considered as an eigenvalue equation

C(k,iw,) is the Fourier transform of for the vectorg(ko,iw,).?® The order parameter becomes
nonzero andT=T,. when the largest eigenvalue becomes

I . AS= =<0.19 the | I h
C(kT)=—<7Qk(r(T)QE(,>- equal to one. AS=0 andx=<0.19 the largest, but less than

1, eigenvalue of Eq(9) corresponds to an even-frequency
dy2_y2 solution (see Fig. J. This symmetry of the leading
solution was found in a large number of works considering
an interaction with antiferromagnetic fluctuations as the main
mechanism for pairing® For x<0.19 in our calculations the

The anomalous self-energy in E§) can be described by the
following diagrams:

SN SN PN TN superconducting transition was found to occur only with the
p=bk—+hk—D+&—H+&$ incorporation of the hole-phonon interaction. As seen in Fig.
8, in the considered model high values Bf are already
o i“:; attained at moderate hole-phonon coupling for the even-
+ 6— + 5

frequencyd,z_,2 pairing. This is connected with the fact

where solid and dashed lines correspond to hole and magndfiat, like the hole-magnon interaction, the hole-phonon inter-
Green’s functions, the dotted line to the hole-hole interac@ction(8) favors this type of pairing. As a consequence, for
tion, and the wavy line to the phonon Green’s function, re-this symmetry there is no competition between the two inter-
spectively. actions, in contrast with other considered symmetries where
In subsequent calculations comparatively small change§igenvalues grow only slightly with the incorporation of the
in the phonon spectrum, caused by the ho|e_phonoﬁole-phonon interaction. The second reason for Aigh is
interaction?® are neglected an€(k,iw,) is substituted by the large maximum of the density of states near the Fermi
the unperturbed value- 2Q/(Q2+ w?). For the considered '€vel- As follows from Fig. 8,T. rapidly drops when the
moderate hole-phonon interaction hole and magnon energ§f@ximum moves away from the Fermi levai<0.04) or is
spectra are mainly determined by the hole-magnor‘aes"royeFj X=0.19). The third reason for high’s is high
interaction?’ Therefore in Eq(9) we use hole and magnon frequencies of _relevant oxygen vibrations in cupré?es._
Green's functions from the previous section, neglecting thél’hese frequenmes exceed significantly phonon frequencies
influence of the hole-phonon interaction on them. Althoughll conventional superconductors.
in Eq. (9 Green's functions do not depend om, _Resglts shown in Fig. 8 differ somewhgt fr_om those_ob-
#(ko,iw,) may change sign witlr to satisfy the condition taln_ed in Ref. 5 fO( the rangg§0.19. This difference is
B(ka,iw)=—d(—k,— o, —io,) following from the defi- mainly connected with changes introduced by the anomalous
nitionlof ?he anomaI(;us ﬁole (green’s function. magnon Green’s functions into spectral functions near the
In addition to parameter), in solving Eq.(9) the pho- paramagnetic transition. Another source of the difference is
non frequency was taken té) be 0.15This value is ap- the use of retarded Green’s functions calculated for a respec-
proximately equal to the frequency of the fuII-symmetrict'Ve t_emp_erature In E_q(9). In Ref. 5 Matsubara Green’s
apex oxygen vibrations in Bi221% The hole-phonon inter- functions in the equation for the anomalous self-energy were
action constanB= 1.2 was selected. which providds, ly- calculated from zero-temperature retarded Green’s functions.
ing in the range observed in cupratés. This valu& abrre- . Only the o_n—site part of the Qoulomb repulsion was taken
sponds to a moderate dimensionless coupling consta to account in the above consideration. The long-range part
\~S/B. where B~3t—5t is the hole bandwidth at © this repulsion and phase fluctuatidiisyhich are out of
x=0 04’ In solving Eq.(9) the infinite summation ovem scope of the mean-field Eliashberg theory, will substantially

has been substituted by a finite one with the Cutoﬁdecrease'l'c in the region of smalk nearx=0.04.

|w,| <20, which has been proved to have no effect on re- As follows from Fig. 7, after the destruction of short-
surt]s in th’e considered temperature range range antiferromagnetic ordera=0.19 the even-frequency

0.7 F T T T T 3 T T T T
69 K
0.6 - - 0.012 |
0.5 4 T.
k 0.008 F _
0.4 |- 4
031 7 0.004 | i
0.2 |- 4
1 1 1 1
0.05 0.1 0.15 0.2 0 ! L !
z 0 005 01 015 0.2
X

FIG. 7. Eigenvaluesc of the leading solutions of Eq9): an
even-frequencyl,2_,2 solution (+) and odd-frequencg solution FIG. 8. T; vs x for the even-frequency,2_,2 gap, parameters
(¢).S=0 andT=0.01. Connecting lines are for guiding the eye (6), Q=0.1%, andS=1.2. T, is recalculated in kelvin fot=0.5
only. eV. Connecting lines are for guiding the eye only.
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dy2_,2 solution ceases to be the leading solution of . In summary, the spin-wave and Born approximations
with S=0. For x=0.19 the odd-frequencg solution be- were used for self-consistent calculations of the energy spec-
comes the leading one. At fixed temperature its eigenvalugum of thet-J model in the range of hole concentrations
rapidly growth with x and even runs to unity between 0<x=<0.3. The hole and magnon spectra undergo two sharp
x=0.262 and 0.316 which is an indication of the supercon+ransformations ak~0.02—0.04 and 0.19 which are con-
ducting transition. As indicated, the applicability of the spin-nected with the transitions from long-range to short-range
wave approximation to the paramagnetic region of concenantiferromagnetic order and from short-range order to a com-
trations is subject to serious question and it is unlikely thapetely disordered paramagnetic state. For &840.19 the

this result may have any bearing on cuprates. However, i§hape of the Fermi surface, the hole dispersion near the
should be noted that the eigenvalue starts to grow already glermi level, and the density of states on it are in satisfactory
x<0.19 and attains a large magnitude there. This means thggreement with experiment in ba,Sr,CuQ, and Bi2212.

the incorporation of a hole-phonon interaction of the appro-The Eliashberg formalism was used for calculatihg The
priate symmetry would lead to superconductivity with 0dd-pole-magnon interaction was found to be unable alone to
frequencys-wave pairing near the boundar/~0.19. The  gijve rise to superconductivity. By adding a moderate inter-
hole-phonon interaction of the required symmetry may beyction with apex oxygen vibrations high,'s were obtained
obtained from the first-order hopping term of the procetfure o, even-frequency d,2_.2 pairing in the range
reducing the Emery Hamiltonian to theJ Hamiltonian. 0 04<x<0.19. For Iargery hole concentrations the odd-
Thus, according to our calculations the even-frequencyrequencys-wave solution was found to have the largest ei-
dy2_y2-wave superconductivity would be expected for under-genyalue which creates conditions for thevave supercon-

doped and optimally doped crystalx<£0.19) and odd-  qyctivity in the overdoped regime.
frequencys-wave superconductivity, for overdoped crystals.

Different experiments designed to probe the symmetry of the
superconducting state give contradictory results which can
be interpreted as,2_2, s, or mixed type of symmetry’?°

In this connection it would be of particular interest to use This work was partially supported by the Estonian Sci-
samples with different and controllable concentrations ofence Foundation under Grant No. ETF-67 and by a WTZ
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