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Critical properties of gapped spins chains and ladders in a magnetic field
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An interesting feature of spié-chains with a gap is that they undergo a commensurate-incommensurate
transition in the presence of an external magnetic fi¢ldhe system is in a gapless incommensurate regime
for all values of the magnetic field between the lower critical fidld and an upper critical fiel# .,, where
it is gapless and has power-law correlations. We calculate the critical exponents for such a generic gapped
system in the incommensurate regime at the critical fi¢tlgd and in its vicinity. Our analysis also applies to
the spin% ladder. We compute the full dynamical susceptibilities at finite temperature. We use the same to
discuss the thermal broadening of various modes and obtain the low-temperature behavior of the nuclear spin
relaxation raté|';1. We discuss the results obtained here for the special cases of the dimerized chain, frustrated
chain, and the spig-ladder.[S0163-182697)05509-4

[. INTRODUCTION transition seen in CuGef(Refs. 9—1] can be understood
in a similar manner if it is treated as a spin chain with spin-
Quantum spin chains have been a field of intense theoretReierls interactions alone. However, because of the presence
cal activity for the past decadeThis seems pertinent in the of strong phonon interactions in CuGgQvarious complica-
face of the tremendous advance made in the fabrication dfons can arise, in particular, the transition becomes first or-
guasi-one-dimension&l D) systems. There are a lot of com- der.
pounds like(TMTTF) ,X which are essentially spifichains, In this paper, we are concerned with the properties of a
NENP—a spin-1 chaif,and a host of other organic com- generic gapped spifsystem in the presence of an external
pounds whose behaviors can be adequately described withinagnetic field. Though the naive expectation is that all
the framework of interacting spin syster¥he Heisenberg gapped systems might exhibit similar behaviors in the pres-
model with purely nearest-neighbor interactions has been irence of the field, we find that they have very different prop-
strumental in understanding various properties of these spierties depending on the nature of the interaction which cre-
systemé In addition to these, there are compounds with al-ates the gap. In particular we focus on experimentally
ternation in the nearest-neighbor bordsises as a result of measurable quantities like the total magnetization, NMR re-
interactions with phononse.g., TMTTF, strong single-ion laxation rates, and neutron scattering intensities. To do this
anisotropies, etc. The effects of spin-Peierls dimerization, inwe calculate various spin-spin dynamic correlation functions
terchain interactions, and competing nearest-neighbor intein the gapless region betweéti.,; and H.,. We calculate
actions have been reasonably well understood in the Spinvarious exponents in the IC regime close Hg, and use
case’ These are known to drive phase transitions in the puré¢hese to calculate the temperature dependence of the NMR
spin4 model. The basic issue addressed is whether themates ;). We also discuss in detail the consequences of our
exists a gap above the singlet ground state to the first excitesults for the dimerized, frustrated, and ladder systems. We
state which is a triplet. Apart from these, the ground statdind that though magnetization measurements will not help
could also exhibit crossovers from short-rangeeNarder to  differentiate between these systems, neutron scattering and
spiral order or spontaneously dimefimit these are not sig- NMR can. Since the models studied in this paper directly
nals of any kind of quantum phase transitions. describe the compounds mentioned above, the results ob-
More interesting phases can be obtained by placing thesained here are of immediate relevance to experiments.
gapped systems in a magnetic field. For some critical value The paper is organized as follows. Section Il contains a
of the fieldH.;, the system undergoes a continuous phaseery brief review of spins chains and the technique of
transition from a commensurate &léC) zero uniform mag- bosonization used in this paper. In Sec. Ill, we introduce our
netization phase to an incommensurate pt#Sewith non-  Hamiltonian for a generic gapped spjrehain and discuss
zero magnetization. As the magnetic field is increased, théhe effects of the applied magnetic field and the conse-
magnetization increases and saturates at some criigal quences of incommensurability induced by the magnetic
where the ground state is fully ferromagnetic but differs fromfield. We present in Sec. IV our results for the dynamic cor-
the XXX ferromagnet in that it has a finite gap to the first relations and the values of the exponents near the transition
excited state. The intermediate regidbetweenH,, and atH; for a generic gapped spihiehain. We also discuss the
H.,) is completely gapless and the pitch vedfd(the value generic phase diagram as a function of magnetic field and
of the momenta at which the static structure factor shows &emperature. The spin ladder is treated separately in Sec. V.
peak decreases continuously fro@=m atH.; to Q=0 at  In Sec. VI, we calculate the temperature dependence of the
H,. Evidence for such transitions were seen in the gpin- NMR rateT; ! and discuss the behavior of the same for the
ladder compound G{Cs H;2N,),Cl, (Ref. 7 and the quasi- cases of the dimerized, frustrated, and ladder models. Section
one-dimensional spig- systems TTF-CuBD?P. The C-IC VI contains the concluding remarks.
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IIl. INTRODUCTION TO SPIN- 5 SYSTEMS plings. More often than not, it is found that these interactions
are small and can be treated as perturbations of the above
apless system. Within the framework presented here, the
ffects of these perturbations can be gauged from whether
hey are relevant, marginal, or irrelevant in the renormaliza-
tion group sense. Depending on whether the perturbations
are relevant or irrelevant, a gap opens in the spectrum. In this
H=JD, §-S .4 (1) paper we are interested in a weak spin-Peierls dimerization
i and frustration arising from next-nearest-neighbor interac-
tions.
We first consider a small dimerizatiofi, which arises
from spin-lattice interactions. The corresponding perturba-
(iaon to the Hamiltonian given in Eq1) is

Here we present a brief introduction to the physics of
spin4 chains and summarize certain results relevant to th%
work presented here. The main Hamiltonian of interest is th(?
Heisenberg model:

where theéi is a localized spirs operator. We sed=1 in
the rest of the calculation. This model is Bethe ansatz solubl
and is known to be gapless. A lot is known about the stati
and dynamic properties of this system. Even though there ar
various methods used to study sgishains, in this paper we B a2
use the machinery of bosonization since this enables us to Hp=(=1)'05"S1. )
deduce various properties in a relatively easy manner. Sincgsing Egs.(2) the bosonized continuum version of Ed)
this is an oft used method we sketch the details briefly. Wegl

first use the Jordan-Wigner transformafiSrwhich essen-

tially maps the spin problem onto a problem of interacting

fermions on a lattice. For the spinsystem considered here, Hp= 5f dx cog2¢). 6)
the corresponding fermionic problem has Fermi momentum

ke= /2. We then perform a linearization around the freelt is equally interesting to study the effect of a competing
Fermi points given by=kg, to obtain an effective low- next-nearest-neighbor interactiad. Such an interaction
energy continuum fermionic theory and then bosonize usingends to frustrate the system. The addition to @&g.is

the standard dictionary of Abelian bosonizatiohWe just

present the final expressions obtained for the gpperators He=J,S-S 1o. (6)

in terms of the bose fiel and its duald . . S
For classical spins, the ground state retains itelNike or-

der for all J,<<0.25 and exhibits spiral order fal,>0.25.

