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Polarization dependence of two-photon absorption and electronic Raman scattering intensities
in crystals
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A formalism using the properties of the irreducible representation of the scattering tensors has been devel-
oped to predict up to the third order the polarization-dependent behavior of the electronic Raman-scattering
intensities and the two-photon absorption intensities of transitions between Stark levels. The polarization
behavior of ions in crystals are tabulated for the 32 crystallographic point groups. The theory provides a
stringent test for the Judd-Ofelt-Axe theory for two-photon intensities between Stark levels.
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I. INTRODUCTION

Two-photon spectroscopy has emerged as an impor
tool in the study of electronic states of ions in crystals. Th
are two types of two-photon spectroscopy. The first type
two-photon absorption~TPA!, in which both photons are si
multaneously absorbed by the ion. The second type is e
tronic Raman scattering~ERS!, in which a photon is inelas
tically scattered from an ion such that the ion is excited t
different electronic state. Both types of spectroscopy are c
sidered complementary to linear spectroscopy. TPA has
vided access to higher-energy absorption bands than sin
photon absorption, and ERS has been used to probe
energy levels near the ground state. Since the selection
for two-photon processes are different from those for sing
photon processes, transitions that are forbidden in linear
sorption may be explored by TPA. The freedom to indep
dently vary each of the two polarizations in two-phot
processes has provided a powerful tool to study the sym
tries of the initial and final states in a transition. Among t
important applications of two-photon spectroscopy one m
include the study of phonons, polaritons, excitons, and in
and interconfigurational electronic transitions in a wide va
ety of solids.1–4

The theory of two-photon processes owes much of
origin to the theory of one-photon processes. The quan
tive theory of single-photon transition intensities within
f N configuration was developed by Judd2 and Ofelt3 in 1962.
By introducing the so-called ‘‘Judd-Ofelt closure approxim
tion’’ Judd and Ofelt were able to derive an expression
which the oscillator strengths of the one-photon transitio
of rare-earth~RE! ions in host lattice crystals are described
terms of a radial factor, which can be estimated for a p
ticular rare earth, and only three parameters. The value
these so-called Judd-Ofelt parameters are usually determ
by fitting experimental oscillator strengths. Typically,
single set of Judd-Ofelt parameters are used to fit all
served oscillator strengths of a particular RE ion in a giv
host crystal or solution. The phenomenological treatment
successfully accounted for the intensities of a majority
transitions for each RE ion. The most extensive work h
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been done by Carnallet al.5,6 on the aqueous solutions o
trivalent RE’s. References on analyses of RE oscilla
strengths can be found in review papers such as tha
Peacock.7

The quantitative study of two-photon processes be
when Axe,4 using the Judd-Ofelt closure approximation, d
rived an expression for the second-order two-photon l
strength, in a manner analogous to Judd and Ofelt’s form
for single-photon line strength. The expression for TPA li
strength, however, generally contains only one parame
instead of three, as in the one-photon expression. As a re
the ratio of the line strengths of two-photon transitions c
be computed without the need for phenomenological par
eters. Experimental measurements of line strength ratios
the polarization dependence of line strengths therefore
vide rigorous tests of the second-order theory of TPA. Ax
theory, however, is traditionally applied to intraconfigur
tional transitions from one multiplet to another, with the p
larization of the excitation photons being either parallel
perpendicular to thez axis of the lanthanide complex, wher
the z axis is the highest symmetry.4,8–13

The overwhelming success of the Judd-Ofelt theory wh
applied to RE materials has been the motivation for the
tensive study of two-photon intensities using Judd-Ofe
Axe’s theory. Strong disagreement, however, was fou
when Axe’s theory was applied to Gd31 ions in a number of
RE hosts. In particular, the experimental results
Gd31:LaF, reported by Dagenais, Downer, Neumann, a
Bloembergen9 showed that two-photon transitions from th
ground level8S7/2 of Gd

31 to the first three excited levels
6P7/2,

6P5/2, and
6P3/2, were anomalously strong with respe

to the predictions of a second-order theory, and that the
gular momentum selection ruleDJ<2 broke down in severa
transitions (8S7/2→6I 13/2,15/2,17/2,

6D1/2). In order to account
for the anomalous intensity observed for8S7/2→6P7/2 in
Gd31, Judd and Pooler expanded Axe’s second-order the
of TPA to include third-order terms involving the spin-orb
interaction.10 Downer and co-workers11,12 later showed that
the inclusion of third-order terms involving the crystal-fie
interaction among intermediate states could explain
anomalous intensity of the8S7/2→6I J lines in Gd

31. A fuller
analysis of the experimental results for the integrated
5786 © 1997 The American Physical Society
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55 5787POLARIZATION DEPENDENCE OF TWO-PHOTON . . .
crystal component intensities for the8S→6I transitions in the
Gd31 ion using expressions which include up to the four
order contributions involving spin-orbit and/or crystal-fie
interactions was given by Downeret al.12,13 Ceulemans and
Vandenberghe later presented a more general expres
which can be applied to any RE ion.14

Other third-order mechanisms in two-photon proces
were also investigated by several workers. Reid a
Richardson,15 for example, estimated the ligand-polarizatio
contribution in two-photon processes. Sztucki and Strek,16–19

expanding Reid and Richardson’s idea, proposed the th
order contributions to the two-photon processes from
static and dynamic coupling mechanisms developed wi
the independent systems model. Smentek-Mielcza
et al.20–24 examined the third-order electron-correlation a
crystal-field contributions to the two-photon amplitud
within the framework of double perturbation theory.25,26

