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Critical properties of gapped spin-12 chains and ladders in a magnetic field

R. Chitra and T. Giamarchi
Laboratoire de Physique des Solides, Universite´ Paris-Sud, Baˆtiment 510, 91405 Orsay, France

~Received 25 October 1996!

An interesting feature of spin-12 chains with a gap is that they undergo a commensurate-incommensurate
transition in the presence of an external magnetic fieldH. The system is in a gapless incommensurate regime
for all values of the magnetic field between the lower critical fieldHc1 and an upper critical fieldHc2, where
it is gapless and has power-law correlations. We calculate the critical exponents for such a generic gapped
system in the incommensurate regime at the critical fieldHc1 and in its vicinity. Our analysis also applies to
the spin-12 ladder. We compute the full dynamical susceptibilities at finite temperature. We use the same to
discuss the thermal broadening of various modes and obtain the low-temperature behavior of the nuclear spin
relaxation rateT1

21. We discuss the results obtained here for the special cases of the dimerized chain, frustrated
chain, and the spin-12 ladder.@S0163-1829~97!05509-4#
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I. INTRODUCTION

Quantum spin chains have been a field of intense theo
cal activity for the past decade.1 This seems pertinent in th
face of the tremendous advance made in the fabricatio
quasi-one-dimensional~1D! systems. There are a lot of com
pounds like~TMTTF! 2X which are essentially spin-12 chains,
NENP—a spin-1 chain,2 and a host of other organic com
pounds whose behaviors can be adequately described w
the framework of interacting spin systems.3 The Heisenberg
model with purely nearest-neighbor interactions has been
strumental in understanding various properties of these
systems.4 In addition to these, there are compounds with
ternation in the nearest-neighbor bonds~arises as a result o
interactions with phonons!, e.g., TMTTF, strong single-ion
anisotropies, etc. The effects of spin-Peierls dimerization,
terchain interactions, and competing nearest-neighbor in
actions have been reasonably well understood in the sp1

2

case.5 These are known to drive phase transitions in the p
spin-12 model. The basic issue addressed is whether th
exists a gap above the singlet ground state to the first exc
state which is a triplet. Apart from these, the ground st
could also exhibit crossovers from short-range Ne´el order to
spiral order or spontaneously dimerize6 but these are not sig
nals of any kind of quantum phase transitions.

More interesting phases can be obtained by placing th
gapped systems in a magnetic field. For some critical va
of the fieldHc1, the system undergoes a continuous ph
transition from a commensurate Ne´el ~C! zero uniform mag-
netization phase to an incommensurate phase~IC! with non-
zero magnetization. As the magnetic field is increased,
magnetization increases and saturates at some criticalHc2
where the ground state is fully ferromagnetic but differs fro
the XXX ferromagnet in that it has a finite gap to the fir
excited state. The intermediate region~betweenHc1 and
Hc2) is completely gapless and the pitch vectorQ ~the value
of the momenta at which the static structure factor show
peak! decreases continuously fromQ5p atHc1 to Q50 at
Hc2. Evidence for such transitions were seen in the spi1

2

ladder compound Cu2(C5 H12N2)2Cl4 ~Ref. 7! and the quasi-
one-dimensional spin-12 systems TTF-CuBDT.8 The C-IC
550163-1829/97/55~9!/5816~11!/$10.00
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transition seen in CuGeO3 ~Refs. 9–11! can be understood
in a similar manner if it is treated as a spin chain with sp
Peierls interactions alone. However, because of the pres
of strong phonon interactions in CuGeO3, various complica-
tions can arise, in particular, the transition becomes first
der.

In this paper, we are concerned with the properties o
generic gapped spin-12 system in the presence of an extern
magnetic field. Though the naive expectation is that
gapped systems might exhibit similar behaviors in the pr
ence of the field, we find that they have very different pro
erties depending on the nature of the interaction which c
ates the gap. In particular we focus on experimenta
measurable quantities like the total magnetization, NMR
laxation rates, and neutron scattering intensities. To do
we calculate various spin-spin dynamic correlation functio
in the gapless region betweenHc1 and Hc2. We calculate
various exponents in the IC regime close toHc1 and use
these to calculate the temperature dependence of the N
rates (T1). We also discuss in detail the consequences of
results for the dimerized, frustrated, and ladder systems.
find that though magnetization measurements will not h
differentiate between these systems, neutron scattering
NMR can. Since the models studied in this paper direc
describe the compounds mentioned above, the results
tained here are of immediate relevance to experiments.

The paper is organized as follows. Section II contain
very brief review of spin-12 chains and the technique o
bosonization used in this paper. In Sec. III, we introduce
Hamiltonian for a generic gapped spin-1

2 chain and discuss
the effects of the applied magnetic field and the con
quences of incommensurability induced by the magne
field. We present in Sec. IV our results for the dynamic c
relations and the values of the exponents near the trans
atHc1 for a generic gapped spin-

1
2 chain. We also discuss th

generic phase diagram as a function of magnetic field
temperature. The spin ladder is treated separately in Sec
In Sec. VI, we calculate the temperature dependence of
NMR rateT1

21 and discuss the behavior of the same for t
cases of the dimerized, frustrated, and ladder models. Sec
VII contains the concluding remarks.
5816 © 1997 The American Physical Society
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II. INTRODUCTION TO SPIN- 1
2 SYSTEMS

Here we present a brief introduction to the physics
spin-12 chains and summarize certain results relevant to
work presented here. The main Hamiltonian of interest is
Heisenberg model:

H5J(
i
SW i•SW i11 ~1!

where theSW i is a localized spin12 operator. We setJ51 in
the rest of the calculation. This model is Bethe ansatz solu
and is known to be gapless. A lot is known about the sta
and dynamic properties of this system. Even though there
various methods used to study spin-1

2 chains, in this paper we
use the machinery of bosonization since this enables u
deduce various properties in a relatively easy manner. S
this is an oft used method we sketch the details briefly.
first use the Jordan-Wigner transformation1,5 which essen-
tially maps the spin problem onto a problem of interacti
fermions on a lattice. For the spin-1

2 system considered here
the corresponding fermionic problem has Fermi moment
kF5p/2. We then perform a linearization around the fr
Fermi points given by6kF , to obtain an effective low-
energy continuum fermionic theory and then bosonize us
the standard dictionary of Abelian bosonization.1,5 We just
present the final expressions obtained for the spin-1

2 operators
in terms of the bose fieldf and its dualu

Sz~x!5~21!xcos~2f!1
1

2p
]xf,

S2~x!5exp~ iu!@~21!x1cos~2f!#. ~2!