SX)=(=1)*cod2¢) + 5—dxb, This is just a crossover as it is not possible Jgrto drive a
zero-temperature phase transition in the classical system.
S™(x)=expi O)[(— 1)*+cog24¢)]. (20  Whatis the behavior of the quantum sgisystem? To study

this we again take recourse to E@8) and write down the
Finally, Egs.(2) can be used to obtain the bosonized versiorbosonized version of Ed6) (Ref. 1)
of the Hamiltonian given in Eql), i.e.,

1

H= Ef dx

) ) o Apart from the cosine terms mentioned above, these spin
whereu is the spin-wave velocitlI is the momentum con- jnteractions also renormalize the velocityin Eq. (3). We
jugate to the fieldp, andK = 3 for the isotropic Hamiltonian now analyze the effects of the interactions given by E6js.
of Eq. (1). H is just the Hamiltonian for free bosons. Note 5nq (7). In the free boson theory of E¢3), the anomalous
thatK=1 for the case of th&X antiferromagnet which in  gimensions of the operators cog) are given byn?K/4.
turn is equivalent to a theory of free fermions via the JordanUSing this at the isotropic poir€ =1, we see that{ given
Wigner transformation. Other valuesl§fcorrespond to hav- by Eq. (5) has dimension: and hence is relevant for all
ing a J, coupling and hence to interacting fermions. Sinceyg) es of s. Similarly Hg described in Eq(7) is found to
there is no mass term for thg field, it is clear that there is have dimension 2 and is marginal. Numerically it has been
no gap to the first excited state from the singlet ground statepgwn thatHg is marginally relevant fod,>J,.=0.2411
Since a free boson theory given by ) is trivially solv-  gnq jrrelevant ford,<0.24112 Therefore, we can see that
able, it is fairly straightforward to calculate the dynamic cor-oth 5 and J, drive a quantum phase transition from a gap-

HF:(J2_J20)f dx cog4¢). (7)

uK(#II)2+ (E
K

((7x¢)2}v )

relation functions using Eqs2). less phase to a phase where a gap opens in the dispersion for
all values ofé andJ,>J,. .
lll. SPIN- 3 SYSTEMS WITH A GAP Instead of restricting ourselves to the dimerized and frus-
IN A MAGNETIC FIELD trated models in this paper, we study the following Hamil-

A. Zero magnetic field case tonian generic to gapped spinehains in a magnetic field:

In many compounds which mimic the behavior of spin- 1
chains, it has often been found that there are many othefgap= ﬂf dx
interactions between spins, apart from the isotropic interac-
tion summarized in the Hamiltonian of E(L). These could The two-parameter space spannedkbgndn correspond to
be anisotropies, frustration, impurities, and interchain couvarious spins systems with gaps in their spectra. For ex-

u
uK(7Il)2+ K (d4p)?+ v cogng)|. (8)
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ample,K=3,n=2 corresponds to the dimerized model and
K=3,n=4 is the frustrated antiferromagnet.

We see that though all these models have a gap, we can
differentiate between them by studying their excitation spec-
tra, the nature of which depends on the valueKadndn.

For instance, it is known from the study of excitations in the PN

sine-Gordon theoriédthat apart from the magnons and soli- ’ \

tons there exist certain excitations called breathers. These ar&(q) / v

nonlinear like the solitons and manifest themselves as dis- ! :

crete levels in excitation spectrum. These breathers have en- ! N

ergies higher than the singlet-triplet gap but lie below the ! \
continuum part of the spectrum generated by the solitons. / \

The number N of such breather modes is given by Y / \
N<(8—n?K)/n2K. For example, we see that the frustrated N / \
model has no breather modes in its excitation spectrum. On N / Wy
the other hand, the spin-Peierls system has two breather NS )
modes in its spectrum: thd=1 breather is just a renormal- A2 J
ized magnon and thl=2 breather is a bound state of two 0 m(1-2m) x
magnons. This extra bound state is found to affect the spin-

correlation function at finite temperaturésOptical experi- q

ments on the lines of Ref. 15, where breathers in quasi-1D

ferromagnets were detected, can be used to directly detect F|G. 1. Schematic picture of the field-dependent dispersion in

these breathers. the IC phase as seen I8fS* correlations(bold line) and S*S~
correlations(dashed ling Q=0 andQ= 7 are the usual commen-
B. Effects of a magnetic field surate modes anQ@=27m andQ=m(1—2m) are the incommen-

o surate modes.
We now study the effect of a magnetic field on these

gapped systems. To do so, we turn on a magnetic Held

N 1
thez direction. Note that the magnetic field breaks thgBU Hiot= Hgapt 2—f dxgugH dyd. (10
symmetry. The interaction with the spins on the lattice is ™

This Hamiltonian has the same form as that for ffermions
Hp= E gugHS . 9) with attractive interactions in a magnetic fi#lénd also the
i one used in the context of the C-IC transition in two-
i ) i dimensional systems where it is a transition from a phase
A simple understanding of the effect of the field can beyth g discrete symmetryC) to a phase with a continuous
obtained in the fermionic picture. First of all, the application symmetry(1C).192° Note that the gradient term in E¢LO)
of the magnetic field is equivalent to a chemical potential forcan pe eliminated by a simple shift of the field, i.e.,
the fermions. Wheiti =0 we have zero uniform magnetiza- _, 4+ mKgugHXx. Since the only effect ofl belowH, is

tion, i.e.,EiSZ:o. This COI‘reSpondS to a Completely filled to renormalize the gap, we can rep'ace this shift by
lower band for fermions with a gafy separating the lower 4, 4+ 7mx where m is the magnetization. The cosine
and the upper bands and the Fermi energy lying in theerm, however, is not invariant under this shift. From the
middle. As we increaskl, we are in effect shifting the Fermi  analogy with the chemical potential in fermionic systems, we
energy. A point is reached where the Fermi energy crossegfer that the magnetic field changes the Fermi momentum.
the gap and lies at the bottom of the upper band. This valugve can redefine new Fermi pointsk/., linearize around

of H corresponds tdd, i.e., A=gugHc;. WhenH is in-  hegse points, and obtain a new effective massless free boson
creased beyonHl ., the upper band is partially filled result- theory, albeit with a different value oK. It has gapless

ing in a nonzero magnetizatiom. The zero magnetization ,odes alg=0 andq=2k.=m(1—2m). A schematic plot
region with a gap below ., is the commensurai€) regime ¢ the field dependent dispersion for the spins in the IC phase

in that short-range antiferromagnetic order still persistsig given in Fig. 1. The behavior in the gapless IC region is
Above H_,, the ground state is magnetized, has no gap anﬁoverned by the Hamiltonian

canted. This is what we call the incommensur@® phase.