All of the mechanisms mentioned above have been
plied to intraconfigurational two-photon transitions, whe
the initial and final states both belong to thef N configura-
tions and the two-photon processes are therefore allowed
cause of the parity rule. TPA transitions from the 4f N to the
4 f N215d have also been observed for Ce31 ions in various
crystals.27–31 These transitions are parity forbidden in th
second order within the electric-dipole approximati
scheme and thus can be treated as a third-order proces
theoretical description of the cross section of the two-pho
f -d transitions based on the perturbation coming from
rank-one component of the crystal field was first proposed
Gayenet al.29 Their calculated polarization anisotropy fo
the zero-phonon transition in Ce31:CaF2, however, were far
from the observed values. Leavitt32 later derived the static
and dynamic contributions to the TPA cross section and
plied the results to the lowest 4f→5d two-photon transition
in Ce31:CaF2. Leavitt’s calculated values were closer to t
experiment, compared with Gayenet al.’s value, but were
still not satisfactory. Expanding the TPA cross-secti
theory to include arbitrary polarizations in spherical po
coordinates, Makhaneket al.,33,34 showed that good agree
ment between calculated and observed values for the p
ization anisotropy might be obtained if the third-rank co
ponent of the crystal field were the dominant term. Sztu
and Strek,18 using the independent systems model to desc
the influence of crystal field and ligand polarization on t
f -d two-photon transitions, obtained a cross-section value
the same magnitude as the experimental one, if the valu
the magnitude of the crystal-field componentB0

~1! was prop-
erly chosen. From the values obtained for the polarizat
anisotropy, they concluded that the first-rank componen
the crystal field should be the dominant term, in contrad
tion to the Makhaneket al.’s result. Finally, using the sym
metry adaptation technique developed by Kibler,35,36 Daoud
and Kibler developed a formalism to determine the intens
of interconfigurational two-photon transitions. The mod
was then applied to the case of the Ce31 ion in CaF2 and
LuPO4 with reasonable agreement with observed data.37

Two-photon absorption processes in which one photo
absorbed by a magnetic dipole transition and the other
electric dipole transition have also been investigated
Frohlichet al.38 and Daoud and Kibler39 as possible mecha
nisms contributing to interconfigurational excitonic tran
-
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tions observed in RbI, NaI, and NaBr. Daoud and Kible
prediction using symmetry adaptation technique,39 however,
disagreed with Frohlichet al.’s assignments of the observe
transitions.38

Except the derivations proposed by Makhaneket al.33,34

and Daoudet al.,37,39 all of two-photon studies up to the
fourth order mentioned above have been applied in
framework of the Cartesian coordinates or circular polar
ordinates. The general study of polarization dependence
havior of the thirty two crystallographic point groups wa
initiated by Inoue and Toyozawa.40 Bader and Gold41 later
revised the theory and tabulated the results for TPA tra
tions between Stark levels. These are the most general p
ization dependence formulas for two-photon intensities,
which the polarization vectors are described in the spher
polar coordinates. The major disadvantage of the Bader
Gold formalism is the presence of a number of phenome
logical parameters, which in some cases weaken the pre
tive power.

In addition to the second-order theory of polarization d
pendence of TPA cross sections developed
Makhanek,33,34 Kibler, Gâcon, and co-workers42–48 have re-
ported a number of results in which the observed int
configurational two-photon transition intensities were co
pared with a polarization dependence theory which made
of the symmetry adaptation technique and of the Judd-O
approximation. The Makhanek’s and Gaˆcon-Kibler’s formal-
isms are generally more useful than that of Bader-Gol
formalism, since in the former cases the two-photon inten
ties between Stark levels and their corresponding polar
tion dependence expressions for a particular system con
only one or two parameters, which in turn can be furth
evaluated if the radial factors are known. Their polarizati
dependence expressions are in good agreement with
more general forms given by Bader and Gold, once the
rameters’ values in the latter’s expression are appropria
assigned. The major disadvantage of the Gaˆcon-Kibler
theory is that its computation appears to be complicated.
a consequence, the theory has been applied to only a
particular systems, rather than being tabulated for the
crystallographic point groups as did Bader and Gold.

In this paper another formalism for obtaining the pola
ization dependent behavior of two-photon intensities
tween the Stark levels is developed. The general express
for the polarization dependent two-photon intensities
tabulated for the 32 point groups, whose parameters ca
calculated explicitly when applied to a particular system. T
proposed theory is derived from a formalism in which t
two-photon scattering tensors in polar coordinates are
pressed in terms of the irreducible representation of the s
tering tensors. The explicit expressions for the irreduci
scattering tensors can be obtained by applying the sec
order theory of Axe for the TPA processes within the fram
work of the electric-dipole-interaction perturbatio
theory49–51and/or by expanding perturbation theories whi
include higher-order mechanisms.10–24Since Axe’s theory is
based on the Judd-Ofelt approximation, the theory provide
stringent test for the Judd-Ofelt theory. When applied to
given system, the expressions for the polarization depen
behavior of the TPA transition intensities are identical
those of Gaˆcon et al.46 The calculation using this propose
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5788 55AN-DIEN NGUYEN
method is, however, more straightforward than that of Gaˆcon
et al.46 The second-order intensity calculations using t
new method are given in the ERS framework, but can
applied to the TPA with little modification.

Intensity calculations involving the irreducible scatteri
tensors in the proposed theory are straightforward and h
been routinely practiced in ERS work. When explicit form
for the irreducible scattering tensors are not available, s
as in the case of Raman phonon scattering, the table o
polarization dependent behavior for two-photon intensit
are particularly useful, since this table was derived using
group-theoretical selection rules for two photon transitio
and the special properties of the second-rank irreducible
sors without eliciting its explicit forms for a particular tran
sition.

By use of the irreducible representation of the scatter
tensors, the proposed polarization dependence theory ca
readily extended to include higher-order interactions cont
uting to two-photon transition intensities. Using the stand
tensor coupling technique, the explicit polarization dep
dence formulas for the third- or higher-order contributions
the second-order two-photon intensities are obtained for
first time. The third-order contributions including the spi
orbit interaction, crystal-field interaction are discussed.
addition the polarization dependence expressions for in
configurational two-photon transition intensities are given

II. THEORETICAL ANALYSIS

A. Second-order theory

We employ the conventional set up for the two-phot
processes. In the ERS experiment, one beam is inciden
the crystal, and the scattered light is collected at 90° w
respect to the incident beam. In the TPA experiment, t
light beams are incident on the crystal. Thez axis is assumed
to be parallel to thez axis of the center ion. For a uniaxia
crystal, thez axis is the crystallographicc axis. In the TPA
case we define byê1 and ê2 the polarization unit vectors o
the first and second beams, respectively. In the ERS cas
use the commonly employed notation49–53 in which ê1 de-
notes the polarization of the incident beam andê2 the polar-
ization of the scattered light.

