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Polarization dependence of two-photon absorption and electronic Raman scattering intensities
in crystals
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A formalism using the properties of the irreducible representation of the scattering tensors has been devel-
oped to predict up to the third order the polarization-dependent behavior of the electronic Raman-scattering
intensities and the two-photon absorption intensities of transitions between Stark levels. The polarization
behavior of ions in crystals are tabulated for the 32 crystallographic point groups. The theory provides a
stringent test for the Judd-Ofelt-Axe theory for two-photon intensities between Stark levels.
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I. INTRODUCTION been done by Carnabt al®>® on the aqueous solutions of
trivalent RE’'s. References on analyses of RE oscillator
Two-photon spectroscopy has emerged as an importaistrengths can be found in review papers such as that of
tool in the study of electronic states of ions in crystals. TherdPeacocK.
are two types of two-photon spectroscopy. The first type is The quantitative study of two-photon processes began
two-photon absorptiofTPA), in which both photons are si- when Axe? using the Judd-Ofelt closure approximation, de-
multaneously absorbed by the ion. The second type is ele¢ived an expression for the second-order two-photon line
tronic Raman scatteringERS), in which a photon is inelas- strength, in a manner analogous to Judd and Ofelt's formula

tically scattered from an ion such that the ion is excited to 407 Single-photon line strength. The expression for TPA line

different electronic state. Both types of spectroscopy are Cons_trength, however, generally contains only one parameter,

sidered complementary to linear spectroscopy. TPA has prdDSteaq of three, asin the one-photon expression. '.A.S a result,
vided access to higher-energy absorption bands than singl he ratio of the line strengths of two-photon transitions can
photon absorption, and ERS has been used to probe loe Compute(_j without the need for pher_lomenolog|cal param-

. eters. Experimental measurements of line strength ratios and
e polarization dependence of line strengths therefore pro-

for two-photon processes are different from those for SingleK/ide rigorous tests of the second-order theory of TPA. Axe’s