This is a quantum phase transition a8#l is the relevant _ 1

order parameter. This is what makes it different from the H= _f dx

incommensuratéspiral) phases seen in frustrated systems 2

(Sec. Il A).1617 ~
Now that we have a heuristic understanding of the effeciThe quantitiesy andK are dependent oH. Although it is

of the magnetic field we now proceed to calculate varioudlifficult to obtain the dependences for the entire range of

quantities of interest like the magnetization and exponents ill betweenH.; andH,,, one can compute the exact values

the vicinity of H., within the continuum approximation. Us- for the exponentgequivalently theK) at the critical point

ing Egs.(2) we can see that E9) corresponds to adding a H;; and see how they change as we move away from these

gradient ternrgugH d, ¢ to the Hamiltonian of Eq(8) points.

oK ()2 +

2| (9,)2 (12)
K| X '
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Since the behavior of the magnetization given by @) is

1 generic to all the gapped systems studied here, it follows that
a measurement of the magnetization will not be able to quali-
tatively differentiate between the various models.

The magnetization derived in E¢L2) applies to the lad-
der also. This is because, as we will later show in Sec. V, the
i effective Hamiltonian for the ladder has the same form as
given in Eq.(10). Another system which exhibits a similar
transition in the magnetic field is the spin-1 chain. Since the
spin ladder and the spin-1 chain belong to the same uni-
versality clas€! Eq. (12) describes the magnetization in the
spin-1 chain also. This agrees well with the result fioin
spin-1 chains obtained in Refs. 21 and 22. In Ref. 22 a map-
ping of a phenomenological Hamiltonian of interacting mag-
nons onto a system of bosons with repulsi#n interac-
tions was used to obtain the magnetization and the
correlations in the IC regime.

H ‘ Naively one might expect that these gapped systems in a
magnetic field have the same qualitative behavior for corre-

o C i lation functions and that quantitative features lidg and
malizatior) vs magnetic fieldH for A=0.4J at various tempera- 1

turesT. H and T have been normalized by the exchange coupIingth('erodym:m‘iC qua”““?s_"km are model dependent. We
J. The solid line corresponds =0, the dashed line &=0.05, shall see below that this is not true and that these models
and the dashed-dotted line To=0.25. We see that even at suffi- have dynamically different physical behaviors in the IC re-

ciently low temperatures the square root regime gets wiped out angime depending on the Va'ge of For a generic interaction
m increases in a nearly linear fashion. of the form cosfi¢) (wheren“K<8) andH close toH; on
the IC side?’

30

20

magnetization

0.0 bzl
0.0

FIG. 2. Plot of the magnetizatiom (apart from an overall nor-

Before we proceed with the calculation uf, we first

study how the magnetization rises abd¥g,. Using the re- K 4 (. umysinh(26) 13
sults on the C-IC transitidfl n? A : (13
K \/R HereA is the gap and is a positive constant which depends
_ N T AT A = —
m=7 \/; (H*=He) =7 n V(H=Hey)(H+Hey) on the parameters of the theory but is independeit.of is
defined by expf26)=n?K/4. At the transitionH.;, K goes
_ E\/_i to a universal value 47 independent of the value &. As
=79 (H—H¢)24A, (12 - ; L
n H increases, there is a nonzero magnetizatiorand the

wheren is the coefficient ofp in the argument of the cosine change InK is completely governeq by andK in that K
interaction andy is a constant of proportionality which de- could increase or decrease depending on the valle &or
pends on the renormalized velocities. The magnetization in€xample, for the frustratedlf) modelK =3 atH=H, and
creases from its zero value as a square root iear A increases asl increases and for the case of the dimerized
similar square root behavior is seen né#, if one ap- () model,K=1 atH=H., and decreases with increasing
proaches this critical point from the ferromagnetic side. Heré1. Here we have seen that though the magnetization has the
it is the decrease in magnetization from the full ferromag-same qualitative behavior for all the models, the valu& of
netic value that shows the square root behavior. In Fig. 2, wés model dependent because it is determined by the anoma-
have shown the behavior of the magnetization with temperalous dimensions of the perturbing operators. As a conse-
ture and the field in units ajug. This was done using the quence the exponents in these models will be radically dif-
analogy with the case of fermions with a gap and a chemicdlerent as will be shown in the following section.

potential. We assumed a dispersion for the fermions of the

fqrm w =+ (IK)Z+ (A)?. Here thg two square ro_ot re- IV. CORRELATION FUNCTIONS

gimes neaH;; andH, (0.4 and 1.1 in the figujeare joined IN THE CRITICAL REGION

by a region in which the magnetization increases in a nearly

linear fashion wittH. The interval ofH in which the square In this section, we first study how the structures of the

root behavior of the magnetization is seen and also the ranggrrelation functions are altered by the magnetization in the
where the nearly linear regime is seen, depend on the parartc phase. Later we will calculate the various commensurate
eters like the couplings and the gap. For certain ranges afnd incommensurate contributions to the finite temperature
these parameters where the gApis of the order of the dynamic susceptibility. From the magnetic interaction given
exchange couplings one obtains a scenario where the widthy Eq. (9) and the field shifip— ¢+ mmyx, it is clear that

of the square root regime is quite small so that even experisince forH<<H.; there is no net magnetization, the form of
ments done at reasonably low temperatures could entirelihe correlators is unaffected, and only the gap is renormal-
miss the detection of this region. This might be the reason aiged. However, in the IC phase, the presence of a nonzero
to why the square root behavior is not observed in Ref. 7magnetizatiorm results ing— ¢+ wmx. The dual fieldd is
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insensitive to this shift. Incorporating this field shift in the Q=0 mode while the staggered part is shifted frQw 7 to
expressions for the spin operators given in &), we find  Q=x—27m. This is in contrast to the correlation in the
that the generic form of the spin-spin correlation function inplane perpendicular to the fieldS*S™), where the stag-
the IC region is gered mode is unshifted and remainsQt 7 and the uni-
form magnetization@Q=0) mode is shifted t@Q =27m. We
(SLDS(0,0)=m"+ 1 (x.t) +cosm(1—2m) f(x.0), call Q=927rm and(DQz 37(1— 2m) the in?ommensurate
ST (x,1)S7(0,0)) = cog 2mmx) g (X,t) + cog mX)go(X,1), modes.
(S7eeS7(0.0; 5 81(x.) L) (1)4) With the results obtained above, we now proceed with our
calculation of experimentally relevant quantities like the dy-

wherefy, f5, g;, andg, are monotonic, decreasing, power- o e susceptibilities at finite temperatures. As a first step