Finally, Eqs.~2! can be used to obtain the bosonized vers
of the Hamiltonian given in Eq.~1!, i.e.,

H5
1

2pE dxFuK~pP!21S uK D ~]xf!2G , ~3!

whereu is the spin-wave velocity,P is the momentum con
jugate to the fieldf, andK5 1

2 for the isotropic Hamiltonian
of Eq. ~1!. H is just the Hamiltonian for free bosons. No
that K51 for the case of theXX antiferromagnet which in
turn is equivalent to a theory of free fermions via the Jord
Wigner transformation. Other values ofK correspond to hav-
ing a Jz coupling and hence to interacting fermions. Sin
there is no mass term for thef field, it is clear that there is
no gap to the first excited state from the singlet ground st
Since a free boson theory given by Eq.~3! is trivially solv-
able, it is fairly straightforward to calculate the dynamic co
relation functions using Eqs.~2!.

III. SPIN- 1
2 SYSTEMS WITH A GAP

IN A MAGNETIC FIELD

A. Zero magnetic field case

In many compounds which mimic the behavior of spin1
2

chains, it has often been found that there are many o
interactions between spins, apart from the isotropic inter
tion summarized in the Hamiltonian of Eq.~1!. These could
be anisotropies, frustration, impurities, and interchain c
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plings. More often than not, it is found that these interactio
are small and can be treated as perturbations of the ab
gapless system. Within the framework presented here,
effects of these perturbations can be gauged from whe
they are relevant, marginal, or irrelevant in the renormali
tion group sense. Depending on whether the perturbat
are relevant or irrelevant, a gap opens in the spectrum. In
paper we are interested in a weak spin-Peierls dimeriza
and frustration arising from next-nearest-neighbor inter
tions.

We first consider a small dimerizationd, which arises
from spin-lattice interactions. The corresponding pertur
tion to the Hamiltonian given in Eq.~1! is

HD5~21! idSW i•SW i11 . ~4!

Using Eqs.~2! the bosonized continuum version of Eq.~4!
is1

HD5dE dx cos~2f!. ~5!

It is equally interesting to study the effect of a competi
next-nearest-neighbor interactionJ2. Such an interaction
tends to frustrate the system. The addition to Eq.~1! is

HF5J2SW i•SW i12 . ~6!

For classical spins, the ground state retains its Ne´el-like or-
der for all J2,0.25 and exhibits spiral order forJ2.0.25.
This is just a crossover as it is not possible forJ2 to drive a
zero-temperature phase transition in the classical sys
What is the behavior of the quantum spin-1

2 system? To study
this we again take recourse to Eqs.~2! and write down the
bosonized version of Eq.~6! ~Ref. 1!

HF5~J22J2c!E dx cos~4f!. ~7!

Apart from the cosine terms mentioned above, these s
interactions also renormalize the velocityu in Eq. ~3!. We
now analyze the effects of the interactions given by Eqs.~6!
and ~7!. In the free boson theory of Eq.~3!, the anomalous
dimensions of the operators cos(nf) are given byn2K/4.
Using this at the isotropic pointK5 1

2, we see thatHD given
by Eq. ~5! has dimension12 and hence is relevant for a
values ofd. Similarly HF described in Eq.~7! is found to
have dimension 2 and is marginal. Numerically it has be
shown thatHF is marginally relevant forJ2.J2c50.2411
and irrelevant forJ2,0.2411.12 Therefore, we can see tha
both d andJ2 drive a quantum phase transition from a ga
less phase to a phase where a gap opens in the dispersio
all values ofd andJ2.J2c .

Instead of restricting ourselves to the dimerized and fr
trated models in this paper, we study the following Ham
tonian generic to gapped spin-1

2 chains in a magnetic field:

Hgap5
1

2pE dxFuK~pP!21S uK D ~]xf!21n cos~nf!G . ~8!

The two-parameter space spanned byK andn correspond to
various spin-12 systems with gaps in their spectra. For e
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5818 55R. CHITRA AND T. GIAMARCHI
ample,K5 1
2,n52 corresponds to the dimerized model a

K5 1
2,n54 is the frustrated antiferromagnet.
We see that though all these models have a gap, we

differentiate between them by studying their excitation sp
tra, the nature of which depends on the values ofK andn.
For instance, it is known from the study of excitations in t
sine-Gordon theories13 that apart from the magnons and so
tons there exist certain excitations called breathers. Thes
nonlinear like the solitons and manifest themselves as
crete levels in excitation spectrum. These breathers have
ergies higher than the singlet-triplet gap but lie below
continuum part of the spectrum generated by the solito
The number N of such breather modes is given b
N,(82n2K)/n2K. For example, we see that the frustrat
model has no breather modes in its excitation spectrum.
the other hand, the spin-Peierls system has two brea
modes in its spectrum: theN51 breather is just a renorma
ized magnon and theN52 breather is a bound state of tw
magnons. This extra bound state is found to affect the s
correlation function at finite temperatures.14 Optical experi-
ments on the lines of Ref. 15, where breathers in quasi
ferromagnets were detected, can be used to directly de
these breathers.

B. Effects of a magnetic field

We now study the effect of a magnetic field on the
gapped systems. To do so, we turn on a magnetic fieldH in
the ẑ direction. Note that the magnetic field breaks the SU~2!
symmetry. The interaction with the spins on the lattice is

Hm5(
i
gmBHSi

z . ~9!