The ERS amplitude for a transition from stateu i & to state
u f & is given by54

~a21! i f52(
j

F ^ i uê2•Du j &^ j uê1•Du f &
\v j2\v1

1
^ i uê1•Du j &^ j uê2•Du f &

\v j1\v2
G , ~1!

wherei , j , and f are the respective initial, intermediate, a
final Stark levels of the two-photon transition, 1 and 2 re
resent the polarizations of the incident and scatte
photons,55 êi•D is the electric dipole operator of thei th po-
larization vector,\v1, \v2 are the energies of the inciden
and scattered photons, and\vj are the energies of the inte
mediate Stark levels.

The TPA amplitude is the same as the ERS amplitu
with a change of sign for\v2 in the denominator of the
second term of expression~1!. Applying the Judd-Ofeft-Axe
s
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approximation2–4 the expression for the ERS amplitude c
be recast in the tensorial form:50,52,56

a215(
t

~21! tFt~e2e1!
~ t !
•U~ t !, ~2!

where

Ft5~21! t (
n fN21n8 l 8

7~2l 811!S 3 1 l 8

0 0 0D
2

^n f ur un8l 8&2

3~2t11!1/2H 1 3 l 8

3 1 t J F 1

En8 l 82\v1
1

~21! t

En8 l 81\v2
G .
~3!

In Eqs. ~2! and ~3!, t can be 0, 1, or 2,U(t) is the unit
tensor of rankt, and ~e2e1!

(t) is the coupled form of the
polarization unit vectors of the incoming and scattered lig

The Ft parameter, first introduced by Koningstein an
Mortensen,49 can be treated as a phenomenological const
which is dependent only on the energy of then8l 8 configu-
rations and the radial overlap between then8l 8 andnl con-
figurations. For TPA transitions the expression forFt is the
same as in Eq.~3!, with the minus sign in front of\v2.

The irreducible representation of the Raman-scatter
tensor has the simple form57

aq
~ t !5FtUq

~ t ! . ~4!

If we define the initial and final intermediate couplin
states as

u i &5 (
aSLJJz

a~ i ;n fNaSLJJz!un fNaSLJJz& ~5!

and

u f &5 (
a8S8L8J8Jz8

a8~ f ;n fNa8S8L8J8Jz8!un fNa8S8L8J8Jz8&,

~6!

the scattering amplitude for the ERS transition betwe
statesu i & and u f & is given by

^ i uaq
~ t !u f &5Ft (

aSLJJz
(

a8S8L8J8Jz8
a~ i ;n fNmSLJJz!

3a8~ f ;n fNm8S8L8J8Jz8!

3~21!2J1S1L81t2Jz@~2J811!~2J11!#1/2

3S J t J8

2Jz q Jz8
D H L J S

J8 L8 t J
3^SLiiUq

~ t !iiSL8&d~S,S8!. ~7!

We can now express the scattering amplitude in po
coordinates and obtain the polarization dependent forms
TPA and ERS intensities. Consider the general case in wh
both polarization unit vectors are oriented in an arbitra
direction and independent of each other. In spherical coo
nates a unit polarization vector is written

ê5 l x̂1mŷ1nẑ, ~8!
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where we have used the same notation as given in Inoue
Toyozawa,40 in which

~ l ,m,n!5~sinu cosw,sinu sinw,cosu!. ~9!

In terms of the irreducible spherical scattering tensors

a215(
l50

2

(
q521

t

lq
t aq

~ t ! , ~10!

where the polarization dependent coefficientsl q
t ’s are de-

fined by

l0
052

1

)
@n2n11m2m11 l 2l 1#,

l21
1 5

1

2
@~2m2n11n2m1!i1~n2l 12 l 2n1!#,

l0
15

i

&
@m2l 12 l 2m1#,

l1
15

1

2
@~m2n12n2m1!i1~n2l 12 l 2n1!#,

l22
2 5

1

2
@~ l 2l 12m2m1!1~ l 2m11m2l 1!i #,

l21
2 5

1

2
@~n2m11m2n1!i1~n2l 11 l 2n1!#,

l0
25

1

A6
@2n2n12m2m12 l 2l 1#,

l1
25

1

2
@~n2m11m2n1!i2~n2l 11 l 2n1!#,

l2
25

1

2
@~ l 2l 12m2m1!2~ l 2m11m2l 1!i #. ~11!

Putting Eq.~4! into Eq. ~10! we obtain the polarization
dependence expression for second-order two-photon tra
tion intensities

~a21!
2nd5(

t50

2

(
q52t

t

lq
t FtUq

~ t ! . ~12!

Equation~10! is the most general polarization dependen
expression of two-photon transition intensities between S
levels. For clarity purpose we will use the symbola q

t to
denote the matrix element of the irreducible scattering ten
a q
(t). For a particular transition between Stark levels on

certaina q
t are nonzero, according to the Raman activity

the group corresponding to the Stark levels.58,59In particular,
the following comments apply. First, sincea0

~0! is propor-
tional to U0

(0) in the second-order approximation, whe
U0
(0) is a number operator proportional to2N/~14!1/2 for the

f N configuration,a0
0 is exactly zero for different initial and

final states used in Raman transitions. We therefore will o
nd

si-

e
rk

or

f

it

all a0
0’s for second-order calculations. Secondly, in the ca

of TPA where the two beams come from the same sou
thea q

(1) terms vanish.
Table I gives the angular dependence functions for E

and TPA transitions for all 32 crystallographic point group
In Table I, we have labeled the irreducible representations
the usual symbols for molecular representations, in orde
facilitate comparison with Bader and Gold.41 In RE intensity
calculations, however, the irreducible representations o
point groupG often appear60 asGi , wherei denotes thei th
representation of groupG. Only transitions of the type
G1↔Gj , whereG1 is the totally symmetric representation an
Gj any irreducible representation, are considered. Other t
sitions can be calculated using the fact that the triple prod
Gc

i*
^ Ga21

^ Gc f
of any of the 32 point groups must conta

the totally symmetric representation. The three terms app
ing in the triple product are the irreducible representations
the initial state, the Raman tensor, and the final state. F
transition to ann fold degenerate level the total intensity
proportional to the sum of the squares of each scatte
amplitude corresponding to each degenerate state. In Ta
only contributions from one of the degenerate levels is list
The total contribution is the sum of each contribution comi
from one of then fold degenerate levels. If the states of the
levels are Kramers states, the two-photon contribution fr
an initial Kramers state~Ci! to a final Kramers state~Cf! is
different from the two-photon contribution from~Ci! to the
Kramers conjugate state of the final state~C f