Li‘{;’cg;rCt;frg?nofth:ggvaengxt'rrgesgggsﬂ\‘;eyé]eo dtlf’céef[rhoee;zﬁgnwp\jve compute the associated unequal time correlation func-
S Y- . xP ' . tions using Eqgs(2) and(14) and the result of Eq(13). The
ing: the correlation function parallel to the field, i.e.,

(SS%, has a uniform magnetization or equivalently acorrelatlon functions are found to be as follows:

1 1
(x—t)2+ (X+1)2

(gz(x,t)§Z(0)> =((S*(x,t) —m)(S*(0) —m)) =cog mx(1— 2m))(x2—t2)‘R+ const‘%z

(S*(x,1)S™(0))=(— 1)X(x2—1t2)~ ¥} const co&2 mmx) (x2—t2)~(AK+K=1)

1
5+ exp—2immx) ———3

_ 1
X exp(2|77mx)(x_—t) (X+t)2

. (15

with K being specified by Eq.13). It is not surprising that the exponents are different in the directions parallel and perpen-
dicular to the external field. This is because the magnetic field breaks tt® Stin-rotational invariance. For the case of the
dimerized model at the critical magnetic fidttt=H_;, we found in Sec. lll thaK=1. An interesting coincidence is that the
exponents and hence the correlation functions calculated here for the dimerized niddeHat are the same as that for the

XX antiferromagnet in a zero magnetic field. The correlation functions ok¥ienodel(which is in turn equivalent to a theory

of free fermiong can be obtained by substitutimg=0 andK =1 in Egs.(15). Note that this correspondence holds only at the
critical point.

Using the above results we can also evaluate the) dependent susceptibility at finite temperatures, both in the direction
of the applied magnetic field and in the direction perpendicular to it. A knowledge of this quantity helps us extract various
measurable quantities like neutron scattering intensities, absorption, and nuclear magnetic redtii&)cates. The sus-
ceptibilities are given by the following expression:

Xij(0,0,T)= —if dtdx expi(wt—qx) 8(1){[S(x,1),9(0,0])r. (16)

Herei,j refer to the components of the spin and the subsdriphplies that the correlator is evaluated at finite temperature.
Since rotations in the-y plane still leave the Hamiltonian invariant, there are no cross correlations{$&/)=0 for

i#]. For the susceptibility,,= x| in the z direction parallel to the direction of the applied fighd®

q2

Xﬁ?=°(q,w,'r):(vq)2—_w2, (17
= (K +u(q— ~ | (K —u(q— ~
XﬁgWu_m(q,w,ﬂ:NTZK_ZB(E_i(w Z(:T Q)),(l—K))B(E—i (@ Z(:T Q))’(l_K))_
For the perpendicular susceptibiligf =x. _, i.e., in thex-y plane,
_ +2 (wt+v(g- (@-v(g-
+v(q— +2 —v(q—
+B(§—i—(w ZfT Q)),(l—ﬂ))B ’82 Sl ZfT Q)),(—1—B)”, (18

where 28=2K + 1/2K -2,
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_ _ (0—v(q—Q))
X2 7(q,0,T) =NT2* 28| = S

2 47T

“_iw,(l_a))g(“ (1-a)], (19

Wherea=1/4E, B(x,y) is the B function, andv is the ef- band. This phase is characterized by an exponential decay of
fective magnetization-dependent spin velocyandN’ are ~ all correlation functions. Wheti>H¢; and T<(H—Hc,),
velocity- and hence field-dependent prefactors. These esthe chemical potential lies in the upper band and we get the
pressions for the susceptibilites are valid as long adncommensurate or Luttinger liquid | regime as was already
T<(H—H,). This is because above this temperature the_dlscussed in Sec. |1l Bcf. Fig. 3. The dynamical exponent
Hamiltonian in Eq.(11) obtained by linearizing the Fermi is =1 here. The susceptibilites in Eq4.7)—(19) are valid
surface around/. is no longer valid. in this Luttinger liquid regime.

Though we have explicitly calculated the susceptibiliies T the chemical potential lies at the bottom of the upper
only in the IC regime for low temperatures, it is nonethelesg@nd andr ~0 or equivalently when temperature is such that
interesting to study the behavior outside this IC phase. Folt c@n excite particles at the Fermi level to the bottom of the
example, one can study how the system crosses over to th#PPer band, one obtains the quantum critical reé_’i‘nmhe-
high-temperature classical limit as a function of the paramfined by [H—H¢|<T. In the quantum critical region the
eters of the theory. We present a phase diagram as a functi@fysics is governed by the fixed pdifiat H=H; where
of T andH in Fig. 3. This phase diagram is true only for K has a universal value#. A simple way of understanding
H<H,, because aH,, the system makes a transition to the behavior in this region is presented below. First, the cur-
another gapped phase. For temperatures smaller than the asature of the bottom of the band becomes very important in
changel one obtains four regimes as indicated in Fig. 3. All that the effective dispersion seen by the excitations is qua-
the lines indicate crossovers and are not phase transitiondratic. Here one can expandsy in A to obtain
This phase diagram can be easily understood within the feroR°=A +k2/2A in the quantum critical region. The dynami-
mionic picture. Note that for the fermionized version of spincal exponenz=2 in this region. A direct consequence of the
chains with a gap the complete dispersion for the excitationgiuadratic dispersion is that/T andH/T are no longer in-
has the formw, = + JIZkZ+ A2, These two branches consti- dependent scaling variables and only occur in the combina-
tute the lower and upper bands with a gap eparating the tion (H—H;)/T and the magnetizatiom which is just the
two bands. With the full dispersion, the magnetization isnumber of fermions in the upper band has the scaling form
given by a function which depends on two parametef§ ~ m(T)=T*?f((H—H,)/T). Analogous scaling functions ex-
andH/T. The different regimes to be discussed below willist for the spin-spin correlations also. The scaling functions
be characterized by the varied behavior of this function. Fofor the correlators are functions ok?T, «/T, and
all T<H.,—H one gets the gapped phase where the chemitH—H;)/T. Note thatA/T andH/T are no longer indepen-
cal potential, i.e.H lies in the gap and the temperature is dent scaling variables and only occur in the combination
still small enough and does not excite particles to the uppefH —H¢1)/T. The spins are complicated functions of the fer-
mions and this results in the scaling functions being difficult
to obtain for reasons described in Ref. 24. The quantum criti-
cal behavior holds only as long as the quadratic form of the
dispersion assumed is valid, or in other words, only as long
as temperature is such that the bulk of the excitations is
confined to the bottom of the upper band. Similar phases
L Luttinger Liquid were obtained in Ref. 24 in the context of spin-1 chains in a
magnetic field, using a phenomenological theory of magnons
with repulsive interactions. Here starting from a microscopic
______________________________ description, we find that these phases are generic to all

gapped chains in a field and we have also obtained the ex-
ponents in the Luttinger liquid regime |I.
Now if temperature is increased further, there is a cross-
over to a fourth region. This regime was not obtained in Ref.
- 24 because the form2® was assumed for all values &f
.« - Above a certain temperature excitations to higkestates
.. .- occur and one starts probing the deviation from a quadratic
Gapped "~ s dispersion and thk? approximation is no longer valid. As a
-7 Luuinger Liquid result the quantum critical scaling for the magnetization, etc.,
el will no longer be valid above these temperatures. The system
el then crosses over to a new region where temperature is large
enough such that in addition to the excitations which now