photo_n processes, transitions that are forbidden in ]inear ablheory, however, is traditionally applied to intraconfigura-
sorption may be explored by TPA. The freedom to indepentiona| transitions from one multiplet to another, with the po-
dently vary each of the two polarizations in two-photon |rization of the excitation photons being either parallel or
processes has provided a powerful tool to study the symmeserpendicular to the axis of the lanthanide complex, where
tries of the initial and final states in a transition. Among thethe z axis is the highest symmetfy#~*3
important applications of two-photon spectroscopy one may The overwhelming success of the Judd-Ofelt theory when
include the study of phonons, polaritons, excitons, and intraapplied to RE materials has been the motivation for the in-
and interconfigurational electronic transitions in a wide vari-tensive study of two-photon intensities using Judd-Ofelt-
ety of solids!™ Axe’s theory. Strong disagreement, however, was found
The theory of two-photon processes owes much of itsvhen Axe’s theory was applied to &dions in a number of
origin to the theory of one-photon processes. The quantitaRE hosts. In particular, the experimental results in
tive theory of single-photon transition intensities within an Gd®":LaF, reported by Dagenais, Downer, Neumann, and
N configuration was developed by Jddihd Ofelf in 1962.  Bloembergeh showed that two-photon transitions from the
By introducing the so-called “Judd-Ofelt closure approxima-ground level®S,,, of Gd** to the first three excited levels,
tion” Judd and Ofelt were able to derive an expression in°P-,, °Ps,, and®P5,, were anomalously strong with respect
which the oscillator strengths of the one-photon transitiongo the predictions of a second-order theory, and that the an-
of rare-eartRE) ions in host lattice crystals are described in gular momentum selection ruleJ<2 broke down in several
terms of a radial factor, which can be estimated for a partransitions ES7,Z—>6I13,2’15,2,17,26D1,2). In order to account
ticular rare earth, and only three parameters. The values dér the anomalous intensity observed f6®;,—°P,, in
these so-called Judd-Ofelt parameters are usually determin&®*, Judd and Pooler expanded Axe’s second-order theory
by fitting experimental oscillator strengths. Typically, a of TPA to include third-order terms involving the spin-orbit
single set of Judd-Ofelt parameters are used to fit all obinteraction® Downer and co-worket$'? later showed that
served oscillator strengths of a particular RE ion in a giverthe inclusion of third-order terms involving the crystal-field
host crystal or solution. The phenomenological treatment hamteraction among intermediate states could explain the
successfully accounted for the intensities of a majority ofanomalous intensity of th%s,,,—°1; lines in Gd*. A fuller
transitions for each RE ion. The most extensive work hasnalysis of the experimental results for the integrated and
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crystal component intensities for tA8— °| transitions in the  tions observed in Rbl, Nal, and NaBr. Daoud and Kibler's
Gd®" ion using expressions which include up to the fourth-prediction using symmetry adaptation technigtiapwever,
order contributions involving spin-orbit and/or crystal-field disagreed with Frohliclet al’s assignments of the observed
interactions was given by Downet al1?3 Ceulemans and transitions®®
Vandenberghe later presented a more general expression Except the derivations proposed by Makharetlal
which can be applied to any RE idf. and Daoudet al,>"*° all of two-photon studies up to the
Other third-order mechanisms in two-photon processefourth order mentioned above have been applied in the
were also investigated by several workers. Reid andramework of the Cartesian coordinates or circular polar co-
Richardsort? for example, estimated the ligand-polarization ordinates. The general study of polarization dependence be-
contribution in two-photon processes. Sztucki and Stfek’®  havior of the thirty two crystallographic point groups was
expanding Reid and Richardson’s idea, proposed the thirdnitiated by Inoue and Toyozaw4.Bader and Golt later
order contributions to the two-photon processes from theevised the theory and tabulated the results for TPA transi-
static and dynamic coupling mechanisms developed withitions between Stark levels. These are the most general polar-
the independent systems model. Smentek-Mielczarekzation dependence formulas for two-photon intensities, in
et al?°~?* examined the third-order electron-correlation andwhich the polarization vectors are described in the spherical
crystal-field contributions to the two-photon amplitude polar coordinates. The major disadvantage of the Bader and
within the framework of double perturbation thedr#® Gold formalism is the presence of a number of phenomeno-
All of the mechanisms mentioned above have been aplogical parameters, which in some cases weaken the predic-
plied to intraconfigurational two-photon transitions, wheretive power.
the initial and final states both belong to th® configura- In addition to the second-order theory of polarization de-
tions and the two-photon processes are therefore allowed bpendence of TPA cross sections developed by
cause of the parity rule. TPA transitions from th&'4o the ~ Makhaneli®3*Kibler, Gacon, and co-workefé*®have re-
4fN~15d have also been observed for®edons in various ported a number of results in which the observed intra-
crystals?’~3! These transitions are parity forbidden in the configurational two-photon transition intensities were com-
second order within the electric-dipole approximationpared with a polarization dependence theory which made use
scheme and thus can be treated as a third-order process.oAthe symmetry adaptation technique and of the Judd-Ofelt
theoretical description of the cross section of the two-photorapproximation. The Makhanek’s and &m-Kibler's formal-
f-d transitions based on the perturbation coming from thasms are generally more useful than that of Bader-Gold’s
rank-one component of the crystal field was first proposed byormalism, since in the former cases the two-photon intensi-
Gayenet al?® Their calculated polarization anisotropy for ties between Stark levels and their corresponding polariza-
the zero-phonon transition in €eCak,, however, were far tion dependence expressions for a particular system contain
from the observed values. Leavitlater derived the static only one or two parameters, which in turn can be further
and dynamic contributions to the TPA cross section and apevaluated if the radial factors are known. Their polarization
plied the results to the lowestf4-5d two-photon transition dependence expressions are in good agreement with the
in Ce":Cak,. Leavitt's calculated values were closer to the more general forms given by Bader and Gold, once the pa-
experiment, compared with Gayeat al’s value, but were rameters’ values in the latter’'s expression are appropriately
still not satisfactory. Expanding the TPA cross-sectionassigned. The major disadvantage of théc@aKibler
theory to include arbitrary polarizations in spherical polartheory is that its computation appears to be complicated. As
coordinates, Makhanett al.*** showed that good agree- a consequence, the theory has been applied to only a few
ment between calculated and observed values for the polaparticular systems, rather than being tabulated for the 32
ization anisotropy might be obtained if the third-rank com-crystallographic point groups as did Bader and Gold.
ponent of the crystal field were the dominant term. Sztucki In this paper another formalism for obtaining the polar-
and Strek® using the independent systems model to describézation dependent behavior of two-photon intensities be-
the influence of crystal field and ligand polarization on thetween the Stark levels is developed. The general expressions
f-d two-photon transitions, obtained a cross-section value ofor the polarization dependent two-photon intensities are
the same magnitude as the experimental one, if the value aébulated for the 32 point groups, whose parameters can be
the magnitude of the crystal-field compon@ﬁ) was prop- calculated explicitly when applied to a particular system. The
erly chosen. From the values obtained for the polarizatiorproposed theory is derived from a formalism in which the
anisotropy, they concluded that the first-rank component ofwo-photon scattering tensors in polar coordinates are ex-
the crystal field should be the dominant term, in contradicpressed in terms of the irreducible representation of the scat-
tion to the Makhanelet al.'s result. Finally, using the sym- tering tensors. The explicit expressions for the irreducible
metry adaptation technique developed by Kibfet® Daoud  scattering tensors can be obtained by applying the second-
and Kibler developed a formalism to determine the intensityorder theory of Axe for the TPA processes within the frame-
of interconfigurational two-photon transitions. The modelwork of the electric-dipole-interaction perturbation
was then applied to the case of the®Céon in CaF, and  theory*®>*and/or by expanding perturbation theories which
LuPQ, with reasonable agreement with observed data. include higher-order mechanisifs2*Since Axe’s theory is
Two-photon absorption processes in which one photon ibased on the Judd-Ofelt approximation, the theory provides a
absorbed by a magnetic dipole transition and the other bgtringent test for the Judd-Ofelt theory. When applied to a
electric dipole transition have also been investigated bygiven system, the expressions for the polarization dependent
Frohlich et al® and Daoud and Kiblé? as possible mecha- behavior of the TPA transition intensities are identical to
nisms contributing to interconfigurational excitonic transi- those of Gaon et al*® The calculation using this proposed
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method is, however, more straightforward than that oé@a  approximatioA the expression for the ERS amplitude can
et al*® The second-order intensity calculations using thisbe recast in the tensorial forrfi>2°¢

new method are given in the ERS framework, but can be

applied tp the TPA yvith [ittle modificat?on. . . a2122 (—1)F,(e,e) - U, @)

Intensity calculations involving the irreducible scattering t
tensors in the proposed theory are straightforward and hav\ﬁh ere
been routinely practiced in ERS work. When explicit forms
for the irreducible scattering tensors are not available, such
as in the case of Raman phonon scattering, the table of th&;=(—1)" 2 7(21"+1)
polarization dependent behavior for two-photon intensities nfN"tn’1’
are particularly useful, since this table was derived using the 1 3 I 1 (-1t
group-theoretical selection rules for two photon transitions X (2t+ 1)1’2{ ” +
and the special properties of the second-rank irreducible ten- 3 1 t][Bwvr—hor Eypthoe,
sors without eliciting its explicit forms for a particular tran- 3
sition.