K!, i.e.,
ua21(C i→C f)u

2Þua21(C i→C f
K)u2; the two-photon contri-

bution fromCi to Cf is, however, exactly equal to the two
photon contribution from C i

K to C f
K, i.e.,

ua21(C i→C f)u
25ua21(C i

K→C f
K)u2. For transitions be-

tween non-Kramers state, the TPA contributions from a s
glet ~Ci! to each state of a doubly degenerate level~Cf x or
Cf y! are equal,61 i.e., ua21(C i→C f x)u

25ua21(C i→C f y)u
2.

It can be noted that Table I agrees with Bader and Gol41

since the expression for the polarization dependence of
intensities of transitions between Stark levels only depe
on the Cartesian Raman tensors and their correspondin
reducible spherical tensors whose nonzero values are
dicted by group theory. No approximation has been requi
to derive the relationship between the intensities and the g
eral form of the irreducible spherical Raman tensorsa q

(t),
which replace the parametersli ’s in Bader and Gold’s
theory. The explicit second-order expressions fora q

(t) in Eq.
~12!, in terms ofFt andUq

(t), however, are derived using th
Judd-Ofelt-Axe theory. SinceUq

(t) can be calculated for a
particular transition, the expression for the intensities for t
photon processes in terms ofF1 provides a stringent test fo
the Axe theory. In the case of TPA from the same sou
only F2 would appear in the expression for intensities. Th
relative intensities between Stark levels can be calcula
and compared with experimental values. For a single tw
photon transition the polarization dependence of the inte
ties onu andw can be directly compared with experiment
data.

Another test for the second-order theory of Axe m
come from the ratioF1/F2 , as first demonstrated by Becke
et al. in the case of TmPO4 and ErPO4.

53 Using Cartesian
coordinates it is common to obtain ERS intensities cor
sponding to at most four polarization states. Asymmetr50
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TABLE I. Angular-dependence functions for RE ERS and TPA transitions. The symbols are defined in the text.

C1 Ci

A↔A Ag↔Ag US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
2

1
1
2 @~n2m11m2n1!i2~n2l 11 l 2n1!#a1

21
1
2 @~n2m11m2n1!i1~n2l 11 l 2n1!#a21

2

1
1
2 @~ l 2l 12m2m1!2~ l 2m11m2l 1!i #a2

21
1
2 @~ l 2l 12m2m1!1~ l 2m11m2l 1!i #a22

2

1
i

2
@m2l 12 l 2m1#a0

11
1
2 @~m2n12n2m1!i1~n2l 12 l 2n1!#a1

1

1
1
2 @~2m2n11n2m1!i1~n2l 12 l 2n1!#a21

1 U2
C2 Cs C2h

A↔A A↔A Ag↔Ag US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
2

1
i

2
@m2l 12 l 2m1#a0

11
1
2 @~ l 2m11m2l 1!i #~a22

2 2a2
2!1

1
2 @ l 2l 11m2m1#~a22

2 1a2
2!U2

A↔B A8↔A9 Ag↔Bg Un2m1S a1
22a1

1

2 D 1m2n1S a1
21a1

1

2 D U21Un2l 1S a1
22a1

1

2 D 1 l 2n1S a1
21a1

1

2 D U2

1Un2m1S a21
2 1a21

1

2 D 1m2n1S a21
2 2a21

1

2 D U21Un2l 1S a21
2 1a21

1

2 D 1 l 2n1S a21
2 2a21

1

2 D U2
C3 ,C3i

A↔A U2S 1
)

D@n2n11m2m11l2l1#a0
01S2

1

A6D @22n2n11m2m11 l 2l 1#a0
21

i

2
@m2l 12 l 2m1#a0

1U2
A↔E u 12 @n2l 12 l 2n1#~a21

1 1a1
1!1

1
2 @ ṅ2l 11 l 2n1#~a21

2 2a1
2!

1
1
2 @ l 2l 12m2m1#~a2

21a22
2 !u21u 12 @ l 2m11m2l 1#~a22

2 2a22
2 !

1
1
2 @n2m12m2n1#~a 21

1 2a 1
1!1

1
2 @n2m11m2n1#~a 1

21a 21
2 !u2

C4 ,C4h,S4

A→A US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
21

i

2
@m2l 12 l 2m1#a0

1U2
A↔B u 12 @~ l 2l 12m2m1!2~ l 2m11m2l 1!i #a 2

21
1
2 @~ l 2l 12m2m1!1~ l 2m11m2l 1!i #a 22

2 u2

A↔E Un2m1S a1
22a1

1

2 D 1m2n1S a1
21a1

1

2 D U21Un2l 1S a1
22a1

1

2 D 1 l 2n1S a1
21a1

1

2 D U2
1Un2m1S a21

2 1a21
1

2 D 1m2n1S a21
2 2a21

1

2 D U21Un2l 1S a21
2 1a21

1

2 D 1 l 2n1S a21
2 2a21

1

2 D U2
C3h C6(C6h)

A8↔A8 A↔A US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
21

i

2
@m2l 12 l 2m1a0

1u2

A8↔E8 A↔E1
u 12 ~ l 2l 12m2m1#~a 2

21a 22
2 !u21u 12 @ l 2m11m2l 1#~a 22

2 2a 2
2!u2

A8↔E8 A↔E2 Un2m1S a1
22a1

1

2 D 1m2n1S a1
21a1

1

2 D U21Un2l 1S a1
22a1

1

2 D 1 l 2n1S a1
21a1

1

2 D U2

1Un2m1S a21
2 1a21

1

2 D 1m2n1S a21
2 2a21

1

2 D U21Un2l 1S a21
2 1a21

1

2 D 1 l 2n1S a21
2 2a21

1

2 D U2
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TABLE I. ~Continued!.

C2n D2 D2h(D2h5D2xCi)