FIG. 3. Phase diagram of gapped séim;hains in a magnetic involve states way above the bottom of the upper band, there
field H as a function of temperatufe. There are essentially five are transitions between the lower and the upper bands. This
regions and all the lines indicate crossovers between these regiorigplies that the gap becomes irrelevant and the effective dis-

Classical

Quantum Critical
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persion becomes linear k This crossover should occur for T.2’ This can also be understood from the fact that the expo-
temperatured of the order of twice the gap but much nentgin Eq. (18) is zero atK =1/2. There is no damping of
lesser than the exchange couplings such that the interactidhis mode within the continuum approximation where the
becomes irrelevant and the resulting behavior is that of &rmionic dispersion was assumed to be linear. Taking into
Luttinger liquid. We denote this regime as the Luttinger lig- @ccount a small curvature of the fermion dispersion spectrum
uid Il. Classical behavior sets in for temperatures greatefloes not alter this result because the height of the peak which
than the exchange couplings. The widths of all these regioni§ given by the lifetime of the quasiparticles in the fermionic
are dictated by the values of the gaps and the exchange coBjicture becomes infinite aq;—_>0 even at finite temperatures.
pling. For instance, the width of the quantum critical regime”\nother way of understanding this absence of damping of
is fixed by the gap alone, and for magnetic fields away fromt_he l_m|f(_)rm mode IS bY hoting the fact that the total magne-
H., this width is quite small and not as large as purported t&'zhﬁ_‘“ﬁ'? in all t_he (Imec'ﬂonshcom_mutesdwnh _the I-f|a[?|lton|f:1jn
be in Ref. 24. As a consequence, the scaling arguments app”){ tlrfe ;gt;z:ans!g:r? f;s;[e;tt ere s no damping of this mode
only in the vicinity qf. the f|xgd po!nt atlcy vvhere the width We now discuss the damping of the various modes in the
qf the gquantum crltl_cal regime 1S appr_emable and n_ot forIC phase. The modes are the uniform magnetization mode
f!eIQS far away frpm !t. In contrast, thg Wldth of the Luttinger Q=0, the staggered mod@=, and the incommensurate
Ilqt_ud I_I regime is given by the relative sizes dfgnd A. modes atQ=27m and Q=m(1—2m). From Egs.(17)—
This width can be increased or decreased by tun|.ng the rgtlplg) we see that the dominant contribution to e  and
A/J. Applying these arguments to the case of spin-1 chaing)= 2 rm modes is from the perpendicular susceptibility. As

where the gap is of the order of the exchange couplimine  in the Heisenberg case discussed above, the staggered mode
finds that for smalll fields the classical limit sets in soon andqt Q=7 has a damping factor proportional T6*~2. Simi-

there are no sharp crossovers between the quantum criticghyly the presence of a nonintegral exponghin x2=2™"

Luttinger liquid 1l, and classical regimes. _ _ results in theQ=27m mode being damped at finite tem-
_In the following paragraphs we discuss the physical sigyeratyres by a factor proportional 1%, Similarly the be-
nificance of the susceptibilites calculated above. The susCepavior of the Q=m(1—-2m) mode is dictated by

tibilities are directly relevant to inelastic neutron scattering o_ . (;_om) . . K—2
measurements where apart from certain magnetic form facX| ~ InEq. (E7) and has a damping facts* %, We
tors, the intensity is proportional to the,,) Fourier trans- oW consider th&® =0 mode. The dominant contribution to

form of the full spin-spin correlato¢S(x,t) - S(0,0)). From  the damping of this mode arises fr_gy_f‘?_ °. From Eqs(17),
Egs.(17), we can see that the scattering intensity in the ICWe find that the parallel susceptibility does not damp the
phase due to the? correlator, obtained as a functioneffor ~ Q=0 modes becausg?~° is still independent of tempera-
some fixedy, should in addition to the peak generated by theture. Because the system is not isotropic we need to check
massless excitations ne@=0 contain an extra peak corre- whether there is a subdominant contribution from the per-
sponding to the massless modes at the incommensura@ndicular susceptibility which damps this mode. To do this
Q= m(1-2m). Similarly, for the correlations perpendicular We first study the damping for other values@fbetween 0
to the field, peaks are seen at the staggered rpder and and 2rm. Note 'Fhat this damping can be studied at the reso-
at Q=2mm. These peaks are divergent®t0 because of Nance frequencies=v(Q—q) or away from resonance. To
the power-law correlations present at these value®.oAt obtain the leading temperature depeqdence of the Qampmg of
finite temperatures the peak heights are finite and are detef?€Se modes at resonance, we substiut@ mm= 4q in Eq.
mined by theT dependence of Eq$17)—(19). Such incom- (18). The resonance frequen@yls f|xed atv 8q. The low- .
mensurate features have been observed in inelastic neutré@mperature behavior of the imaginary part of the suscepti-
scattering data from copper benzoate which &s=a system  bility is given by
in a magnetic field> Another probe is electron spin reso-
nance(ESR which can be used to directly probe the nature §w5_1T5+1+ Ewﬁﬂ.l_ﬁ_l
of the continuum of excitations &= 2m.?® 2 '
One interesting question is whether the propagating
modes corresponding to the uniform and staggered magnetlhis expression implies that there is a thermal broadening
zation are damped at finite temperature, or in other words, ief the Q=0 or uniform magnetization mode, i.e.,
there any thermal broadening? This can be answered b§d=—2m7m. Nevertheless, using the fact that the total mag-
studying the temperature dependence of the imaginary partsetization in thez direction still commutes with the Hamil-
of the corresponding susceptibilites. First consider the caswnian even in the presence of the magnetic field and that the
of the isotropic spins chain in zero magnetic field. Here itis time evolution 0f2i3|+ involves on|yzisi+ we conclude that
known that the uniform magnetization component of 8le there is no thermal broadening of the uniform mode
correlator diverges as 47. The corresponding uniform and (Q=0) mode. Ifw is not at the resonance frequency then for
staggered susceptibilities at finite temperatures are givefpw T, there is no obvious thermal broadening and
by***3Egs.(17) with m=0 andK =1/2. Isotropy results in  Imy2=2™™ is proportional to[v 5q(v 5q—2wm)]4~L. This
the same expressions for the perpendicular susceptibility. IBxpression is not valid foew —v 8q<T and fails in the vicin-
this contextv is the spinon velocity. The dependence ofity of §q=27m. From these calculations we see that though
Xﬁ?:” on temperature tells us that te= 7= mode is damped bosonization describes the physics correctly r@arm and
at finite T. The temperature independence of pkﬁ?fo im-  Q=2mm for the perpendicular correlations it does not de-
plies that there is no damping of tH@=0 mode at finite scribe modes far away from these two points well. This is