A simple understanding of the effect of the field can
obtained in the fermionic picture. First of all, the applicati
of the magnetic field is equivalent to a chemical potential
the fermions. WhenH50 we have zero uniform magnetiza
tion, i.e., ( iSi

z50. This corresponds to a completely fille
lower band for fermions with a gapD separating the lowe
and the upper bands and the Fermi energy lying in
middle. As we increaseH, we are in effect shifting the Ferm
energy. A point is reached where the Fermi energy cros
the gap and lies at the bottom of the upper band. This va
of H corresponds toHc1, i.e., D5gmBHc1. WhenH is in-
creased beyondHc1, the upper band is partially filled resul
ing in a nonzero magnetizationm. The zero magnetization
region with a gap belowHc1 is the commensurate~C! regime
in that short-range antiferromagnetic order still persis
AboveHc1, the ground state is magnetized, has no gap
canted. This is what we call the incommensurate~IC! phase.
This is a quantum phase transition andSz is the relevant
order parameter. This is what makes it different from t
incommensurate~spiral! phases seen in frustrated syste
~Sec. III A!.16,17

Now that we have a heuristic understanding of the eff
of the magnetic field we now proceed to calculate vario
quantities of interest like the magnetization and exponent
the vicinity ofHc1, within the continuum approximation. Us
ing Eqs.~2! we can see that Eq.~9! corresponds to adding
gradient termgmBH]xf to the Hamiltonian of Eq.~8!
an
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Htot5Hgap1
1

2pE dxgmBH]xf. ~10!

This Hamiltonian has the same form as that for ffermion
with attractive interactions in a magnetic field18 and also the
one used in the context of the C-IC transition in two
dimensional systems where it is a transition from a pha
with a discrete symmetry~C! to a phase with a continuous
symmetry~IC!.19,20 Note that the gradient term in Eq.~10!
can be eliminated by a simple shift of thef field, i.e.,
f→f1pKgmBHx. Since the only effect ofH belowHc1 is
to renormalize the gap, we can replace this shift b
f→f1pmx where m is the magnetization. The cosine
term, however, is not invariant under this shift. From th
analogy with the chemical potential in fermionic systems, w
infer that the magnetic field changes the Fermi momentu
We can redefine new Fermi points6kF8 , linearize around
these points, and obtain a new effective massless free bo
theory, albeit with a different value ofK. It has gapless
modes atq50 andq52kF85p(122m). A schematic plot
of the field dependent dispersion for the spins in the IC pha
is given in Fig. 1. The behavior in the gapless IC region
governed by the Hamiltonian

H̃5
1

2pE dxFvK̃~pP!21S vK̃ D ~]xf!2G . ~11!

The quantitiesv and K̃ are dependent onH. Although it is
difficult to obtain the dependences for the entire range
H betweenHc1 andHc2, one can compute the exact value
for the exponents~equivalently theK̃) at the critical point
Hc1 and see how they change as we move away from the
points.

FIG. 1. Schematic picture of the field-dependent dispersion
the IC phase as seen bySzSz correlations~bold line! and S1S2

correlations~dashed line!. Q50 andQ5p are the usual commen-
surate modes andQ52pm andQ5p(122m) are the incommen-
surate modes.
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Before we proceed with the calculation ofK̃, we first
study how the magnetization rises aboveHc1. Using the re-
sults on the C-IC transition20

m5hAK

n
A~H22Hc1

2 !5hAK

n
A~H2Hc1!~H1Hc1!

.hAK

n
A~H2Hc1!2D, ~12!

wheren is the coefficient off in the argument of the cosine
interaction andh is a constant of proportionality which de
pends on the renormalized velocities. The magnetization
creases from its zero value as a square root nearHc1. A
similar square root behavior is seen nearHc2 if one ap-
proaches this critical point from the ferromagnetic side. H
it is the decrease in magnetization from the full ferroma
netic value that shows the square root behavior. In Fig. 2,
have shown the behavior of the magnetization with tempe
ture and the field in units ofgmB . This was done using the
analogy with the case of fermions with a gap and a chem
potential. We assumed a dispersion for the fermions of
form vk56A(Jk)21(D)2. Here the two square root re
gimes nearHc1 andHc2 (0.4 and 1.1 in the figure! are joined
by a region in which the magnetization increases in a nea
linear fashion withH. The interval ofH in which the square
root behavior of the magnetization is seen and also the ra
where the nearly linear regime is seen, depend on the pa
eters like the couplings and the gap. For certain ranges
these parameters where the gapD is of the order of the
exchange couplings one obtains a scenario where the w
of the square root regime is quite small so that even exp
ments done at reasonably low temperatures could enti
miss the detection of this region. This might be the reason
to why the square root behavior is not observed in Ref.

FIG. 2. Plot of the magnetizationm ~apart from an overall nor-
malization! vs magnetic fieldH for D50.4J at various tempera-
turesT. H andT have been normalized by the exchange coupl
J. The solid line corresponds toT50, the dashed line atT50.05,
and the dashed-dotted line toT50.25. We see that even at suffi
ciently low temperatures the square root regime gets wiped out
m increases in a nearly linear fashion.
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Since the behavior of the magnetization given by Eq.~12! is
generic to all the gapped systems studied here, it follows
a measurement of the magnetization will not be able to qu
tatively differentiate between the various models.

The magnetization derived in Eq.~12! applies to the lad-
der also. This is because, as we will later show in Sec. V,
effective Hamiltonian for the ladder has the same form
given in Eq.~10!. Another system which exhibits a simila
transition in the magnetic field is the spin-1 chain. Since
spin-12 ladder and the spin-1 chain belong to the same u
versality class,21 Eq. ~12! describes the magnetization in th
spin-1 chain also. This agrees well with the result form in
spin-1 chains obtained in Refs. 21 and 22. In Ref. 22 a m
ping of a phenomenological Hamiltonian of interacting ma
nons onto a system of bosons with repulsived-f n interac-
tions was used to obtain the magnetization and
correlations in the IC regime.

Naively one might expect that these gapped systems
magnetic field have the same qualitative behavior for co
lation functions and that quantitative features likeHc1

and

thermodynamic quantities likem are model dependent. W
shall see below that this is not true and that these mo
have dynamically different physical behaviors in the IC r
gime depending on the value ofn. For a generic interaction
of the form cos(nf) ~wheren2K<8) andH close toHc1 on
the IC side,20

K̃5
4

n2 S 12
umg sinh~2u!

D D . ~13!

HereD is the gap andg is a positive constant which depend
on the parameters of the theory but is independent ofH. u is
defined by exp(22u)5n2K/4. At the transitionHc1, K̃ goes
to a universal value 4/n2 independent of the value ofK. As
H increases, there is a nonzero magnetizationm and the
change inK̃ is completely governed byn andK in that K̃
could increase or decrease depending on the value ofK. For
example, for the frustrated (J2) model K̃5 1

4 atH5Hc1 and
increases asH increases and for the case of the dimeriz
(d) model, K̃51 atH5Hc1 and decreases with increasin
H. Here we have seen that though the magnetization has
same qualitative behavior for all the models, the value oK̃
is model dependent because it is determined by the ano
lous dimensions of the perturbing operators. As a con
quence the exponents in these models will be radically
ferent as will be shown in the following section.