A1↔A1 A↔A US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
2

1
1
2 @ l 2l 12m2m1#~a 2

21a 22
2 !u2

A1↔A2 A↔B1 u 12 @m2l 12 l 2m1#a 0
11

1
2 @ l 2m11m2l 1#~a 22

2 2a 2
2!u2

A1↔B1 A↔B2 u 12 @n2l 11 l 2n1#~a 21
2 2a 1

2!1
1
2 @n2l 12 l 2n1#~a 1

11a 21
1 !u2

A1↔B2 A↔B3 u2 1
2 @n2m11m2n1#~a 1

21a 21
2 !1

1
2 @m2n12n2m1#~a 1

12a 21
1 !u2

D3 , C3n, D3d(D3d5D2xCi)

A1↔A1 US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
2U2

A1↔A2 U i2 @m2l 12 l 2m1#a0
1U2

A1↔E u 12 @n2l 12 l 2n1#~a 21
1 1a 1

1!1
1
2 @n2l 11 l 2n1#~a 21

2 2a 1
2!

1
1
2 @ l 2l 12m2m1#~a 2

21a 22
2 !u21u 12 @ l 2m11m2l 1#~a 22

2 2a 2
2!

1
1
2 @n2m12m2n1#~a 21

1 2a 1
1!1

1
2 @n2m11m2n1#~a 1

21a 21
2 !u2

D4 ,C4n,D2d, D4h(D4h5D4xCi)

A1↔A1 US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
2U2

A1↔A2 U i2 @m2l 12 l 2m1#a0
1U2

A1↔B1 u 12 @ l 2l 12m2m1#~a 2
21a 22

2 !u2

A1↔B2
u2

i

2
@ l 2m11m2l 1#~a2

22a22
2 !u2

A1↔E Un2m1S a1
22a1

1

2 D 1m2n1S a1
21a1

1

2 D U21Un2l 1S a1
22a1

1

2 D 1 l 2n1S a1
21a1

1

2 D U2
1Un2m1S a21

2 1a21
1

2 D 1m2n1S a21
2 2a21

1

2 D U21Un2l 1S a21
2 1a21

1

2 D 1 l 2n1S a21
2 2a21

1

2 D U2
D5 ,C5n D5h(D5h5D5xCi),

D6 ,C6n D3h D6h(D6h5D6xCi)

D4d

A1↔A1 A18↔A18 A1↔A1 US2
1

)
D@n2n11m2m11l2l1#a0

01S2
1

A6D @22n2n11m2m11 l 2l 1#a0
2U2

A1↔A2 A18↔A28 A1↔A2 U i2 @m2l 12 l 2m1#a0
1U2

A1↔E1 A1↔E8 A18↔E3 Un2m1S a1
22a1

1

2 D 1m2n1S a1
21a1

1

2 D U21Un2l 1S a1
22a1

1

2 D 1 l 2n1S a1
21a1

1

2 D U2
1Un2m1S a21

2 1a21
1

2 D 1m2n1S a21
2 2a21

1

2 D U21Un2l 1S a21
2 1a21

1

2 D 1 l 2n1S a21
2 2a21

1

2 D U2
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TABLE I. ~Continued!.

A1↔E2 A1↔E8 A18↔E2 u12@l2l12m2m1#~a2
21a22

2 !u211
2@l2m11m2l1#~a22

2 2a2
2!u2

O,Td , Oh(Oh5OxCi)

A1↔A1 US2
1

)
D@n2n11m2m11l2l1#a0

0U2

A1↔E US2
1

A6D @22n2n11m2m11 l 2l 1#a0
21

1
2 @ l 2l 12m2m1#~a2

21a22
2 !U2

A1↔T1 U i2 @m2l 12 l 2m1#a0
11

i

2
@m2n12n2m1#~a1

12a21
1 !U21u 12 @n2l 12 l 2n1#~a1

11a21
1 !u2

A1↔T2 U i2 @n2m11m2n1#~a1
21a21

2 !1
i

2
@ l 2m11m2l 1#~a22

2 2a2
2!U21u 12 @2~n2l 11 l 2n1!#~a1

22a21
2 !u2

T,Th

A↔A US2
1

)
D@n2n11m2m11l2l1#a0

0U2

A1↔E US2
1

A6D @22n2n11m2m11 l 2l 1#a0
21

1
2 @ l 2l 12m2m1#~a2

21a22
2 !U2

A1↔Tb U i2 @m2l 12 l 2m1#a0
11

i

2
@m2n12n2m1#~a1

12a21
1 !U21u 12 @n2l 12 l 2n1#~a1

11a21
1 !u2

A1↔Ta U i2 @n2m11m2n1#~a1
21a21

2 !1
i

2
@ l 2m11m2l 1#~a22

2 2a2
2!U21u 12 @2~n2l 11 l 2n1!#~a1

22a21
2 !u2
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can be measured by the ratio of two of these intensities,I XZ
~or I YZ! andI ZX ~or I ZY!, from which the value ofF1/F2 can
be obtained. From the Raman-scattering intensities of l
with incident and scattered polarizations being arbitra
varied, a better fit for the ratioF1/F2 may be obtained. Thus
this analysis method should provide a more reliable value
the ratioF1/F2 .

In general the two-photon scattering tensora21 is related
to the irreducible representation of the scattering tensora q

(t)

by the relation

~a21!5(
t50

2

(
q52t

t

~21! t1q
„e2e1)2q

t ~aq
~ t !!, ~13!

where~e2e1! 2q
t is the coupled form of the polarization un

vectors. Equation~13! can be derived by the use of the sta
dard method of tensor operators.61

B. Third-order contribution to intraconfigurational
two-photon transition intensities

The line strength of a two-photon transition from an in
tial stateu i & to a final stateu f & shown up to the third-order is
proportional to
ht

r

U2(
i

~ i uE•Du j !~ j uE•Du f !

Ej

1(
j ,k

~ i uV1u j !~ j uV2uk!~kuV3u f !

EjEk
2•••U2, ~14!

whereEj andEk are the average energy of the excitedj and
k configurations.