(20
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not surprising in view of the fact that by linearizinglgt we  ladder. However, one should note that this is valid only in
take into account a lot of spurious states at the bottom of théhe region close tdi.; and provided that the gaps and the

band. To summarize, we find that tiig=0 mode is un- magnetic field are small compared to the intrachain exchange
damped whereas the gapless mode®at27m, (1—2m) coupling. Using the above results we can compute the spin-

and s are all damped. correlation functions. There are two kinds of correlations:
correlations within a chain and between chains. Here again
V. SPIN-} LADDER the magnetic field changes the structure of the correlation

functions in a manner analogous to that described in Egs.

Another system which exhibits a behavior akin to the sys{14). We summarize the results for the various correlators
tems studied above is the spin ladder. Here we consider lselow. Since we are concerned only with the asymptotic be-
ladder with two identical and isotropic chains. Let the spinshaviors we present only the power-law contributions to these

in chain 1 be labelledS, and those in chain 2S,. We correlators:
bosonize this system in the same manner as above. We refer

the reader to Refs. 21, 28, and 29 for details. We adopt the 1 1 1
notations of these references and introduce the symmetr'(cg;(x,t)stz(o,o»:mu — + . (24)
(triplet) and antisymmetric(singled combinations of the 8w (x—1)?  (x+1)?
fields: ¢ o= (1= $,)/\/2 and their respective dualg and
0, . The Hamiltonian for the ladder is Herer,t denote the chain labels. Unlike in the single chain
case, in the laddehe alternating part at @= = which is now
H=Hat+Hs, (2)  shifted to Q= (1—2m) by the magnetic field decays expo-
where nentially. Similarly
1 u - -
Ha=5, f dx Ku(ll)*+ R)<ﬂx¢a>2+g1cos<@¢a> (S (xS (0,0)=(S; (x1)%; (0.0)
=(— 1)X(X2_v2t2)*l/8kl
+2g,c04 @9&)},
(SH(x,D)S; (0,0)=i(-1)*(xP—v2?) VK (25
1 2 u 2
Hszz_f dx Ku(mllg)=+ K (dxeps)“+gscog \/§¢s) ) ) ) ) ]
™ Here agairthe uniform component is shifted to<€2 7m and

(22 decays exponentiallyThe fact that¢, is massive results in
whereK=3, g;=g,=03=J, \/27 andJ, is the interchain an exponential decay of all the incommensurate contribu-
coupling and\ some constant. All the cosine operators aretions to the correlations. This exponential decay of all the
relevant operators of dimension one. Equati(®® have the incommensurate correlations in the ladder is in contrast to
same form as the Hamiltonian for an isotropic spin-1 systenthe single chain systems studied in the previous sections.
written in terms of two spin-1/2 operatofsWe note that Also note that except for certain exponentially decaying cor-
the spin-1 system has fixed values ot g,, andg; and has ~ rections, the interchain apd mtrac_haln correlators have essen-
no analog of a tunable parameter lige. Nevertheless the tially the same asymptotic behaviors. As already mentioned,
results to be derived below apply to the spin-1 system in 4h€ Spin ladder in the magnetic field has the same exponents
magnetic field. From Eqs21) and (22) we can infer the @S that of the spin-1 chain in a magnetic fiéld” The domi-
existence of gaps for all nonzero valueslofin the spectra Nant contribution to the perpendicular susceptibility for the
of both the fieldsg, and ¢s. The ground state of the ladder 'adder has the same form as that given in Etp) with
is a spin singlet and there exists a gap to the triplet excitedt=1/8K and that to the parallel susceptibility bf?~° of
state characterized bys. Therefore, analogous to the Eq.(17). At the critical pointH =H,,, the exponentr= ; for
dimerized chains, we expect the vanishing of the gap and théhe ladder as well as the dimerized model. However, there is
onset of a gapless incommensurate phase for some criticane big difference between the two models. In the dimerized
value of the magnetic field. Since the magnetic field acts ommodel, the incommensurate parts of {{8S”) and(S*S™)
both chains equally, we can easily see from the bosonizatioalso show power-law behaviors, whereas in the ladder they

formulas thatH affects only theg field decay exponentially. This has a serious consequence for neu-
tron scattering intensities. This is because for the dimerized
Hs— Hs+ \/EHaX¢S. (23 system, atT=0 the power-law divergences of the incom-

. o mensurate parts of the dynamic correlations will result in a
Note that th's. Hamiltonian has the same form as @) .__divergent peak at the incommensurate wave ve@Qtddn the
Therefore, using the results obtained in Sec. lll, we can iMGther hand. the exponential decay of the incommensurate
mediately see that the field becomes massless while in the ¢, o ations results in much smaller peaks at incommensu-
antisymmetric sector thé, field acquires a nonzero expec- 46 5 whose finite height and width are determined by the
tation value and the, still has a gap. As a result the corre- gaps in thep, field. Though away from the critical point the
lations of the¢, field decay exponentially. The value Bf  exponents for the two models are no longer identical, the
for the ¢ field atH=H, is K=3. From Eq.(13), we find  discussion presented above for the neutron scattering still
thatK = 3 aboveH,; also. This is because sintg)2-0 for the  holds.
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VI. NMR RELAXATION RATES TABLE |. Temperature dependence Bf * atH=H,,.
With the help of _the susceptjbilites derived aboye, we canodel K atHy, TIul T,
easily compute various quantities that can be studied by neu-
tron scattering and nuclear magnetic resonafi®R).  Spin-Peierls §) 1 T T2
Here, we focus on NMR and in particular the spin-lattice Frustration (,) i T2 T
relaxation timeT,. The dominant contribution td, comes Ladder i T T2
from the coupling of the nuclei to the lattice spins. There-
fore, it is a good probe to study the nature of the lattice-spin
system. To obtain the temperature dependenc, ofe use The temperature dependences of these rates for the dimer-
the following formula in terms of the local susceptibility to ized and frustrated models at the critical pdih, are given
calculate the sam&- below.
Dimerized (5):
= im 2 [ IR @ @eT). @9 !
Ti o 20 ) 27 TN T (g By THA, T 12 (29