By use of the irreducible representation of the scattering N Eds.(2) and(3), t can be 0, 1, or 201 is the unit
tensors, the proposed polarization dependence theory can Esor of rankt, and (e,e)"” is the coupled form of the
readily extended to include higher-order interactions contribPolarization unit vectors of the incoming and scattered light.
uting to two-photon transition intensities. Using the standard The F. parameter, first introduced by Koningstein and
tensor coupling technique, the explicit polarization depenMortenserf? can be treated as a phenomenological constant,
dence formulas for the third- or higher-order contributions toWhich is dependent only on the energy of ¢’ configu-
the second-order two-photon intensities are obtained for thEations and the radial overlap between tti¢" andnl con-
first time. The third-order contributions including the spin- figurations. For TPA transitions the expression fqris the
orbit interaction, crystal-field interaction are discussed. InS@me as in Eq(3), with the minus sign in front ofiw,. .
addition the polarization dependence expressions for inter- The irreducible representation of the Raman-scattering
configurational two-photon transition intensities are given. tensor has the simple fofth

al=FUy. (4)

!

2
) (nflrin’1")2

0 0 O

Il. THEORETICAL ANALYSIS
If we define the initial and final intermediate coupling
A. Second-order theory states as
We employ the conventional set up for the two-photon
processes. In the ERS experiment, one beam is incident on Y= a(i;nfNaSLIL)InNaSLIY) (5)
the crystal, and the scattered light is collected at 90° with o503y,
respect to the incident beam. In the TPA experiment, twa, g
light beams are incident on the crystal. Thaxis is assumed
to be parallel to the axis of the center ion. For a uniaxial , N rert N rert ran
crystal, thez axis is the crystallographic axis. In the TPA  |f)= > Jal(finfla’S'L'J J)Infla’S'L'3'T;),
case we define bg, and&, the polarization unit vectors of a'S'LII'Y,
the first and second beams, respectively. In the ERS case we (6)
use the commonly employed notatfdr™ in which & de-  the scattering amplitude for the ERS transition between
notes the polarization of the incident beam @adhe polar-  statesi) and|f) is given by
ization of the scattered light.
The ERS amplitude for a transition from stét® to state TG fongN
Ity is given by* (ilalIf) Ftag,“l > a(i;nfNuSLJy)

a's'L’y'Y,
(ile;-Dlj)(jle,-DIf) xa'(f;nfNu'S'L’J’J)
(azl)if:—z o —To z
J 1 X(—1)2‘]+S+L,+t7‘]2[(2\]’+1)(2J—|— 1)]1/2
. {ilec DI e DIf | @ It VL 3 s
fiwj+hw,
-J, q 3/|JY L t

wherei, j, andf are the respective initial, intermediate, and ® , ,
final Stark levels of the two-photon transition, 1 and 2 rep- X<S|'“”Uq lISL')&(S,S"). @
resent the polarizations of the incident and scattered
photons’® & - D is the electric dipole operator of théh po-

larization vectorfiw,, fiw, are the energies of the incident

We can now express the scattering amplitude in polar
coordinates and obtain the polarization dependent forms for
. : TPA and ERS intensities. Consider the general case in which
and scattered photons, afd are the energies of the inter- ., hojarization unit vectors are oriented in an arbitrary

mediate Stark levels. o . . :
) . . direction and independent of each other. In spherical coordi-
The TPA amplitude is the same as the ERS ampI'IUdenates a unit polarization vector is written

with a change of sign fofiw, in the denominator of the
second term of expressidf). Applying the Judd-Ofeft-Axe e=Ix+my+nz, (8)
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where we have used the same notation as given in Inoue aradl o3's for second-order calculations. Secondly, in the case

Toyozawa® in which of TPA where the two beams come from the same source,
, o the a{! terms vanish.
(I,m,n)=(sind cosp,sind sing,cosy). ©) Table | gives the angular dependence functions for ERS

and TPA transitions for all 32 crystallographic point groups.
In Table I, we have labeled the irreducible representations by

2t the usual symbols for molecular representations, in order to
an=2 > Aal, (100 facilitate comparison with Bader and Gdthlin RE intensity

=0 gq=-1 calculations, however, the irreducible representations of a

point groupG often appedf asT;, wherei denotes théth
representation of grougs. Only transitions of the type
I'1<T, wherel'; is the totally symmetric representation and
1 I'; any irreducible representation, are considered. Other tran-
Ao=— — [nony+mumy+1,l,], sitions can be calculated using the fact that the triple product

V3 Fwi* ®Fa21®rwf of any of the 32 point groups must contain

1 the totally symmetric representation. The three terms appear-
)\1*125 [(—myny+n,my)i+(nyl;—1,np)], ing in _the triple product are the irreducible rep_resentanons of
the initial state, the Raman tensor, and the final state. For a
) transition to amn fold degenerate level the total intensity is
)\1:'_ (Ml — 1,y ] proportional to the sum of the squares of each scattering
0" p AL 2D amplitude corresponding to each degenerate state. In Table |
only contributions from one of the degenerate levels is listed.
1 The total contribution is the sum of each contribution coming
K%IE [(mong—nomy)i+ (Nl —1on4)], from one of then fold degenerate levels. If the states of these
levels are Kramers states, the two-photon contribution from
1 an initial Kramers staté¥;) to a final Kramers staté¥V;) is
)\2_225 [(Ioly—mymy)+ (I,my+myl )i ], different from _the two-photon contnbl_mon fr0|(nlfi<) to_the
Kramers conjugate state of the final stat#:), i.e.,
L Laz_l(ﬂlfifﬁ\lflfl)’|2¢|chzz%(‘lfri]—>\[f Y% the tlwo-pholton clf]ontri—
2 _ = ; ution fromW¥; to W; is, however, exactly equal to the two-
Ao1=3 [(nzmy+many )i+ (naly+1zny)], photon cor;tributifon from ¥K to WK e,
laoy (W, — W) |?=|a, (¥ K—TK)|2 For transitions be-
1 tween non-Kramers state, the TPA contributions from a sin-
NG [2nzng—momy—1ol4 ], glet (¥;) to each state of a doubly degenerate levie),, or
Wyy) are equafli.e., [ax(Vi—Wy,)| =|a(Vi—Vy)|".
1 It can be noted that Table | agrees with Bader and Gbld,
7@:5 [(Nomy+muny)i—(Noly+1,n5)], since the expression for the polarization dependence of the
intensities of transitions between Stark levels only depends
on the Cartesian Raman tensors and their corresponding ir-
reducible spherical tensors whose nonzero values are pre-
dicted by group theory. No approximation has been required
to derive the relationship between the intensities and the gen-
Putting Eq.(4) into Eq. (10) we obtain the polarization eral form of the irreducible spherical Raman tensat8,
dependence expression for second-order two-photon transijhich replace the parametetg’s in Bader and Gold's