Depending on the specific details of the interactionV i
~i51, 2, or 3! and the initial and final states, expression~14!
represents different third-order contributions to the tw
photon intensities. If the initial and final states are crys
field states belonging to the 4f N configuration,
V15V35E•D, andV25HSO, expression~14! represents the
third-order spin-orbit contribution. IfV25HCF, however, the
third-order contribution comes from the interaction betwe
intermediate configurations via the crystal-field potenti
When the wave functionsi , j , k, and f are products of lan-
thanide and ligand wave functions, andV25HC , whereHC
is the Coulomb interaction between the electrons in the l
thanide ion and the ligand excited states, expression~14!
represents the ligand-polarization third-ord
contribution.15–19 This ion-ligand excitation mechanism i
called the dynamic mechanism to distinguish it from t
static mechanism as it involves ligand excited states. Fina
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a third-order contribution can come from electron corre
tion, if V25Vc

noncentral, whereVc
noncentraldenotes the noncen

tral part of the Coulomb interaction:

Vc
noncentral5VC2U, ~15!

whereU stands for the potential of the central field appro
mation.

In the independent systems model15–19 and in the double
perturbation model,20–26 the third-order terms in whichV2 is
interchanged withV1 or V3 also arise, and the electric dipo
operatorE•D may represent the light-central ion or ligh
ligand interaction.

1. Spin-orbit interaction

The polarization dependence of the two-photon scatte
amplitude can be expressed in third order:

~a21!
3rd5(

t50

2

(
q52t

t

lq
t ~aq

~ t !!3rd, ~16!

The explicit tensor form for the third-order spin orbit in
teraction has been given by Judd and Pooler,10 Downer and
Bivas,11 and Ceulemans and Vandenberghe.14 Its corre-
sponding irreducible tensor form is given by

~aq
~ t !!3rd5H~ t !~a†a!q

~0t !t~a†a!~11!01(
l

G~ t,l!~a†a!q
~1l!t ,

~17!

wherea†,a represent creation and annihilation tensors, a
H(t) andG(t,l) are defined by

H~ t !53~21! l@ l ~ l11!~2l11!#1/2

3
z l~nlur unl8!2

El 8 l
2 H 1 l l 8

l 1 t J ~18!

and

G~ t,l!523~21!8@ l ~ l11!~ l11/2!#1/2
z l~nlur unl8!2

El 8 l
2

3~21!l11~2l11!1/2H 1 l l

l 1 lJ H 1 l l 8

l 1 t J ,
23~21! t@ l 8~ l 811!~ l 811/2!#1/2

z l 8~nlur unl8!2

El 8 l
2

3~21!l11~2l11!1/2H 1 l l 8

1 l l 8

t l 1
J . ~19!

In expressions~17!–~19! the only nonvanishing terms oc
cur for t50, 1, and 2 and forl51, 2, and 3, andzl , zl 8 are
the spin-orbit coupling constants forl and l 8 electrons, re-
spectively.

Since the third order spin-orbit contribution to two-phot
intensities can be expressed in terms of the second ran
reducible tensor form, with the same polarization depend
coefficients as the second-order contribution, one can
-

g

d

ir-
nt
st

add the results fora q
t calculated in the third order into th

second-order results in Eq.~12! and square the resulting tota
amplitude ~a21!

total to obtain the TPA transition intensitie
calculated up to the third order involving spin-orbit couplin
Note from expression~17!, because of the presence of th
operator~a†a!~11!0, the scattering tensora0

~0! is not a scalar,
and its corresponding matrix elements are no longer ide
cally zero for distinct initial and final states as in the case
the second order theory. One must include thea0

~0! term in
the third-order calculation in order to obtain meaningful r
sults.

2. Crystal-field interaction

The original expression for the third-order TPA tens
operator involving crystal-field interaction has been dev
oped by Downer and co-workers12,13 and is given by

2~21! l1 l 8@~2l11!~2l 811!2#
~nlur unl8!2

&El 8 l
2

3S l 1 l 8

0 0 0D
2

(
t,k,h

~21!k~2k11!1/2~2t11!1/2

3S l 8 h l8

0 0 0D H l 1 l 8

h l8 k J H 1 l l 8

l k t J
3@e2

~1!~B~h!e1
~1!!~k!#~ t !

•~U!~ t !, ~20!

where h,k,t are tensor ranks andB(h) is the crystal field
tensor corresponding to the third-order crystal field inter
tion acting between excited configurationsu j & and uk& in ex-
pressions~14!.

As can be seen from expression~20!; the crystal field
tensor operatorB(h) is coupled to the electric field vectors
By further recoupling the electric field tensors, Ceulema
and Vandenberghe have obtained an expression in which
electric field tensors are directly coupled and all the 62j
symbols are combined into a single 92j symbol.14 We will,
however, consider only the special case of Downer’s exp
sion in which the only crystal-field term appearing in E
~20! is the fourth rank crystal field termB0

~4! . Puttingk55,
t56, h54, l53, andl 852, the polarization dependent form
for the crystal-field third-order contribution is given by

B0
~4!

1

3A11
$A14l22

2 U22
~6!1A35l21

2 U21
~6!13A5l0

2U0
~6!

1A35l1
2U1

~6!1A14l2
2U2

~6!%, ~21!

wherel q
t ’s are defined in Eq.~11!.

The crystal-field third-order contribution is proportion
to ~10/33!1/2^i uU0

~6!uf & and~14/99!1/2^i uU22
~6! uf & for parallel and

circular polarization, respectively. For the8S7/2→6I J transi-
tions in Gd31:LaF3, the ratio of the integrated two-photo
line strength corresponding to parallel polarization to th
corresponding to circular polarization is 15/7, in exact agr
ment with Downeret al.13
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C. Third-order contribution to interconfigurational two-photon absorption transition intensities

The theory of static and dynamic contributions to the two-photonf -d transitions has been developed by Leavitt,32 Daoud
and Kibler,37,39and Sztucki and Strek.18 Their polarization dependent expressions can be derived by using methods des
in the previous section. Applications of Leavitt’s and Sztucki and Strek’s theories in the case of 4f→5d two-photon transition
in Ce31:CaF2 are given in the examples section.