IV. CORRELATION FUNCTIONS
IN THE CRITICAL REGION

In this section, we first study how the structures of t
correlation functions are altered by the magnetization in
IC phase. Later we will calculate the various commensur
and incommensurate contributions to the finite tempera
dynamic susceptibility. From the magnetic interaction giv
by Eq. ~9! and the field shiftf→f1pmx, it is clear that
since forH,Hc1 there is no net magnetization, the form
the correlators is unaffected, and only the gap is renorm
ized. However, in the IC phase, the presence of a nonz
magnetizationm results inf→f1pmx. The dual fieldu is

g

nd
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insensitive to this shift. Incorporating this field shift in th
expressions for the spin operators given in Eq.~2!, we find
that the generic form of the spin-spin correlation function
the IC region is

^Sz~x,t !Sz~0,0!&5m21 f 1~x,t !1cosp~122m! f 2~x,t !,

^S1~x,t !S2~0,0!&5cos~2pmx!g1~x,t !1cos~px!g2~x,t !,
~14!

wheref 1 , f 2 , g1, andg2 are monotonic, decreasing, powe
law functions of space and time and they go to zero asy
totically. From the above expressions we deduce the follo
ing: the correlation function parallel to the field, i.e
^SzSz&, has a uniform magnetization or equivalently
p-
-

Q50 mode while the staggered part is shifted fromQ5p to
Q5p22pm. This is in contrast to the correlation in th
plane perpendicular to the field,^S1S2&, where the stag-
gered mode is unshifted and remains atQ5p and the uni-
form magnetization (Q50) mode is shifted toQ52pm. We
call Q52pm and Q5p(122m) the incommensurate
modes.

With the results obtained above, we now proceed with
calculation of experimentally relevant quantities like the d
namic susceptibilities at finite temperatures. As a first s
we compute the associated unequal time correlation fu
tions using Eqs.~2! and ~14! and the result of Eq.~13!. The
correlation functions are found to be as follows:
rpen-
he
e
e
y
he

tion
various

re.
^S̃z~x,t !S̃z~0!&5^„Sz~x,t !2m…„Sz~0!2m…&5cos„px~122m!…~x22t2!2K̃1const
K̃

4p2 S 1

~x2t !2
1

1

~x1t !2D
^S1~x,t !S2~0!&5~21!x~x22t2!21/4K̃1const cos~2pmx!~x22t2!2~1/4K̃1K̃21!

3Fexp~2ipmx!
1

~x2t !2
1exp~22ipmx!

1

~x1t !2G , ~15!

with K̃ being specified by Eq.~13!. It is not surprising that the exponents are different in the directions parallel and pe
dicular to the external field. This is because the magnetic field breaks the SU~2! spin-rotational invariance. For the case of t
dimerized model at the critical magnetic fieldH5Hc1, we found in Sec. III thatK̃51. An interesting coincidence is that th
exponents and hence the correlation functions calculated here for the dimerized model atH5Hc1 are the same as that for th
XX antiferromagnet in a zero magnetic field. The correlation functions of theXXmodel~which is in turn equivalent to a theor
of free fermions! can be obtained by substitutingm50 andK̃51 in Eqs.~15!. Note that this correspondence holds only at t
critical point.

Using the above results we can also evaluate the (q,v) dependent susceptibility at finite temperatures, both in the direc
of the applied magnetic field and in the direction perpendicular to it. A knowledge of this quantity helps us extract
measurable quantities like neutron scattering intensities, absorption, and nuclear magnetic resonance~NMR! rates. The sus-
ceptibilities are given by the following expression:

x i j ~q,v,T!52 i E dtdx expi ~vt2qx!u~ t !^@Si~x,t !,Sj~0,0!#&T . ~16!

Here i , j refer to the components of the spin and the subscriptT implies that the correlator is evaluated at finite temperatu
Since rotations in thex-y plane still leave the Hamiltonian invariant, there are no cross correlations, i.e.,^SiSj&50 for
iÞ j . For the susceptibilityxzz[x i in the ẑ direction parallel to the direction of the applied field21,23

x i
Q50~q,v,T!5

q2

~vq!22v2 , ~17!

x i
Q5p~122m!~q,v,T!5NT2K̃22BS K̃2 2 i

„v1v~q2Q!…

4pT
,~12K̃ ! DBS K̃2 2 i

„v2v~q2Q!…

4pT
,~12K̃ ! D .

For the perpendicular susceptibilityx'[x12 , i.e., in thex-y plane,

x'
Q52pm~q,v,T!52N8T2bFBS b12

2
2 i

„v1v~q2Q!…

4pT
,~212b! DBS b

2
2 i

„v2v~q2Q!…

4pT
,~12b! D

1BS b

2
2 i

„v1v~q2Q!…

4pT
,~12b! DBS b12

2
2 i

„v2v~q2Q!…

4pT
,~212b! D G , ~18!

where 2b52K̃11/2K̃22,
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x'
Q5p~q,v,T!5NT2a22BS a

2
2 i

„v1v~q2Q!…

4pT
,~12a! DBS a

2
2 i

„v2v~q2Q!…

4pT
,~12a! D , ~19!
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wherea51/4K̃, B(x,y) is theb function, andv is the ef-
fective magnetization-dependent spin velocity.N andN8 are
velocity- and hence field-dependent prefactors. These
pressions for the susceptibilites are valid as long
T,(H2Hc1). This is because above this temperature
Hamiltonian in Eq.~11! obtained by linearizing the Ferm
surface aroundkF8 is no longer valid.