Here theF;; are hyperfine form factors ang; has been

defined in Eq(16). In general these form factors are diago-  Frustrated modelsJg):

nal ini,j and do not vary 1much witlg. For a system of 1

noninteracting spins,T;T) ~~ is a constant. For interacting _:AfH-l——l/er(AuJr By)T. (30)
spin systems, the dependence on temperature could be more Ty

complicated because the underlying magnetic order plays a ) o

very important role in that it changes the effective magnetic _'1” Table I, we present the leading Ioicontributions to
field seen by the nuclei. Examples are the isotropic Heisenl1 ~ at the transition, for the three models considered in this

berg model wherd@, ! goes to a nonzero value &s-0 and  Paper. There are other temperature-dependent contributions
the spin-Peierls system Whe-rg—l goes to zero aT=0 be- to the NMR rate, but these go to zerolat 0. As mentioned

cause of the gap to spin excitations. earlier there are two possible scenarios. One is that the

We now use the results obtained in the previous section t§Ucleus probed does not correspond to qu spins and the
calculate the NMR rates. We first note that the magnetizatior‘f‘felffcuons are dipolar. Here Eit=H,, theT, ~ diverges as
m only shifts the resonance frequency and does not changk ~ for the three models. However, the divergent behavior
the form of the expressions fd'rl_l. Depending on the kind at low temperatyr_g in the frustrated model arises from_ the
of NMR done, one can probe specific correlations. This i°@rallel susceptibility whereas in the ladder and dimerized
especially useful for anisotropic spin systems and also isoSYS€MS it is the perpendicular susceptibility which leads to
tropic systems in a magnetic field where the perpendiculap_“e divergent behavior. This fef_:lture can be use_d to differen-
and parallel susceptibilites are different. For instance, if thdiat€ between the models as will be discussed in the follow-
NMR was done on the nucleus of the lattice spin, then thd"d Paragraph. Ast is increased, we can see from Eg3)
relaxation occurs through a contact interaction and de- thatK increases for the frustrated model and the divergence
pends ony, alone. On the other hand, if it is done on other becomes weaker. Coincidentaly decreases for the dimer-
neighboring nuclei in the compound, the relaxation isized system and the divergenceTof* becomes weaker too.
through dipolar interactions an@l; * depends ony, and  For the ladderK does not change witH and the divergence
x| - An amalgam of the two methods will be useful in iso- persists and one has to go to higher fields to see a deviation
lating the two susceptibilites experimentally. from the T~ Y2 behavior. If for some value dfl, K decreases

Substituting the expressions fgr andx; derived in Egs. to 3 in the dimerized model and increasesstin the frus-
(17), (18), and(19) in Eq. (26), we find that a straightforward trated system, we see th@if * does not diverge and;*
power Counting Y|e|d5 the following Ieading Iow-temperaturegoes to a C(_)nstarn\”—|—Al as T—0. This behavior occurs
behavior for the single chain models: because at some point the magnetic field becomes large
1 Tsingle chain ~ ~ enough such that the interaction which generates the gap
il =A, TAK) =1L A K1, BT (27) become; ur]lmportant_and sh.ould_recover tht_e exponents for
Ty - | | the chain without the interaction, i.e., the Heisenberg chain
whereT; ! is a constant. For fields greater than this value of

whereK is given by Eq(13. A, , Ay, andB, are constants H, the exponents vary like those of a Heisenberg chain in a
independent of temperature. The suffixesnd|| refer to the ’ =X y 9
.magnetic field. The exponent approaches that of Xh¢

contributions from the perpendicular and parallel suscepti-

- ) - ...._chain or free fermions for sufficiently large fields.
bilities. It is easy to see that the staggered susceptlblhueg ) "
dominate inTl_l. For the ladder modell'l_l is given by Another way of differentiating between the three models

is if the NMR involves the nuclei of the relevant spins. Here,
1 ]ladder _ only the perpendicular local susceptibilities matter and a
— =A T 1B T, (28)  very interesting picture unfolds. M =H,, T; * diverges as

T1 T2 for the dimerized and ladder models whereas it ap-
The contribution coming from thé, term has not been ex- proaches zero linearly im for the frustrated model. Naively,
plicitly written because it goes to zero exponentially asfor gapless systems, we would have exped’@a to diverge
T—0. or go to a nonzero constant &is-0 as it does in the case of
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the Heisenberg modél.This T dependence in the frustrated field. For a generic gapped spjrin a magnetic field, it was
model is indeed strange because it is reminiscent of thehown that the magnetization is zero belbly, and rises as
Tl_l rates for spin chains with gaps whe‘F@1 also goes to a square root above it. We found that the gapless behavior in
zero asT—0 but exponentially. A divergence will be seen in the IC regime is determined by the dimension of the cosine
the frustrated system H is such thatK> 3. For increasing operator and hence different systems have drastically differ-
H the T~/2 divergence survives in the ladder but for dimer- ent properties. The results presented here were obtained from
ized systemd; ' becomes less and less divergentfTasO  a microscopic theory and not from a phenomenological
and later saturates to a constdnt at T=0 for some value theory as was done in the case of the spin-1 cffaile then

of H. This is very similar to what was seen in the case ofdiscussed the implications of the finite magnetization for the
dipolar interactions discussed above. However, note that theorrelation functions. We found that the effect of the finite
saturation values are different in both cases. We also notgagnetization was to shift th®= 7 mode in theS?*S? cor-

that the above discussion rests on the fact that these fields ai@ators toQ=2mm and theQ=0 mode in theS™S™ corr-
smaller tharH ., which need not necessarily be the case. Asglators toQ=m(1—2m). We also calculated the unequal
mentioned above, for magnetic fields close-g where the  time correlation functions and have provided explicit formu-
ground state is nearly ferromagnetic, we expect the system {gs for the various susceptibilities as a functionTofw, g,
approach the free fermion limit, i.eK—1. As a result and the magnetizatiom. These were used to study the ther-
T, ' is expected to diverge & 2 at H=H_, for all the  mal broadening of the various modes in a single chain. We
models irrespective of their values of find that the modes atQ=m Q=2#m, and

Even though both the ladder and the dimerized systemg)— (1 —2m) are broadened at finite temperatures whereas
have the same divergence at the critical point, one can difg,g Q=0 mode is not. Using the susceptibilities we also

ferentiate between these wo systems by studying the nondiyswed that neutron scattering intensities had extra peaks
vergent contributions td, ~. For example, for the frustrated