D. Relative magnitude of higher-order contributions to second-order contribution

We finally consider the relative magnitude of the third-~or higher! order contribution to the second-order contributio
Using the intermediate coupling states we have

^Cu~aq
~ t !!nthuC8&

^Cu~aq
~ t !!2nduC8&

5

(SLJ,S8L8J8a~SLJM!a8~S8L8J8M 8!S J t J8

2M q M8
D ~21!~J2M !^SLJi~a~ t !!nthiS8L8J8&

(SLJ,S8L8J8a~SLJM!a8~S8L8J8M 8!S J t J8

2M q M8
D ~21!~J2M !^SLJi~a~ t !!2ndiS8L8J8&

, ~22!

wherenth can be 3rd, 4th, or any higher order contribution taken into account.
If the SLJmixing are negligible for the statesC andC8 the coefficientsa(SLJM) anda8(S8L8J8M 8) are functions ofJ

andM , i.e.,a(SLJM)5a(JM), a8(S8L8J8M 8)5a8(J8M 8). We then have

^Cu~aq
~ t !!nthuC8&

^Cu~aq
~ t !!2nduC8&

5

^SLJi~a~ t !!nthiS8L8J8&(SLJ,S8L8J8a~JM!a8~J8M 8!S J t J8

2M q M8
D ~21!~J2M !

^SLJi~a~ t !!2ndiS8L8J8&(SLJ,S8L8J8a~JM!a8~J8M 8!S J t J8

2M q M8
D ~21!~J2M !

5
^SLJi~a~ t !!nthiS8L8J8&

^SLJi~a~ t !!2ndiS8L8J8&
, ~23!
e

tie
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rm
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which is independent ofq. For a TPA process with a singl
laser excitation wavelength,a q

(1) vanishes, anda0
~0! also van-

ishes if J8 is different fromJ. In this case the polarization
dependence and relative amplitudes of TPA Stark intensi
which now depend only ona q

2, would not change when
higher order contribution were included. We now apply t
polarization dependence theory into a number of cases
cluding intra- and interconfigurational TPA.

III. EXAMPLES

A. Intraconfigurational TPA—application to Sm 21 in BaClF

In the second-order approximation the polarization dep
dence functions of the TPA intensities are expressed in te
of a q

(t)’s, which can be further evaluated in terms of t
parametersFt’s when one applies equations~5!–~9! to a par-
ticular TPA transition. The final polarization dependen
functions are thus expressed in terms of the parameterFt’s
and can be compared directly with observed data. We n
apply formulae~8! and ~9! to the transition7F0→5D2 for
Sm21 in BaClF ~C4v site symmetry!. Using the crystal-field
parameters given by Gaˆcon et al.,46 we can obtain the
crystal-field wave functions and coefficients for the init
and final states.

The initial state, which is the ground state, can be
pressed as62

uG1&50.977F~0,0!20.175D1~0,0!, ~24!

where we have used the2S11Li( J,Jz) notation.
s,

n-

-
s

w

-

The final states are

uG1&520.74@5D3~2,0!#10.6@5D1~2,0!#,

uG3&520.74F 1
&

5D3~2,2!1
1

&
5D3~2,22!G

10.6F 1
&

5D1~2,2!1
1

&
5D1~2,22!G ,

uG4&520.74F2
1

&
5D3~2,2!1

1

&
5D3~2,22!G

10.6F2
1

&
5D1~2,2!1

1

&
5D1~2,22!G ,

uG5x&520.74@25D3~2,1!#10.6@25D1~2,1!#

uG5y&520.74@25D3~2,21!#10.6@25D1~2,21!#,
~25!

whereG5x and G5y are the two components of the doub
degenerateG5 states.

For Sm21~4 f 6! the nonzero values ofa q
t are given by

^G1ua0
~2!uG1&5

0.079

5
F2 ,
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^G1ua62
~2! uG3&5

0.079

5&
F2 ,

^G1uG62
~2! uG4&57

0.079

5&
F2 ,

^G1ua1
~2!uG5x&5^G1ua21

~2! uG5y&52
0.079

5
F2 . ~26!

Equation~14! can be rewritten for the case of TPA from
the same source:

a21
TPA5S 3 cos2u21

A6 D a0
~2!2S e2 iw

2
sin2u D a1

~2!

1S eiw2 sin2u D a21
~2!1S e22iw

2
sin2u D a2

~2!

1S e2iw2 sin2u D a22
~2! , ~27!

^G1ua21uG1&5
a2

)
~3 cos2u21!,

^G1ua21uG3&5a2sin
2u cos2w,

^G1ua21uG4&5 ia2sin
2u sin2w,

^G1ua21uG5x&5
a2

&
~sin2u!e2 iw,

^G1ua21uG5y&52
a2

&
~sin2u!eiw, ~28!

where a25
0.079

5&
F2 . ~29!

The angular dependence of the TPA line strengths can
expressed in terms of the overall strengthS0 of the
7F0→5D2 two-photon transition,

S~G1→G1!5 1
3S0~3 cos

2u21!2

S~G1→G3!5S0sin
4u cos22w

S~G1→G4!5S0sin
4usin2 2w

S~G1→G5!5S~G1→G5x!1S~G1→G5y!5S0sin
42u.

~30!

Note that we can equivalently obtain Eq.~30! by using
Table I for the case ofC4v and substitute the nonvanishin
values ofa q

(t) given in Eq.~26! into the polarization func-
tions for each two-photon transition. Table I is particula
useful when the intermediate coupling coefficients of
wavefunctions for the initial and final states are unknow
Once these coefficients are obtained, and the correspon
a q
(t)’s are determined, the master formula~10! can be used
be

e
.
ing

instead. The results in Eq.~30! are identical with those of
Gâconet al.,46 which were shown to agree well with exper
ment. As pointed out by Gaˆconet al., the results given in Eq
~30! agree with the results of Bader and Gold and, furth
more, complete their results.

B. Interconfigurational TPA—application to Ce31:CaF2

Table I and Eq.~10! can be used to calculate the depe
dence of the TPA cross section on the directions of the e
tric field vectorê and the wave vectork of the incident laser
beam. For the Ce31 ion in CaF2 with site symmetryC4v,
only a0

0, a0
2, anda1

2 ~or a21
2 ! are nonzero for a TPA transi

tion from the 4f ground state~G7! to the lowest 5d state~G7!.
The TPA cross sections for the corresponding zero-phono
transition is proportional to

F2
1

)
a0
01S 3 cos2u21

A6 D a0
2G 21F S e2 iw

2
sin2u D a1

2G 2.
~31!