Though we have explicitly calculated the susceptibilit
only in the IC regime for low temperatures, it is nonethele
interesting to study the behavior outside this IC phase.
example, one can study how the system crosses over to
high-temperature classical limit as a function of the para
eters of the theory. We present a phase diagram as a fun
of T andH in Fig. 3. This phase diagram is true only fo
H,Hc2 because atHc2 the system makes a transition
another gapped phase. For temperatures smaller than th
changeJ one obtains four regimes as indicated in Fig. 3. A
the lines indicate crossovers and are not phase transit
This phase diagram can be easily understood within the
mionic picture. Note that for the fermionized version of sp
chains with a gap the complete dispersion for the excitati
has the formvk56AJ2k21D2. These two branches const
tute the lower and upper bands with a gap 2D separating the
two bands. With the full dispersion, the magnetization
given by a function which depends on two parametersD/T
andH/T. The different regimes to be discussed below w
be characterized by the varied behavior of this function.
all T,Hc12H one gets the gapped phase where the che
cal potential, i.e.,H lies in the gap and the temperature
still small enough and does not excite particles to the up

FIG. 3. Phase diagram of gapped spin-1
2 chains in a magnetic

field H as a function of temperatureT. There are essentially five
regions and all the lines indicate crossovers between these reg
x-
s
e

s
or
the
-
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ex-
l
ns.
r-

s

l
r
i-

er

band. This phase is characterized by an exponential deca
all correlation functions. WhenH.Hc1 andT,(H2Hc1),
the chemical potential lies in the upper band and we get
incommensurate or Luttinger liquid I regime as was alrea
discussed in Sec. III B~cf. Fig. 3!. The dynamical exponen
is z51 here. The susceptibilites in Eqs.~17!–~19! are valid
in this Luttinger liquid regime.

If the chemical potential lies at the bottom of the upp
band andT;0 or equivalently when temperature is such th
it can excite particles at the Fermi level to the bottom of t
upper band, one obtains the quantum critical regime24 de-
fined by uH2Hc1u,T. In the quantum critical region the
physics is governed by the fixed point24 at H5Hc1 where
K̃ has a universal value 4/n2. A simple way of understanding
the behavior in this region is presented below. First, the c
vature of the bottom of the band becomes very importan
that the effective dispersion seen by the excitations is q
dratic. Here one can expandvk in D to obtain
vk
QC5D1k2/2D in the quantum critical region. The dynam

cal exponentz52 in this region. A direct consequence of th
quadratic dispersion is thatD/T andH/T are no longer in-
dependent scaling variables and only occur in the comb
tion (H2Hc1)/T and the magnetizationm which is just the
number of fermions in the upper band has the scaling fo
m(T)5T1/2f „(H2Hc1)/T…. Analogous scaling functions ex
ist for the spin-spin correlations also. The scaling functio
for the correlators are functions ofk2/T, v/T, and
(H2Hc1)/T. Note thatD/T andH/T are no longer indepen
dent scaling variables and only occur in the combinat
(H2Hc1)/T. The spins are complicated functions of the fe
mions and this results in the scaling functions being diffic
to obtain for reasons described in Ref. 24. The quantum c
cal behavior holds only as long as the quadratic form of
dispersion assumed is valid, or in other words, only as lo
as temperature is such that the bulk of the excitations
confined to the bottom of the upper band. Similar pha
were obtained in Ref. 24 in the context of spin-1 chains i
magnetic field, using a phenomenological theory of magn
with repulsive interactions. Here starting from a microsco
description, we find that these phases are generic to
gapped chains in a field and we have also obtained the
ponents in the Luttinger liquid regime I.

Now if temperature is increased further, there is a cro
over to a fourth region. This regime was not obtained in R
24 because the formvk

QC was assumed for all values ofk.
Above a certain temperature excitations to higherk states
occur and one starts probing the deviation from a quadr
dispersion and thek2 approximation is no longer valid. As a
result the quantum critical scaling for the magnetization, e
will no longer be valid above these temperatures. The sys
then crosses over to a new region where temperature is l
enough such that in addition to the excitations which n
involve states way above the bottom of the upper band, th
are transitions between the lower and the upper bands.
implies that the gap becomes irrelevant and the effectivens.
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persion becomes linear ink. This crossover should occur fo
temperaturesT of the order of twice the gapD but much
lesser than the exchange couplings such that the intera
becomes irrelevant and the resulting behavior is that o
Luttinger liquid. We denote this regime as the Luttinger li
uid II. Classical behavior sets in for temperatures grea
than the exchange couplings. The widths of all these reg
are dictated by the values of the gaps and the exchange
pling. For instance, the width of the quantum critical regim
is fixed by the gap alone, and for magnetic fields away fr
Hc1 this width is quite small and not as large as purported
be in Ref. 24. As a consequence, the scaling arguments a
only in the vicinity of the fixed point atHc1 where the width
of the quantum critical regime is appreciable and not
fields far away from it. In contrast, the width of the Lutting
liquid II regime is given by the relative sizes ofJ andD.
This width can be increased or decreased by tuning the r
D/J. Applying these arguments to the case of spin-1 cha
where the gap is of the order of the exchange couplingJ, one
finds that for small fields the classical limit sets in soon a
there are no sharp crossovers between the quantum cri
Luttinger liquid II, and classical regimes.

In the following paragraphs we discuss the physical s
nificance of the susceptibilites calculated above. The sus
tibilities are directly relevant to inelastic neutron scatteri
measurements where apart from certain magnetic form
tors, the intensity is proportional to the (q,v) Fourier trans-
form of the full spin-spin correlator̂S(x,t)•S(0,0)&. From
Eqs. ~17!, we can see that the scattering intensity in the
phase due to theSz correlator, obtained as a function ofv for
some fixedq, should in addition to the peak generated by t
massless excitations nearQ50 contain an extra peak corre
sponding to the massless modes at the incommensu
Q5p(122m). Similarly, for the correlations perpendicula
to the field, peaks are seen at the staggered modeQ5p and
at Q52pm. These peaks are divergent atT50 because of
the power-law correlations present at these values ofQ. At
finite temperatures the peak heights are finite and are d
mined by theT dependence of Eqs.~17!–~19!. Such incom-
mensurate features have been observed in inelastic ne
scattering data from copper benzoate which is as5 1

2 system
in a magnetic field.25 Another probe is electron spin reso
nance~ESR! which can be used to directly probe the natu
of the continuum of excitations atQ52pm.26

One interesting question is whether the propagat
modes corresponding to the uniform and staggered mag
zation are damped at finite temperature, or in other word
there any thermal broadening? This can be answered
studying the temperature dependence of the imaginary p
of the corresponding susceptibilites. First consider the c
of the isotropic spin-12 chain in zero magnetic field. Here it i
known that the uniform magnetization component of theSz

correlator diverges as 1/x2. The corresponding uniform an
staggered susceptibilities at finite temperatures are g
by21,23Eqs.~17! with m50 andK̃51/2. Isotropy results in
the same expressions for the perpendicular susceptibility
this contextv is the spinon velocity. The dependence
x i
Q5p on temperature tells us that theQ5p mode is damped

at finite T. The temperature independence of thex i
Q50 im-

plies that there is no damping of theQ50 mode at finite
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T.27 This can also be understood from the fact that the ex
nentb in Eq. ~18! is zero atK51/2.There is no damping of
this mode within the continuum approximation where t
fermionic dispersion was assumed to be linear. Taking i
account a small curvature of the fermion dispersion spect
does not alter this result because the height of the peak w
is given by the lifetime of the quasiparticles in the fermion
picture becomes infinite asq→0 even at finite temperatures
Another way of understanding this absence of damping
the uniform mode is by noting the fact that the total magn
tization in all the directions commutes with the Hamiltonia
which in turn implies that there is no damping of this mo
in the lattice spin system.