In terms of the irreducible spherical scattering tensors

where the polarization dependent coefﬁcienfﬁs are de-
fined by

A=

1
N3=5 [(Iohi=momy) = (Iom+mpl )il (1)

tion intensities theory. The explicit second-order expressionsdf in Eq.
s 4 (12), in terms ofF, andU{, however, are derived using the
(a02M=3 3 AFUD. (12  Judd-Ofelt-Axe theory. Sinc&)’ can be calculated for a
t=0 g=—t particular transition, the expression for the intensities for two

) ) o photon processes in terms Bf provides a stringent test for

Equation(10) is the most general polarization dependencene Axe theory. In the case of TPA from the same source
expression of tvyo—photon transition intensities between Starbmy F, would appear in the expression for intensities. Thus
levels. For clarity purpose we will use the symhe} o rejative intensities between Stark levels can be calculated
denote the matrix element of the irreducible scattering tensagnq compared with experimental values. For a single two-
af. _Fort a particular transition between Stark levels onlypnoton transition the polarization dependence of the intensi-
certaina, are nonzero, according to the Raman activity ofies on g and ¢ can be directly compared with experimental
the group corresponding to the Stark lev&s?In particular,  gata.
the following comments apply. First, sinagf’ is propor- Another test for the second-order theory of Axe may
tional to U$” in the second-order approximation, where come from the ratid=,/F, as first demonstrated by Becker
U is a number operator proportional toN/(14)Y2 for the et al. in the case of TmPQand ErPQ.5® Using Cartesian
N configuration,a is exactly zero for different initial and coordinates it is common to obtain ERS intensities corre-
final states used in Raman transitions. We therefore will omisponding to at most four polarization states. Asymmétry
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TABLE I. Angular-dependence functions for RE ERS and TPA transitions. The symbols are defined in the text.
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C: G
A=A Ay=hy

C, Cs Cyy
A=A AcA AjoAy

A=B A'—A" A~ By

C3 !C3i
A=A

A—E

C4.CanSy

A—A

A—B

A—E

Can Ce(Csn)

A —A A=A

A'—E'" A—E;

A'—E' A—E,

1
- _) [_2n2n1+ m2m1+|2|1]a(2)

V6

1 . 2,1 . 2
+ 3[(npmy+myny)i — (ol 1 +15n1) Jag+ 5[ (NMy+myng)i+ (Nl +1500) ety

1
— — |[nony+mpmy +1ol Jad+
‘( \/j>[21 mpmy+1ol, Jeg

1 1.2, 1 .12
+ 3[(Ialy=momy) = (Iomy+myl )i Jaz + 5[ (1ol = momy) + (Iomy +myl )i ]e,

i
1,1 . 1
+ 5 [mal;—1omyJag+ 5[ (Mang—nomy )i+ (Noly—1ong) Jag

2
1 . 1
+ 3[(=many+nmy)i+ Nyl —1ony) et

1
- —) [—2n,n;+mymy+1,l4]a?

V6

i
1,1 12 2y, 1 2 2
+§ (Mol —1omyJag+ 5[ (Iomy+myl ) i](aZ,— a3) + 5[l + momy (el )+ a3)

af—aj
n,l, 5 +15n4

1
( %)[nznﬁ Moy + 15l Jad+

2

1 2

+

2

a?,—at,
+mpn, | ———

2

a2,1+ a”q
+|noly| ———

2

1 i
2 1
- _) [—2n,n+momy+ 15l Jag+ 5 (Ml —1omy]ag

V6

1 1 1 1ir; 2 2
|3[n2l1—Iong](aZ +ag)+5[Nol +1on (e — af)

1
—| = |[nany+mpmy+1l, Jad+
‘ (‘/3)[21”‘21 2ileg

1 2, 2 1 2 2
+ 301l = momyJ(a5+a? )2+ | 5[ my+malJ(a? ,— a2 ,)

1 1 1y, 1 2, 2 42
+3[nomy—myngJ(aty—a)+z[nomp+myngJ(af+a?y)|

1 i
2 1
- —) [—2nyn+momy+ 15l Jag+ > [myl—1my]ag

V6

1 ! 9
|Z0(1ol = mpmy) = (1omy+myly)iJa 5+ 5[ (11— mpmy) +(1,my+myly)iJa? o2

1
— — [Ny +mpmy+1,l,Jad+
(‘/j)[Zl mpmy+ 1ol Jeg

aifa% aiJrai 2 aifai aiJra% 2
n,m; +myny +|nyl, Iong 5
a2,1+a1,1 a,l—al,l 2 a2,1+a1,1 a,l—afl,l
+{n,m; 5 +myny 5 +{nylq 5 +15n4 5

1 i
2 152
- _) [—2nyn+momy+ 15l Jag+ 5 [mal 1 —lomyag

J6

1 2, 2 1 2 2
|50l = momyJ(a5+a?,) >+ 5[ 1m+myl ] (a2~ a5)|?

1
— = |[nony +mpmy +1,1,Jad+
(\/§>[21 mpmy + 15l Jag

ai—a% af-ﬁ-ai 2 ai—ai ai-ﬁ-ai 2
n,my +mpny +|nyly 5 +1,n 5
a2,1+a,1 az,l—al,l 2 a2,1+a1,1 a,l—al,l
+{n,m; 5 +myng 5 +{n,ly — +1,n, 5

2

2
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TABLE I. (Continued.