For the case whereki@100# and êi@010# we have

s}11C sin22u, ~32!

where C5~2b21/2!/~3a222a11!, ~33!

with a5
1

3
1
&

3

a0
0

a0
2 and b5

1

6 S a1
2

a0
2D 2. ~34!

Similarly, we obtain

s}11
3C

4
sin22u

1C sin2u for the case whereki@110# and êi@001#,

~35!

and

s}11C for the case whereki@111# and êi@110#.
~36!

The fitted curves for Eqs.~32!, ~35!, and~36! are shown
in Fig. 1. The best fit forC is found to be 1.774. The polar
ization anisotropy for the case whereki@100# and êi@010# is

A5
s~45°!2s~0°!

s~45°!1s~0°!
5

C

21C
, ~37!

is 0.47, in good agreement with the observed value, whic
0.5 in this case.

Note that the fitted formulae~32!, ~35!, and ~36! can be
equivalently obtained using Bader and Gold’s theory.41 Our
expressions~33! and ~34!, however, facilitate direct calcula
tions for the values ofC andA in terms ofa q

t ’s, which in
turn can be evaluated using existing theoretical models.
value forA calculated by Gayenet al.29 is 0.076. Taking into
account only theB0

~3! component of the crystal field and ig
noring the dynamic effect, Makhaneket al.33 obtained a
value of 0.47. Leavitt’s calculated value forA is 0.32.32 Fi-
nally, Sztucki and Strek18 foundA50.55, 0.15, and 0.52 for
the static terms proportional toB 0

(1) ,B 0
(3), and the dynamic
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one, respectively. Our recalculation using Leavitt’s mo
givesA equal to 0.17 and 0.16 for the static and dynam
contributions, respectively. The reason of the discrepan
stem from the fact that the number ofa1

2’s was being over-
counted in expression~13b! of Ref. 32. This is becausea1

2

anda21
2 can not be both nonzero in one TPA transition fro

one component of a Kramers doublet to another. We a
found that Sztucki and Strek’s model18 gives A equal to
0.815, 0.51, and 0.16 for the static terms proportional
B 0

(1) ,B 0
(3), and the dynamic one, respectively. We conclu

that the third-rank component of the crystal field was in f
the dominant term in the TPA transition intensity from t
4 f ground state to the lowest 5d state of the Ce31 ion in
CaF2, as was claimed by Makhaneket al.

C. ERS and phonon Raman scattering

As in the case of two-photon absorption, the polarizat
dependence functions for ERS and phonon intensities

FIG. 1. Polarization dependent behavior of the two-photon cr
section for the no-phonon transition of Ce31:CaF2 at 6 K. The solid
crosses represent the experimental measurements given in Re
and the solid lines are the fits to the data using the angular funct
described in Eqs.~32!, ~35!, and~36!.
l
c
es

o

o
e
t

n
re

expressed in terms of the nonvanishing values of the ma
elements of the irreducible representation of the scatte
tensors,a q

t . These polarization dependence functions can
directly compared with the observed intensities, from wh
the fitted values ofa q

t can be obtained. In the ERS case, t
more explicit expressions ofa q

t in terms of the parameter
Ft , which arise in the second-order theory of Axe, can th
be obtained from Eq.~4!. In the second-order approximation
the final polarization dependence functions depend only
two parameters, namely,F1 and F2, which in general are
simpler than the original polarization dependence functio
expressed in terms ofa q

t . The simple expressions of the fina
polarization dependence thus provide a crucial test for Ax
second-order theory. Another sensitive test for Axe’s the
come from the ratioF1/F2 , which can be derived from the
ratio a q

1/a q
2, obtained from the fit mentioned above. Th

ratio F1/F2 is predicted from the Axe theory to be approx
mately the same for all ERS transitions of a particular ra
earth ion. Deviation from the value of the ratioF1/F2 would
provide insight to further revision of the second-order theo
of Axe. Examples and applications of the master Eq.~10! in
ERS and phonon Raman-scattering processes are give
separate communications, where all the experimental d
have been obtained by our group.

IV. SUMMARY

We have proposed a theoretical framework for obtain
the polarization dependence formulae for two-photon tran
tion intensities of rare earths doped in crystals. The the
was developed based on the properties of the irreducible
resentation of the scattering tensors calculated up to the t
order. A table of angular dependence functions for tw
photon transitions for 32 crystallographic point groups w
given. Our third-order expression for the TPA scattering te
sor taking into account the crystal field interaction agre
with Downeret al.’s expression for the case of parallel an
circular polarization.13 We have applied our second-ord
polarization dependence formulae to the7F0→5D2 TPA
transitions of Sm31 in BaClF, and the results are identic
with those given by Gaconet al.46 Third-order interconfigu-
rational two-photon absorption was also treated. Its appl
tions in the case of Ce31 in CaF2 were given. An excellent fit
to the experimental polarization dependence curves was
tained. From the fit we have calculated the polarization
isotropy using Sztucki and Strek’s model, and we were a
to show the dominance of the 4f25d third-rank crystal field
term in contributing to the 4f25d TPA amplitude in the
case of Ce31 in CaF2, which was in agreement with Ma
khaneket al.33

The properties of the irreducible scattering tensora q
(t),

have been exploited to derive the relationship between
two-photon scattering tensora21 and the coupled form of the
unit polarization vectors (e2e1)

(t). This relationship has bee
particularly useful in deriving the explicit expression for th
intraconfigurational two-photon amplitude including th
Judd-Ofelt-Axe’s second-order term,2–4 Judd-Pooler’s third-
order spin-orbit term,10 Downer-Bivas’s third-order crysta
field term,11–13 as well as the interconfigurational TPA am
plitude using models given by Leavitt,32 and Sztucki and

s

29
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Strek.18 The relative magnitude of higher order contributio
to the second-order contribution was also discussed base
the properties ofa q

(t) and the Wigner-Eckart theorem.
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