We now discuss the damping of the various modes in
IC phase. The modes are the uniform magnetization m
Q50, the staggered modeQ5p, and the incommensurat
modes atQ52pm and Q5p(122m). From Eqs.~17!–
~19! we see that the dominant contribution to theQ5p and
Q52pm modes is from the perpendicular susceptibility. A
in the Heisenberg case discussed above, the staggered
atQ5p has a damping factor proportional toT2a22. Simi-
larly the presence of a nonintegral exponentb in x'

Q52pm

results in theQ52pm mode being damped at finite tem
peratures by a factor proportional toT2b. Similarly the be-
havior of the Q5p(122m) mode is dictated by

x i
Q5p(122m) in Eq. ~17! and has a damping factorT2K̃22. We

now consider theQ50 mode. The dominant contribution t
the damping of this mode arises fromx i

Q50 . From Eqs.~17!,
we find that the parallel susceptibility does not damp
Q50 modes becausex i

Q50 is still independent of tempera
ture. Because the system is not isotropic we need to ch
whether there is a subdominant contribution from the p
pendicular susceptibility which damps this mode. To do t
we first study the damping for other values ofQ between 0
and 2pm. Note that this damping can be studied at the re
nance frequenciesv5v(Q2q) or away from resonance. To
obtain the leading temperature dependence of the dampin
these modes at resonance, we substituteq22pm5dq in Eq.
~18!. The resonance frequencyv is fixed atvdq. The low-
temperature behavior of the imaginary part of the susce
bility is given by

b

2
vb21Tb111

2

b
vb11Tb21. ~20!

This expression implies that there is a thermal broaden
of the Q50 or uniform magnetization mode, i.e
dq522pm. Nevertheless, using the fact that the total ma
netization in theẑ direction still commutes with the Hamil
tonian even in the presence of the magnetic field and that
time evolution of( iSi

1 involves only( iSi
1 we conclude that

there is no thermal broadening of the uniform mo
(Q50) mode. Ifv is not at the resonance frequency then
low T, there is no obvious thermal broadening a
Imx'

Q52pm is proportional to@vdq(vdq22pm)#b21. This
expression is not valid forv2vdq,T and fails in the vicin-
ity of dq52pm. From these calculations we see that thou
bosonization describes the physics correctly nearQ5p and
Q52pm for the perpendicular correlations it does not d
scribe modes far away from these two points well. This
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. . .
not surprising in view of the fact that by linearizing atkF8 we
take into account a lot of spurious states at the bottom of
band. To summarize, we find that theQ50 mode is un-
damped whereas the gapless modes atQ52pm,p(122m)
andp are all damped.

V. SPIN-12 LADDER

Another system which exhibits a behavior akin to the s
tems studied above is the spin ladder. Here we consid
ladder with two identical and isotropic chains. Let the sp
in chain 1 be labelledSW 1 and those in chain 2,SW 2. We
bosonize this system in the same manner as above. We
the reader to Refs. 21, 28, and 29 for details. We adopt
notations of these references and introduce the symm
~triplet! and antisymmetric~singlet! combinations of the
fields:fs,a5(f16f2)/A2 and their respective dualsus and
ua . The Hamiltonian for the ladder is

H5Ha1Hs , ~21!

where

Ha5
1

2pE dxFKu~pPa!
21S uK D ~]xfa!

21g1cos~A8fa!

12g2cos~A2ua!G ,
Hs5

1

2pE dxFKu~pPs!
21S uK D ~]xfs!

21g3cos~A8fs!G ,
~22!

whereK5 1
2, g15g25g35J'l/2p andJ' is the interchain

coupling andl some constant. All the cosine operators a
relevant operators of dimension one. Equations~22! have the
same form as the Hamiltonian for an isotropic spin-1 syst
written in terms of two spin-1/2 operators.21 We note that
the spin-1 system has fixed values forg1, g2, andg3 and has
no analog of a tunable parameter likeJ' . Nevertheless the
results to be derived below apply to the spin-1 system i
magnetic field. From Eqs.~21! and ~22! we can infer the
existence of gaps for all nonzero values ofJ' in the spectra
of both the fieldsfa andfs . The ground state of the ladde
is a spin singlet and there exists a gap to the triplet exc
state characterized byfs . Therefore, analogous to th
dimerized chains, we expect the vanishing of the gap and
onset of a gapless incommensurate phase for some cr
value of the magnetic field. Since the magnetic field acts
both chains equally, we can easily see from the bosoniza
formulas thatH affects only thefs field

Hs→Hs1A2H]xfs . ~23!

Note that this Hamiltonian has the same form as Eq.~10!.
Therefore, using the results obtained in Sec. III, we can
mediately see that thefs field becomes massless while in th
antisymmetric sector theua field acquires a nonzero expe
tation value and thefa still has a gap. As a result the corre
lations of thefa field decay exponentially. The value ofK̃
for thefs field atH5Hc1 is K̃5 1

2. From Eq.~13!, we find
thatK̃5 1

2 aboveHc1 also. This is because sinh(2u)50 for the
e
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ladder. However, one should note that this is valid only
the region close toHc1 and provided that the gaps and th
magnetic field are small compared to the intrachain excha
coupling. Using the above results we can compute the s
correlation functions. There are two kinds of correlation
correlations within a chain and between chains. Here ag
the magnetic field changes the structure of the correla
functions in a manner analogous to that described in E
~14!. We summarize the results for the various correlat
below. Since we are concerned only with the asymptotic
haviors we present only the power-law contributions to th
correlators:

^Sz
r~x,t !Sz

t ~0,0!&5m21
1

8p2 F 1

~x2t !2
1

1

~x1t !2G . ~24!