Cs, Dy Dyp(Dan=DyxCy)

1
2
- —) [—2n,n;+momy+ 1,14 ]ag

V6

1
A=Ay AoA ‘( - 17?)[”2”1+ Mpmy + 1ol Jag+

1 2, 2
+ 5[l —momyJ(a5+a?,)|?

Arohy AcB, |2Lmol 1= 1My Jargt 3L 1My +myl ] (e~ a$)|?
A1=B; ABy 13[nal 1+ 1500221 — ad)+ 30Nl —longl(ad+aly)[?
ArBy A—Bg = 3[nmy+mpn ] (@ +ay) + 5[mpn; —nomiJ(ai—aly)[?

D3, C3,, D3g(D3g=DyxC)

A A 1 0 1 22
1A —‘73 [nong +mpmy + 1ol Jag+ —% [—2non+momy+ 1515 Jeg
i 2
A Ay 5 [m2|1_|2m1]acl)
A—E |2lnali=lani](at s+ ad) +3[nal  +1on)(a? 1~ ad)
+ 301l —mumyl(@d+ a2 ,)2+| 5[l mi+myli)(a? ,— ad)
+3[nmy—myny](aty—ad) + 3[n,my+mongl(ad+ a2 )2
D4,C4,.D2d;  Dan(Dgn=D4xC))
2
A A 1 0 1 2
1A —‘73 [nong+momy + 1ol 4 Jag+ —% [=2n,n;+momy+ 1514 ]ag
i 2
A=Ay > [myl—1l,my]ag
A1By 130120 —momy(ad+ a2 )2
i
A, B, |—§[I2m1+mzll](a§—a2,2)|2
2 1 2. 1\|2 2_ 1 2. 1\|2
a;—«a o)t o a]— o]t o
A —E nzml( Ll +myny 12 ! +n2I1( 12 +1,n, 12 !
2 12 1 2 112
a”ta”y a” —aq a tag aZ —aq
+|n,my 5 +m2n1( > +|nylq 5 +15n4 5
Ds,Cs, Dsn(Dsp=DsxCy),
D¢,Cé, Dap Dgn(Dgn=DgxC;)
D4g
1 1 2
AlHAl AiHAi AlHAl - [n2n1+m2m1+|2|1]a8+ e [72n2nl+ m2m1+|2| 1](13
% V6
; 2
’ ! I
AroAy; AjoA; AjoA §[m2|1*|2m1]ac1)
2 1 2, 1\|2 1 2, 1\|2
a;—«a a7t o ai— a;ta
A1—E; AjoE' Aj—E;g nzml(%) m,n, 12 Y+ nzll( 12 +1,n, 12 :
2 1 2 12 2 2 12
a”ta” g a” —a” g a” ta g a —a”
+ nzml(T +m2n1( > +{nylq > +15n4 >
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TABLE I. (Continued.

A]_(—) E2 Al<—>E, AiH E2

0,Td, Oh(Oh=0xCi)
A1<—>A1

A]_(—> E

A]_(—) Tl

A]_(—)Tz

T,Th
A—A

A]_(—) E

ApesTP

A1<—> Ta

|30l —mmy (a3 + a2 )P+ Al Lomy +myly 1o ,— ad) 2

2

1
— = |[nony +mpmy +15l 1 ]ad
(\/§>[21 mpmy + 15l Jay

2

1
2,1 2, 2
(_ _> [—2nyn +mymy+ 1ol Jag+ 5[ 1ol —momy J(es+ a2 )
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can be measured by the ratio of two of these intensitigs,
(or lyz) andl, (or I ,y), from which the value oF,/F, can -> E
be obtained. From the Raman-scattering intensities of light

(ilE-D[j)(jIE-DIf )

i i

with incident and scattered polarizations being arbitrarily (i[V4] )GVl k) (K| V4|f ) 2

varied, a better fit for the ratib,/F, may be obtained. Thus +>
this analysis method should provide a more reliable value for

the ratioF,/F,.

In general the two-photon scattering tensgy is related ~ whereE; andE, are the average energy of the excifeand
to the irreducible representation of the scattering teméﬁr k configurations.

by the relation

Depending on the specific details of the interactdn
(i=1, 2, or 3 and the initial and final states, expressiad)
represents different third-order contributions to the two-
photon intensities. If the initial and final states are crystal

2t
_ _ t o0
(“21)_;0 q;—t( 1 (ezer) " glag)), 13 field states belonging to the f¥ configuration,

V;=V3=E:-D, andV,=Hgq, expression(14) represents the
third-order spin-orbit contribution. N,=H g, however, the

Where(eZel)tfq_iS the coupled form of the polarization unit third-order contribution comes from the interaction between
vectors. Equatiorfl3) can be derived by the use of the stan-intermediate configurations via the crystal-field potential.

dard method of tensor operatdrs.

B. Third-order contribution to intraconfigurational
two-photon transition intensities

When the wave functions j, k, andf are products of lan-
thanide and ligand wave functions, aWg=H:, whereH¢

is the Coulomb interaction between the electrons in the lan-
thanide ion and the ligand excited states, expressiagh
represents the ligand-polarization third-order

The line strength of a two-photon transition from an ini- contribution!®>~° This ion-ligand excitation mechanism is
tial stateli) to a final statdf) shown up to the third-order is called the dynamic mechanism to distinguish it from the

proportional to

static mechanism as it involves ligand excited states. Finally,
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a third-order contribution can come from electron correla-add the results foa calculated in the third order into the

tion, if V,
tral part of the Coulomb interaction:

Vgoncentralz VC_ U, (15)

whereU stands for the potential of the central field approxi-

mation.

In the independent systems modet®and in the double

perturbation moded?~?6the third-order terms in whick,, is

interchanged withV/, or V; also arise, and the electric dipole
operatorE-D may represent the light-central ion or light-

ligand interaction.