) ) o k arising from the incommensurability in single chains but not
model, there exists a correction 0, ~ proportional 10y the |adder systems. We have also calculated the NMR

T2K+(1/2K)=1 This exponent changes with increasing mag-relaxation rates as functions of temperature and have dis-
netic field and corrections of a similar nature do not exist incussed the results for the dimerized, frustrated, and ladder
the ladder. These corrections should manifest themselves g{stems in detail. Using the fermion analogy, we find that the
not too low temperatures. However, inelastic neutron scattefphase diagram for a generic gapped chain as a function of
ing should be able to differentiate between them as previfie|q and temperature has five regions as shown in Fig. 3. In
ously discussed in Sec. V. At temperatures large compared_ tntrast to Ref. 24 where the system stays in the quantum
the exchange coupllngs_alnd the gap, from the analogy Witlyiica| regime for a wide range of temperatures before it

fermions we expect that, ~= const for all the models stud- ¢osses over to the classical high-temperature limit, we find
ied in this paper. A similar behavior should be seen in thepa¢ the system crosses over from the quantum critical re-
gapped phase, i.e<H, also. To summarize, we find that gine 15 5 second Luttinger liquid regime before it becomes

the kind of NMR experiments done can result in drastically|ssjcal. These intermediate temperature behaviors follow
different T, - for the three models. from the form of the dispersion spectrum of fermions with a

The re;l]Jlts deri\(eldDheretcan blei' checked ir_1thCu§53?j gap due to interactions. Finally, even though we have given
various other quasi-1L systems. However, With Most COMy, o gy act values of the exponents at the critical pélpt

pounds bel_ng 3D the results c_)btalned in this paper are app.ll'ilone, a knowledge of the magnetizatimrfrom experiments
cable only in the temperature interval where the compound iS

effectively 1D and that there is no 3D magnetic ordering.can be used in conjunction with E(L3) to obtain the expo-

Such a magnetic ordering in 3D could also result in diver-nents and hence, _clo§e to the transition ac,. We _fmd _
gent NMR rates. For instance, the onset of 3feNarder at that though magnetization measurements cannot distinguish
a certain temperaturer, res:ults in Tl—l diverging as between the various models, techniques like NMR or neutron

(T—Ty) Y2 for T>Ty .3 This behavior is valid for a tem- sgattering which probe the dynamical spin-spin correlations
perature range of sizBy . Since this divergence is the same Will b€ able to do so. Other frequently used methods to study
as seen in the ladder, dimerized, and frustrated systems &pin Systems are EPRelectron paramagnetic resonance
H=H,y, it is important to establish whether such a diver- (Refs. 33 and 3and Raman scattering. These methods
gence arises from the quasi-one-dimensional or the 3D ndhight also be able to directly differentiate between the
ture of the compound. This can be checked by working in thélimerized and ladder systems. We conclude by observing
appropriate temperature interval where there is no 3D ordetthat it should be possible to verify the results obtained here
ing or by increasing the magnetic field. If the compound is inin NMR measurements being done on CuGe@nd
the 1D regime, its exponents vary with the field as predictedCuy(Cs Hyp No),Cly3*
above and if it has 3D order the exponents do not vary with
the field.

ACKNOWLEDGMENTS

VIl CONCLUSIONS We would like to thank J.P. Boucher, G. Chaboussant,

We have studied the behaviors of various spimodels and L. Levy for interesting discussions and for critical read-
in the gapless IC phase induced by an external magnetings of the manuscript.



5826

11. Affleck, in Fields, Strings and Critical Phenomenadited by
E. Brezin and J. Zinn-JustifNorth-Holland, Amsterdam, 1990
p. 563 and references therein.

2).P. Renarat al, Europhys. Lett3, 945(1987).

3L.J. de Jongh and A.R. Miedma, Adv. Phgs8, 1 (1974.

4J.C. Bonner and M.E. Fisher, Phys. Rev2BR 5274(1980.

SF.D.M. Haldane, Phys. LetB3A, 464 (1983; I. Affleck, Nucl.
Phys. B265, 409(1986.

5C.K. Majumdar and D.K. Ghosh, J. Math. Phy§, 1388(1969.

’G. Chaboussarst al. (unpublisheil

8y, Kiryukhin, B. Keimer, and D.E. Moncton, Phys. Rev. Lét,
1669(1995; Y. Fagot-Revuratt al, ibid. 77, 1861(1996.

9M.Haseet al, Phys. Rev. Lett70, 3651(1993.

103.P. Pougeet al, Phys. Rev. Lett72, 4037 (1994, and refer-
ences therein.

117 M. Brill et al, Phys. Rev. Lett73, 1545(1994).

12K, Okamoto and K. Nomura, Phys. Lett. 269, 433(1992.

BR.F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rex0D
4130(1974.

14K. Maki and H. Takayama, Phys. Rev. 2, 5302(1980.

15D, Reich, L.P. Levy, and T. Giamarchi, Phys. Rev. L6, 2207
(1991).

16R. Chitraet al, Phys. Rev. B52, 6581(1995.

R. CHITRA AND T. GIAMARCHI 55

17T, Tonegawa and I. Harada, J. Phys. Soc. H@n2153(1987.

18G. Japaridze and A. Nersesyan, Pis’'ma Eksp. Teor. Fz334
(1978; J. Low Temp. Phys37, 95 (1979.

19y L. Pokrovsky and A.L. Talapov, Phys. Rev. Let2, 65(1979.

204 J. Schulz, Phys. Rev. B2, 5274(1980.

21H.J. Schulz, Phys. Rev. B4, 6372(1986.

22|, Affleck, Phys. Rev. B43, 3215(1991).

2M.C. Cross and D.S. Fisher, Phys. Rev18 402 (1979.

243, sachdev, T. Senthil, and R. Shankar, Phys. Re®0B258
(1994.

25C. Broholm (private communication D.C. Dender, D.H. Reich,
C. Broholm, and G. Aeppliunpublisheg

28\, Palmeet al, Phys. Rev. Lett76, 4817(1996.

273, Sachdev, Phys. Rev. B, 13006(1994.

28D.G. Shelton, A.A. Nersesyan, and A.M. Tsvelik, Phys. Rev. B
53, 8521(1996.

295 p. Strong and A.J. Millis, Phys. Rev. Lef9, 2419(1992.

30T Moriya, J. Phys. Soc. Jpi8, 516(1963.

31T, Moriya and K. Ueda, Solid State Commutb, 169 (1964).

32p M. Richards and M.B. Salamon, Phys. Rev9,B32 (1974).

33| S. Jacob=t al, Phys. Rev. Bl4, 3036(1976.

34G. Chaboussangt al. (unpublishedl