Here r ,t denote the chain labels. Unlike in the single cha
case, in the ladderthe alternating part at Q5p which is now
shifted to Q5p(122m) by the magnetic field decays exp
nentially. Similarly

^S1
1~x,t !S1

2~0,0!&5^S2
1~x,t !S2

2~0,0!&

5~21!x~x22v2t2!21/8K̃,

^S1
1~x,t !S2

2~0,0!&5 i ~21!x~x22v2t2!21/8K̃. ~25!

Here againthe uniform component is shifted to Q52pm and
decays exponentially. The fact thatfa is massive results in
an exponential decay of all the incommensurate contri
tions to the correlations. This exponential decay of all t
incommensurate correlations in the ladder is in contras
the single chain systems studied in the previous sectio
Also note that except for certain exponentially decaying c
rections, the interchain and intrachain correlators have es
tially the same asymptotic behaviors. As already mention
the spin ladder in the magnetic field has the same expon
as that of the spin-1 chain in a magnetic field.21,22The domi-
nant contribution to the perpendicular susceptibility for t
ladder has the same form as that given in Eq.~19! with
a51/8K̃ and that to the parallel susceptibility byx i

Q50 of
Eq. ~17!. At the critical pointH5Hc1, the exponenta5 1

4 for
the ladder as well as the dimerized model. However, ther
one big difference between the two models. In the dimeriz
model, the incommensurate parts of the^SzSz& and ^S1S2&
also show power-law behaviors, whereas in the ladder t
decay exponentially. This has a serious consequence for
tron scattering intensities. This is because for the dimeri
system, atT50 the power-law divergences of the incom
mensurate parts of the dynamic correlations will result in
divergent peak at the incommensurate wave vectorQ. On the
other hand, the exponential decay of the incommensu
correlations results in much smaller peaks at incommen
rateQ whose finite height and width are determined by t
gaps in thefa field. Though away from the critical point th
exponents for the two models are no longer identical,
discussion presented above for the neutron scattering
holds.
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VI. NMR RELAXATION RATES

With the help of the susceptibilites derived above, we c
easily compute various quantities that can be studied by n
tron scattering and nuclear magnetic resonance~NMR!.
Here, we focus on NMR and in particular the spin-latti
relaxation timeT1. The dominant contribution toT1 comes
from the coupling of the nuclei to the lattice spins. The
fore, it is a good probe to study the nature of the lattice-s
system. To obtain the temperature dependence ofT1 we use
the following formula in terms of the local susceptibility t
calculate the same:30

1

T1
5 lim

v→0

2kBT

\2v E dq

2p
Fi j ~q!x i j ~q,v,T!. ~26!

Here theFi j are hyperfine form factors andx i j has been
defined in Eq.~16!. In general these form factors are diag
nal in i , j and do not vary much withq. For a system of
noninteracting spins, (T1T)

21 is a constant. For interactin
spin systems, the dependence on temperature could be
complicated because the underlying magnetic order pla
very important role in that it changes the effective magne
field seen by the nuclei. Examples are the isotropic Heis
berg model whereT1

21 goes to a nonzero value asT→0 and
the spin-Peierls system whereT1

21 goes to zero atT50 be-
cause of the gap to spin excitations.

We now use the results obtained in the previous sectio
calculate the NMR rates. We first note that the magnetiza
m only shifts the resonance frequency and does not cha
the form of the expressions forT1

21. Depending on the kind
of NMR done, one can probe specific correlations. This
especially useful for anisotropic spin systems and also
tropic systems in a magnetic field where the perpendic
and parallel susceptibilites are different. For instance, if
NMR was done on the nucleus of the lattice spin, then
relaxation occurs through a contact interaction andT1

21 de-
pends onx' alone. On the other hand, if it is done on oth
neighboring nuclei in the compound, the relaxation
through dipolar interactions andT1

21 depends onx' and
x i . An amalgam of the two methods will be useful in is
lating the two susceptibilites experimentally.

Substituting the expressions forx' andx i derived in Eqs.
~17!, ~18!, and~19! in Eq. ~26!, we find that a straightforward
power counting yields the following leading low-temperatu
behavior for the single chain models:

F 1T1G
single chain

5A'T
~1/2K̃ !211AiT

2K̃211BiT, ~27!

whereK̃ is given by Eq.~13!. A' , Ai , andBi are constants
independent of temperature. The suffixes' andi refer to the
contributions from the perpendicular and parallel susce
bilities. It is easy to see that the staggered susceptibili
dominate inT1

21. For the ladder model,T1
21 is given by

F 1T1G
ladder

5A'T
~1/4K̃ !211BiT. ~28!

The contribution coming from theAi term has not been ex
plicitly written because it goes to zero exponentially
T→0.
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The temperature dependences of these rates for the di
ized and frustrated models at the critical pointHc1 are given
below.

Dimerized (d):

1

T1
5~Adi1Bdi!T1Ad'T

21/2. ~29!

Frustrated models (J2):

1

T1
5Af iT

21/21~Af'1Bf i!T. ~30!

In Table I, we present the leading low-T contributions to
T1

21 at the transition, for the three models considered in t
paper. There are other temperature-dependent contribu
to the NMR rate, but these go to zero atT50. As mentioned
earlier there are two possible scenarios. One is that
nucleus probed does not correspond to the spins and
interactions are dipolar. Here atH5Hc1, theT1

21 diverges as
T21/2 for the three models. However, the divergent behav
at low temperature in the frustrated model arises from
parallel susceptibility whereas in the ladder and dimeriz
systems it is the perpendicular susceptibility which leads
the divergent behavior. This feature can be used to differ
tiate between the models as will be discussed in the follo
ing paragraph. AsH is increased, we can see from Eq.~13!
that K̃ increases for the frustrated model and the diverge
becomes weaker. CoincidentallyK̃ decreases for the dimer
ized system and the divergence ofT1

21 becomes weaker too
For the ladder,K̃ does not change withH and the divergence
persists and one has to go to higher fields to see a devia
from theT21/2 behavior. If for some value ofH, K̃ decreases
to 1

2 in the dimerized model and increases to12 in the frus-
trated system, we see thatT1

21 does not diverge andT1
21

goes to a constantAi1A' as T→0. This behavior occurs
because at some point the magnetic field becomes l
enough such that the interaction which generates the
becomes unimportant and should recover the exponents
the chain without the interaction, i.e., the Heisenberg ch
whereT1

21 is a constant. For fields greater than this value
H, the exponents vary like those of a Heisenberg chain i
magnetic field. The exponent approaches that of theXX
chain or free fermions for sufficiently large fields.