1. Spin-orbit interaction

=noncentral \yhere\/honcentalgengtes the noncen- second-order results in E€L2) and square the resulting total

amplitude (a»,)"®@ to obtain the TPA transition intensities
calculated up to the third order involving spin-orbit coupling.
Note from expressmrﬁl?) because of the presence of the
operator(a'a)t'?, the scattering tensaxy is not a scalar,
and its correspondmg matrix elements are no longer identi-
cally zero for distinct initial and final states as in the case of
the second order theory. One must include &2 term in

the third-order calculation in order to obtain meaningful re-
sults.

2. Crystal-field interaction

The original expression for the third-order TPA tensor

The polarization dependence of the two-photon scatteringperator involving crystal-field interaction has been devel-

amplitude can be expressed in third order:

2 t
(a21)3rd:t220 q;t )\;( agt)):ird, (16)

The explicit tensor form for the third-order spin orbit in-

teraction has been given by Judd and Potflépwner and
Bivas!! and Ceulemans and Vandenberdhdts corre-
sponding irreducible tensor form is given by

(ag’[))?:rd:H(t)(aTa)got)t(aTa)(ll)O_i_% G(t,)\)(a‘l'a)gl)\)t,
(17)

+

oped by Downer and co-workéfs-3and is given by

‘(—1)'*"[(2I+1)(2|'+1)2]M
e
X I 1 |/)22 (—1)X(2k+1)Y2( 2t + 1)
0 0 0/ ¢kh
I'*"’>I1|'1||'
X O 0 o/lh I” k||l k t

X [&1(BMeL) 0] (U)®), (20)

wherea',a represent creation and annihilation tensors, and

H(t) andG(t,\) are defined by
H(t)=3(—-1)'TI(1+1)(21+1)]*?

§|<nllr|nl')2{1 I I’}
X—
I 1 t

e o

and
g(nl|rnl")?
G(t,h)=—3(—1)'[|(|+1)(|+1/2)]1’2%
11
DM2N 11/21 Ly
XEDTEMDT 1 )
Z(nlfr|nl")?
—3(—1)t[|’(l’+1)(I'+1/2)]1’2$
11
T
X(=DMY 2+ 1 11 (19
t A1

In expression$17)—(19) the only nonvanishing terms oc-

cur fort=0, 1, and 2 and fokh=1, 2, and 3, and,, ¢ are
the spin-orbit coupling constants forand |’ electrons, re-
spectively.

where h,k,t are tensor ranks anB"™ is the crystal field
tensor corresponding to the third-order crystal field interac-
tion acting between excited configuratiof$ and|k) in ex-
pressiong14).

As can be seen from expressigR0); the crystal field
tensor operatoB" is coupled to the electric field vectors.
By further recoupling the electric field tensors, Ceulemans
and Vandenberghe have obtained an expression in which the
electric field tensors are directly coupled and all thej6
symbols are combined into a single-p symbol** We will,
however, consider only the special case of Downer’s expres-
sion in which the only crystal-field term appearing in Eq.
(20) is the fourth rank crystal field terr8§”. Puttingk=5,
t=6, h=4,1=3, andl’'=2, the polarization dependent form
for the crystal-field third-order contribution is given by

B(4)

J_{J—m@zu )+ V3512 ,U'®) + 35\ 2U

+ 35\ 2UL0 + 14\ 2UE), (21)

Where)\ 's are defined in Eq(11).

The crystal -field third-order contrlbutlon is proportional
to (10/33Y4i|U®|f) and (14/99Vi|U®)/f) for parallel and
circular polarization, respectively. For tR&;,—°l; transi-

Since the third order spin-orbit contribution to two-photon tions in Gd*:LaF;, the ratio of the integrated two-photon

intensities can be expressed in terms of the second rank iline strength corresponding to parallel polarization to that
reducible tensor form, with the same polarization dependentorresponding to circular polarization is 15/7, in exact agree-
coefficients as the second-order contribution, one can jushent with Downeret al3
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C. Third-order contribution to interconfigurational two-photon absorption transition intensities

The theory of static and dynamic contributions to the two-phdtahtransitions has been developed by LeatAthaoud
and Kibler®”*®and Sztucki and Stre¥ Their polarization dependent expressions can be derived by using methods described
in the previous section. Applications of Leavitt's and Sztucki and Strek’s theories in the cakes&ftwo-photon transition
in Ce*":Cak, are given in the examples section.

D. Relative magnitude of higher-order contributions to second-order contribution

We finally consider the relative magnitude of the thifds highe) order contribution to the second-order contribution.
Using the intermediate coupling states we have

J/
ESLJ,S’L’J’a(SLJM)a’(S’L,‘JIM,)(_M q M')(—l)(JM)<SLJ|(a(t))nth||S’L’J'>
- It 7 . (22
ESLJ,S'L’J’a‘(SL‘] M)aI(S,L,\],M I)( M,)(—l)(‘]M)<SL\]|(a(t))2nq|S’L’J'>

(W] w )
(¥[(ad)>™Mw’)

wherenth can be 3rd, 4th, or any higher order contribution taken into account.
If the SLJ mixing are negligible for the statek and ¥’ the coefficienta(SLIM) anda’(S'L'J'M") are functions of)
andM, i.e.,a(SLIM)=a(JM), a'(S'L'I’'M')=a’(J'M"). We then have

—1\3—M)
<\If|(agt))mh|‘1"> -M M')( l)J M

(Wl(a)2w’) It 7 i
! (SLA(MS L) Zsrygrrea@Ma’(IMO| o o [T

(SLY(a")™|S'L'I ) Sg 35 ya(IM)a’ (I'M ')(

(SLY(a)™S'L"Y")

(LI SLT ) 29

which is independent ofi. For a TPA process with a single The final states are

laser excitation wavelengtlzy,gl) vanishes, and also van-

ishes if 3’ is different fromJ. In this case the polarization Il'1)=—0.74°D3(2,0]+0.6§°D1(2,0)],
dependence and relative amplitudes of TPA Stark intensities,

which now depend only omﬁ, would not change when 1 1

higher order contribution were included. We now apply the Il3)=—0. 74{ °D3(2,2) + — 5D3(2,—2)
polarization dependence theory into a number of cases in- v2 v2

cluding intra- and interconfigurational TPA.