Another way of differentiating between the three mod
is if the NMR involves the nuclei of the relevant spins. He
only the perpendicular local susceptibilities matter and
very interesting picture unfolds. AtH5Hc1, T1

21 diverges as
T21/2 for the dimerized and ladder models whereas it a
proaches zero linearly inT for the frustrated model. Naively
for gapless systems, we would have expectedT1

21 to diverge
or go to a nonzero constant asT→0 as it does in the case o

TABLE I. Temperature dependence ofT1
21 at H5Hc1.

Model K̃ at Hc1 T1i
21 T1'

21

Spin-Peierls (d) 1 T T21/2

Frustration (J2)
1
4 T21/2 T

Ladder 1
2 T T21/2
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the Heisenberg model.27 This T dependence in the frustrate
model is indeed strange because it is reminiscent of
T1

21 rates for spin chains with gaps whereT1
21 also goes to

zero asT→0 but exponentially. A divergence will be seen
the frustrated system ifH is such thatK̃. 1

2. For increasing
H theT21/2 divergence survives in the ladder but for dime
ized systemsT1

21 becomes less and less divergent asT→0
and later saturates to a constantA' at T50 for some value
of H. This is very similar to what was seen in the case
dipolar interactions discussed above. However, note that
saturation values are different in both cases. We also n
that the above discussion rests on the fact that these field
smaller thanHc2 which need not necessarily be the case.
mentioned above, for magnetic fields close toHc2 where the
ground state is nearly ferromagnetic, we expect the syste
approach the free fermion limit, i.e.,K̃→1. As a result
T1

21 is expected to diverge asT21/2 at H5Hc2 for all the
models irrespective of their values ofn.

Even though both the ladder and the dimerized syste
have the same divergence at the critical point, one can
ferentiate between these two systems by studying the no
vergent contributions toT1

21. For example, for the frustrate
model, there exists a correction toT1

21 proportional to

T2K̃1(1/2K̃)21. This exponent changes with increasing ma
netic field and corrections of a similar nature do not exist
the ladder. These corrections should manifest themselve
not too low temperatures. However, inelastic neutron sca
ing should be able to differentiate between them as pr
ously discussed in Sec. V. At temperatures large compare
the exchange couplings and the gap, from the analogy w
fermions we expect thatT1

215const for all the models stud
ied in this paper. A similar behavior should be seen in
gapped phase, i.e.,H,Hc1 also. To summarize, we find tha
the kind of NMR experiments done can result in drastica
differentT1

21 for the three models.
The results derived here can be checked in CuGeO3 and

various other quasi-1D systems. However, with most co
pounds being 3D the results obtained in this paper are ap
cable only in the temperature interval where the compoun
effectively 1D and that there is no 3D magnetic orderin
Such a magnetic ordering in 3D could also result in div
gent NMR rates. For instance, the onset of 3D Ne´el order at
a certain temperatureTN results in T1

21 diverging as
(T2TN)

21/2 for T.TN .
31 This behavior is valid for a tem

perature range of sizeTN . Since this divergence is the sam
as seen in the ladder, dimerized, and frustrated system
H5Hc1, it is important to establish whether such a dive
gence arises from the quasi-one-dimensional or the 3D
ture of the compound. This can be checked by working in
appropriate temperature interval where there is no 3D or
ing or by increasing the magnetic field. If the compound is
the 1D regime, its exponents vary with the field as predic
above and if it has 3D order the exponents do not vary w
the field.

VII. CONCLUSIONS

We have studied the behaviors of various spin-1
2 models

in the gapless IC phase induced by an external magn
e
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field. For a generic gapped spin-1
2 in a magnetic field, it was

shown that the magnetization is zero belowHc1 and rises as
a square root above it. We found that the gapless behavio
the IC regime is determined by the dimension of the cos
operator and hence different systems have drastically dif
ent properties. The results presented here were obtained
a microscopic theory and not from a phenomenologi
theory as was done in the case of the spin-1 chain.24We then
discussed the implications of the finite magnetization for
correlation functions. We found that the effect of the fin
magnetization was to shift theQ5p mode in theSzSz cor-
relators toQ52pm and theQ50 mode in theS1S2 corr-
elators toQ5p(122m). We also calculated the unequ
time correlation functions and have provided explicit form
las for the various susceptibilities as a function ofT, v, q,
and the magnetizationm. These were used to study the the
mal broadening of the various modes in a single chain.
find that the modes at Q5p, Q52pm, and
Q5p(122m) are broadened at finite temperatures wher
the Q50 mode is not. Using the susceptibilities we al
showed that neutron scattering intensities had extra pe
arising from the incommensurability in single chains but n
in the ladder systems. We have also calculated the N
relaxation rates as functions of temperature and have
cussed the results for the dimerized, frustrated, and lad
systems in detail. Using the fermion analogy, we find that
phase diagram for a generic gapped chain as a functio
field and temperature has five regions as shown in Fig. 3
contrast to Ref. 24 where the system stays in the quan
critical regime for a wide range of temperatures before
crosses over to the classical high-temperature limit, we fi
that the system crosses over from the quantum critical
gime to a second Luttinger liquid regime before it becom
classical. These intermediate temperature behaviors fo
from the form of the dispersion spectrum of fermions with
gap due to interactions. Finally, even though we have gi
the exact values of the exponents at the critical pointHc1

alone, a knowledge of the magnetizationm from experiments
can be used in conjunction with Eq.~13! to obtain the expo-
nents and henceT1

21 close to the transition atHc1. We find
that though magnetization measurements cannot disting
between the various models, techniques like NMR or neut
scattering which probe the dynamical spin-spin correlatio
will be able to do so. Other frequently used methods to stu
spin systems are EPR~electron paramagnetic resonanc!
~Refs. 33 and 32! and Raman scattering. These metho
might also be able to directly differentiate between t
dimerized and ladder systems. We conclude by observ
that it should be possible to verify the results obtained h
in NMR measurements being done on CuGeO3 and
Cu2~C5 H12N2!2Cl4.
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