Ill. EXAMPLES

1 1
+0.6 — °D1(2,2+ —°D1(2,—2) |,
V2 V2

A. Intraconfigurational TPA—application to Sm2* in BaCIF

In the second-order approximation the polarization depen- |1 ,)= _0'7{ 1 5D3(2,2) + 3 5D3(2,—2)
dence functions of the TPA intensities are expressed in terms v2 V2
of a{s, which can be further evaluated in terms of the
parameter§,’'s when one applies equatio(®)—(9) to a par-
ticular TPA transition. The final polarization dependence
functions are thus expressed in terms of the parantgter
and can be compared directly with observed data. We now
apply formulae(8) and (9) to the transition’F,—°D, for
St in BaCIF (C,, site symmetry Using the crystal-field
parameters given by ®an etal,*®* we can obtain the ITsy)=-0.74-°D3(2,~1)]+0.6 —°D1(2,~ 1)],
crystal-field wave functions and coefficients for the initial (25
and final states.

The initial state, which is the ground state, can be ex-
pressed &%

1 1
+0.6 —— °D1(2,2+ — °D1(2,—2) |,
V2 V2

ITs)=—0.74—-°D3(2,1)]+ 0.6 —°D1(2,1)]

whereI's, andI's, are the two components of the doubly
degeneraté’; states.
For Snf*(4f°) the nonzero values afy, are given by

IT',)=0.97"F(0,0—0.17°D1(0,0), (24) 007

(2) _
where we have used tH&"1Li(J,J,) notation. (Tlag”|Iy)=—2—F2,
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0.079 instead. The results in E¢30) are identical with those of
(Tq|aZ|Tg)=—F,, Gaconet al,*® which were shown to agree well with experi-
5v2 ment. As pointed out by Ganet al, the results given in Eq.

(30) agree with the results of Bader and Gold and, further-

<1“1|1“(f%|1“4>= - OE;S;QFZ’ more, complete their results.
B. Interconfigurational TPA—application to Ce3*:CaF,
<F1|a(12)|1“5x>=(1“1|a(2{|1“5 y=— MF . (26) Table | and Eq(10) can be used to calculate the depen-
- y 5 2 . . .
dence of the TPA cross section on the directions of the elec-

Equation(14) can be rewritten for the case of TPA from tric field vectore and_the_wave vec_td( o_f the incident laser
: beam. For the G& ion in CaR, with site symmetryC,,,
the same source: 0 2 2 2 i
only ag, ag, andaf (or a,) are nonzero for a TPA transi-
3co0—1 P tion from the & ground statél’;) to the lowest 8l state(I';).
T) al? - ( R sinze) a'? The TPA cross sectiotr for the corresponding zero-phonon

2 transition is proportional to

TPA_
Ay =

gle e 2i¢ — 2 —ie 2
+| = sin2d | a?)+| —— sin26> al? LI 3cosh-1 2| +|| St sin2g | a2 .
2 2 \/j 0 \/g 0 2 1
2igp (31)
Z g (2) -
+( 5 S'n2‘9> a’s, (27) For the case wherk|[100] andg[010] we have
ox1+C sirf26, (32
a
(PalazT'y) = -2 (3 cogo-1), where C=(2b-1/2/(3a%-2a+1), (39
. 0 2\ 2
<F1|a21|F3)=a23|n29 COSZP, . _ ‘/2 o _ ay
with a= 3 + 3 aé and b= 6 aé . (39

<F1|a{21|r4>=ia28in20 SinZKP,
Similarly, we obtain

a, | .
(T1] apqT's)=— (sin2g)e™'?, 3C
) oerl+ = sif26

a _ - R

<F1|a21|F5y>=——2 (sin20)e'®, 28 +C sirfg for the case wherek|[[110] and &|[001],

v2 (39)

e o 0070 9 and
Where 8= 5 T2 ox1+C for the case wherek|[111] and &|[110].
(36)
The angular dependence of the TPA line strengths can be .
expressed in terms of the overall streng8y of the  The fitted curves for Eqe32), (35), and(36) are shown

"F,— 5D, two-photon transition, in Fig. 1. The best fit focC is found to be 1.774. The polar-

ization anisotropy for the case whekf{100] and€[[010] is

. T.y=4% _ 12
S(I'1—T'1)=35S(3 cos6—1) | oas)-0(09)  C

S(I'y—T'3)=Sysin*d cog2¢ ~ 0(45°+0(0°) 2+C’ 37
I —T.,)=S.sirosir? 2 is 0.47, in good agreement with the observed value, which is
=T =% ¢ 0.5 in this case.
S(I'1—T's)=S(I'1—Ts,) + S(T'1—T'sy) = Sesin'26. Note that the fitted formulaé32), (35), and (36) can be

(30) equivalently obtained using Bader and Gold’s theBr@ur
expression$33) and (34), however, facilitate direct calcula-
Note that we can equivalently obtain E@O) by using tions for the values o€ andA in terms ofafq’s, which in

Table | for the case o€,, and substitute the nonvanishing turn can be evaluated using existing theoretical models. The
values ofa{) given in Eq.(26) into the polarization func-  value forA calculated by Gayeat al*is 0.076. Taking into
tions for each two-photon transition. Table | is particularly account only theB§,3> component of the crystal field and ig-
useful when the intermediate coupling coefficients of thenoring the dynamic effect, Makhanedt al®® obtained a
wavefunctions for the initial and final states are unknown.value of 0.47. Leavitt's calculated value féris 0.32% Fi-
Once these coefficients are obtained, and the correspondimglly, Sztucki and Strék found A=0.55, 0.15, and 0.52 for
a{’'s are determined, the master formyftD) can be used the static terms proportional ®§",B ), and the dynamic
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expressed in terms of the nonvanishing values of the matrix
elements of the irreducible representation of the scattering
tensorsaa. These polarization dependence functions can be
directly compared with the observed intensities, from which
the fitted values oﬁza can be obtained. In the ERS case, the
more explicit expressions aﬁg in terms of the parameters
F:, which arise in the second-order theory of Axe, can then
be obtained from Ed4). In the second-order approximation,

0 . . . . the final polarization dependence functions depend only on
two parameters, namelfs; and F,, which in general are
simpler than the original polarization dependence functions
expressed in terms mfg. The simple expressions of the final
polarization dependence thus provide a crucial test for Axe’s
second-order theory. Another sensitive test for Axe’s theory
come from the ratid=4,/F,, which can be derived from the
ratio a 3/a, obtained from the fit mentioned above. The
ratio F,/F, is predicted from the Axe theory to be approxi-
mately the same for all ERS transitions of a particular rare-
earth ion. Deviation from the value of the ratg/F, would
provide insight to further revision of the second-order theory
0 . , of Axe. Examples and applications of the master @€) in
ERS and phonon Raman-scattering processes are given in
separate communications, where all the experimental data
have been obtained by our group.

Intensity (arb. units)

40
s +
¥ +
3ol IV. SUMMARY
We have proposed a theoretical framework for obtaining
20} the polarization dependence formulae for two-photon transi-
1ol tion intensities of rare earths doped in crystals. The theory
was developed based on the properties of the irreducible rep-
o ) resentation of the scattering tensors calculated up to the third
Y 45 90 135 180 order. A table of angular dependence functions for two-

Polarization 6 (deg.) photon transitions for 32 crystallographic point groups was
given. Our third-order expression for the TPA scattering ten-
FIG. 1. Polarization dependent behavior of the two-photon cros$or taking into account the crystal field interaction agrees
section for the no-phonon transition of ¥eCaF, at 6 K. The solid ~ with Downeret al’s expression for the case of parallel and
crosses represent the experimental measurements given in Ref. 2@icular polarizationt> We have applied our second-order
and the solid lines are the fits to the data using the angular functiongolarization dependence formulae to the,—°D, TPA
described in Eqs(32), (35), and(36). transitions of SMi" in BaCIF, and the results are identical
with those given by Gacost al*® Third-order interconfigu-
one, respectively. Our recalculation using Leavitt's modelrational two-photon absorption was also treated. Its applica-
gives A equal to 0.17 and 0.16 for the static and dynamictions in the case of &é in CaF, were given. An excellent fit
contributions, respectively. The reason of the discrepancie® the experimental polarization dependence curves was ob-
stem from the fact that the number af's was being over- tained. From the fit we have calculated the polarization an-
counted in expressiofl3b) of Ref. 32. This is because? isotropy using Sztucki and Strek’s model, and we were able
anda?, can not be both nonzero in one TPA transition fromto show the dominance of thef 4 5d third-rank crystal field
one component of a Kramers doublet to another. We alsterm in contributing to the #—5d TPA amplitude in the
found that Sztucki and Strek’s mod&lgives A equal to  case of C& in CaF, which was in agreement with Ma-
0.815, 0.51, and 0.16 for the static terms proportional tdkhaneket al>
BSY B, and the dynamic one, respectively. We conclude The properties of the irreducible scattering tenagp,
that the third-rank component of the crystal field was in facthave been exploited to derive the relationship between the
the dominant term in the TPA transition intensity from the two-photon scattering tens%(‘[ and the coupled form of the
4f ground state to the lowestdSstate of the C& ion in  unit polarization vectorseie;) Y. This relationship has been
CaF,, as was claimed by Makhanet al. particularly useful in deriving the explicit expression for the
intraconfigurational two-photon amplitude including the
Judd-Ofelt-Axe’s second-order tedr Judd-Pooler’s third-
order spin-orbit termf® Downer-Bivas'’s third-order crystal
As in the case of two-photon absorption, the polarizatiorfield term!*~*3as well as the interconfigurational TPA am-
dependence functions for ERS and phonon intensities anglitude using models given by Leavitt,and Sztucki and

C. ERS and phonon Raman scattering



55

POLARIZATION DEPENDENCE OF TWO-PHOTN. ..

5797

Strek!® The relative magnitude of higher order contributions manuscript. The author would like to thank Dr. Keith Mur-
to the second-order contribution was also discussed based oloch and Professor Sumner Davis for valuable suggestions.

the properties o’ and the Wigner-Eckart theorem.
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5"Note the compact expression of the irreducible representation of as (e)_q(e)_q, where the latter is equal to the former multi-
the Raman-scattering tensor. In order to obtain this compact plied by a factor of( —1)".
form, a factor(—l)t is present in the expression fEE Leaving %83 A Koningstein)ntroduction to the Theory of the Raman Effect
out this factor in the expression féf; has led to a sign error for (Reidel, Dordrecht-Holland, 1972

9
the ratio F;/F, in several papers written by Smentek- 602' iachteth.Dl\_/lolec. Eplgc”v\(/)ﬁ&s]l(lg?deﬁ Steir . ¢
Mielczarek?®=2* The derivation for expressioril2) can be - Koster, J. Dimmock, R. Wheeler, and H. Stétzoperties o

found in Becker's thesi®? in which Becker made an error in the Thirty-Two Point GroupgThe M.IT. Press, Cambridge,

. L . i Massachussetts, 1963
expressior(3.42, which is equivalent to Eq8) of this paper. In - 615 Nguyen, Ph.D. thesis, University of California, Berkeley,

(3.42, (e,0)' was given age;ey)', which is a factor of(—1)! 1996.
different from (exe))". In expression(3.57), however, Becker  62Hjere we have used Kostet al’s notation(24). To compare with

made another error, which accidentally cancels out the previous Table |, we make the following changes for the cas€gf site
error be made. In expressidB.57), (e)_4(€))_, was written symmetry:I')=A,, I'3=B4, I',/=B,, andI's=E.



